1
|
Pascua AM, Barbisan G, Nikoloff N, Carranza-Martín AC, Fabra MC, Anchordoquy JP, Balbi M, Giuliodori MJ, Furnus CC, Anchordoquy JM. Effect of estrogen and progesterone on intracellular free zinc and zinc transporter expression in bovine oviduct epithelial cells. Theriogenology 2024; 221:18-24. [PMID: 38521006 DOI: 10.1016/j.theriogenology.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Zinc (Zn) plays essential roles in numerous cellular processes. However, there is limited understanding of Zn homeostasis within the bovine reproductive system. This study investigated the influence of estradiol (E2) and progesterone (P4) on Zn transporter expression and intracellular free Zn levels in bovine oviduct epithelial cells (BOEC). For this purpose, cells were harvested from slaughtered cows and cultured in vitro. Intracellular Zn concentrations were measured using FluoZin-3AM staining, while real-time polymerase chain reaction assessed Zn transporter gene expression and quantification. Overall, our results confirmed the gene expression of all the evaluated Zn transporters (ZIP6, ZIP8, ZIP14, ZnT3, ZnT7 and ZnT9), denoted and the active role of E2 and P4 in intracellular Zn regulation. Our findings suggest an interaction between Zn, E2 and P4.
Collapse
Affiliation(s)
- Ana Malen Pascua
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | - Gisela Barbisan
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina; YPF Tecnología (Y-TEC), Av. Del Petróleo S/N entre 129 y 143, CP 1923, Berisso, Buenos Aires, Argentina
| | - Noelia Nikoloff
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | - Ana Cristina Carranza-Martín
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | - Mariana Carolina Fabra
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | - Juan Patricio Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina; Cátedra de Fisiología, FCV-UNLP, Argentina
| | - Marianela Balbi
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | | | - Cecilia Cristina Furnus
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | - Juan Mateo Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina; Cátedra de Fisiología, FCV-UNLP, Argentina.
| |
Collapse
|
2
|
Liu XM, Li J, Chen D, Li H, Qin XY, Wang YX, Gu YZ, Li N, Zhou LG, Feng M. Ano1 regulates embryo transport by modulating intracellular calcium levels in oviduct smooth muscle. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167059. [PMID: 38336104 DOI: 10.1016/j.bbadis.2024.167059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Oviductal smooth muscle exhibits spontaneous rhythmic contraction (SRC) and controls the passage of the ova at the exact time, but its mechanistic regulation remains to be determined. In this study, female mice with Ano1SMKO (smooth muscle-specific deletion of Ano1) had reduced fertility. Deficiency of Ano1 in mice resulted in impaired oviductal SRC function and reduced calcium signaling in individual smooth muscle cells in the oviduct. The Ano1 antagonist T16Ainh-A01 dose-dependently inhibited SRCs and [Ca2+]i in the oviducts of humans and mice. A similar inhibitory effect of SRCs and [Ca2+]i was observed after treatment with nifedipine. In our study, ANO1 acted primarily as an activator or amplifier in [Ca2+]i and contraction of tubal smooth muscle cells. We found that tubal SRC was markedly attenuated in patients with ectopic pregnancy. Then, our study was designed to determine whether chloride channel Ano1-mediated smooth muscle motility is associated with tubal SRC. Our findings reveal a new mechanism for the regulation of tubal motility that may be associated with abnormal pregnancies such as ectopic pregnancies.
Collapse
Affiliation(s)
- Xiao-Man Liu
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China; Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, PR China
| | - Juan Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Defang Chen
- Office of Operation Management Committee, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Hao Li
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Xiao-Yan Qin
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Yun-Xia Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Yong-Zhong Gu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Na Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Li-Guang Zhou
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Mei Feng
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China; Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, PR China.
| |
Collapse
|
3
|
Hunter MI, Thies KM, Winuthayanon W. Hormonal regulation of cilia in the female reproductive tract. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2024; 34:100503. [PMID: 38293616 PMCID: PMC10824531 DOI: 10.1016/j.coemr.2024.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
This review intends to bridge the gap between our knowledge of steroid hormone regulation of motile cilia and the potential involvement of the primary cilium focusing on the female reproductive tract functions. The review emphasizes hormonal regulation of the motile and primary cilia in the oviduct and uterus. Steroid hormones including estrogen, progesterone, and testosterone act through their cognate receptors to regulate the development and biological function of the reproductive tracts. These hormones modulate motile ciliary beating and, in some cases, primary cilia function. Dysfunction of motile or primary cilia due to genetic anomalies, hormone imbalances, or loss of steroid hormone receptors impairs mammalian fertility. However, further research on hormone modulation of ciliary function, especially in the primary cilium, and its signaling cascades will provide insights into the pathogenesis of mammalian infertility and the development of contraceptives or infertility treatments targeting primary and/or motile cilia.
Collapse
Affiliation(s)
- Mark I. Hunter
- OB/GYN & Women’s Health Department, School of Medicine, University of Missouri – Columbia, Columbia, MO, 65211, United States
| | - Karen M. Thies
- OB/GYN & Women’s Health Department, School of Medicine, University of Missouri – Columbia, Columbia, MO, 65211, United States
| | - Wipawee Winuthayanon
- OB/GYN & Women’s Health Department, School of Medicine, University of Missouri – Columbia, Columbia, MO, 65211, United States
| |
Collapse
|
4
|
McGlade EA, Stephens KK, Winuthayanon S, Anamthathmakula P, Holtzman MJ, Winuthayanon W. Classical Estrogen Signaling in Ciliated Epithelial Cells of the Oviduct Is Nonessential for Fertility in Female Mice. Endocrinology 2023; 165:bqad163. [PMID: 37942801 PMCID: PMC10658216 DOI: 10.1210/endocr/bqad163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Ciliary action performs a critical role in the oviduct (Fallopian tube) during pregnancy establishment through sperm and egg transport. The disruption of normal ciliary function in the oviduct affects oocyte pick-up and is a contributing factor to female infertility. Estrogen is an important regulator of ciliary action in the oviduct and promotes ciliogenesis in several species. Global loss of estrogen receptor α (ESR1) leads to infertility. We have previously shown that ESR1 in the oviductal epithelial cell layer is required for female fertility. Here, we assessed the role of estrogen on transcriptional regulation of ciliated epithelial cells of the oviduct using single-cell RNA-sequencing analysis. We observed minor variations in ciliated cell genes in the proximal region (isthmus and uterotubal junction) of the oviduct. However, 17β-estradiol treatment had little impact on the gene expression profile of ciliated epithelial cells. We also conditionally ablated Esr1 from ciliated epithelial cells of the oviduct (called ciliated Esr1d/d mice). Our studies showed that ciliated Esr1d/d females had fertility rates comparable to control females, did not display any disruptions in preimplantation embryo development or embryo transport to the uterus, and had comparable cilia formation to control females. However, we observed some incomplete deletion of Esr1 in the ciliated epithelial cells, especially in the ampulla region. Nevertheless, our data suggest that ESR1 expression in ciliated cells of the oviduct is dispensable for ciliogenesis and nonessential for female fertility in mice.
Collapse
Affiliation(s)
- Emily A McGlade
- Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Kalli K Stephens
- Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | | | | | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St.Louis, MO 63110, USA
| | - Wipawee Winuthayanon
- Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Seidl C, Da Silva F, Zhang K, Wohlgemuth K, Omran H, Niehrs C. Mucociliary Wnt signaling promotes cilia biogenesis and beating. Nat Commun 2023; 14:1259. [PMID: 36878953 PMCID: PMC9988884 DOI: 10.1038/s41467-023-36743-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
It is widely thought that Wnt/Lrp6 signaling proceeds through the cytoplasm and that motile cilia are signaling-inert nanomotors. Contrasting both views, we here show in the mucociliary epidermis of X. tropicalis embryos that motile cilia transduce a ciliary Wnt signal that is distinct from canonical β-catenin signaling. Instead, it engages a Wnt-Gsk3-Ppp1r11-Pp1 signaling axis. Mucociliary Wnt signaling is essential for ciliogenesis and it engages Lrp6 co-receptors that localize to cilia via a VxP ciliary targeting sequence. Live-cell imaging using a ciliary Gsk3 biosensor reveals an immediate response of motile cilia to Wnt ligand. Wnt treatment stimulates ciliary beating in X. tropicalis embryos and primary human airway mucociliary epithelia. Moreover, Wnt treatment improves ciliary function in X. tropicalis ciliopathy models of male infertility and primary ciliary dyskinesia (ccdc108, gas2l2). We conclude that X. tropicalis motile cilia are Wnt signaling organelles that transduce a distinct Wnt-Pp1 response.
Collapse
Affiliation(s)
- Carina Seidl
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Fabio Da Silva
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Kaiqing Zhang
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Kai Wohlgemuth
- University Children's Hospital Muenster, Department of General Pediatrics, 48149, Muenster, Germany
| | - Heymut Omran
- University Children's Hospital Muenster, Department of General Pediatrics, 48149, Muenster, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany. .,Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| |
Collapse
|
6
|
Expression of Indian hedgehog signaling in murine oviductal infundibulum and its relationship with epithelial homeostasis. Cell Tissue Res 2023; 391:595-609. [PMID: 36577879 DOI: 10.1007/s00441-022-03722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/29/2022] [Indexed: 12/29/2022]
Abstract
Homeostasis of the oviductal infundibulum epithelium is continuously regulated by signaling pathways under physiological and pathological conditions. Herein, we investigated the expression of hedgehog (Hh) signaling-related components in the murine oviductal infundibulum, which is known to maintain homeostasis in the adult epithelium. Additionally, using autoimmune disease-prone MRL/MpJ-Faslpr/lpr (MRL/lpr) mice showing abnormal morphofunction of the ciliated epithelium of the infundibulum related to the oviductal inflammation, we examined the relationship between Hh signaling and pathology of the infundibulum. The expression and localization of Pax8, a marker for progenitor cells in the oviductal epithelium, and Foxj1, a marker for ciliogenesis, were examined in the infundibulum. The results showed that Pax8 was downregulated and Foxj1 was upregulated with aging, suggesting that homeostasis of the infundibulum epithelium of MRL/lpr mice was disturbed at 6 months of age. In all mice, the motile cilia of ciliated epithelial cells in the infundibulum harbored Hh signaling pathway-related molecules: patched (Ptch), smoothened (Smo), and epithelial cells harbor Gli. In contrast, Ptch, Smo, and Gli2 were significantly downregulated in the infundibulum of MRL/lpr mice at 6 months of age. The expression levels of Pax8 and Foxj1 were significantly positively correlated with those of Ptch1, Smo, and Gli2. Hh signaling is thought to be involved in homeostasis of the ciliated epithelium in the infundibulum. In MRL/lpr mice, which show exacerbated severe systemic autoimmune abnormalities, molecular alterations in Hh signaling-related components are considered to interact with local inflammation in the infundibulum, leading to disturbances in epithelial homeostasis and reproductive function.
Collapse
|
7
|
ITO S, YAMAGUCHI Y, KUBOTA S, YAMAMOTO Y, KIMURA K. Immunohistochemical identification of epithelial cell types in the isthmus of bovine oviduct: Comparison with the ampulla. J Reprod Dev 2023; 69:18-24. [PMID: 36450524 PMCID: PMC9939284 DOI: 10.1262/jrd.2022-104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The oviductal epithelium consists of ciliated and non-ciliated cells, and their numbers vary depending on the segment of the oviduct and stage of the estrous cycle. Compared with the ampulla, fewer cyclic changes in the number of the two types of cells occur in the isthmus. Recently, we have reported that the epithelium in the ampullary oviduct is composed of many types of cells during different translational/transcriptional states, and their numbers change during the estrous cycle. However, detailed information regarding the epithelial cell subtypes lining the isthmic oviductal epithelium has not yet been reported. In this study, we aimed to identify the epithelial subtypes in the isthmus of the oviduct using immunohistochemistry. Some similarities and differences were observed between the ampulla and isthmus. As observed in the ampulla, epithelial cells of the isthmus expressed either FOXJ1 (ciliogenesis marker) or PAX8 (non-ciliated cell marker). The estrous cycle affected the number of Ki67+ cells but not that of ciliated cells. A relatively high rate of Ki67+ cells (60%) was observed at 1-4 days after the ovulation. Interestingly, unlike the ampulla, Ki67+/FOXJ1+ cells (12.6 ± 1.1%) were discovered in the isthmus. Double staining for Ki67 with FOXJ1, PAX8, or Centrin-1 (a centriole marker) revealed that Centrin-1 was localized on the apical surface of some Ki67+/FOXJ1+ cells. In conclusion, some epithelial cell subtypes exist in the isthmus of the oviduct and isthmus-specific cell subtypes have been identified. These region-specific cells may provide functional and morphological differences between the ampulla and isthmus of the oviduct.
Collapse
Affiliation(s)
- Sayaka ITO
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yuna YAMAGUCHI
- Laboratory of Reproductive Physiology, Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Sayaka KUBOTA
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Yuki YAMAMOTO
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan,Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Koji KIMURA
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
8
|
Synthesis, Regulatory Factors, and Signaling Pathways of Estrogen in the Ovary. Reprod Sci 2023; 30:350-360. [PMID: 35384637 DOI: 10.1007/s43032-022-00932-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
New insights have been thrown for understanding the significant role of estrogen on various systems of humans. Increasing evidences have determined the significant roles of estrogen in female reproductive system. So, the normal synthesis and secretion of estrogen play important roles in maintaining the function of tissues and organs. The ovaries are the main synthetic organs of estrogen. In this review, we summarized the current knowledge of the estrogen synthesis in the ovaries. A series of factors and signaling pathways that regulate the synthesis of estrogen are expounded in detail. Understanding the regulating factors and potential mechanism related to estrogen synthesis will be beneficial for understanding estrogen disorder related diseases and may provide novel therapeutic targets.
Collapse
|
9
|
METTL3 is essential for normal progesterone signaling during embryo implantation via m 6A-mediated translation control of progesterone receptor. Proc Natl Acad Sci U S A 2023; 120:e2214684120. [PMID: 36693099 PMCID: PMC9945998 DOI: 10.1073/pnas.2214684120] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Embryo implantation, a crucial step in human reproduction, is tightly controlled by estrogen and progesterone (P4) via estrogen receptor alpha and progesterone receptor (PGR), respectively. Here, we report that N6-methyladenosine (m6A), the most abundant mRNA modification in eukaryotes, plays an essential role in embryo implantation through the maintenance of P4 signaling. Conditional deletion of methyltransferase-like 3 (Mettl3), encoding the m6A writer METTL3, in the female reproductive tract using a Cre mouse line with Pgr promoter (Pgr-Cre) resulted in complete implantation failure due to pre-implantation embryo loss and defective uterine receptivity. Moreover, the uterus of Mettl3 null mice failed to respond to artificial decidualization. We further found that Mettl3 deletion was accompanied by a marked decrease in PGR protein expression. Mechanistically, we found that Pgr mRNA is a direct target for METTL3-mediated m6A modification. A luciferase assay revealed that the m6A modification in the 5' untranslated region (5'-UTR) of Pgr mRNA enhances PGR protein translation efficiency in a YTHDF1-dependent manner. Finally, we demonstrated that METTL3 is required for human endometrial stromal cell decidualization in vitro and that the METTL3-PGR axis is conserved between mice and humans. In summary, this study provides evidence that METTL3 is essential for normal P4 signaling during embryo implantation via m6A-mediated translation control of Pgr mRNA.
Collapse
|
10
|
Jafarbeglou F, Nazari MA, Iravanimanesh S, Amanpour S, Keikha F, Rinaudo P, Azadi M. Micro-scale probing of the Rat's oviduct detects its viscoelastic property needed for creating a biologically relevant substrate for In-Vitro- Fertilization. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:16-24. [PMID: 35863475 DOI: 10.1016/j.pbiomolbio.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Techniques used in assisted reproductive technology such as In-Vitro- Fertilization (IVF) process, often only replicate the biomechanical environment for embryo. Despite its importance, the biomechanics of the Oviduct tissue that is usually called Fallopian Tube in Human, the natural site of fertilization, has not been replicated nor sufficiently studied. This work studies the time-independent and time-dependent biomechanics of the oviduct tissue by realizing a viscoelastic model that accurately fit on the experimental indentation data collected on the mucosal epithelial lining of the oviduct tissue of rats. Nano-scale experiments with varying indentation rates ranging from 0.3 to 8 μms were conducted using atomic force microscopy (AFM) resulting in instantaneous elastic modulus ranging from 0.86 MPa to 6.46 MPa correspondingly. This result showed strong time dependency of the mechanical properties of the oviduct. An improved viscoelastic equation based on the fractional viscoelastic model was proposed. This modified relation successfully captured all the experimental data found at different rates (R2 > 0.8). Using the proposed model, the pure elasticity of the oviduct (i.e., about 317.2 kPa) and the viscoelastic parameters were found.
Collapse
Affiliation(s)
- Fereshteh Jafarbeglou
- School of Mechanical Engineering, College of Engineering, University of Tehran, Iran
| | - Mohammad Ali Nazari
- School of Mechanical Engineering, College of Engineering, University of Tehran, Iran; University Grenoble Alpes, CNRS, UMR 5525, Grenoble INP, TIMC, Grenoble, France.
| | - Sahba Iravanimanesh
- School of Mechanical Engineering, College of Engineering, University of Tehran, Iran
| | - Saeid Amanpour
- Cancer Biology Research Center, Tehran University of Medical Sciences, Iran
| | - Fatemeh Keikha
- Vali-e-Asr Reproductive Health Research Center, Tehran University of Medical Sciences, Iran
| | - Paolo Rinaudo
- Department of Obstetrics Gynecology & Reproductive Sciences, University of California, San Francisco, United States
| | - Mojtaba Azadi
- School of Engineering, College of Science and Engineering, San Francisco State University, United States.
| |
Collapse
|
11
|
Integrative Proteomics and Transcriptomics Profiles of the Oviduct Reveal the Prolificacy-Related Candidate Biomarkers of Goats ( Capra hircus) in Estrous Periods. Int J Mol Sci 2022; 23:ijms232314888. [PMID: 36499219 PMCID: PMC9737051 DOI: 10.3390/ijms232314888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The oviduct is a dynamic reproductive organ for mammalian reproduction and is required for gamete storage, maturation, fertilization, and early embryonic development, and it directly affects fecundity. However, the molecular regulation of prolificacy occurring in estrous periods remain poorly understood. This study aims to gain a better understanding of the genes involved in regulating goat fecundity in the proteome and transcriptome levels of the oviducts. Twenty female Yunshang black goats (between 2 and 3 years old, weight 52.22 ± 0.43 kg) were divided into high- and low-fecundity groups in the follicular (FH and FL, five individuals per group) and luteal (LH and LL, five individuals per group) phases, respectively. The DIA-based high-resolution mass spectrometry (MS) method was used to quantify proteins in twenty oviducts. A total of 5409 proteins were quantified, and Weighted gene co-expression network analysis (WGCNA) determined that the tan module was highly associated with the high-fecundity trait in the luteal phase, and identified NUP107, ANXA11, COX2, AKP13, and ITF140 as hub proteins. Subsequently, 98 and 167 differentially abundant proteins (DAPs) were identified in the FH vs. FL and LH vs. LL comparison groups, respectively. Parallel reaction monitoring (PRM) was used to validate the results of the proteomics data, and the hub proteins were analyzed with Western blot (WB). In addition, biological adhesion and transporter activity processes were associated with oviductal function, and several proteins that play roles in oviductal communication with gametes or embryos were identified, including CAMSAP3, ITGAM, SYVN1, EMG1, ND5, RING1, CBS, PES1, ELP3, SEC24C, SPP1, and HSPA8. Correlation analysis of proteomics and transcriptomic revealed that the DAPs and differentially expressed genes (DEGs) are commonly involved in the metabolic processes at the follicular phase; they may prepare the oviductal microenvironment for gamete reception; and the MAP kinase activity, estrogen receptor binding, and angiotensin receptor binding terms were enriched in the luteal phase, which may be actively involved in reproductive processes. By generating the proteome data of the oviduct at two critical phases and integrating transcriptome analysis, we uncovered novel aspects of oviductal gene regulation of fecundity and provided a reference for other mammals.
Collapse
|
12
|
Oviduct Transcriptomic Reveals the Regulation of mRNAs and lncRNAs Related to Goat Prolificacy in the Luteal Phase. Animals (Basel) 2022; 12:ani12202823. [PMID: 36290212 PMCID: PMC9597788 DOI: 10.3390/ani12202823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The kidding number is an important reproductive trait in domestic goats. The oviduct, as one of the most major organs, is directly involved in the reproductive process, providing nutrition and a location for early embryonic development. The current study provides genome-wide expression profiles of mRNA and long noncoding RNAs (lncRNAs) expression in Yunshang black goat, a new breed of meat goat bred in China with a high kidding number. During the luteal phases, oviduct mRNAs and lncRNAs associated with high- and low-fecundity Yunshang black goats were identified, and their potential biological functions were predicted using GO, KEGG, and GSEA enrichment analysis. These findings shed light on the oviduct-based prolificacy mechanism in goats. Abstract The oviduct is associated with embryo development and transportation and regulates the pregnancy success of mammals. Previous studies have indicated a molecular mechanism of lncRNAs in gene regulation and reproduction. However, little is known about the function of lncRNAs in the oviduct in modulating goat kidding numbers. Therefore, we combined RNA sequencing (RNA-seq) to map the expression profiles of the oviduct at the luteal phase from high- and low-fecundity goats. The results showed that 2023 differentially expressed mRNAs (DEGs) and 377 differentially expressed lncRNAs (DELs) transcripts were screened, and 2109 regulated lncRNA-mRNA pairs were identified. Subsequently, the genes related to reproduction (IGF1, FGFRL1, and CREB1) and those associated with embryonic development and maturation (DHX34, LHX6) were identified. KEGG analysis of the DEGs revealed that the GnRH- and prolactin-signaling pathways, progesterone-mediated oocyte maturation, and oocyte meiosis were related to reproduction. GSEA and KEGG analyses of the target genes of DELs demonstrated that several biological processes and pathways might interact with oviduct functions and the prolificacy of goats. Furthermore, the co-expression network analysis showed that XLOC_029185, XLOC_040647, and XLOC_090025 were the cis-regulatory elements of the DEGs MUC1, PPP1R9A, and ALDOB, respectively; these factors might be associated with the success of pregnancy and glucolipid metabolism. In addition, the GATA4, LAMA2, SLC39A5, and S100G were trans-regulated by lncRNAs, predominantly mediating oviductal transport to the embryo and energy metabolism. Our findings could pave the way for a better understanding of the roles of mRNAs and lncRNAs in fecundity-related oviduct function in goats.
Collapse
|
13
|
Ruiz-Conca M, Gardela J, Olvera-Maneu S, López-Béjar M, Álvarez-Rodríguez M. NR3C1 and glucocorticoid-regulatory genes mRNA and protein expression in the endometrium and ampulla during the bovine estrous cycle. Res Vet Sci 2022; 152:510-523. [PMID: 36174371 DOI: 10.1016/j.rvsc.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
Abstract
The bovine reproductive tract exhibits changes during the estrous cycle modulated by the interplay of steroid hormones. Glucocorticoids can be detrimental when stress-induced but are relevant at baseline levels for appropriate reproductive function. Here, an analysis of quantitative real-time PCR was performed to study the bovine glucocorticoid-related baseline gene transcription in endometrial and ampullar tissue samples derived from three time points of the estrous cycle, stage I (Days 1-4), stage III (Days 11-17) and stage IV (Days 18-20). Our results revealed expression differences during stages, as expression observed in the ampulla was higher during the post-ovulatory phase (stage I), including the glucocorticoid receptor NR3C1, and some of its regulators, involved in glucocorticoid availability (HSD11B1 and HSD11B2) and transcriptional actions (FKBP4 and FKBP5). In contrast, in the endometrium, higher expression of the steroid receptors was observed during the late luteal phase (stage III), including ESR1, ESR2, PGRMC1 and PGRMC2, and HSD11B1 expression decreased, while HSD11B2 increased. Moreover, at protein level, FKBP4 was higher expressed during the late luteal phase, and NR3C1 during the pre-ovulatory phase (stage IV). These results suggest that tight regulation of the glucocorticoid activity is promoted in the ampulla, when reproductive events are taking place, including oocyte maturation. Moreover, most expression changes in the endometrium were observed during the late luteal phase, and may be related to the embryonic maternal recognition. In conclusion, the glucocorticoid regulation changes across the estrous cycle and may be playing a role on the reproductive events occurring in the bovine ampulla and endometrium.
Collapse
Affiliation(s)
- Mateo Ruiz-Conca
- Division of Children's and Women Health (BKH), Department of Biomedical and Clinical Sciences (BKV), Obstetrics and Gynecology, Linköping University, 58185 Linköping, Sweden; Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jaume Gardela
- Division of Children's and Women Health (BKH), Department of Biomedical and Clinical Sciences (BKV), Obstetrics and Gynecology, Linköping University, 58185 Linköping, Sweden; Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Sergi Olvera-Maneu
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Manuel Álvarez-Rodríguez
- Division of Children's and Women Health (BKH), Department of Biomedical and Clinical Sciences (BKV), Obstetrics and Gynecology, Linköping University, 58185 Linköping, Sweden; Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
14
|
Shi Y, Tang L, Bai X, Du K, Wang H, Jia X, Lai S. Heat Stress Altered the Vaginal Microbiome and Metabolome in Rabbits. Front Microbiol 2022; 13:813622. [PMID: 35495670 PMCID: PMC9048824 DOI: 10.3389/fmicb.2022.813622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Heat stress can have an impact on parental gamete maturation and reproduction functions. According to current research, the microbial composition of the vaginal cavity is species specific. Pregnancy, menstruation, and genital diseases have been linked to the dynamics of vaginal ecology. In this study, we characterized the vaginal microbiota and metabolites after heat stress. At the phylum level, the rabbit’s vaginal microbial composition of rabbit showed high similarity with that of humans. In the Heat group, the relative abundance of the dominant microbiota Actinobacteria, Bacteroidetes, and Proteobacteria increased, while the relative abundance of Firmicutes decreased. Furthermore, heat stress significantly increased the relative abundance of W5053, Helcococcus, Thiopseudomonas, ldiomaarina, atopostipes, and facklamia, whereas the relative abundance of 12 genera significantly decreased, including Streptococcus, UCG-005, Alistipes, [Eubacterium]_xylanophilum_group, Comamonas, RB41, Fastidiosipila, Intestinimonas, Arthrobacter, Lactobacillus, Leucobacter, and Family_xlll_AD3011_group. Besides, the relative concentrations of 158 metabolites differed significantly between the Heat and Control groups. Among them, the endocrine hormone estradiol (E2) increased in the Heat group and was positively associated with a number of metabolites such as linolelaidic acid (C18:2N6T), N-acetylsphingosine, N-oleoyl glycine, trans-petroselinic acid, syringic acid, 2-(1-adamantyl)-1-morpholinoethan-1-one, 5-OxoETE, and 16-heptadecyne-1,2,4-triol. Further, the majority of the differential metabolites were enriched in steroid biosynthesis and endocrine and other factor-regulated calcium reabsorption pathways, reflecting that heat stress may affect calcium metabolism, hormone-induced signaling, and endocrine balance of vaginal ecology. These findings provide a comprehensive depiction of rabbit vaginal ecology and reveal the effects of heat stress on the vagina via the analysis of vaginal microbiome and metabolome, which may provide a new thought for low female fertility under heat stress.
Collapse
|
15
|
Załęcka J, Pankiewicz K, Issat T, Laudański P. Molecular Mechanisms Underlying the Association between Endometriosis and Ectopic Pregnancy. Int J Mol Sci 2022; 23:ijms23073490. [PMID: 35408850 PMCID: PMC8998627 DOI: 10.3390/ijms23073490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Endometriosis is a common inflammatory disease characterized by the presence of endometrial cells outside the uterine cavity. It is estimated that it affects 10% of women of reproductive age. Its pathogenesis covers a wide range of abnormalities, including adhesion, proliferation, and cell signaling disturbances. It is associated with a significant deterioration in quality of life as a result of chronic pelvic pain and may also lead to infertility. One of the most serious complications of endometriosis is an ectopic pregnancy (EP). Currently, the exact mechanism explaining this phenomenon is unknown; therefore, there are no effective methods of prevention. It is assumed that the pathogenesis of EP is influenced by abnormalities in the contraction of the fallopian tube muscles, the mobility of the cilia, and in the fallopian microenvironment. Endometriosis can disrupt function on all three levels and thus contribute to the implantation of the embryo beyond the physiological site. This review takes into account aspects of the molecular mechanisms involved in the pathophysiology of endometriosis and EP, with particular emphasis on the similarities between them.
Collapse
Affiliation(s)
- Julia Załęcka
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza 1/3, 02-015 Warsaw, Poland;
| | - Katarzyna Pankiewicz
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (K.P.); (T.I.)
| | - Tadeusz Issat
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (K.P.); (T.I.)
| | - Piotr Laudański
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza 1/3, 02-015 Warsaw, Poland;
- OVIklinika Infertility Center, Połczyńska 31, 01-377 Warsaw, Poland
- Correspondence:
| |
Collapse
|
16
|
Kuan KKW, Saunders PTK. Female Reproductive Systems: Hormone Dependence and Receptor Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:21-39. [PMID: 36107311 DOI: 10.1007/978-3-031-11836-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The female reproductive system which consists of the ovaries, uterus (myometrium, endometrium), Fallopian tubes, cervix and vagina is exquisitely sensitive to the actions of steroid hormones. The ovaries play a key role in the synthesis of bioactive steroids (oestrogens, androgens, progestins) that act both within the tissue (intracrine/paracrine) as well as on other reproductive organs following release into the blood stream (endocrine action). Sex steroid receptors encoded by the oestrogen (ESR1, ESR2), progesterone (PR) and androgen (AR) receptor genes, which are members of the superfamily of ligand activated transcription factors are widely expressed within these tissues. These receptors play critical role(s) in regulation of cell proliferation, ovulation, endometrial receptivity, myometrial cell function and inflammatory cell infiltration. Our understanding of their importance has been informed by studies on human tissues and cells, which have employed immunohistochemistry as well as a wide range of molecular and genetic methods to identify which processes are dependent steroid ligand activation. The development of mice with targeted deletions of each of these receptors has provided complementary data that has extended our appreciation of cell-cell interactions in the fine tuning of reproductive tissue function. This large body of work has formed the basis of new and improved therapeutics to treat conditions such as infertility.
Collapse
Affiliation(s)
- Kevin K W Kuan
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
17
|
van der Ploeg P, Uittenboogaard A, Bucks KMM, Lentjes-Beer MHFM, Bosch SL, van Rumste MME, Vos MC, van Diest PJ, Lambrechts S, van de Stolpe A, Bekkers RLM, Piek JMJ. Cyclic activity of signal transduction pathways in fimbrial epithelium of the human fallopian tube. Acta Obstet Gynecol Scand 2021; 101:256-264. [PMID: 34927235 DOI: 10.1111/aogs.14306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/23/2021] [Accepted: 12/04/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The local environment of the fallopian tube represents the optimal conditions for reproductive processes. To maintain tissue homeostasis, signal transduction pathways are thought to play a pivotal role. Enhancing our understanding of functional signal transduction pathway activity is important to be able to clarify the role of aberrant signal transduction pathway activity leading to female subfertility and other tubal diseases. Therefore, in this study we investigate the influence of the hormonal cycle on the activity of key signal transduction pathways in the fimbrial epithelium of morphologically normal fallopian tubes. MATERIAL AND METHODS We included healthy pre- (n = 17) and postmenopausal (n = 8) patients who had surgical interventions for benign gynecologic conditions. Histologic sections of the fallopian tubes were reviewed by two pathologists and, for the premenopausal patients, hormone serum levels and sections of the endometrium were examined to determine the hormonal phase (early follicular [n = 4], late follicular [n = 3], early luteal [n = 5], late luteal [n = 5]). After laser capture microdissection, total mRNA was extracted from the fimbrial epithelium and real-time quantitative reverse transcription-PCR was performed to determine functional signal transduction pathway activity of the androgen receptor (AR), estrogen receptor (ER), phosphoinositide-3-kinase (PI3K), Hedgehog (HH), transforming growth factor-beta (TGF-β) and canonical wingless-type MMTV integration site (Wnt) pathways. RESULTS The early luteal phase demonstrated high AR and ER pathway activity in comparison with the late luteal phase (p = 0.016 and p = 0.032, respectively) and low PI3K activity compared with the late follicular phase (p = 0.036), whereas the late luteal phase showed low activity of HH and Wnt compared with the early follicular phase (both p = 0.016). Signal transduction pathway activity in fimbrial epithelium from postmenopausal patients was most similar to the early follicular and/or late luteal phase with regard to the AR, ER and PI3K pathways. Wnt pathway activity in postmenopausal patients was comparable to the late follicular and early luteal phase. We observed no differences in HH and TGF-β pathway activity between pre- and postmenopausal samples. The cyclic changes in signal transduction pathway activity suggest a stage-specific function which may affect the morphology and physiology of the human fallopian tube. CONCLUSIONS We demonstrated cyclic changes in activity of the AR, ER, PI3K, HH and Wnt pathways throughout the hormonal cycle.
Collapse
Affiliation(s)
- Phyllis van der Ploeg
- Department of Obstetrics and Gynecology, Catharina Hospital, Eindhoven, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Aniek Uittenboogaard
- Department of Obstetrics and Gynecology, Catharina Hospital, Eindhoven, The Netherlands
| | - Karlijn M M Bucks
- Department of Obstetrics and Gynecology, Catharina Hospital, Eindhoven, The Netherlands
| | | | - Steven L Bosch
- Laboratory for Pathology and Medical Microbiology (Stichting PAMM), Eindhoven, The Netherlands
| | | | - M Caroline Vos
- Department of Obstetrics and Gynecology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sandrina Lambrechts
- Department of Obstetrics and Gynecology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Ruud L M Bekkers
- Department of Obstetrics and Gynecology, Catharina Hospital, Eindhoven, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Jurgen M J Piek
- Department of Obstetrics and Gynecology, Catharina Hospital, Eindhoven, The Netherlands
| |
Collapse
|
18
|
Tan X, Zhang L, Li T, Zhan J, Qiao K, Wu H, Sun S, Huang M, Zhang F, Zhang M, Li C, Li R, Pan H. Lgr4 Regulates Oviductal Epithelial Secretion Through the WNT Signaling Pathway. Front Cell Dev Biol 2021; 9:666303. [PMID: 34631693 PMCID: PMC8497904 DOI: 10.3389/fcell.2021.666303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
The WNT signaling pathway plays a crucial role in oviduct/fallopian development. However, the specific physiological processes regulated by the WNT pathway in the fallopian/oviduct function remain obscure. Benefiting from the Lgr4 knockout mouse model, we report the regulation of oviduct epithelial secretion by LGR4. Specifically, the loss of Lgr4 altered the mouse oviduct size and weight, severely reduced the number of oviductal epithelial cells, and ultimately impaired the epithelial secretion. These alterations were mediated by a failure of CTNNB1 protein accumulation in the oviductal epithelial cytoplasm, by the modulation of WNT pathways, and subsequently by a profound change of the gene expression profile of epithelial cells. In addition, selective activation of the WNT pathway triggered the expression of steroidogenic genes, like Cyp11a1 and 3β-Hsd1, through the activation of the transcriptional factor NR5A2 in an oviduct primary cell culture system. As demonstrated, the LGR4 protein modulates a WNT-NR5A2 signaling cascade facilitating epithelial secretory cell maturation and steroidogenesis to safeguard oviduct development and function in mice.
Collapse
Affiliation(s)
- Xue Tan
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Lingling Zhang
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Tianqi Li
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Jianmin Zhan
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Kun Qiao
- Center for Reproductive Medicine, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Haili Wu
- Shanghai Endangered Species Conservation and Research Centre, Shanghai Zoo, Shanghai, China
| | - Shenfei Sun
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Meina Huang
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Fangxi Zhang
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Meixing Zhang
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Changwei Li
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases With Integrated Chinese-Western Medicine, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopedics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runsheng Li
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Hongjie Pan
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Aleksandrovych V, Wrona A, Bereza T, Pityński K, Gil K. Oviductal Telocytes in Patients with Uterine Myoma. Biomedicines 2021; 9:biomedicines9081060. [PMID: 34440264 PMCID: PMC8391874 DOI: 10.3390/biomedicines9081060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Tubal factor infertility occurs in 30–35% of infertile pairs and may be caused by impaired muscular contractility and ciliary beating as well as immunological imbalance and chronic inflammation. Newly discovered telocytes (TCs) have a wide palette of features, which play a role in oviduct physiology. We have observed tissue samples from human fallopian tubes in patients with and without uterine myoma by immunolabelling. According to the immunohistochemical co-expression of markers, it has been determined that TCs are engaged in a wide range of physiological processes, including local innervation, sensitivity to hypoxia, regulation of calcium, and sex steroid hormones balances. Due to the proximity of NOS- and ChAT-positive nerve fibers and the expression of ion channels markers, tubal TCs might be considered conductor cells. Additionally, their integration in contractions and cilia physiology in the context of fertility has been revealed. We have observed the difference in telocytes expression in the human oviduct between groups of patients and attempted to describe this population of cells specifically in the case of infertility development, a clinically relevant avenue for further studies.
Collapse
Affiliation(s)
- Veronika Aleksandrovych
- Department of Pathophysiology, Jagiellonian University Medical College, 31-121 Krakow, Poland;
| | - Anna Wrona
- Gynecology and Obstetrics Ward with Gynecologic Oncology Subdivision, J.Śniadecki’s Specialistic Hospital, 33-300 Nowy Sącz, Poland;
| | - Tomasz Bereza
- Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Kazimierz Pityński
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 31-501 Krakow, Poland;
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, 31-121 Krakow, Poland;
- Correspondence:
| |
Collapse
|
20
|
Geoghegan IP, McNamara LM, Hoey DA. Estrogen withdrawal alters cytoskeletal and primary ciliary dynamics resulting in increased Hedgehog and osteoclastogenic paracrine signalling in osteocytes. Sci Rep 2021; 11:9272. [PMID: 33927279 PMCID: PMC8085225 DOI: 10.1038/s41598-021-88633-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023] Open
Abstract
Estrogen deficiency during post-menopausal osteoporosis leads to osteoclastogenesis and bone loss. Increased pro-osteoclastogenic signalling (RANKL/OPG) by osteocytes occurs following estrogen withdrawal (EW) and is associated with impaired focal adhesions (FAs) and a disrupted actin cytoskeleton. RANKL production is mediated by Hedgehog signalling in osteocytes, a signalling pathway associated with the primary cilium, and the ciliary structure is tightly coupled to the cytoskeleton. Therefore, the objective of this study was to investigate the role of the cilium and associated signalling in EW-mediated osteoclastogenic signalling in osteocytes. We report that EW leads to an elongation of the cilium and increase in Hedgehog and osteoclastogenic signalling. Significant trends were identified linking cilia elongation with reductions in cell area and % FA area/cell area, indicating that cilia elongation is associated with disruption of FAs and actin contractility. To verify this, we inhibited FA assembly via αvβ3 antagonism and inhibited actin contractility and demonstrated an elongated cilia and increased expression of Hh markers and Rankl expression. Therefore, our results suggest that the EW conditions associated with osteoporosis lead to a disorganisation of αvβ3 integrins and reduced actin contractility, which were associated with an elongation of the cilium, activation of the Hh pathway and osteoclastogenic paracrine signalling.
Collapse
Affiliation(s)
- Ivor P Geoghegan
- Mechanobiology and Medical Devices Research Group, Biomedical Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Laoise M McNamara
- Mechanobiology and Medical Devices Research Group, Biomedical Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - David A Hoey
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland. .,Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 R590, Ireland. .,Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland. .,Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin 2, Ireland.
| |
Collapse
|
21
|
Roberson EC, Battenhouse AM, Garge RK, Tran NK, Marcotte EM, Wallingford JB. Spatiotemporal transcriptional dynamics of the cycling mouse oviduct. Dev Biol 2021; 476:240-248. [PMID: 33864778 DOI: 10.1016/j.ydbio.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Female fertility in mammals requires iterative remodeling of the entire adult female reproductive tract across the menstrual/estrous cycle. However, while transcriptome dynamics across the estrous cycle have been reported in human and bovine models, no global analysis of gene expression across the estrous cycle has yet been reported for the mouse. Here, we examined the cellular composition and global transcriptional dynamics of the mouse oviduct along the anteroposterior axis and across the estrous cycle. We observed robust patterns of differential gene expression along the anteroposterior axis, but we found surprisingly few changes in gene expression across the estrous cycle. Notable gene expression differences along the anteroposterior axis included a surprising enrichment for genes related to embryonic development, such as Hox and Wnt genes. The relatively stable transcriptional dynamics across the estrous cycle differ markedly from other mammals, leading us to speculate that this is an evolutionarily derived state that may reflect the extremely rapid five-day mouse estrous cycle. This dataset fills a critical gap by providing an important genomic resource for a highly tractable genetic model of mammalian female reproduction.
Collapse
Affiliation(s)
- Elle C Roberson
- Department of Molecular Biosciences, University of Texas at Austin, TX, 78712, USA
| | - Anna M Battenhouse
- Department of Molecular Biosciences, University of Texas at Austin, TX, 78712, USA
| | - Riddhiman K Garge
- Department of Molecular Biosciences, University of Texas at Austin, TX, 78712, USA
| | - Ngan Kim Tran
- Department of Molecular Biosciences, University of Texas at Austin, TX, 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas at Austin, TX, 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, TX, 78712, USA.
| |
Collapse
|
22
|
Lee S, Kim GJ, Kwon H, Nam JW, Baek JY, Shim SH, Choi H, Kang KS. Estrogenic Effects of Extracts and Isolated Compounds from Belowground and Aerial Parts of Spartina anglica. Mar Drugs 2021; 19:210. [PMID: 33920324 PMCID: PMC8069246 DOI: 10.3390/md19040210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022] Open
Abstract
Menopause, caused by decreases in estrogen production, results in symptoms such as facial flushing, vaginal atrophy, and osteoporosis. Although hormone replacement therapy is utilized to treat menopausal symptoms, it is associated with a risk of breast cancer development. We aimed to evaluate the estrogenic activities of Spartina anglica (SA) and its compounds and identify potential candidates for the treatment of estrogen reduction without the risk of breast cancer. We evaluated the estrogenic and anti-proliferative effects of extracts of SA and its compounds in MCF-7 breast cancer cells. We performed an uterotrophic assay using an immature female rat model. Among extracts of SA, belowground part (SA-bg-E50) had potent estrogenic activity. In the immature female rat model, the administration of SA-bg-E50 increased uterine weight compared with that in the normal group. Among the compounds isolated from SA, 1,3-di-O-trans-feruloyl-(-)-quinic acid (1) had significant estrogenic activity and induced phosphorylation at serine residues of estrogen receptor (ER)α. All extracts and compounds from SA did not increase MCF-7 cell proliferation. Compound 1 is expected to act as an ERα ligand and have estrogenic effects, without side effects, such as breast cancer development.
Collapse
Affiliation(s)
- Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Korea;
| | - Geum Jin Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (G.J.K.); (H.K.); (J.-W.N.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Hyukbean Kwon
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (G.J.K.); (H.K.); (J.-W.N.)
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (G.J.K.); (H.K.); (J.-W.N.)
| | - Ji Yun Baek
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea;
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea; (G.J.K.); (H.K.); (J.-W.N.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| |
Collapse
|
23
|
Pantos K, Grigoriadis S, Tomara P, Louka I, Maziotis E, Pantou A, Nitsos N, Vaxevanoglou T, Kokkali G, Agarwal A, Sfakianoudis K, Simopoulou M. Investigating the Role of the microRNA-34/449 Family in Male Infertility: A Critical Analysis and Review of the Literature. Front Endocrinol (Lausanne) 2021; 12:709943. [PMID: 34276570 PMCID: PMC8281345 DOI: 10.3389/fendo.2021.709943] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
There is a great body of evidence suggesting that in both humans and animal models the microRNA-34/449 (miR-34/449) family plays a crucial role for normal testicular functionality as well as for successful spermatogenesis, regulating spermatozoa maturation and functionality. This review and critical analysis aims to summarize the potential mechanisms via which miR-34/449 dysregulation could lead to male infertility. Existing data indicate that miR-34/449 family members regulate ciliogenesis in the efferent ductules epithelium. Upon miR-34/449 dysregulation, ciliogenesis in the efferent ductules is significantly impaired, leading to sperm aggregation and agglutination as well as to defective reabsorption of the seminiferous tubular fluids. These events in turn cause obstruction of the efferent ductules and thus accumulation of the tubular fluids resulting to high hydrostatic pressure into the testis. High hydrostatic pressure progressively leads to testicular dysfunction as well as to spermatogenic failure and finally to male infertility, which could range from severe oligoasthenozoospermia to azoospermia. In addition, miR-34/449 family members act as significant regulators of spermatogenesis with an essential role in controlling expression patterns of several spermatogenesis-related proteins. It is demonstrated that these microRNAs are meiotic specific microRNAs as their expression is relatively higher at the initiation of meiotic divisions during spermatogenesis. Moreover, data indicate that these molecules are essential for proper formation as well as for proper function of spermatozoa per se. MicroRNA-34/449 family seems to exert significant anti-oxidant and anti-apoptotic properties and thus contribute to testicular homeostatic regulation. Considering the clinical significance of these microRNAs, data indicate that the altered expression of the miR-34/449 family members is strongly associated with several aspects of male infertility. Most importantly, miR-34/449 levels in spermatozoa, in testicular tissues as well as in seminal plasma seem to be directly associated with severity of male infertility, indicating that these microRNAs could serve as potential sensitive biomarkers for an accurate individualized differential diagnosis, as well as for the assessment of the severity of male factor infertility. In conclusion, dysregulation of miR-34/449 family detrimentally affects male reproductive potential, impairing both testicular functionality as well as spermatogenesis. Future studies are needed to verify these conclusions.
Collapse
Affiliation(s)
| | - Sokratis Grigoriadis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Penelope Tomara
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Louka
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Maziotis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Agni Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Nitsos
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | | | - Georgia Kokkali
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, United States
| | | | - Mara Simopoulou
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Mara Simopoulou,
| |
Collapse
|
24
|
Ziv-Gal A, Berg MD, Dean M. Paraben exposure alters cell cycle progression and survival of spontaneously immortalized secretory murine oviductal epithelial (MOE) cells. Reprod Toxicol 2020; 100:7-16. [PMID: 33358972 DOI: 10.1016/j.reprotox.2020.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 12/16/2020] [Indexed: 02/02/2023]
Abstract
The mammalian oviduct is a central organ for female reproduction as it is the site of fertilization and it actively transports the embryo to the uterus. The oviduct is responsive to ovarian steroids and thus, it is a potential target of endocrine disrupting chemicals. Parabens are antimicrobial compounds that are prevalently found in daily-used products. However, recent studies suggest that some parabens can impact female reproductive health. Yet, their effects on the oviduct are unknown. Here, we hypothesized that in vitro exposure of immortalized murine oviductal secretory epithelial (MOE) cells to methylparaben or propylparaben will result in disrupted cell cycle progression and increased cell death by dysregulation of molecular mechanisms that involve the cell cycle and apoptosis. Thus, we examined the effects of exposure to parabens on cell proliferation, cell cycle progression by flow cytometry, and mRNA levels of major cell cycle regulators and apoptotic factors, in MOE cells. Protein levels of estrogen and progesterone receptors were also quantified. Differences between treatments and controls were analyzed by linear mixed model followed by Dunnett post-hoc tests. The results indicate that methylparaben and propylparaben selectively reduce MOE cellular proliferation and colony numbers, compared to controls. Additionally, paraben exposure selectively dysregulates the progression through the cell cycle and decreases the levels of cell cycle regulators, compared to controls. Last, paraben selectively alters the levels of progesterone receptor. Overall, these findings suggest that parabens can affect mouse oviductal secretory epithelial cell proliferation and survival.
Collapse
Affiliation(s)
- Ayelet Ziv-Gal
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Malia D Berg
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Matthew Dean
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
25
|
Brun C, Exbrayat JM, Raquet M. Localization of Receptors for Sex Steroids and Pituitary Hormones in the Female Genital Duct throughout the Reproductive Cycle of a Viviparous Gymnophiona Amphibian, Typhlonectes compressicauda. Animals (Basel) 2020; 11:ani11010002. [PMID: 33374945 PMCID: PMC7821928 DOI: 10.3390/ani11010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/06/2022] Open
Abstract
Simple Summary Females of the legless amphibian Cayenne caecilian Typhloneces compressicauda demonstrate a biennial viviparous reproductive cycle, with complex morphological alterations in its oviduct. During the first year, these morphological variations permit the capture of the oocytes at ovulation and the pregnancy in the posterior part transformed into uterus. Pregnancy lasts 6 to 7 months and, at parturition, the female gives birth to 6 to 8 newborns which look like small adults.The second year of the cycle is a sexual rest period, allowing females to replenish their body reserves. The hormonal receptors detected in the different cell types of the oviduct confirm that the cyclical development of the genital tract is dependent on sex and pituitary hormones, with a direct control by the pituitary gland. Abstract Reproduction in vertebrates is controlled by the hypothalamo-pituitary-gonadal axis, and both the sex steroid and pituitary hormones play a pivotal role in the regulation of the physiology of the oviduct and events occurring within the oviduct. Their hormonal actions are mediated through interaction with specific receptors. Our aim was to locate α and β estrogen receptors, progesterone receptors, gonadotropin and prolactin receptors in the tissues of the oviduct of Typhlonectes compressicauda (Amphibia, Gymnophiona), in order to study the correlation between the morphological changes of the genital tract and the ovarian cycle. Immunohistochemical methods were used. We observed that sex steroids and pituitary hormones were involved in the morpho-functional regulation of oviduct, and that their cellular detection was dependent on the period of the reproductive cycle.
Collapse
Affiliation(s)
- Claire Brun
- Sciences and Humanities Confluence Research Center, UCLy, CEDEX 02, 69288 Lyon, France;
- Correspondence: (C.B.); or (J.-M.E.)
| | - Jean-Marie Exbrayat
- Sciences and Humanities Confluence Research Center, UCLy, CEDEX 02, 69288 Lyon, France;
- Ecole Pratique des Hautes Etudes, Paris Sciences Lettres, CEDEX 02, 69288 Lyon, France
- Correspondence: (C.B.); or (J.-M.E.)
| | - Michel Raquet
- Sciences and Humanities Confluence Research Center, UCLy, CEDEX 02, 69288 Lyon, France;
| |
Collapse
|
26
|
Wrobel MH, Mlynarczuk J. The effect of polychlorinated biphenyls (PCBs) on bovine oviductal contractions and LIF synthesis during estrous cycle, in vitro studies. Res Vet Sci 2020; 133:188-193. [PMID: 33002814 DOI: 10.1016/j.rvsc.2020.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
Abstract
Polychlorinated biphenyls (PCBs) are a group of synthetic xenobiotics that have been used in many industrial applications. Currently, PCBs are among the most prominent environmental contaminants. Previously we showed that PCBs impair secretion of prostaglandins (PGs) at the oviduct. PGs are involved in the regulation of oviductal contractions and the synthesis of leukemia inhibitory factors LIF. Since oviductal contractions are crucial for gamete and embryo transport, and LIF is essential for embryo implantation, the direct effect of PCBs on oviductal motor activity and LIF mRNA expression were investigated. Oviductal strips and cells were taken from cows during the estrous cycle and were treated with PCBs at concentrations close to their environmental ranges. All the studied PCBs decreased the force of the contractions of the longitudinal and circular muscles of the isthmus. Additionally, these PCBs decreased the amplitude of the longitudinal muscle of the oviduct. Moreover, PCB-30-OH and PCB-153 increased the mRNA expression of LIF. Since PCBs inhibit the motor function of the oviduct and stimulate the synthesis of LIF, it is possible that PCBs can slow gamete or embryo transport and increase the potential for pathological embryo implantation in the oviduct.
Collapse
Affiliation(s)
- Michal Hubert Wrobel
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, Poland.
| | - Jaroslaw Mlynarczuk
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, Poland
| |
Collapse
|
27
|
Mustafa FEZA, Elhanbaly R. Distribution of estrogen receptor in the rabbit cervix during pregnancy with special reference to stromal elements: an immunohistochemical study. Sci Rep 2020; 10:13655. [PMID: 32788713 PMCID: PMC7423906 DOI: 10.1038/s41598-020-70323-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/28/2020] [Indexed: 01/26/2023] Open
Abstract
The estrogen plays a critical role during pregnancy through their receptors. Although the rabbit is one of the most important lab animal estrogen receptor alpha (ERA) localization on basic cells, newly discovered cells including telocyte and neuroendocrine cells, vascular compartments and interstitium during pregnancy not been described. At 0 day pregnancy, the most prominent immunoreactivity was moderate to ERA and observed on the ciliated cells, secretory cells, blood plasma, and interstitium. The smooth muscles and the endothelial cells showed mild immunoreactivity to ERA. Lymphocytes only exhibited strong immunoreactivity to ERA. At 7 days pregnancy moderate immunoreactivity to ERA observed on ciliated cells, secretory cells, smooth muscles, interstitium, and lymphocytes. Strong immunoreactivity to ERA detected on endothelial cells and blood plasma. At 14 days of pregnancy, the most prominent immunoreactivity was strong and detected on ciliated cells, smooth muscles, lymphocytes, and interstitium. Moderate immunoreactivity detected on endothelial cells and blood plasma. Secretory cells only exhibited mild immunoreactivity to ERA. At 21 days of pregnancy, the immunoreactivity to ERA ranged between mild on ciliated cells, smooth muscles, blood plasma and interstitium and negative on secretory cells, endothelial cells and lymphocytes. Our results indicated that the frequency and intensity of ERA immunostaining in the rabbit cervix varied on different structural compartments of the cervix during different pregnancy stages.
Collapse
Affiliation(s)
- Fatma El-Zahraa A Mustafa
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Ruwaida Elhanbaly
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
28
|
Kölle S, Hughes B, Steele H. Early embryo-maternal communication in the oviduct: A review. Mol Reprod Dev 2020; 87:650-662. [PMID: 32506761 DOI: 10.1002/mrd.23352] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022]
Abstract
An intact embryo-maternal communication is critical for the establishment of a successful pregnancy. To date, a huge number of studies have been performed describing the complex process of embryo-maternal signaling within the uterus. However, recent studies indicate that the early embryo communicates with the oviductal cells shortly after fertilizationand that this is important for the successful establishment of pregnancy. Only if the early embryo is capable to signal the mother within a precise timeframe and to garner a response, will the embryo be able to survive and reach the uterus. This review will give an overview of all the experimental designs which have investigated embryo-maternal interaction in the oviduct. In addition to that, it will provide a comprehensive analysis of the findings to date elucidating the morphological and molecular changes in the oviduct which are induced by the presence of the early embryo highlighting how the tubal responses affect embryo development and survival.
Collapse
Affiliation(s)
- Sabine Kölle
- Health Sciences Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Barbara Hughes
- Health Sciences Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Heather Steele
- Health Sciences Centre, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Herrera GGB, Lierz SL, Harris EA, Donoghue LJ, Hewitt SC, Rodriguez KF, Jefferson WN, Lydon JP, DeMayo FJ, Williams CJ, Korach KS, Winuthayanon W. Oviductal Retention of Embryos in Female Mice Lacking Estrogen Receptor α in the Isthmus and the Uterus. Endocrinology 2020; 161:bqz033. [PMID: 31883000 PMCID: PMC7295936 DOI: 10.1210/endocr/bqz033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 06/04/2019] [Accepted: 12/16/2019] [Indexed: 01/28/2023]
Abstract
Estrogen receptor α (ESR1; encoded by Esr1) is a crucial nuclear transcription factor for female reproduction and is expressed throughout the female reproductive tract. To assess the function of ESR1 in reproductive tissues without confounding effects from a potential developmental defect arising from global deletion of ESR1, we generated a mouse model in which Esr1 was specifically ablated during postnatal development. To accomplish this, a progesterone receptor Cre line (PgrCre) was bred with Esr1f/f mice to create conditional knockout of Esr1 in reproductive tissues (called PgrCreEsr1KO mice) beginning around 6 days after birth. In the PgrCreEsr1KO oviduct, ESR1 was most efficiently ablated in the isthmic region. We found that at 3.5 days post coitus (dpc), embryos were retrieved from the uterus in control littermates while all embryos were retained in the PgrCreEsr1KO oviduct. Additionally, serum progesterone (P4) levels were significantly lower in PgrCreEsr1KO compared to controls at 3.5 dpc. This finding suggests that expression of ESR1 in the isthmus and normal P4 levels allow for successful embryo transport from the oviduct to the uterus. Therefore, alterations in oviductal isthmus ESR1 signaling and circulating P4 levels could be related to female infertility conditions such as tubal pregnancy.
Collapse
Affiliation(s)
- Gerardo G B Herrera
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, US
| | - Sydney L Lierz
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), Department of Health and Human Services, Research Triangle Park, North Carolina, US
| | - Emily A Harris
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, US
| | - Lauren J Donoghue
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), Department of Health and Human Services, Research Triangle Park, North Carolina, US
| | - Sylvia C Hewitt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), Department of Health and Human Services, Research Triangle Park, North Carolina, US
| | - Karina F Rodriguez
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), Department of Health and Human Services, Research Triangle Park, North Carolina, US
| | - Wendy N Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), Department of Health and Human Services, Research Triangle Park, North Carolina, US
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, US
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), Department of Health and Human Services, Research Triangle Park, North Carolina, US
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), Department of Health and Human Services, Research Triangle Park, North Carolina, US
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), Department of Health and Human Services, Research Triangle Park, North Carolina, US
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, US
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), Department of Health and Human Services, Research Triangle Park, North Carolina, US
| |
Collapse
|
30
|
Ito S, Yamamoto Y, Kimura K. Analysis of ciliogenesis process in the bovine oviduct based on immunohistochemical classification. Mol Biol Rep 2019; 47:1003-1012. [PMID: 31741261 DOI: 10.1007/s11033-019-05192-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/12/2019] [Indexed: 11/28/2022]
Abstract
The oviductal epithelium is composed of ciliated and non-ciliated cells. The proportions of these cells change during the estrous cycle. However, the mechanism underlying this cyclic change in the cell proportions remains unclear. Our previous study indicated that ciliated cells are derived from non-ciliated cells. Here, we aimed to investigate the mechanism regulating the changes in the populations of ciliated and non-ciliated cells during the estrous cycle. To this end, we examined the numbers of cells that were positive for acetylated-α-tubulin (cilia marker), Ki67 (proliferation marker), PAX8 (non-ciliated cell marker), and FOXJ1 and MYB (ciliogenesis markers) in the epithelial cells at four different estrous stages (Stage I: days 1-4 after ovulation, Stage II: days 5-10, Stage III: days 11-17, and Stage IV: days 18-20) by immunohistochemistry. The oviductal epithelial cells expressed either FOXJ1 or PAX8. All the acetylated-α-tubulin+ cells were positive for FOXJ1, although there were a few acetylated-α-tubulin-/FOXJ1+ cells. MYB was expressed in both the FOXJ1+ and PAX8+ cells, but it was not expressed in the Ki67+ cells. The numbers of Ki67+ and MYB+ cells were the highest in Stage IV, while the numbers of FOXJ1+ and acetylated-α-tubulin+ cells were the highest in the following Stage I, suggesting that ciliogenesis is associated with the estrous cycle. Thus, based on immunological classification, the oviductal epithelium contains at least seven types of cells at different translational/transcriptional states, and their number is regulated by the estrous cycle. This cyclic event might provide an optimal environment for gamete transport, fertilization, and embryonic development.
Collapse
Affiliation(s)
- Sayaka Ito
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushimanaka, Kita-Ku, Okayama, 700-8530, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yuki Yamamoto
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushimanaka, Kita-Ku, Okayama, 700-8530, Japan
| | - Koji Kimura
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushimanaka, Kita-Ku, Okayama, 700-8530, Japan.
| |
Collapse
|
31
|
Harnod T, Tsai IJ, Chen W, Wang JH, Lin SZ, Sung FC, Ding DC. Hysterectomy and unilateral salpingectomy associate with a higher risk of subsequent ovarian cancer: A population-based cohort study in Taiwan. Medicine (Baltimore) 2019; 98:e18058. [PMID: 31770221 PMCID: PMC6890306 DOI: 10.1097/md.0000000000018058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Studies on the relationship between gynecologic surgery and subsequent ovarian cancer have been carried out in limited Western ethnic groups. We aim to evaluate whether receiving hysterectomy and/or salpingectomy associated with ovarian cancer risk in Taiwan.From the Taiwan National Health Insurance Research Database, we identified a gynecologic surgery cohort consisting of women who had newly received hysterectomy (N = 181,151), salpingectomy (N = 45,410) or both hysterectomy and salpingectomy (N = 11,875) in 2000 to 2013. A comparison cohort of 953,744 women was randomly selected from women without the surgeries, frequency-matched by age and index date of the surgery case. They were followed up to identify subsequent ovarian cancer by the end of 2013.The overall ovarian cancer incidence was 4.4-fold greater in the gynecologic surgery cohort than in the comparison cohort (41.5 vs 9.43 per 10 person-years) with an adjusted hazard ratio of 3.86 (95% confidence interval = 2.56-5.84). Women with both hysterectomy and salpingectomy had the highest incidence and followed by women with hysterectomy or salpingectomy (52.5, 45.5, or 23.3 per 10 person-years, respectively). No ovarian cancer was noted in the subgroup with bilateral salpingectomies.We conclude that women with gynecologic surgery of hysterectomy and/or salpingectomy are at an increased risk of developing ovarian cancer, particularly among women who have had other gynecologic comorbidity. Women with gynecologic surgery and comorbidity deserve greater attention to prevent and screen for ovarian cancer.
Collapse
Affiliation(s)
- Tomor Harnod
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien
| | - I-Ju Tsai
- Management Office for Health Data, China Medical University Hospital
- College of Medicine, China Medical University, Taichung
| | - Weishan Chen
- Management Office for Health Data, China Medical University Hospital
- College of Medicine, China Medical University, Taichung
| | - Jen-Hung Wang
- Department of Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien
| | - Fung-Chang Sung
- Management Office for Health Data, China Medical University Hospital
- Department of Health Services Administration, China Medical University College of Public Health, Taichung
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
32
|
Li C, Wu YT, Zhu Q, Zhang HY, Huang Z, Zhang D, Qi H, Liang GL, He XQ, Wang XF, Tang X, Huang HF, Zhang J. TRPV4 is involved in levonorgestrel-induced reduction in oviduct ciliary beating. J Pathol 2019; 248:77-87. [PMID: 30632164 PMCID: PMC6593834 DOI: 10.1002/path.5233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/15/2018] [Accepted: 01/04/2019] [Indexed: 12/16/2022]
Abstract
Previous studies revealed the increasing risk of tubal pregnancy following failure of levonorgestrel (LNG)‐induced emergency contraception, which was attributed to the reduced ciliary motility in response to LNG. However, understanding of the mechanism of LNG‐induced reduction in the ciliary beat frequency (CBF) is limited. The transient receptor potential vanilloid (TRPV) 4 channel is located widely in the female reproductive tract and generates an influx of Ca2+ following its activation under normal physiological conditions, which regulates the CBF. The present study aimed to explore whether LNG reduced the CBF in the Fallopian tubes by modulating TRPV4 channels, leading to embryo retention in the Fallopian tubes and subsequent tubal pregnancy. The study provided evidence that the expression of TRPV4 was downregulated in the Fallopian tubes among patients with tubal pregnancy and negatively correlated with the serum level of progesterone. LNG downregulated the expression of TRPV4, limiting the calcium influx to reduce the CBF in mouse oviducts. Furthermore, the distribution of ciliated cells and the morphology of cilia did not change following the administration of LNG. LNG‐induced reduction in the CBF and embryo retention in the Fallopian tubes and in mouse oviducts were partially reversed by the progesterone receptor antagonist RU486 or the TRPV4 agonist 4α‐phorbol 12,13‐didecanoate (4α‐PDD). The results indicated that LNG could downregulate the expression of TRPV4 to reduce the CBF in both humans and mice, suggesting the possible mechanism of tubal pregnancy. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Cheng Li
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yan-Ting Wu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qian Zhu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hui-Yu Zhang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Huang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Duo Zhang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hang Qi
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Gui-Ling Liang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiao-Qing He
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiao-Feng Wang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xue Tang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - He-Feng Huang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jian Zhang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, PR China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
33
|
Pathak D, Bansal N, Singh O, Gupta K, Ghuman SPS. Immunohistochemical localization of estrogen receptor alpha (ERα) in the oviduct of Indian buffalo during follicular and luteal phases of estrous cycle. Trop Anim Health Prod 2019; 51:1601-1609. [PMID: 30827005 DOI: 10.1007/s11250-019-01852-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/20/2019] [Indexed: 11/26/2022]
Abstract
The localization and distribution of estrogen receptor alpha (ERα) in different segments of oviduct of buffalo during follicular and luteal phases of estrous cycle were investigated using immunohistochemistry. Tissue samples from the different segments of oviduct from 12 buffaloes (six each during follicular and luteal phases of estrous cycle) were collected from slaughter house after assessing the gross morphology of ovaries. In addition, blood samples were collected from the animals before slaughter to estimate levels of estrogen and progesterone hormones. The tissue distribution of estrogen receptor was determined by immunohistochemical technique using one-step polymer HRPO staining system. The estrogen receptor was localized in the lamina epithelialis, propria submucosa, tunica muscularis, and tunica serosa. The maximum localization was observed in the lamina epithelialis, where both ciliated and secretory cell types were positive for ERα. Percentage of positive cells varied during the follicular and luteal phases of estrous cycle. The lining epithelium of oviductal glands was also intensely positive for ERα. No immunostaining was observed in any tunic of the oviduct when the primary antibody was replaced by antibody diluent or buffer, and it served as negative control. The data showed that highest immune positive cells were observed in the ampulla region of the oviduct and these cells were lowest in the utero-tubal junction (p < 0.05). Infundibulum, ampulla, and isthmus showed a higher percentage of ERα-positive cells during follicular phase of estrous cycle as compared with those of the luteal phase of estrous cycle (p < 0.05). There was no significant difference in the percentage positive cells during the two phases of estrous cycle in the utero-tubal junction. Immunogold labeling with anti-ERα antibody confirmed the findings of immunohistochemical study at subcellular level. The higher expression during the follicular phase was directly correlated with the level of estrogen hormone.
Collapse
Affiliation(s)
- Devendra Pathak
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 140004, India.
| | - Neelam Bansal
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 140004, India
| | - Opinder Singh
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 140004, India
| | - Kuldip Gupta
- Department of Veterinary Pathology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - S P S Ghuman
- Teaching Veterinary Clinical Complex, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
34
|
Tavalieri YE, Galoppo GH, Canesini G, Truter JC, Ramos JG, Luque EH, Muñoz-de-Toro M. The external genitalia in juvenile Caiman latirostris differ in hormone sex determinate-female from temperature sex determinate-female. Gen Comp Endocrinol 2019; 273:236-248. [PMID: 30292702 DOI: 10.1016/j.ygcen.2018.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/25/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
Abstract
The broad-snouted caiman (Caiman latirostris) is a crocodilian species that inhabits South American wetlands. As in all other crocodilians, the egg incubation temperature during a critical thermo-sensitive window (TSW) determines the sex of the hatchlings, a phenomenon known as temperature-dependent sex determination (TSD). In C. latirostris, we have shown that administration of 17-β-estradiol (E2) during the TSW overrides the effect of the male-producing temperature, producing phenotypic females (E2SD-females). Moreover, the administration of E2 during TSW has been proposed as an alternative way to improve the recovery of endangered reptile species, by skewing the population sex ratio to one that favors females. However, the ovaries of E2SD-female caimans differ from those of TSD-females. In crocodilians, the external genitalia (i.e. clitero-penis structure or phallus) are sexually dimorphic and hormone-sensitive. Despite some morphological descriptions aimed to facilitate sexing, we found no available data on the C. latirostris phallus histoarchitecture or hormone dependence. Thus, the aims of this study were: (1) to establish the temporal growth pattern of the phallus in male and female caimans; (2) to evaluate histo-morphological features and the expression of estrogen receptor alpha (ERα) and androgen receptor (AR) in the phallus of male and female pre-pubertal juvenile caimans; and (3) to determine whether the phallus of TSD-females differs from the phallus of E2SD-females. Our results demonstrated sexually dimorphic differences in the size and growth dynamics of the caiman external genitalia, similarities in the shape and spatial distribution of general histo-morphological compartments, and sexually dimorphic differences in innervation, smooth muscle fiber distribution, collagen organization, and ERα and AR expressions. The external genitalia of E2SD-females differed from that of TSD-females in many histological features and in the expression of ERα and AR, resembling patterns described in males. Our results alert on the effects of estrogen agonist exposure during TSW and suggest that caution must be taken regarding the use of E2SD as a procedure for wildlife population management.
Collapse
Affiliation(s)
- Y E Tavalieri
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Catedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - G H Galoppo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Catedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - G Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Catedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - J C Truter
- Department of Genetics, Stellenbosch University, South Africa
| | - J G Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - E H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Catedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - M Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Catedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
35
|
Machado-Neves M, Assis WAD, Gomes MG, Oliveira CAD. Oviduct morphology and estrogen receptors ERα and ERβ expression in captive Chinchilla lanigera (Hystricomorpha: Chinchillidae). Gen Comp Endocrinol 2019; 273:32-39. [PMID: 29574151 DOI: 10.1016/j.ygcen.2018.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/11/2018] [Accepted: 03/20/2018] [Indexed: 12/27/2022]
Abstract
Chinchilla lanigera is a hystricomorph rodent from South America whose reproductive biology presents particular characteristics that distinguishes it from other Rodentia species, such as low reproductive rate, seasonal breeding pattern, and long estrous cycle. Nevertheless, reproductive features in female chinchillas are still poorly investigated, with a scarce knowledge concerning the estrous cycle and the histology of reproductive organs. In this study, we investigate the morphology, histomorphometry, secretory activity, and immunolocalization of estrogen receptors ERα and ERβ in oviducts of nulliparous chinchillas, euthanized at fall season in Brazil. Follicular phase of estrous cycle of all studied animals was characterized by ovary and uterine morphology inspection, as well as vaginal cytology. Similar to other mammals, the oviduct wall of infundibulum, ampulla and isthmus was composed of mucosa, muscle, and serosa layers. Morphometric data of oviduct layers were used for identifying each oviduct segment. In the follicular phase, the oviduct was characterized by intense secretory activity, mainly in the ampulla, and expression of ERα and ERβ throughout the oviduct epithelium. Both ERα and ERβ were also detected in the connective tissue and smooth muscle cells. Our findings point out to the important role of estrogen in this female organ. Similar wide distribution of both ER proteins has been described for human Fallopian tube. Taken together, our data add to the understanding of the reproductive biology of female chinchillas, and may assist in the intensive breeding of this species and any eventual endeavor for conservation of chinchillas in the wild.
Collapse
Affiliation(s)
- Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Wiviane Alves de Assis
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Cx Postal 486, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Mardelene Geísa Gomes
- Escola de Veterinária, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Cleida Aparecida de Oliveira
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Cx Postal 486, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
36
|
Motile cilia of the male reproductive system require miR-34/miR-449 for development and function to generate luminal turbulence. Proc Natl Acad Sci U S A 2019; 116:3584-3593. [PMID: 30659149 DOI: 10.1073/pnas.1817018116] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cilia are cell-surface, microtubule-based organelles that project into extracellular space. Motile cilia are conserved throughout eukaryotes, and their beat induces the flow of fluid, relative to cell surfaces. In mammals, the coordinated beat of motile cilia provides highly specialized functions associated with the movement of luminal contents, as seen with metachronal waves transporting mucus in the respiratory tract. Motile cilia are also present in the male and female reproductive tracts. In the female, wave-like motions of oviductal cilia transport oocytes and embryos toward the uterus. A similar function has been assumed for motile cilia in efferent ductules of the male-i.e., to transport immotile sperm from rete testis into the epididymis. However, we report here that efferent ductal cilia in the male do not display a uniform wave-like beat to transport sperm solely in one direction, but rather exert a centripetal force on luminal fluids through whip-like beating with continual changes in direction, generating turbulence, which maintains immotile spermatozoa in suspension within the lumen. Genetic ablation of two miRNA clusters (miR-34b/c and -449a/b/c) led to failure in multiciliogenesis in murine efferent ductules due to dysregulation of numerous genes, and this mouse model allowed us to demonstrate that loss of efferent duct motile cilia causes sperm aggregation and agglutination, luminal obstruction, and sperm granulomas, which, in turn, induce back-pressure atrophy of the testis and ultimately male infertility.
Collapse
|
37
|
Chen S, Palma-Vera SE, Kempisty B, Rucinski M, Vernunft A, Schoen J. In Vitro Mimicking of Estrous Cycle Stages: Dissecting the Impact of Estradiol and Progesterone on Oviduct Epithelium. Endocrinology 2018; 159:3421-3432. [PMID: 30137285 DOI: 10.1210/en.2018-00567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022]
Abstract
We have previously mimicked the morphological and functional changes occurring in the oviduct epithelium during the estrous cycle in vitro by using an air-liquid interface (ALI) culture system and basolateral application of 17β-estradiol (E2) and progesterone (P4). In the current study we aimed to explore the transcriptomic changes elicited by E2 and P4 together during estrous cycle simulation and to dissect the individual effects of E2 and P4 on oviduct epithelium physiology. Primary porcine oviduct epithelial cells (POECs) (N = 6 animals) were cultured at the ALI. After differentiation for 11 days, we sequentially simulated diestrus (10 days) and estrus (2.5 days) by adding serum levels of E2 and P4 to the basolateral compartment either in combination (mix trial) or separately (P4 trial and E2 trial, respectively). Cell response was evaluated by microarray analysis (mix and P4 trials), quantitative RT-PCR, and histomorphometry (all trials). When we compared simulated diestrus with estrus stage in the mix trial, there were 169 (142 upregulated and 27 downregulated) differentially expressed genes (DEGs; fold change ≥1.5). In the P4 trial, 108 DEGs (83 upregulated and 25 downregulated) were detected. Gene enrichment analysis revealed that immune-related pathways were exclusively affected in the mix trial. In both mix and P4 trials, POECs exhibited in vivo-like morphological changes regarding epithelium height and portion of ciliated cells. However, E2 alone did not trigger morphological changes. We deduce that P4 mainly drives structural variations, and E2 is imperative for regulating immune function of the oviduct epithelium during estrous cycle.
Collapse
Affiliation(s)
- Shuai Chen
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Sergio E Palma-Vera
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Bartosz Kempisty
- Department of Histology and Embryology, Department of Anatomy, Poznan University of Medical Science, Poznan, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Department of Anatomy, Poznan University of Medical Science, Poznan, Poland
| | - Andreas Vernunft
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jennifer Schoen
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
38
|
Estrogen Action in the Epithelial Cells of the Mouse Vagina Regulates Neutrophil Infiltration and Vaginal Tissue Integrity. Sci Rep 2018; 8:11247. [PMID: 30050124 PMCID: PMC6062573 DOI: 10.1038/s41598-018-29423-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022] Open
Abstract
In the female reproductive tract, the innate immune system is modulated by two sex steroid hormones, estrogen and progesterone. A cyclical wave of neutrophils in the vaginal lumen is triggered by chemokines and correlates with circulating estrogen levels. Classical estrogen signaling in the female reproductive tract is activated through estrogen receptor α (encoded by the Esr1 gene). To study the role of estrogen action in the vagina, we used a mouse model in which Esr1 was conditionally ablated from the epithelial cells (Wnt7acre/+; Esr1f/f). Histological evidence showed that in response to a physical stress, the lack of ESR1 caused the vaginal epithelium to deteriorate due to the absence of a protective cornified layer and a reduction in keratin production. In the absence of ESR1 in the vaginal epithelial tissue, we also observed an excess of neutrophil infiltration, regardless of the estrous cycle stage. The histological presence of neutrophils was found to correlate with persistent enzymatic activity in the cervical-vaginal fluid. Together, these findings suggest that ESR1 activity in the vaginal epithelial cells is required to maintain proper structural integrity of the vagina and immune response, both of which are necessary for protecting the vagina against physical damage and resetting the vaginal environment.
Collapse
|
39
|
Vuong NH, Salah Salah O, Vanderhyden BC. 17β-Estradiol sensitizes ovarian surface epithelium to transformation by suppressing Disabled-2 expression. Sci Rep 2017; 7:16702. [PMID: 29196616 PMCID: PMC5711839 DOI: 10.1038/s41598-017-16219-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/07/2017] [Indexed: 01/06/2023] Open
Abstract
Estrogen replacement therapy increases the risk of human ovarian cancer and exogenous estradiol accelerates the onset of ovarian cancer in mouse models. This study uses primary cultures of mouse ovarian surface epithelium (OSE) to demonstrate that one possible mechanism by which estrogen accelerates the initiation of ovarian cancer is by up-regulation of microRNA-378 via the ESR1 pathway to result in the down-regulation of a tumour suppressor called Disabled-2 (Dab2). Estrogen suppression of Dab2 was reproducible in vivo and across many cell types including mouse oviductal epithelium and primary cultures of human ovarian cancer cells. Suppression of Dab2 resulted in increased proliferation, loss of contact inhibition, morphological dysplasia, and resistance to oncogene-induced senescence - all factors that can sensitize OSE to transformation. Given that DAB2 is highly expressed in healthy human OSE and is absent in the majority of ovarian tumours, this study has taken the first steps to provide a mechanistic explanation for how estrogen therapy may play a role in the initiation of ovarian cancer.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/biosynthesis
- Adaptor Proteins, Vesicular Transport/genetics
- Animals
- Apoptosis Regulatory Proteins
- Carcinoma, Ovarian Epithelial/chemically induced
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/metabolism
- Carcinoma, Ovarian Epithelial/pathology
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Epithelium/metabolism
- Epithelium/pathology
- Estradiol/adverse effects
- Estradiol/pharmacology
- Female
- Humans
- Mice
- Mice, Knockout
- Ovarian Neoplasms/chemically induced
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovary/metabolism
- Ovary/pathology
- Tumor Suppressor Proteins/biosynthesis
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Nhung H Vuong
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Omar Salah Salah
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada.
| |
Collapse
|
40
|
Ghosh A, Syed SM, Tanwar PS. In vivo genetic cell lineage tracing reveals that oviductal secretory cells self-renew and give rise to ciliated cells. Development 2017; 144:3031-3041. [PMID: 28743800 DOI: 10.1242/dev.149989] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023]
Abstract
The epithelial lining of the fallopian tube is vital for fertility, providing nutrition to gametes and facilitating their transport. It is composed of two major cell types: secretory cells and ciliated cells. Interestingly, human ovarian cancer precursor lesions primarily consist of secretory cells. It is unclear why secretory cells are the dominant cell type in these lesions. Additionally, the underlying mechanisms governing fallopian tube epithelial homoeostasis are unknown. In the present study, we showed that across the different developmental stages of mouse oviduct, secretory cells are the most frequently dividing cells of the oviductal epithelium. In vivo genetic cell lineage tracing showed that secretory cells not only self-renew, but also give rise to ciliated cells. Analysis of a Wnt reporter mouse model and various Wnt target genes showed that the Wnt signaling pathway is involved in oviductal epithelial homoeostasis. By developing two triple-transgenic mouse models, we showed that Wnt/β-catenin signaling is essential for self-renewal as well as the differentiation of secretory cells. In summary, our results provide mechanistic insight into oviductal epithelial homoeostasis.
Collapse
Affiliation(s)
- Arnab Ghosh
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Shafiq M Syed
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Pradeep S Tanwar
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|