1
|
Bardill JR, Karimpour-Fard A, Breckenfelder CC, Sucharov CC, Eason CR, Gallagher LT, Khailova L, Wright CJ, Gien J, Galan HL, Derderian SC. microRNAs in Congenital Diaphragmatic Hernia: Insights into Prenatal and Perinatal Biomarkers and Altered Molecular Pathways: microRNAs in Congenital Diaphragmatic Hernia for Pathway Analysis and Prognostic Biomarkers. Am J Obstet Gynecol MFM 2024:101535. [PMID: 39505208 DOI: 10.1016/j.ajogmf.2024.101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) is characterized by a diaphragmatic defect, leading to herniation of abdominal organs into the chest, lung compression, and impaired lung development, often resulting in pulmonary hypertension and lung hypoplasia. Prenatal imaging techniques like ultrasound and MRI provide anatomical predictors of outcomes, but their limitations necessitate novel biomarkers for better prognostic accuracy. OBJECTIVE This study aims to identify unique circulating maternal, fetal, and neonatal microRNAs (miRNAs) that can distinguish CDH pregnancies from healthy controls and assess their potential as markers of disease severity. STUDY DESIGN We conducted a prospective study involving third-trimester maternal blood, amniotic fluid, cord blood, and neonatal blood samples from pregnancies complicated by CDH and healthy controls. miRNA expression was analyzed using RNA-sequencing, and random forest analysis identified miRNAs distinguishing CDH survivors from non-survivors. Pathway enrichment analyses were performed to explore the biological relevance of differentially expressed miRNAs. RESULTS Significant miRNA expression differences were observed between CDH and control samples across all sample types. In infant blood, 148 miRNAs were up-regulated, and 36 were down-regulated in CDH cases. Pathway analysis revealed that dysregulated miRNAs in CDH targeted pathways related to protein binding, transcription regulation, and signaling pathways implicated in pulmonary hypertension and lung hypoplasia. Random forest analysis identified miRNAs in maternal blood (miR-7850-5p_L-1R+2, miR-942-3p, and miR-197-3p) that distinguished CDH survivors from non-survivors, with an ROC area under the curve of 1.0. CONCLUSION Circulating miRNAs in maternal blood offer promising biomarkers for predicting CDH outcomes. miRNAs from infant blood provide mechanistic insights and potential targets for therapeutic intervention in critical pathways of pulmonary hypertension and lung hypoplasia. Further studies with larger cohorts are needed to validate these findings and explore the clinical application of miRNA biomarkers in CDH management.
Collapse
Affiliation(s)
- James R Bardill
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA; Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA
| | - Anis Karimpour-Fard
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Courtney C Breckenfelder
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA; Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA
| | - Carmen C Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Caitlin R Eason
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA; Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA
| | - Lauren T Gallagher
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Ludmila Khailova
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, 80045, USA
| | - Jason Gien
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, 80045, USA
| | - Henry L Galan
- Colorado Fetal Care Center, Children's Hospital Colorado, Aurora, CO, 80045, USA; Divison of Maternal Fetal Medicine, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - S Christopher Derderian
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA; Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA; Colorado Fetal Care Center, Children's Hospital Colorado, Aurora, CO, 80045, USA; Division of Pediatric Surgery, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
2
|
Owen MD, Kennedy MG, Quilang RC, Scott EM, Forbes K. The role of microRNAs in pregnancies complicated by maternal diabetes. Clin Sci (Lond) 2024; 138:1179-1207. [PMID: 39289953 PMCID: PMC11409017 DOI: 10.1042/cs20230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
With the global prevalence of diabetes increasing, more people of reproductive age are experiencing hyperglycaemic pregnancies. Maternal Type 1 (T1DM) or Type 2 (T2DM) diabetes mellitus, and gestational diabetes mellitus (GDM) are associated with maternal cardiovascular and metabolic complications. Pregnancies complicated by maternal diabetes also increase the risk of short- and long-term health complications for the offspring, including altered fetal growth and the onset of T2DM and cardiometabolic diseases throughout life. Despite advanced methods for improving maternal glucose control, the prevalence of adverse maternal and offspring outcomes associated with maternal diabetes remains high. The placenta is a key organ at the maternal-fetal interface that regulates fetal growth and development. In pregnancies complicated by maternal diabetes, altered placental development and function has been linked to adverse outcomes in both mother and fetus. Emerging evidence suggests that microRNAs (miRNAs) are key molecules involved in mediating these changes. In this review, we describe the role of miRNAs in normal pregnancy and discuss how miRNA dysregulation in the placenta and maternal circulation is associated with suboptimal placental development and pregnancy outcomes in individuals with maternal diabetes. We also discuss evidence demonstrating that miRNA dysregulation may affect the long-term health of mothers and their offspring. As such, miRNAs are potential candidates as biomarkers and therapeutic targets in diabetic pregnancies at risk of adverse outcomes.
Collapse
Affiliation(s)
- Manon D Owen
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Margeurite G Kennedy
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Anthony Nolan Research Institute, Royal Free Hospital, Hampstead, London, U.K
- UCL Cancer Institute, Royal Free Campus, London, U.K
| | - Rachel C Quilang
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Eleanor M Scott
- Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| |
Collapse
|
3
|
Kontovazainitis CG, Gialamprinou D, Theodoridis T, Mitsiakos G. Hemostasis in Pre-Eclamptic Women and Their Offspring: Current Knowledge and Hemostasis Assessment with Viscoelastic Tests. Diagnostics (Basel) 2024; 14:347. [PMID: 38337863 PMCID: PMC10855316 DOI: 10.3390/diagnostics14030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Pre-eclampsia (PE) is a placenta-mediated disease and remains a major cause of maternal and neonatal mortality and morbidity. As PE develops, normal pregnancy's hypercoagulable balance is disrupted, leading to platelet hyperactivation, excessive pathological hypercoagulability, and perturbed fibrinolysis. This narrative review aims to summarize the current knowledge regarding hemostasis in PE compared with healthy gestation and the potential effects of maternal PE on neonatal hemostasis. Finally, it aims to discuss hemostasis assessments for normal pregnancies and PE, emphasizing the role of viscoelastic tests, namely, thromboelastography (TEG) and thromboelastometry (ROTEM), for monitoring PE-associated hemostatic alterations. The use of TEG/ROTEM for assessing the hemostatic profile of PE women has been little considered, even though conventional coagulation tests (CCTs) have not helped to monitor hemostasis in this population. Compared with normal pregnancy, TEG/ROTEM in PE reveals an excessive hypercoagulability analogous with the severity of the disease, characterized by higher-stability fibrin clots. The TEG/ROTEM parameters can reflect PE severity and may be used for monitoring and as predictive markers for the disease.
Collapse
Affiliation(s)
- Christos-Georgios Kontovazainitis
- 2nd Neonatal Department and Neonatal Intensive Care Unit (NICU), “Papageorgiou” University Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece; (C.-G.K.); (D.G.)
| | - Dimitra Gialamprinou
- 2nd Neonatal Department and Neonatal Intensive Care Unit (NICU), “Papageorgiou” University Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece; (C.-G.K.); (D.G.)
| | - Theodoros Theodoridis
- 1st Department of Obstetrics and Gynecology, “Papageorgiou” University Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece;
| | - Georgios Mitsiakos
- 2nd Neonatal Department and Neonatal Intensive Care Unit (NICU), “Papageorgiou” University Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece; (C.-G.K.); (D.G.)
| |
Collapse
|
4
|
Panagiotidou A, Chatzakis C, Ververi A, Eleftheriades M, Sotiriadis A. The Effect of Maternal Diet and Physical Activity on the Epigenome of the Offspring. Genes (Basel) 2024; 15:76. [PMID: 38254965 PMCID: PMC10815371 DOI: 10.3390/genes15010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this review was to examine the current literature regarding the effect of maternal lifestyle interventions (i.e., diet and physical activity) on the epigenome of the offspring. PubMed, Scopus and Cochrane-CENTRAL were screened until 8 July 2023. Only randomized controlled trials (RCTs) where a lifestyle intervention was compared to no intervention (standard care) were included. Outcome variables included DNA methylation, miRNA expression, and histone modifications. A qualitative approach was used for the consideration of the studies' results. Seven studies and 1765 mother-child pairs were assessed. The most common types of intervention were dietary advice, physical activity, and following a specific diet (olive oil). The included studies correlated the lifestyle and physical activity intervention in pregnancy to genome-wide or gene-specific differential methylation and miRNA expression in the cord blood or the placenta. An intervention of diet and physical activity in pregnancy was found to be associated with slight changes in the epigenome (DNA methylation and miRNA expression) in fetal tissues. The regions involved were related to adiposity, metabolic processes, type 2 diabetes, birth weight, or growth. However, not all studies showed significant differences in DNA methylation. Further studies with similar parameters are needed to have robust and comparable results and determine the biological role of such modifications.
Collapse
Affiliation(s)
- Anastasia Panagiotidou
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
| | - Christos Chatzakis
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Second Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece
| | - Athina Ververi
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Genetic Unit, First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, “Papageorgiou” General Hospital, 564 03 Thessaloniki, Greece
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| | - Alexandros Sotiriadis
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Second Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece
| |
Collapse
|
5
|
Butt Z, Tinning H, O'Connell MJ, Fenn J, Alberio R, Forde N. Understanding conceptus-maternal interactions: what tools do we need to develop? Reprod Fertil Dev 2023; 36:81-92. [PMID: 38064186 DOI: 10.1071/rd23181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Communication between the maternal endometrium and developing embryo/conceptus is critical to support successful pregnancy to term. Studying the peri-implantation period of pregnancy is critical as this is when most pregnancy loss occurs in cattle. Our current understanding of these interactions is limited, due to the lack of appropriate in vitro models to assess these interactions. The endometrium is a complex and heterogeneous tissue that is regulated in a transcriptional and translational manner throughout the oestrous cycle. While there are in vitro models to study endometrial function, they are static and 2D in nature or explant models and are limited in how well they recapitulate the in vivo endometrium. Recent developments in organoid systems, microfluidic approaches, extracellular matrix biology, and in silico approaches provide a new opportunity to develop in vitro systems that better model the in vivo scenario. This will allow us to investigate in a more high-throughput manner the fundamental molecular interactions that are required for successful pregnancy in cattle.
Collapse
Affiliation(s)
- Zenab Butt
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jonathan Fenn
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
6
|
Gu M, Chen P, Zeng D, Jiang X, Lv Q, Li Y, Zhang F, Wan S, Zhou Q, Lu Y, Wang X, Li L. Preeclampsia impedes foetal kidney development by delivering placenta-derived exosomes to glomerular endothelial cells. Cell Commun Signal 2023; 21:336. [PMID: 37996949 PMCID: PMC10666440 DOI: 10.1186/s12964-023-01286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/19/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Foetal renal dysplasia is still the main cause of adult renal disease. Placenta-derived exosomes are an important communication tool, and they may play an important role in placental (both foetal and maternal) function. We hypothesize that in women with preeclampsia, foetal renal dysplasia is impeded by delivering placenta-derived exosomes to glomerular endothelial cells. METHODS In the present study, we established a PE trophoblast oxidative stress model to isolate exosomes from supernatants by ultracentrifugation (NO-exo and H/R-exo) and collected normal and PE umbilical cord blood plasma to isolate exosomes by ultracentrifugation combined with sucrose density gradient centrifugation (N-exo and PE-exo), then we investigated their effects on foetal kidney development by in vitro, ex vivo and in vivo models. RESULTS The PE trophoblast oxidative stress model was established successfully. After that, in in vitro studies, we found that H/R-exo and PE-exo could adversely affect glomerular endothelial cell proliferation, tubular formation, migration, and barrier functions. In ex vivo studies, H/R-exo and PE-exo both inhibited the growth and branch formation of kidney explants, along with the decrease of VE-cadherin and Occludin. In in vivo studies, we also found that H/R-exo and PE-exo could result in renal dysplasia, reduced glomerular number, and reduced barrier function in foetal mice. CONCLUSIONS In conclusion, we demonstrated that PE placenta-derived exosomes could lead to foetal renal dysplasia by delivering placenta-derived exosomes to foetal glomerular endothelial cells, which provides a novel understanding of the pathogenesis of foetal renal dysplasia. Video Abstract.
Collapse
Affiliation(s)
- Mengqi Gu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Pengzheng Chen
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Dongmei Zeng
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaotong Jiang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qingfeng Lv
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yuchen Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Fengyuan Zhang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shuting Wan
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qian Zhou
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yuan Lu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xietong Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China.
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, 328 Jingshi East Road, Jinan, 250025, Shandong, China.
| | - Lei Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China.
| |
Collapse
|
7
|
Goldkamp AK, Lahuis CH, Hagen DE, Taxis TM. Influence of Maternal BLV Infection on miRNA and tRF Expression in Calves. Pathogens 2023; 12:1312. [PMID: 38003777 PMCID: PMC10674961 DOI: 10.3390/pathogens12111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Small non-coding RNAs, such as microRNAs (miRNA) and tRNA-derived fragments (tRF), are known to be involved in post-transcriptional gene regulation. Research has provided evidence that small RNAs may influence immune development in calves. Bovine leukosis is a disease in cattle caused by Bovine Leukemia Virus (BLV) that leads to increased susceptibility to opportunistic pathogens. No research has addressed the potential influence that a maternal BLV infection may have on gene regulation through the differential expression of miRNAs or tRFs in progeny. Blood samples from 14-day old Holstein calves born to BLV-infected dams were collected. Antibodies for BLV were assessed using ELISA and levels of BLV provirus were assessed using qPCR. Total RNA was extracted from whole blood samples for small RNA sequencing. Five miRNAs (bta-miR-1, bta-miR-206, bta-miR-133a, bta-miR-133b, and bta-miR-2450d) and five tRFs (tRF-36-8JZ8RN58X2NF79E, tRF-20-0PF05B2I, tRF-27-W4R951KHZKK, tRF-22-S3M8309NF, and tRF-26-M87SFR2W9J0) were dysregulated in calves born to BLV-infected dams. The miRNAs appear to be involved in the gene regulation of immunological responses and muscle development. The tRF subtypes and parental tRNA profiles in calves born to infected dams appear to be consistent with previous publications in adult cattle with BLV infection. These findings offer insight into how maternal BLV infection status may impact the development of offspring.
Collapse
Affiliation(s)
- Anna K. Goldkamp
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74074, USA; (A.K.G.)
| | - Ciarra H. Lahuis
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA;
| | - Darren E. Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74074, USA; (A.K.G.)
| | - Tasia M. Taxis
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
8
|
Farrelly R, Kennedy MG, Spencer R, Forbes K. Extracellular vesicles as markers and mediators of pregnancy complications: gestational diabetes, pre-eclampsia, preterm birth and fetal growth restriction. J Physiol 2023; 601:4973-4988. [PMID: 37070801 PMCID: PMC11497252 DOI: 10.1113/jp282849] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/13/2023] [Indexed: 04/19/2023] Open
Abstract
In high income countries, approximately 10% of pregnancies are complicated by pre-eclampsia (PE), preterm birth (PTB), fetal growth restriction (FGR) and/or macrosomia resulting from gestational diabetes (GDM). Despite the burden of disease this places on pregnant people and their newborns, there are still few, if any, effective ways of preventing or treating these conditions. There are also gaps in our understanding of the underlying pathophysiologies and our ability to predict which mothers will be affected. The placenta plays a crucial role in pregnancy, and alterations in placental structure and function have been implicated in all of these conditions. As extracellular vesicles (EVs) have emerged as important molecules in cell-to-cell communication in health and disease, recent research involving maternal- and placental-derived EV has demonstrated their potential as predictive and diagnostic biomarkers of obstetric disorders. This review will consider how placental and maternal EVs have been investigated in pregnancies complicated by PE, PTB, FGR and GDM and aims to highlight areas where further research is required to enhance the management and eventual treatment of these pathologies.
Collapse
Affiliation(s)
- Rachel Farrelly
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | | - Rebecca Spencer
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Karen Forbes
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
9
|
Kramer AC, Jansson T, Bale TL, Powell TL. Maternal-fetal cross-talk via the placenta: influence on offspring development and metabolism. Development 2023; 150:dev202088. [PMID: 37831056 PMCID: PMC10617615 DOI: 10.1242/dev.202088] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Compelling epidemiological and animal experimental data demonstrate that cardiometabolic and neuropsychiatric diseases originate in a suboptimal intrauterine environment. Here, we review evidence suggesting that altered placental function may, at least in part, mediate the link between the maternal environment and changes in fetal growth and development. Emerging evidence indicates that the placenta controls the development and function of several fetal tissues through nutrient sensing, modulation of trophoblast nutrient transporters and by altering the number and cargo of released extracellular vesicles. In this Review, we discuss the development and functions of the maternal-placental-fetal interface (in humans and mice) and how cross-talk between these compartments may be a mechanism for in utero programming, focusing on mechanistic target of rapamycin (mTOR), adiponectin and O-GlcNac transferase (OGT) signaling. We also discuss how maternal diet and stress influences fetal development and metabolism and how fetal growth restriction can result in susceptibility to developing chronic disease later in life. Finally, we speculate how interventions targeting placental function may offer unprecedented opportunities to prevent cardiometabolic disease in future generations.
Collapse
Affiliation(s)
- Avery C. Kramer
- Departments of Obstetrics & Gynecology, Psychiatry and Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Thomas Jansson
- Departments of Obstetrics & Gynecology, Psychiatry and Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Tracy L. Bale
- Departments of Obstetrics & Gynecology, Psychiatry and Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Theresa L. Powell
- Departments of Obstetrics & Gynecology, Psychiatry and Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Rosario FJ, Chopra A, Biggar K, Powell TL, Gupta MB, Jansson T. Placental Remote Control of Fetal Metabolism: Trophoblast mTOR Signaling Regulates Liver IGFBP-1 Phosphorylation and IGF-1 Bioavailability. Int J Mol Sci 2023; 24:7273. [PMID: 37108437 PMCID: PMC10138459 DOI: 10.3390/ijms24087273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The mechanisms mediating the restricted growth in intrauterine growth restriction (IUGR) remain to be fully established. Mechanistic target of rapamycin (mTOR) signaling functions as a placental nutrient sensor, indirectly influencing fetal growth by regulating placental function. Increased secretion and the phosphorylation of fetal liver IGFBP-1 are known to markedly decrease the bioavailability of IGF-1, a major fetal growth factor. We hypothesized that an inhibition of trophoblast mTOR increases liver IGFBP-1 secretion and phosphorylation. We collected conditioned media (CM) from cultured primary human trophoblast (PHT) cells with a silenced RAPTOR (specific inhibition of mTOR Complex 1), RICTOR (inhibition of mTOR Complex 2), or DEPTOR (activates both mTOR Complexes). Subsequently, HepG2 cells, a well-established model for human fetal hepatocytes, were cultured in CM from PHT cells, and IGFBP-1 secretion and phosphorylation were determined. CM from PHT cells with either mTORC1 or mTORC2 inhibition caused the marked hyperphosphorylation of IGFBP-1 in HepG2 cells as determined by 2D-immunoblotting while Parallel Reaction Monitoring-Mass Spectrometry (PRM-MS) identified increased dually phosphorylated Ser169 + Ser174. Furthermore, using the same samples, PRM-MS identified multiple CK2 peptides coimmunoprecipitated with IGFBP-1 and greater CK2 autophosphorylation, indicating the activation of CK2, a key enzyme mediating IGFBP-1 phosphorylation. Increased IGFBP-1 phosphorylation inhibited IGF-1 function, as determined by the reduced IGF-1R autophosphorylation. Conversely, CM from PHT cells with mTOR activation decreased IGFBP-1 phosphorylation. CM from non-trophoblast cells with mTORC1 or mTORC2 inhibition had no effect on HepG2 IGFBP-1 phosphorylation. Placental mTOR signaling may regulate fetal growth by the remote control of fetal liver IGFBP-1 phosphorylation.
Collapse
Affiliation(s)
- Fredrick J. Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anand Chopra
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Kyle Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Theresa L. Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Biochemistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Madhulika B. Gupta
- Department of Biochemistry, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Pediatrics, University of Western Ontario, London, ON N6A 3K7, Canada
- Children’s Health Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Chaemsaithong P, Luewan S, Taweevisit M, Chiangjong W, Pongchaikul P, Thorner PS, Tongsong T, Chutipongtanate S. Placenta-Derived Extracellular Vesicles in Pregnancy Complications and Prospects on a Liquid Biopsy for Hemoglobin Bart's Disease. Int J Mol Sci 2023; 24:5658. [PMID: 36982732 PMCID: PMC10055877 DOI: 10.3390/ijms24065658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-scaled vesicles released from all cell types into extracellular fluids and specifically contain signature molecules of the original cells and tissues, including the placenta. Placenta-derived EVs can be detected in maternal circulation at as early as six weeks of gestation, and their release can be triggered by the oxygen level and glucose concentration. Placental-associated complications such as preeclampsia, fetal growth restriction, and gestational diabetes have alterations in placenta-derived EVs in maternal plasma, and this can be used as a liquid biopsy for the diagnosis, prediction, and monitoring of such pregnancy complications. Alpha-thalassemia major ("homozygous alpha-thalassemia-1") or hemoglobin Bart's disease is the most severe form of thalassemia disease, and this condition is lethal for the fetus. Women with Bart's hydrops fetalis demonstrate signs of placental hypoxia and placentomegaly, thereby placenta-derived EVs provide an opportunity for a non-invasive liquid biopsy of this lethal condition. In this article, we introduced clinical features and current diagnostic markers of Bart's hydrops fetalis, extensively summarize the characteristics and biology of placenta-derived EVs, and discuss the challenges and opportunities of placenta-derived EVs as part of diagnostic tests for placental complications focusing on Bart's hydrop fetalis.
Collapse
Affiliation(s)
- Piya Chaemsaithong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Suchaya Luewan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiangmai University, Chiangmai 50200, Thailand
| | - Mana Taweevisit
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok 10330, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
- Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom 73170, Thailand
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool CH64 7TE, UK
| | - Paul Scott Thorner
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Theera Tongsong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiangmai University, Chiangmai 50200, Thailand
| | - Somchai Chutipongtanate
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
12
|
Adamova P, Lotto RR, Powell AK, Dykes IM. Are there foetal extracellular vesicles in maternal blood? Prospects for diagnostic biomarker discovery. J Mol Med (Berl) 2023; 101:65-81. [PMID: 36538060 PMCID: PMC9977902 DOI: 10.1007/s00109-022-02278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 03/02/2023]
Abstract
Prenatal diagnosis of congenital disease improves clinical outcomes; however, as many as 50% of congenital heart disease cases are missed by current ultrasound screening methods. This indicates a need for improved screening technology. Extracellular vesicles (EVs) have attracted enormous interest in recent years for their potential in diagnostics. EVs mediate endocrine signalling in health and disease and are known to regulate aspects of embryonic development. Here, we critically evaluate recent evidence suggesting that EVs released from the foetus are able to cross the placenta and enter the maternal circulation. Furthermore, EVs from the mother appear to be transported in the reverse direction, whilst the placenta itself acts as a source of EVs. Experimental work utilising rodent models employing either transgenically encoded reporters or application of fluorescent tracking dyes provide convincing evidence of foetal-maternal crosstalk. This is supported by clinical data demonstrating expression of placental-origin EVs in maternal blood, as well as limited evidence for the presence of foetal-origin EVs. Together, this work raises the possibility that foetal EVs present in maternal blood could be used for the diagnosis of congenital disease. We discuss the challenges faced by researchers in translating these basic science findings into a clinical non-invasive prenatal test.
Collapse
Affiliation(s)
- Petra Adamova
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool, L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Robyn R Lotto
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK.,School of Nursing and Allied Health, Liverpool John Moores University, Tithebarn St, Liverpool, L2 2ER, UK
| | - Andrew K Powell
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool, L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Iain M Dykes
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom St, Liverpool, L3 3AF, UK. .,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
13
|
Evaluation of serum anti-Müllerian hormone (AMH) and equine chorionic gonadotrophin (eCG) concentrations in pregnant mares in relation to foetal sex. ACTA VET BRNO 2023. [DOI: 10.2754/avb202392010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to investigate the foetal sex related difference and progression in maternal serum anti-Müllerian hormone (AMH) and equine chorionic gonadotrophin (eCG) concentrations during different points of time in pregnant Arabian mares. The study groups formed by 12 healthy male offspring- and 12 healthy female offspring-foaling mares, designated as group MFM and group FFM, respectively. Peripheral blood samples were collected on the day of natural mating and then monthly until the 6th month (mo) of gestation. Serum AMH was measured in all serum samples; eCG was measured in samples collected from 2 to 5 months Of gestation. Serum AMH concentrations of group FFM at mo 4 and mo 5 (3.89 ± 0.49 ng/ml; 2.89 ± 0.32 ng/ml), were significantly higher than in group MFM (2.11 ± 0.46 ng/ml; 1.87 ± 0.32 ng/ml), (P < 0.05). The mo of gestation (mo 1–6) had no effect on serum AMH concentrations of either group MMF or FFM (P > 0.05). Serum eCG concentrations of group FFM at mo 2 (359.73 ± 41.51 mIU/ml), were significantly higher than in group MFM (255 ± 21.18 mIU/ml) (P < 0.05). Group-time interaction for eCG concentrations at mo 2–4 was non-significant (P > 0.05). Concentrations of serum AMH showed no relationship with corresponding eCG levels at mo 2–4 (P > 0.05). Individual variations in AMH and eCG concentrations and the inability to determine a cut-off point for determination of foetal sex make these hormones unlikely candidates for determining foetal sex in the mare.
Collapse
|
14
|
Ge Y, Wei M, Chang X, Huang Y, Duan T, Wang K, Li H, He Q. Alterations in maternal plasma exosomal miRNAs revealed selective material exchange between maternal circulation and placenta. J Obstet Gynaecol Res 2023; 49:109-121. [PMID: 36216398 DOI: 10.1111/jog.15452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 01/19/2023]
Abstract
AIM Exosomes have emerged as important regulators in the communication between maternal peripheral blood and placenta. We aimed to compare maternal plasma exosomal miRNAs profile between healthy pregnant and nonpregnant women, screen for differential expressed miRNAs and their potential regulatory role during pregnancy. METHODS We isolated exosomes from plasma of mid-trimester, last trimester, and nonpregnant women (n = 6 each group), analyzed the miRNA profile using next-generation sequencing. RESULTS Several miRNA clusters were expressed in plasma exosomes, such as C19MC, C14MC, and let-7 family, miRNAs in each cluster may have synergistic effect during pregnancy. We assumed maternal circulating exosomal miRNA could be transported into placenta or selectively uptook by placenta, which was consistent with the fact that many pregnancy-associated or placenta highly expressed miRNAs reduced in exosomes during pregnancy. Some exosomal miRNAs were mainly secreted by the placenta, which could act as markers that reflect changes in the function and microenvironment of the placenta. CONCLUSIONS Exosomal miRNAs are associated with placenta development and have potential as molecular markers.
Collapse
Affiliation(s)
- Yuchun Ge
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Mengtian Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Xinwen Chang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Yiying Huang
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Tao Duan
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Han Li
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Qizhi He
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| |
Collapse
|
15
|
Preeclampsia and syncytiotrophoblast membrane extracellular vesicles (STB-EVs). Clin Sci (Lond) 2022; 136:1793-1807. [PMID: 36511102 DOI: 10.1042/cs20220149] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 12/15/2022]
Abstract
Preeclampsia (PE) is a hypertensive complication of pregnancy that affects 2-8% of women worldwide and is one of the leading causes of maternal deaths and premature birth. PE can occur early in pregnancy (<34 weeks gestation) or late in pregnancy (>34 weeks gestation). Whilst the placenta is clearly implicated in early onset PE (EOPE), late onset PE (LOPE) is less clear with some believing the disease is entirely maternal whilst others believe that there is an interplay between maternal systems and the placenta. In both types of PE, the syncytiotrophoblast (STB), the layer of the placenta in direct contact with maternal blood, is stressed. In EOPE, the STB is oxidatively stressed in early pregnancy (leading to PE later in gestation- the two-stage model) whilst in LOPE the STB is stressed because of villous overcrowding and senescence later in pregnancy. It is this stress that perturbs maternal systems leading to the clinical manifestations of PE. Whilst some of the molecular species driving this stress have been identified, none completely explain the multisystem nature of PE. Syncytiotrophoblast membrane vesicles (STB-EVs) are a potential contributor to this multisystem disorder. STB-EVs are released into the maternal circulation in increasing amounts with advancing gestational age, and this release is further exacerbated with stress. There are good in vitro evidence that STB-EVs are taken up by macrophages and liver cells with additional evidence supporting endothelial cell uptake. STB-EV targeting remains in the early stages of discovery. In this review, we highlight the role of STB-EVs in PE. In relation to current research, we discuss different protocols for ex vivo isolation of STB-EVs, as well as specific issues involving tissue preparation, isolation (some of which may be unique to STB-EVs), and methods for their analysis. We suggest potential solutions for these challenges.
Collapse
|
16
|
Zeng Y, Wu Y, Zhang Q, Xiao X. Non-coding RNAs: The link between maternal malnutrition and offspring metabolism. Front Nutr 2022; 9:1022784. [DOI: 10.3389/fnut.2022.1022784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Early life nutrition is associated with the development and metabolism in later life, which is known as the Developmental Origin of Health and Diseases (DOHaD). Epigenetics have been proposed as an important explanation for this link between early life malnutrition and long-term diseases. Non-coding RNAs (ncRNAs) may play a role in this epigenetic programming. The expression of ncRNAs (such as long non-coding RNA H19, microRNA-122, and circular RNA-SETD2) was significantly altered in specific tissues of offspring exposed to maternal malnutrition. Changes in these downstream targets of ncRNAs lead to abnormal development and metabolism. This review aims to summarize the existing knowledge on ncRNAs linking the maternal nutrition condition and offspring metabolic diseases, such as obesity, type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD).
Collapse
|
17
|
Role of microRNA in Endocrine Disruptor-Induced Immunomodulation of Metabolic Health. Metabolites 2022; 12:metabo12111034. [DOI: 10.3390/metabo12111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
The prevalence of poor metabolic health is growing exponentially worldwide. This condition is associated with complex comorbidities that lead to a compromised quality of life. One of the contributing factors recently gaining attention is exposure to environmental chemicals, such as endocrine-disrupting chemicals (EDCs). Considerable evidence suggests that EDCs can alter the endocrine system through immunomodulation. More concerning, EDC exposure during the fetal development stage has prominent adverse effects later in life, which may pass on to subsequent generations. Although the mechanism of action for this phenomenon is mostly unexplored, recent reports implicate that non-coding RNAs, such as microRNAs (miRs), may play a vital role in this scenario. MiRs are significant contributors in post-transcriptional regulation of gene expression. Studies demonstrating the immunomodulation of EDCs via miRs in metabolic health or towards the Developmental Origins of Health and Disease (DOHaD) Hypothesis are still deficient. The aim of the current review was to focus on studies that demonstrate the impact of EDCs primarily on innate immunity and the potential role of miRs in metabolic health.
Collapse
|
18
|
Vidal MS, Lintao RCV, Severino MEL, Tantengco OAG, Menon R. Spontaneous preterm birth: Involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol (Lausanne) 2022; 13:1015622. [PMID: 36313741 PMCID: PMC9606232 DOI: 10.3389/fendo.2022.1015622] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Survivors of preterm birth struggle with multitudes of disabilities due to improper in utero programming of various tissues and organ systems contributing to adult-onset diseases at a very early stage of their lives. Therefore, the persistent rates of low birth weight (birth weight < 2,500 grams), as well as rates of neonatal and maternal morbidities and mortalities, need to be addressed. Active research throughout the years has provided us with multiple theories regarding the risk factors, initiators, biomarkers, and clinical manifestations of spontaneous preterm birth. Fetal organs, like the placenta and fetal membranes, and maternal tissues and organs, like the decidua, myometrium, and cervix, have all been shown to uniquely respond to specific exogenous or endogenous risk factors. These uniquely contribute to dynamic changes at the molecular and cellular levels to effect preterm labor pathways leading to delivery. Multiple intervention targets in these different tissues and organs have been successfully tested in preclinical trials to reduce the individual impacts on promoting preterm birth. However, these preclinical trial data have not been effectively translated into developing biomarkers of high-risk individuals for an early diagnosis of the disease. This becomes more evident when examining the current global rate of preterm birth, which remains staggeringly high despite years of research. We postulate that studying each tissue and organ in silos, as how the majority of research has been conducted in the past years, is unlikely to address the network interaction between various systems leading to a synchronized activity during either term or preterm labor and delivery. To address current limitations, this review proposes an integrated approach to studying various tissues and organs involved in the maintenance of normal pregnancy, promotion of normal parturition, and more importantly, contributions towards preterm birth. We also stress the need for biological models that allows for concomitant observation and analysis of interactions, rather than focusing on these tissues and organ in silos.
Collapse
Affiliation(s)
- Manuel S. Vidal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ryan C. V. Lintao
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mary Elise L. Severino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ourlad Alzeus G. Tantengco
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
19
|
Brancaccio M, Giachino C, Iazzetta AM, Cordone A, De Marino E, Affinito O, Vivo M, Calabrò V, Pollice A, Angrisano T. Integrated Bioinformatics Analysis Reveals Novel miRNA as Biomarkers Associated with Preeclampsia. Genes (Basel) 2022; 13:genes13101781. [PMID: 36292666 PMCID: PMC9601722 DOI: 10.3390/genes13101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
Preeclampsia is a leading cause of perinatal maternal-foetal mortality and morbidity. This study aims to identify the key microRNAs (miRNA) in preeclampsia and uncover their potential functions. We downloaded the miRNA expression profile of GSE119799 for plasma and GSE177049 for the placenta. Each dataset consisted of five patients (PE) and five controls (N). From a technical point of view, we analysed the counts per million (CPM) for both datasets, highlighting 358 miRNAs in common, 78 unique for plasma and 298 unique for placenta. At the same time, we performed an expression differential analysis (|logFC| ≥ 1|and FDR ≤ 0.05) to evaluate the biological impact of the miRNAs. This approach allowed us to highlight 321 miRNAs in common between plasma and placenta, within which four were upregulated in plasma. Furthermore, the same analysis revealed five miRNAs expressed exclusively in plasma; these were also upregulated. In conclusion, the in-depth bioinformatics analysis conducted during our study will allow us, on the one hand, to verify the targets of each of the nine identified miRNAs; on the other hand, to use them both as new non-invasive biomarkers and as therapeutic targets for the development of personalised treatments.
Collapse
Affiliation(s)
- Mariarita Brancaccio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: (M.B.); (T.A.); Tel.: +39-33-93121924 (M.B.); +39-34-94670474 (T.A.)
| | - Caterina Giachino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | - Antonio Cordone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Elena De Marino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Ornella Affinito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Vivo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
| | - Viola Calabrò
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Alessandra Pollice
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Correspondence: (M.B.); (T.A.); Tel.: +39-33-93121924 (M.B.); +39-34-94670474 (T.A.)
| |
Collapse
|
20
|
Upregulation of miR-181a-5p and miR-125b-2-3p in the Maternal Circulation of Fetuses with Rh-Negative Hemolytic Disease of the Fetus and Newborn Could Be Related to Dysfunction of Placental Function. DISEASE MARKERS 2022; 2022:2594091. [PMID: 36188428 PMCID: PMC9519318 DOI: 10.1155/2022/2594091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Abstract
The transplacental transfer of maternal antibodies to the fetus is a critical mechanism for infant protection and perinatal disease. Hemolytic disease of the fetus and newborn (HDFN) is a representative fetal disease caused by transplacental transfer of maternal IgG antibodies. However, it is unclear whether placental-related miRNAs are expressed in Rh-HDFN. Through the investigation of the miR-181a-5p and miR-125b-2-3p levels in maternal plasma using qPCR, we found that both miR-181a-5p and miR-125b-2-3p were highly expressed in maternal plasma of newborns with Rh-HDFN compared with healthy controls, indicating the potential roles of these two miRNAs in Rh-HDFN. To demonstrate whether dysregulation of miR-125b-2-3p and miR-181a-5p contributes to Rh-HDFN development, we analyze the placental miRNA-/mRNA sequencing data (GSE73714) using weighted gene coexpression network analysis (WGCNA), miRNA target predictive databases, and DAVID (Database for Annotation, Visualization, and Integrated Discovery). The results showed that miR-125b-2-3p and miR-181a-5p could regulate several biological processes including cytoplasmic microtubule organization and angiogenesis. Moreover, core promoter sequence-specific DNA binding and protein binding were highly enriched molecular functions, indicating the potential roles of transcriptional regulation. Further pathway enrichment showed that miR-181a-5p and miR-125b-2-3p could regulate several biological pathways that were closely related to placental function, including the FoxO signaling pathway, focal adhesion, mTOR signaling pathway, and central carbon metabolism in cancer. In conclusion, the present results first revealed miRNA expression in the maternal circulation of newborns with Rh-HDFN, which could be caused by dysfunction of the placenta.
Collapse
|
21
|
Xu N, Zhou X, Shi W, Ye M, Cao X, Chen S, Xu C. Integrative analysis of circulating microRNAs and the placental transcriptome in recurrent pregnancy loss. Front Physiol 2022; 13:893744. [PMID: 35991164 PMCID: PMC9390878 DOI: 10.3389/fphys.2022.893744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is a major type of pathological pregnancy that still lacks reliable early diagnosis and effective treatment. The placenta is critical to fetal development and pregnancy success because it participates in critical processes such as early embryo implantation, vascular remodeling, and immunological tolerance. RPL is associated with abnormalities in the biological behavior of placental villous trophoblasts, resulting in aberrant placental function. MicroRNAs (miRNAs) are increasingly being recognized as essential regulators of placental development, as well as potential biomarkers. In this study, plasma miRNAs and placental messenger RNAs (mRNAs) from RPL patients and normal pregnant (NP) controls were sequenced and analyzed. Compared to those in NP controls, 108 circulating miRNAs and 1199 placental mRNAs were differentially expressed in RPL samples. A total of 140 overlapping genes (overlapping between plasma miRNA target genes and actual placental disorder genes) were identified, and functional enrichment analysis showed that these genes were mainly related to cell proliferation, angiogenesis, and cell migration. The regulatory network among miRNAs, overlapping genes, and downstream biological processes was analyzed by protein–protein interactions and Cytoscape. Moreover, enriched mRNAs, which were predictive targets of the differentially expressed plasma miRNAs miR-766-5p, miR-1285-3p, and miR-520a-3p, were accordingly altered in the placenta. These results suggest that circulating miRNAs may be involved in the pathogenesis of RPL and are potential noninvasive biomarkers for RPL.
Collapse
Affiliation(s)
- Naixin Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xuanyou Zhou
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Weihui Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Mujin Ye
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xianling Cao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Songchang Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- *Correspondence: Songchang Chen, ; Chenming Xu,
| | - Chenming Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- *Correspondence: Songchang Chen, ; Chenming Xu,
| |
Collapse
|
22
|
Maligianni I, Yapijakis C, Nousia K, Bacopoulou F, Chrousos G. Exosomes and exosomal non‑coding RNAs throughout human gestation (Review). Exp Ther Med 2022; 24:582. [PMID: 35949320 PMCID: PMC9353550 DOI: 10.3892/etm.2022.11518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022] Open
Abstract
In recent years, research on exosomes and their content has been intensive, which has revealed their important role in cell-to-cell communication, and has implicated exosomal biomolecules in a broad spectrum of physiological processes, as well as in the pathogenesis of various diseases. Pregnancy and its normal progression rely highly on the efficient communication between the mother and the fetus, mainly mediated by the placenta. Recent studies have established the placenta as an important source of circulating exosomes and have demonstrated that exosome release into the maternal circulation gradually increases during pregnancy, starting from six weeks of gestation. This orchestrates maternal-fetal crosstalk, including maternal immune tolerance and pregnancy-associated metabolic adaptations. Furthermore, an increased number of secreted exosomes, along with altered patterns of exosomal non-coding RNAs (ncRNAs), especially microRNAs and long non-coding RNAs (lncRNAs), have been observed in a number of pregnancy complications, such as gestational diabetes mellitus and preeclampsia. The early detection of exosomes and specific exosomal ncRNAs in various biological fluids during pregnancy highlights them as promising candidate biomarkers for the diagnosis, prognosis and treatment of numerous pregnancy disorders in adolescents and adults. The present review aimed to provide insight into the current knowledge regarding the potential, only partially elucidated, role of exosomes and exosomal cargo in the regulation and progression of normal pregnancy, as well as their potential dysregulation and contribution to pathological pregnancy situations.
Collapse
Affiliation(s)
- Ioanna Maligianni
- First Department of Pediatrics, Unit of Orofacial Genetics, ‘Aghia Sophia’ Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Yapijakis
- First Department of Pediatrics, Unit of Orofacial Genetics, ‘Aghia Sophia’ Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantina Nousia
- First Department of Pediatrics, Unit of Orofacial Genetics, ‘Aghia Sophia’ Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
23
|
The Mystery of Exosomes in Gestational Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2169259. [PMID: 35720179 PMCID: PMC9200544 DOI: 10.1155/2022/2169259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
Gestational diabetes mellitus (GDM) is one of the common pregnancy complications, which increases the risk of short-term and long-term adverse consequences in both the mother and offspring. However, the pathophysiological mechanism of GDM is still poorly understood. Inflammation, insulin resistance and oxidative stress are considered critical factors in the occurrence and development of GDM. Although the lifestyle intervention and insulin are the primary treatment, adverse pregnancy outcomes still cannot be ignored. Exosomes have a specific function of carrying biological information, which can transmit information to target cells and play an essential role in intercellular communication. Their possible roles in normal pregnancy and GDM have been widely concerned. The possibility of exosomal cargos as biomarkers of GDM is proposed. This paper reviews the literature in recent years and discusses the role of exosomes in GDM and their possible mechanisms to provide some reference for the prediction, prevention, and treatment of GDM and improve the outcome of pregnancy.
Collapse
|
24
|
Trophectoderm Transcriptome Analysis in LIN28 Knockdown Ovine Conceptuses Suggests Diverse Roles of the LIN28-let-7 Axis in Placental and Fetal Development. Cells 2022; 11:cells11071234. [PMID: 35406798 PMCID: PMC8997724 DOI: 10.3390/cells11071234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
The proper conceptus elongation in ruminants is critical for the successful placentation and establishment of pregnancy. We have previously shown that the trophectoderm-specific knockdown of LIN28A/B in day 9 ovine blastocysts resulted in increased let-7 miRNAs and reduced conceptus elongation at day 16 of gestation. In this current study, by transcriptome analysis of LIN28A knockdown (AKD) or LIN28B knockdown (BKD) trophectoderm (TE), we explored the downstream target genes of the LIN28-let-7 axis and their roles in the placental and fetal development. We identified 449 differentially expressed genes (DEGs) in AKD TE and 1214 DEGs in BKD TE compared to non-targeting control (NTC). Our analysis further revealed that 210 downregulated genes in AKD TE and 562 downregulated genes in BKD TE were the potential targets of let-7 miRNAs. Moreover, 16 downregulated genes in AKD TE and 57 downregulated and 7 upregulated genes in BKD TE were transcription factors. The DEGs in AKD and BKD TE showed enrichment in the biological processes and pathways critical for placental development and function, and fetal development and growth. The results of this study suggest the potential roles of the LIN28-let-7 axis in placental and fetal development beyond its involvement in trophoblast proliferation and conceptus elongation.
Collapse
|
25
|
Ding J, Maxwell A, Adzibolosu N, Hu A, You Y, Liao A, Mor G. Mechanisms of immune regulation by the placenta: Role of type I interferon and interferon‐stimulated genes signaling during pregnancy*. Immunol Rev 2022; 308:9-24. [DOI: 10.1111/imr.13077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Jiahui Ding
- C.S Mott Center for Human Growth and Development Department of Obstetrics and Gynecology Wayne State University Detroit Michigan USA
| | - Anthony Maxwell
- C.S Mott Center for Human Growth and Development Department of Obstetrics and Gynecology Wayne State University Detroit Michigan USA
- Department of Physiology Wayne State University Detroit Michigan USA
| | - Nicholas Adzibolosu
- C.S Mott Center for Human Growth and Development Department of Obstetrics and Gynecology Wayne State University Detroit Michigan USA
- Department of Physiology Wayne State University Detroit Michigan USA
| | - Anna Hu
- C.S Mott Center for Human Growth and Development Department of Obstetrics and Gynecology Wayne State University Detroit Michigan USA
| | - Yuan You
- C.S Mott Center for Human Growth and Development Department of Obstetrics and Gynecology Wayne State University Detroit Michigan USA
| | - Aihua Liao
- Institute of Reproductive Health Center for Reproductive Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Gil Mor
- C.S Mott Center for Human Growth and Development Department of Obstetrics and Gynecology Wayne State University Detroit Michigan USA
| |
Collapse
|
26
|
Zuccarello D, Sorrentino U, Brasson V, Marin L, Piccolo C, Capalbo A, Andrisani A, Cassina M. Epigenetics of pregnancy: looking beyond the DNA code. J Assist Reprod Genet 2022; 39:801-816. [PMID: 35301622 PMCID: PMC9050975 DOI: 10.1007/s10815-022-02451-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Epigenetics is the branch of genetics that studies the different mechanisms that influence gene expression without direct modification of the DNA sequence. An ever-increasing amount of evidence suggests that such regulatory processes may play a pivotal role both in the initiation of pregnancy and in the later processes of embryonic and fetal development, thus determining long-term effects even in adult life. In this narrative review, we summarize the current knowledge on the role of epigenetics in pregnancy, from its most studied and well-known mechanisms to the new frontiers of epigenetic regulation, such as the role of ncRNAs and the effects of the gestational environment on fetal brain development. Epigenetic mechanisms in pregnancy are a dynamic phenomenon that responds both to maternal-fetal and environmental factors, which can influence and modify the embryo-fetal development during the various gestational phases. Therefore, we also recapitulate the effects of the most notable environmental factors that can affect pregnancy and prenatal development, such as maternal nutrition, stress hormones, microbiome, and teratogens, focusing on their ability to cause epigenetic modifications in the gestational environment and ultimately in the fetus. Despite the promising advancements in the knowledge of epigenetics in pregnancy, more experience and data on this topic are still needed. A better understanding of epigenetic regulation in pregnancy could in fact prove valuable towards a better management of both physiological pregnancies and assisted reproduction treatments, other than allowing to better comprehend the origin of multifactorial pathological conditions such as neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniela Zuccarello
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy.
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Valeria Brasson
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Loris Marin
- Gynaecological Clinic, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Chiara Piccolo
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | | | - Alessandra Andrisani
- Gynaecological Clinic, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| |
Collapse
|
27
|
Morelli AE, Sadovsky Y. Extracellular vesicles and immune response during pregnancy: A balancing act. Immunol Rev 2022; 308:105-122. [PMID: 35199366 DOI: 10.1111/imr.13074] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
The mechanisms underlying maternal tolerance of the semi- or fully-allogeneic fetus are intensely investigated. Across gestation, feto-placental antigens interact with the maternal immune system locally within the trophoblast-decidual interface and distantly through shed cells and soluble molecules that interact with maternal secondary lymphoid tissues. The discovery of extracellular vesicles (EVs) as local or systemic carriers of antigens and immune-regulatory molecules has added a new dimension to our understanding of immune modulation prior to implantation, during trophoblast invasion, and throughout the course of pregnancy. New data on immune-regulatory molecules, located on EVs or within their cargo, suggest a role for EVs in negotiating immune tolerance during gestation. Lessons from the field of transplant immunology also shed light on possible interactions between feto-placentally derived EVs and maternal lymphoid tissues. These insights illuminate a potential role for EVs in major obstetrical disorders. This review provides updated information on intensely studied, pregnancy-related EVs, their cargo molecules, and patterns of fetal-placental-maternal trafficking, highlighting potential immune pathways that might underlie immune suppression or activation in gestational health and disease. Our summary also underscores the likely need to broaden the definition of the maternal-fetal interface to systemic maternal immune tissues that might interact with circulating EVs.
Collapse
Affiliation(s)
- Adrian E Morelli
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yoel Sadovsky
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
28
|
Stratman AN, Crewe C, Stahl PD. The microenvironment‐ a general hypothesis on the homeostatic function of extracellular vesicles. FASEB Bioadv 2022; 4:284-297. [PMID: 35520390 PMCID: PMC9065581 DOI: 10.1096/fba.2021-00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles (EVs), exosomes and microvesicles, is a burgeoning field of biological and biomedical research that may change our understanding of cell communication in plants and animals while holding great promise for the diagnosis of disease and the development of therapeutics. However, the challenge remains to develop a general hypothesis about the role of EVs in physiological homeostasis and pathobiology across kingdoms. While they can act systemically, EVs are often seen to operate locally within a microenvironment. This microenvironment is built as a collection of microunits comprised of cells that interact with each other via EV exchange, EV signaling, EV seeding, and EV disposal. We propose that microunits are part of a larger matrix at the tissue level that collectively communicates with the surrounding environment, including other end‐organ systems. Herein, we offer a working model that encompasses the various facets of EV function in the context of the cell biology and physiology of multicellular organisms.
Collapse
Affiliation(s)
- Amber N Stratman
- Department of Cell Biology and Physiology Washington University School of Medicine 660 South Euclid Avenue St. Louis Missouri USA 63110
| | - Clair Crewe
- Department of Cell Biology and Physiology Washington University School of Medicine 660 South Euclid Avenue St. Louis Missouri USA 63110
- Department of Internal Medicine Division of Endocrinology, Metabolism and Lipid Research Washington University School of Medicine 660 South Euclid Avenue St. Louis Missouri USA 63110
| | - Philip D Stahl
- Department of Cell Biology and Physiology Washington University School of Medicine 660 South Euclid Avenue St. Louis Missouri USA 63110
| |
Collapse
|
29
|
Tiozzo C, Bustoros M, Lin X, Manzano De Mejia C, Gurzenda E, Chavez M, Hanna I, Aguiari P, Perin L, Hanna N. Placental extracellular vesicles-associated microRNA-519c mediates endotoxin adaptation in pregnancy. Am J Obstet Gynecol 2021; 225:681.e1-681.e20. [PMID: 34181894 PMCID: PMC8633060 DOI: 10.1016/j.ajog.2021.06.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Pregnancy represents a unique challenge for the maternal-fetal immune interface, requiring a balance between immunosuppression, which is essential for the maintenance of a semiallogeneic fetus, and proinflammatory host defense to protect the maternal-fetal interface from invading organisms. Adaptation to repeated inflammatory stimuli (endotoxin tolerance) may be critical in preventing inflammation-induced preterm birth caused by exaggerated maternal inflammatory responses to mild or moderate infections that are common during pregnancy. However, the exact mechanisms contributing to the maintenance of tolerance to repeated infections are not completely understood. MicroRNAs play important roles in pregnancy with several microRNAs implicated in gestational tissue function and in pathologic pregnancy conditions. MicroRNA-519c, a member of the chromosome 19 microRNA cluster, is a human-specific microRNA mainly expressed in the placenta. However, its role in pregnancy is largely unknown. OBJECTIVE This study aimed to explore the role of "endotoxin tolerance" failure in the pathogenesis of an exaggerated inflammatory response often seen in inflammation-mediated preterm birth. In this study, we investigated the role of microRNA-519c, a placenta-specific microRNA, as a key regulator of endotoxin tolerance at the maternal-fetal interface. STUDY DESIGN Using a placental explant culture system, samples from term and second-trimester placentas were treated with lipopolysaccharide. After 24 hours, the conditioned media were collected for analysis, and the placental explants were re-exposed to repeated doses of lipopolysaccharide for 3 days. The supernatant was analyzed for inflammatory markers, the presence of extracellular vesicles, and microRNAs. To study the possible mechanism of action of the microRNAs, we evaluated the phosphodiesterase 3B pathway involved in tumor necrosis factor alpha production using a microRNA mimic and phosphodiesterase 3B small interfering RNA transfection. Finally, we analyzed human placental samples from different gestational ages and from women affected by inflammation-associated pregnancies. RESULTS Our data showed that repeated exposure of the human placenta to endotoxin challenges induced a tolerant phenotype characterized by decreased tumor necrosis factor alpha and up-regulated interleukin-10 levels. This reaction was mediated by the placenta-specific microRNA-519c packaged within placental extracellular vesicles. Lipopolysaccharide treatment increased the extracellular vesicles that were positive for the exosome tetraspanin markers, namely CD9, CD63, and CD81, and secreted primarily by trophoblasts. Primary human trophoblast cells transfected with a microRNA-519c mimic decreased phosphodiesterase 3B, whereas a lack of phosphodiesterase 3B, achieved by small interfering RNA transfection, led to decreased tumor necrosis factor alpha production. These data support the hypothesis that the anti-inflammatory action of microRNA-519c was mediated by a down-regulation of the phosphodiesterase 3B pathway, leading to inhibition of tumor necrosis factor alpha production. Furthermore, human placentas from normal and inflammation-associated pregnancies demonstrated that a decreased placental microRNA-519c level was linked to infection-induced inflammatory pathologies during pregnancy. CONCLUSION We identified microRNA-519c, a human placenta-specific microRNA, as a novel regulator of immune adaptation associated with infection-induced preterm birth at the maternal-fetal interface. Our study serves as a basis for future experiments to explore the potential use of microRNA-519c as a biomarker for infection-induced preterm birth.
Collapse
Affiliation(s)
- Caterina Tiozzo
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY
| | - Mark Bustoros
- Women and Children's Research Laboratory, New York University Long Island School of Medicine, Mineola, NY; Division of Hematologic Neoplasia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Xinhua Lin
- Women and Children's Research Laboratory, New York University Long Island School of Medicine, Mineola, NY
| | - Claudia Manzano De Mejia
- Women and Children's Research Laboratory, New York University Long Island School of Medicine, Mineola, NY
| | - Ellen Gurzenda
- Research and Academic Center, New York University Long Island School of Medicine, Mineola, NY
| | - Martin Chavez
- Department of Obstetrics-Gynecology, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY
| | - Iman Hanna
- Department of Pathology, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY
| | - Paola Aguiari
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of Urology, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of Urology, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Nazeeh Hanna
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY.
| |
Collapse
|
30
|
Baker BC, Lui S, Lorne I, Heazell AEP, Forbes K, Jones RL. Sexually dimorphic patterns in maternal circulating microRNAs in pregnancies complicated by fetal growth restriction. Biol Sex Differ 2021; 12:61. [PMID: 34789323 PMCID: PMC8597318 DOI: 10.1186/s13293-021-00405-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Background Current methods fail to accurately predict women at greatest risk of developing fetal growth restriction (FGR) or related adverse outcomes, including stillbirth. Sexual dimorphism in these adverse pregnancy outcomes is well documented as are sex-specific differences in gene and protein expression in the placenta. Circulating maternal serum microRNAs (miRNAs) offer potential as biomarkers that may also be informative of underlying pathology. We hypothesised that FGR would be associated with an altered miRNA profile and would differ depending on fetal sex. Methods miRNA expression profiles were assessed in maternal serum (> 36 weeks’ gestation) from women delivering a severely FGR infant (defined as an individualised birthweight centile (IBC) < 3rd) and matched control participants (AGA; IBC = 20–80th), using miRNA arrays. qPCR was performed using specific miRNA primers in an expanded cohort of patients with IBC < 5th (n = 15 males, n = 16 females/group). Maternal serum human placental lactogen (hPL) was used as a proxy to determine if serum miRNAs were related to placental dysfunction. In silico analyses were performed to predict the potential functions of altered miRNAs. Results Initial analyses revealed 11 miRNAs were altered in maternal serum from FGR pregnancies. In silico analyses revealed all 11 altered miRNAs were located in a network of genes that regulate placental function. Subsequent analysis demonstrated four miRNAs showed sexually dimorphic patterns. miR-28-5p was reduced in FGR pregnancies (p < 0.01) only when there was a female offspring and miR-301a-3p was only reduced in FGR pregnancies with a male fetus (p < 0.05). miR-454-3p was decreased in FGR pregnancies (p < 0.05) regardless of fetal sex but was only positively correlated to hPL when the fetus was female. Conversely, miR-29c-3p was correlated to maternal hPL only when the fetus was male. Target genes for sexually dimorphic miRNAs reveal potential functional roles in the placenta including angiogenesis, placental growth, nutrient transport and apoptosis. Conclusions These studies have identified sexually dimorphic patterns for miRNAs in maternal serum in FGR. These miRNAs may have potential as non-invasive biomarkers for FGR and associated placental dysfunction. Further studies to determine if these miRNAs have potential functional roles in the placenta may provide greater understanding of the pathogenesis of placental dysfunction and the differing susceptibility of male and female fetuses to adverse in utero conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s13293-021-00405-z. Detection and treatment of pregnancies at high risk of fetal growth restriction (FGR) and stillbirth remains a major obstetric challenge; circulating maternal serum microRNAs (miRNAs) offer potential as novel biomarkers. Unbiased analysis of serum miRNAs in women in late pregnancy identified a specific profile of circulating miRNAs in women with a growth-restricted infant. Some altered miRNAs (miR-28-5p, miR-301a-3p) showed sexually dimorphic expression in FGR pregnancies and others a fetal-sex dependent association to a hormonal marker of placental dysfunction (miR-454-3p, miR-29c-3p). miR-301a-3p and miR-28-5p could potentially be used to predict FGR specifically in pregnancies with a male or female baby, respectively, however larger cohort studies are required. Further investigations of these miRNAs and their relationship to placental dysfunction will lead to a better understanding of the pathophysiology of FGR and why there is differing susceptibility of male and female fetuses to FGR and stillbirth.
Collapse
Affiliation(s)
- Bernadette C Baker
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK.
| | - Sylvia Lui
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK.,Division of Inflammation and Repair, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Isabel Lorne
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
| | - Alexander E P Heazell
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK.,St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
| | - Rebecca L Jones
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
| |
Collapse
|
31
|
Strawn M, Samal A, Sarker MB, Dhakal P, Behura SK. Relevance of microRNAs to the regulation of the brain-placental axis in mice. Placenta 2021; 112:123-131. [PMID: 34332202 DOI: 10.1016/j.placenta.2021.07.293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/24/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The development of fetal brain is intricately dependent upon placental functions. Recently, we showed that the placenta and fetal brain express genes in a coordinated manner in mice. But, how the brain-placental axis is regulated at the molecular level remains poorly understood. The microRNAs (miRNAs) play diverse roles in pregnancy including regulation of placenta function as well as brain development. Thus, we hypothesized that specific miRNAs are expressed in the placenta and fetal brain to coordinate gene regulation in the brain-placental axis. METHODS To test this hypothesis, we performed deep sequencing of small RNAs in mouse placenta and fetal brain of both sexes. RESULTS The findings study show that miRNAs are potent regulators of gene expression in the placenta and fetal brain. Our data provides evidence that fetal sex influences the regulation of miRNAs between the placenta and fetal brain. Functional annotation of known target genes of the differentially expressed miRNAs show that they are significantly enriched with specific signaling and transporter pathways. DISCUSSION Together, the results of this study suggest that placental miRNAs are potent regulators of fetal brain development in mice.
Collapse
Affiliation(s)
- Monica Strawn
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Ananya Samal
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | | | - Pramod Dhakal
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA; MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
32
|
The newborn sheep translational model for pulmonary arterial hypertension of the neonate at high altitude. J Dev Orig Health Dis 2021; 11:452-463. [PMID: 32705972 DOI: 10.1017/s2040174420000616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic hypoxia during gestation induces greater occurrence of perinatal complications such as intrauterine growth restriction, fetal hypoxia, newborn asphyxia, and respiratory distress, among others. This condition may also cause a failure in the transition of the fetal to neonatal circulation, inducing pulmonary arterial hypertension of the neonate (PAHN), a syndrome that involves pulmonary vascular dysfunction, increased vasoconstrictor tone and pathological remodeling. As this syndrome has a relatively low prevalence in lowlands (~7 per 1000 live births) and very little is known about its prevalence and clinical evolution in highlands (above 2500 meters), our understanding is very limited. Therefore, studies on appropriate animal models have been crucial to comprehend the mechanisms underlying this pathology. Considering the strengths and weaknesses of any animal model of human disease is fundamental to achieve an effective and meaningful translation to clinical practice. The sheep model has been used to study the normal and abnormal cardiovascular development of the fetus and the neonate for almost a century. The aim of this review is to highlight the advances in our knowledge on the programming of cardiopulmonary function with the use of high-altitude newborn sheep as a translational model of PAHN.
Collapse
|
33
|
He L, Wang X, Jin Y, Xu W, Guan Y, Wu J, Han S, Liu G. Identification and validation of the miRNA-mRNA regulatory network in fetoplacental arterial endothelial cells of gestational diabetes mellitus. Bioengineered 2021; 12:3503-3515. [PMID: 34233591 PMCID: PMC8806558 DOI: 10.1080/21655979.2021.1950279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gestational diabetes mellitus (GDM) increases the risk of fetal heart malformations, though little is known about the mechanism of hyperglycemia-induced heart malformations. Thus, we aimed to reveal the global landscape of miRNAs and mRNAs in GDM-exposed fetoplacental arterial endothelial cells (dAECs) and establish regulatory networks for exploring the pathophysiological mechanism of fetal heart malformations in maternal hyperglycemia. Gene Expression Omnibus (GEO) datasets were used, and identification of differentially expressed miRNAs (DEMs) and genes (DEGs) in GDM was based on a previous sequencing analysis of dAECs. A miRNA-mRNA network containing 20 DEMs and 65 DEGs was established using DEMs altered in opposite directions to DEGs. In an in vivo study, we established a streptozotocin-induced pregestational diabetes mellitus (PGDM) mouse model and found the fetal cardiac wall thickness in different regions to be dramatically increased in the PGDM grouValidation of DEMs and DEGs in the fetal heart showed significantly upregulated expression of let-7e-5p, miR-139-5p and miR-195-5p and downregulated expression of SGOL1, RRM2, RGS5, CDK1 and CENPA. In summary, we reveal the miRNA-mRNA regulatory network related to fetal cardiac development disorders in offspring, which may shed light on the potential molecular mechanisms of fetal cardiac development disorders during maternal hyperglycemia.
Collapse
Affiliation(s)
- Longkai He
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaotong Wang
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ya Jin
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Weipeng Xu
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yi Guan
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jingchao Wu
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shasha Han
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Guosheng Liu
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Zaga-Clavellina V, Diaz L, Olmos-Ortiz A, Godínez-Rubí M, Rojas-Mayorquín AE, Ortuño-Sahagún D. Central role of the placenta during viral infection: Immuno-competences and miRNA defensive responses. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166182. [PMID: 34058350 DOI: 10.1016/j.bbadis.2021.166182] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
Pregnancy is a unique immunological condition in which an "immune-diplomatic" dialogue between trophoblasts and maternal immune cells is established to protect the fetus from rejection, to create a privileged environment in the uterus and to simultaneously be alert to any infectious challenge. The maternal-placental-fetal interface (MPFI) performs an essential role in this immunological defense. In this review, we will address the MPFI as an active immuno-mechanical barrier that protects against viral infections. We will describe the main viral infections affecting the placenta and trophoblasts and present their structure, mechanisms of immunocompetence and defensive responses to viral infections in pregnancy. In particular, we will analyze infection routes in the placenta and trophoblasts and the maternal-fetal outcomes in both. Finally, we will focus on the cellular targets of the antiviral microRNAs from the C19MC cluster, and their effects at both the intra- and extracellular level.
Collapse
Affiliation(s)
- Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México C.P. 11000, Mexico
| | - Lorenza Diaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México C.P. 14080, Mexico
| | - Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, INPer, Ciudad de México C.P. 11000, Mexico
| | - Marisol Godínez-Rubí
- Laboratorio de Investigación en Patología, Departamento de Microbiología y Patología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Argelia E Rojas-Mayorquín
- Departamento de Ciencias Ambientales, Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Guadalajara 45200, Mexico
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Guadalajara, Jalisco 44340, Mexico.
| |
Collapse
|
35
|
Pregnancy-Related Extracellular Vesicles Revisited. Int J Mol Sci 2021; 22:ijms22083904. [PMID: 33918880 PMCID: PMC8068855 DOI: 10.3390/ijms22083904] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are small vesicles ranging from 20–200 nm to 10 μm in diameter that are discharged and taken in by many different types of cells. Depending on the nature and quantity of their content—which generally includes proteins, lipids as well as microRNAs (miRNAs), messenger-RNA (mRNA), and DNA—these particles can bring about functional modifications in the receiving cells. During pregnancy, placenta and/or fetal-derived EVs have recently been isolated, eliciting interest in discovering their clinical significance. To date, various studies have associated variations in the circulating levels of maternal and fetal EVs and their contents, with complications including gestational diabetes and preeclampsia, ultimately leading to adverse pregnancy outcomes. Furthermore, EVs have also been identified as messengers and important players in viral infections during pregnancy, as well as in various congenital malformations. Their presence can be detected in the maternal blood from the first trimester and their level increases towards term, thus acting as liquid biopsies that give invaluable insight into the status of the feto-placental unit. However, their exact roles in the metabolic and vascular adaptations associated with physiological and pathological pregnancy is still under investigation. Analyzing peer-reviewed journal articles available in online databases, the purpose of this review is to synthesize current knowledge regarding the utility of quantification of pregnancy related EVs in general and placental EVs in particular as non-invasive evidence of placental dysfunction and adverse pregnancy outcomes, and to develop the current understanding of these particles and their applicability in clinical practice.
Collapse
|
36
|
Xu P, Ma Y, Wu H, Wang YL. Placenta-Derived MicroRNAs in the Pathophysiology of Human Pregnancy. Front Cell Dev Biol 2021; 9:646326. [PMID: 33777951 PMCID: PMC7991791 DOI: 10.3389/fcell.2021.646326] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
In placental mammals, reproductive success, and maternal-fetal health substantially depend on a well-being placenta, the interface between the fetus and the mother. Disorders in placental cells are tightly associated with adverse pregnancy outcomes including preeclampsia (PE), fetal growth restriction, etc. MicroRNAs (miRNAs) represent small non-coding RNAs that regulate post-transcriptional gene expression and are integral to a wide range of healthy or diseased cellular proceedings. Numerous miRNAs have been detected in human placenta and increasing evidence is revealing their important roles in regulating placental cell behaviors. Recent studies indicate that placenta-derived miRNAs can be released to the maternal circulation via encapsulating into the exosomes, and they potentially target various maternal cells to provide a hormone-like means of intercellular communication between the mother and the fetus. These placental exosome miRNAs are attracting more and more attention due to their differential expression in pregnant complications, which may provide novel biomarkers for prediction of the diseases. In this review, we briefly summarize the current knowledge and the perspectives of the placenta-derived miRNAs, especially the exosomal transfer of placental miRNAs and their pathophysiological relevance to PE. The possible exosomal-miRNA-targeted strategies for diagnosis, prognosis or therapy of PE are highlighted.
Collapse
Affiliation(s)
- Peng Xu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yeling Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Extracellular vesicles and their role in gestational diabetes mellitus. Placenta 2021; 113:15-22. [PMID: 33714611 DOI: 10.1016/j.placenta.2021.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/19/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Gestational diabetes mellitus (GDM) is a complex disorder that is defined by glucose intolerance with onset during pregnancy. The incidence of GDM is increasing worldwide. Pregnancies complicated with GDM have higher rates of maternal and fetal morbidity with short- and long-term consequences, including increased rates of cardiovascular disease and type II diabetes for both the mother and offspring. The pathophysiology of GDM still remains unclear and there has been interest in the role of small extracellular vesicles (sEVs) in the maternal metabolic adaptations that occur in pregnancy and GDM. Small EVs are nanosized particles that contain bioactive content, including miRNAs and proteins, which are released by cells to provide cell-to-cell communication. Pregnancy induces an increase in total and placental-secreted sEVs across gestation, with a further increase in sEV number and changes in the protein and miRNA composition of these sEVs in GDM. Research has suggested that these sEVs have an impact on maternal adaptations during pregnancy, including targeting the pancreas, skeletal muscle and adipose tissue. Consequently, this review will focus on the differences in total and placental sEVs in GDM compared to normal pregnancy, the role of sEVs in the pathophysiology of GDM and their clinical application as potential GDM biomarkers.
Collapse
|
38
|
Machtinger R, Baccarelli AA, Wu H. Extracellular vesicles and female reproduction. J Assist Reprod Genet 2021; 38:549-557. [PMID: 33471231 PMCID: PMC7910356 DOI: 10.1007/s10815-020-02048-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/21/2020] [Indexed: 01/28/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized membrane bound complexes that have been identified as a mean for intercellular communication between cells and tissues both in physiological and pathological conditions. These vesicles contain numerous molecules involved in signal transduction including microRNAs, mRNAs, DNA, proteins, lipids, and cytokines and can affect the behavior of recipient cells. Female reproduction is dependent on extremely fine-tuned endocrine regulation, and EVs may represent an added layer that contributes to this regulation. This narrative review article provides an update on the research of the role of EVs in female reproduction including folliculogenesis, fertilization, embryo quality, and implantation. We also highlight potential pitfalls in typical EV studies and discuss gaps in the current literature.
Collapse
Affiliation(s)
- Ronit Machtinger
- Sheba Medical Center, Ramat Gan and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Infertility and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, 52621, Tel Hashomer, Israel.
| | - Andrea A Baccarelli
- Environmental Precision Biosciences Laboratory, Columbia University, Mailman School of Public Health, New York, NY, USA
| | - Haotian Wu
- Environmental Precision Biosciences Laboratory, Columbia University, Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
39
|
Ali A, Hadlich F, Abbas MW, Iqbal MA, Tesfaye D, Bouma GJ, Winger QA, Ponsuksili S. MicroRNA-mRNA Networks in Pregnancy Complications: A Comprehensive Downstream Analysis of Potential Biomarkers. Int J Mol Sci 2021; 22:2313. [PMID: 33669156 PMCID: PMC7956714 DOI: 10.3390/ijms22052313] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pregnancy complications are a major cause of fetal and maternal morbidity and mortality in humans. The majority of pregnancy complications initiate due to abnormal placental development and function. During the last decade, the role of microRNAs (miRNAs) in regulating placental and fetal development has become evident. Dysregulation of miRNAs in the placenta not only affects placental development and function, but these miRNAs can also be exported to both maternal and fetal compartments and affect maternal physiology and fetal growth and development. Due to their differential expression in the placenta and maternal circulation during pregnancy complications, miRNAs can be used as diagnostic biomarkers. However, the differential expression of a miRNA in the placenta may not always be reflected in maternal circulation, which makes it difficult to find a reliable biomarker for placental dysfunction. In this review, we provide an overview of differentially expressed miRNAs in the placenta and/or maternal circulation during preeclampsia (PE) and intrauterine growth restriction (IUGR), which can potentially serve as biomarkers for prediction or diagnosis of pregnancy complications. Using different bioinformatics tools, we also identified potential target genes of miRNAs associated with PE and IUGR, and the role of miRNA-mRNA networks in the regulation of important signaling pathways and biological processes.
Collapse
Affiliation(s)
- Asghar Ali
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Frieder Hadlich
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - Muhammad W Abbas
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad A Iqbal
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - Dawit Tesfaye
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Gerrit J Bouma
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Quinton A Winger
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| |
Collapse
|
40
|
Ouyang Y, Mouillet JF, Sorkin A, Sadovsky Y. Trophoblastic extracellular vesicles and viruses: Friends or foes? Am J Reprod Immunol 2021; 85:e13345. [PMID: 32939907 PMCID: PMC7880881 DOI: 10.1111/aji.13345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Cells produce cytoplasmic vesicles to facilitate the processing and transport of RNAs, proteins, and other signaling molecules among intracellular organelles. Moreover, most cells release a range of extracellular vesicles (EVs) that mediate intercellular communication in both physiological and pathological settings. In addition to a better understanding of their biological functions, the diagnostic and therapeutic prospects of EVs, particularly the nano-sized small EVs (sEVs, exosomes), are currently being rigorously pursued. While EVs and viruses such as retroviruses might have evolved independently, they share a number of similar characteristics, including biogenesis pathways, size distribution, cargo, and cell-targeting mechanisms. The interplay of EVs with viruses has profound effects on viral replication and infectivity. Our research indicates that sEVs, produced by primary human trophoblasts, can endow other non-placental cell types with antiviral response. Better insights into the interaction of EVs with viruses may illuminate new ways to attenuate viral infections during pregnancy, and perhaps develop new antiviral therapeutics to protect the feto-placental unit during critical times of human development.
Collapse
Affiliation(s)
- Yingshi Ouyang
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jean-Francois Mouillet
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
41
|
Bianchi DW, Maron JL. Conversations With the Editors: The Past, Present, and Future of Placental Research at the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Clin Ther 2021; 43:211-217. [PMID: 33526313 DOI: 10.1016/j.clinthera.2020.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Diana W Bianchi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Jill L Maron
- Mother Infant Research Institute at Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
42
|
Elliott RO, He M. Unlocking the Power of Exosomes for Crossing Biological Barriers in Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13010122. [PMID: 33477972 PMCID: PMC7835896 DOI: 10.3390/pharmaceutics13010122] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
Since the 2013 Nobel Prize was awarded for the discovery of vesicle trafficking, a subgroup of nanovesicles called exosomes has been driving the research field to a new regime for understanding cellular communication. This exosome-dominated traffic control system has increased understanding of many diseases, including cancer metastasis, diabetes, and HIV. In addition to the important diagnostic role, exosomes are particularly attractive for drug delivery, due to their distinctive properties in cellular information transfer and uptake. Compared to viral and non-viral synthetic systems, the natural, cell-derived exosomes exhibit intrinsic payload and bioavailability. Most importantly, exosomes easily cross biological barriers, obstacles that continue to challenge other drug delivery nanoparticle systems. Recent emerging studies have shown numerous critical roles of exosomes in many biological barriers, including the blood–brain barrier (BBB), blood–cerebrospinal fluid barrier (BCSFB), blood–lymph barrier (BlyB), blood–air barrier (BAB), stromal barrier (SB), blood–labyrinth barrier (BLaB), blood–retinal barrier (BRB), and placental barrier (PB), which opens exciting new possibilities for using exosomes as the delivery platform. However, the systematic reviews summarizing such discoveries are still limited. This review covers state-of-the-art exosome research on crossing several important biological barriers with a focus on the current, accepted models used to explain the mechanisms of barrier crossing, including tight junctions. The potential to design and engineer exosomes to enhance delivery efficacy, leading to future applications in precision medicine and immunotherapy, is discussed.
Collapse
Affiliation(s)
- Rebekah Omarkhail Elliott
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
| | - Mei He
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
43
|
Villota SD, Toledo-Rodriguez M, Leach L. Compromised barrier integrity of human feto-placental vessels from gestational diabetic pregnancies is related to downregulation of occludin expression. Diabetologia 2021; 64:195-210. [PMID: 33001231 PMCID: PMC7716932 DOI: 10.1007/s00125-020-05290-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Reduced occupancy of junctional occludin is a feature of human placental vessels in the diabetic milieu. However, the functional consequence of this and whether this loss is due to differential expression of occludin splice variants is not known. Our study aimed to investigate the effects of gestational diabetes mellitus (GDM), and its treatment, on endothelial junctional integrity, gene and protein expression of occludin splice variants, and potential regulation of expression by microRNAs (miRNAs). METHODS Term placentas were obtained from normal pregnancies (n = 21), and pregnancies complicated by GDM where glucose levels were controlled by diet (n = 11) or metformin (n = 6). Gene and microRNA (miRNA) expression were determined by quantitative real-time PCR; protein expression by immunoblotting; endothelial junctional occupancy by fluorescence microscopy and systematic sampling; and paracellular leakage by perfusion of placental microvascular beds with 76 Mr dextran. Transfection studies of miRNAs that target OCLN were performed in HUVECs, and the trans-endothelial electrical resistance and tracer permeability of the HUVECs were measured. RESULTS All three predicted OCLN gene splice variants and two occludin protein isoforms were found in human placental samples. In placental samples from diet-controlled GDM (d-GDM) pregnancies we found a lower percentage of conduit vessels showing occludin immunoreactivity (12%, p < 0.01), decreased levels of the fully functional occludin isoform-A protein (29%), and differential gene expression of OCLN variant 2 (33% decrease), variant 3 (3.3-fold increase). These changes were not seen in samples from the group with metformin-controlled GDM. In d-GDM placentas, increased numbers of conduit microvessels demonstrated extravasation of 76 Mr dextran (2.0-fold). In d-GDM expression of one of the five potential miRNAs targeting OCLN, miR-181a-5p, expression was 2.1-fold that in normal pregnancies. Experimental overexpression of miR-181a-5p in HUVECs from normal pregnancies resulted in a highly significant downregulation of OCLN variant 1 (69%) and variant 2 (46%) gene expression, with decreased trans-endothelial resistance (78%) and increase in tracer permeability (1.3-fold). CONCLUSIONS/INTERPRETATION Downregulation of expression of OCLN variant 2 and the fully functional occludin isoform-A protein are a feature of placentas in d-GDM pregnancies. These may be behind the loss of junctional occludin and the increased extravasation of exogenous dextran observed. miR-181a-5p was in part responsible for the downregulation of occludin in placentas from d-GDM pregnancies. Induced overexpression of miR-181a-5p compromised the integrity of the endothelial barrier. Our data suggest that, despite good glucose control, the adoption of lifestyle changes alone during a GDM pregnancy may not be enough to prevent an alteration in the expression of occludin and the subsequent functional consequences in placentas and impaired vascular barrier function in offspring. Graphical abstract.
Collapse
Affiliation(s)
| | | | - Lopa Leach
- School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
44
|
Real-time Assessment of the Development and Function of the Placenta Across Gestation to Support Therapeutics in Pregnancy. Clin Ther 2020; 43:279-286. [PMID: 33246660 DOI: 10.1016/j.clinthera.2020.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
Abstract
The placenta is vital to the health and development of the fetus, serving to deliver oxygen and nutrients, facilitate the removal of waste products, and provide a barrier to pathogens and other harmful substances present in the maternal circulation. When these processes fail to operate normally, they can lead to complications of pregnancy such as preeclampsia or fetal growth restriction. The development of novel therapeutics for the mother, fetus, or placenta requires a mechanistic understanding of the development and functions of the placenta. For the obstetric clinician, being able to monitor the placenta throughout the pregnancy and to measure the impact of any treatment modality on the mother and the developing fetus are essential for providing the best possible care. The Eunice Kennedy Shriver National Institute of Child Health and Human Development at the National Institutes of Health has been a longtime supporter of research on the placenta. In 2014, the Human Placenta Project was initiated to help to drive an understanding of the biology of the human placenta and to facilitate the development of novel tools and approaches to allow for safe, noninvasive, real-time assessment of the placenta across pregnancy. Those efforts, along with others from around the globe, are showing promise. Although not yet ready for clinical application, these advances are moving the field forward and are certain to have a tremendous impact on the development and assessment of therapeutics designed for treating conditions of pregnancy.
Collapse
|
45
|
Mouillet JF, Goff J, Sadovsky E, Sun H, Parks T, Chu T, Sadovsky Y. Transgenic expression of human C19MC miRNAs impacts placental morphogenesis. Placenta 2020; 101:208-214. [PMID: 33017713 DOI: 10.1016/j.placenta.2020.09.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/28/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The chromosome 19 miRNA cluster (C19MC) encodes a large family of microRNAs (miRNAs) that are abundantly expressed in the placenta of higher primates and also in certain cancers. In the placenta, miRNAs from this cluster account for nearly 40% of all miRNAs present in trophoblasts. However, the function of these miRNAs in the placenta remains poorly understood. Recent observations reveal a role for these miRNAs in cell migration, and suggest that they are involved in the development and function of the human placenta. Here, we examine the placenta in transgenic mice expressing the human C19MC miRNAs. METHODS We produced transgenic mice using pronuclear microinjection of a bacterial artificial chromosome plasmid carrying the entire human C19MC locus and derived a homozygous line using crossbreeding. We performed morphological characterization and profiled gene expression changes in the placentas of the transgenic mice. RESULTS C19MC transgenic mice delivered on time with no gross malformations. The placentas of transgenic mice expressed C19MC miRNAs and were larger than wild type placentas. Histologically, we found that the transgenic placenta exhibited projections of spongiotrophoblasts that penetrated deep into the labyrinth. Gene expression analysis revealed alterations in the expression of several genes involved in cell migration, with evidence of enhanced cell proliferation. DISCUSSION Mice that were humanized for transgenically overexpressed C19MC miRNAs exhibit enlarged placentas with aberrant delineation of cell layers. The observed phenotype and the related gene expression changes suggest disrupted migration of placental cell subpopulations.
Collapse
Affiliation(s)
- Jean-Francois Mouillet
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julie Goff
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elena Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Huijie Sun
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tony Parks
- Department of Laboratory Medicine and Pathobiology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Tianjiao Chu
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
46
|
Cimadomo D, Rienzi L, Giancani A, Alviggi E, Dusi L, Canipari R, Noli L, Ilic D, Khalaf Y, Ubaldi FM, Capalbo A. Definition and validation of a custom protocol to detect miRNAs in the spent media after blastocyst culture: searching for biomarkers of implantation. Hum Reprod 2020; 34:1746-1761. [PMID: 31419301 DOI: 10.1093/humrep/dez119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/09/2019] [Indexed: 12/18/2022] Open
Abstract
STUDY QUESTION Can miRNAs be reliably detected in the spent blastocyst media (SBM) after IVF as putative biomarkers of the implantation potential of euploid embryos? SUMMARY ANSWER Adjustment of the data for blastocyst quality and the day of full-expansion hinders the predictive power of a fast, inexpensive, reproducible and user-friendly protocol based on the detection of 10 selected miRNAs from SBM. WHAT IS KNOWN ALREADY Euploidy represents so far the strongest predictor of blastocyst competence. Nevertheless, ~50% of the euploid blastocysts fail to implant. Several studies across the years have suggested that a dialogue exists between the embryo and the endometrium aimed at the establishment of a pregnancy. MicroRNAs have been proposed as mediators of such a dialogue and investigated in this respect. Several expensive, time-consuming and complex protocols have been adopted and promising results have been produced, but conclusive evidence from large clinical studies is missing. STUDY DESIGN, SIZE, DURATION This study was conducted in two phases from September 2015 to December 2017. In Phase 1, the human blastocyst miRNome profile was defined from the inner cell mass (ICM) and the corresponding whole-trophectoderm (TE) of six donated blastocysts. Two different protocols were adopted to this end. In parallel, 6 pools of 10 SBM each were run (3 from only implanted euploid blastocysts, IEBs; and 3 from only not-implanted euploid blastocysts, not-IEBs). A fast, inexpensive and user-friendly custom protocol for miRNA SBM profiling was designed. In Phase 2, 239 SBM from IEB and not-IEB were collected at three IVF centres. After 18 SBM from poor-quality blastocysts were excluded from the analysis, data from 107 SBM from not-IEB and 114 from IEB were produced through the previously developed custom protocol and compared. The data were corrected through logistic regressions. PARTICIPANT/MATERIALS, SETTINGS, METHODS Donated blastocysts underwent ICM and whole-TE isolation. SBM were collected during IVF cycles characterized by ICSI, blastocyst culture in a continuous media, TE biopsy without zona pellucida opening in Day 3, quantitative PCR (qPCR)-based aneuploidy testing and vitrified-warmed single euploid embryo transfer. Not-IEB and IEB were clustered following a negative pregnancy test and a live birth, respectively. The Taqman Low Density Array (TLDA) cards and the Exiqon microRNA human panel I+II qPCR analysis protocols were adopted to analyse the ICM and whole-TE. The latter was used also for SBM pools. A custom protocol and plate was then designed based on the Exiqon workflow, validated and finally adopted for SBM analysis in study Phase 2. This custom protocol allows the analysis of 10 miRNAs from 10 SBM in 3 hours from sample collection to data inspection. MAIN RESULTS AND ROLE OF THE CHANCE The TLDA cards protocol involved a higher rate of false positive results (5.6% versus 2.8% with Exiqon). There were 44 miRNAs detected in the ICM and TE from both the protocols. One and 24 miRNAs were instead detected solely in the ICM and the TE, respectively. Overall, 29 miRNAs were detected in the pooled SBM: 8 only from not-IEB, 8 only from IEB and 13 from both. Most of them (N = 24/29, 82.7%) were also detected previously in both the ICM and TE with the Exiqon protocol; two miRNAs (N = 2/29, 6.9%) were previously detected only in the TE, and three (N = 3/29, 10.3%) were never detected previously. In study Phase 2, significant differences were shown between not-IEB and IEB in terms of both miRNA detection and relative quantitation. However, when the data were corrected for embryo morphology and day of full development (i.e. SBM collection), no significant association was confirmed. LIMITATIONS, REASONS FOR CAUTION This study did not evaluate specifically exosomal miRNAs, thereby reducing the chance of identifying the functional miRNAs. Ex-vivo experiments are required to confirm the role of miRNAs in mediating the dialogue with endometrial cells, and higher throughput technologies need to be further evaluated for miRNA profiling from clinical SBM samples. WIDER IMPLICATIONS OF THE FINDINGS Although no clinical predictive power was reported in this study, the absence of invasiveness related with SBM analysis and the evidence that embryonic genetic material can be reliably detected and analysed from SBM make this waste product of IVF an important source for further investigations aimed at improving embryo selection. STUDY FUNDING/COMPETING INTEREST(S) This project has been financially supported by Merck KgaA (Darmstadt, Germany) with a Grant for Fertility Innovation (GFI) 2015. The authors have no conflict of interest to declare related with this study. TRIAL REGISTRATION NUMBER None.
Collapse
Affiliation(s)
- Danilo Cimadomo
- Clinica Valle Giulia, G.en.e.r.a. center for reproductive medicine, Rome, Italy.,Clinica Ruesch, G.en.e.r.a. Center for Reproductive Medicine, Naples, Italy.,G.en.e.r.a. Veneto, G.en.e.r.a. Center for Reproductive Medicine, Marostica, Italy
| | - Laura Rienzi
- Clinica Valle Giulia, G.en.e.r.a. center for reproductive medicine, Rome, Italy.,Clinica Ruesch, G.en.e.r.a. Center for Reproductive Medicine, Naples, Italy.,G.en.e.r.a. Veneto, G.en.e.r.a. Center for Reproductive Medicine, Marostica, Italy
| | - Adriano Giancani
- Clinica Valle Giulia, G.en.e.r.a. center for reproductive medicine, Rome, Italy.,DAHFMO, Unit of Histology and Medical Embryology, Sapienza, University of Rome, Italy
| | - Erminia Alviggi
- Clinica Ruesch, G.en.e.r.a. Center for Reproductive Medicine, Naples, Italy
| | - Ludovica Dusi
- G.en.e.r.a. Veneto, G.en.e.r.a. Center for Reproductive Medicine, Marostica, Italy
| | - Rita Canipari
- DAHFMO, Unit of Histology and Medical Embryology, Sapienza, University of Rome, Italy
| | - Laila Noli
- Fakeeh College of Medical Sciences, Jeddah, Saudi Arabia.,Division of Women's Health and Assisted Conception Unit, King's College of London, Guy's Hospital, London, United Kingdom
| | - Dusko Ilic
- Division of Women's Health and Assisted Conception Unit, King's College of London, Guy's Hospital, London, United Kingdom
| | - Yacoub Khalaf
- Division of Women's Health and Assisted Conception Unit, King's College of London, Guy's Hospital, London, United Kingdom
| | - Filippo Maria Ubaldi
- Clinica Valle Giulia, G.en.e.r.a. center for reproductive medicine, Rome, Italy.,Clinica Ruesch, G.en.e.r.a. Center for Reproductive Medicine, Naples, Italy.,G.en.e.r.a. Veneto, G.en.e.r.a. Center for Reproductive Medicine, Marostica, Italy
| | - Antonio Capalbo
- DAHFMO, Unit of Histology and Medical Embryology, Sapienza, University of Rome, Italy.,Igenomix, Marostica, Italy
| |
Collapse
|
47
|
Li H, Pinilla-Macua I, Ouyang Y, Sadovsky E, Kajiwara K, Sorkin A, Sadovsky Y. Internalization of trophoblastic small extracellular vesicles and detection of their miRNA cargo in P-bodies. J Extracell Vesicles 2020; 9:1812261. [PMID: 32944196 PMCID: PMC7480505 DOI: 10.1080/20013078.2020.1812261] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pregnancy is a unique situation, in which placenta-derived small extracellular vesicles (sEVs) may communicate with maternal and foetal tissues. While relevant to homoeostatic and pathological functions, the mechanisms underlying sEV entry and cargo handling in target cells remain largely unknown. Using fluorescently or luminescently labelled sEVs, derived from primary human placental trophoblasts or from a placental cell line, we interrogated the endocytic pathways used by these sEVs to enter relevant target cells, including the neighbouring primary placental fibroblasts and human uterine microvascular endothelial cells. We found that trophoblastic sEVs can enter target cells, where they retain biological activity. Importantly, using a broad series of pharmacological inhibitors and siRNA-dependent silencing approaches, we showed that trophoblastic sEVs enter target cells using macropinocytosis and clathrin-mediated endocytosis pathways, but not caveolin-dependent endocytosis. Tracking their intracellular course, we localized the sEVs to early endosomes, late endosomes, and lysosomes. Finally, we used coimmunoprecipitation to demonstrate the association of the sEV microRNA (miRNA) with the P-body proteins AGO2 and GW182. Together, our data systematically detail endocytic pathways used by placental sEVs to enter relevant fibroblastic and endothelial target cells, and provide support for “endocytic escape” of sEV miRNA to P-bodies, a key site for cytoplasmic RNA regulation.
Collapse
Affiliation(s)
- Hui Li
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Reproductive Department of Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Itziar Pinilla-Macua
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yingshi Ouyang
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kazuhiro Kajiwara
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
48
|
Cissé YM, Chan JC, Nugent BM, Banducci C, Bale TL. Brain and placental transcriptional responses as a readout of maternal and paternal preconception stress are fetal sex specific. Placenta 2020; 100:164-170. [PMID: 32980048 DOI: 10.1016/j.placenta.2020.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Despite a wealth of epidemiological evidence that cumulative parental lifetime stress experiences prior to conception are determinant of offspring developmental trajectories, there is a lack of insight on how these previous stress experiences are stored and communicated intergenerationally. Preconception experiences may impact offspring development through alterations in transcriptional regulation of the placenta, a major determinant of offspring growth and sex-specific developmental outcomes. We evaluated the lasting influence of maternal and paternal preconception stress (PCS) on the mid-gestation placenta and fetal brain, utilizing their transcriptomes as proximate readouts of intergenerational impact. METHODS To assess the combined vs. dominant influence of maternal and paternal preconception environment on sex-specific fetal development, we compared transcriptional outcomes using a breeding scheme of one stressed parent, both stressed parents, or no stressed parents as controls. RESULTS Interestingly, offspring sex affected the directionality of transcriptional changes in response to PCS, where male tissues showed a predominant downregulation, and female tissues showed an upregulation. There was also an intriguing effect of parental sex on placental programming where paternal PCS drove more effects in female placentas, while maternal PCS produced more transcriptional changes in male placentas. However, in the fetal brain, maternal PCS produced overall more changes in gene expression than paternal PCS, supporting the idea that the intrauterine environment may have a larger overall influence on the developing brain than it does on shaping the placenta. DISCUSSION Preconception experiences drive changes in the placental and the fetal brain transcriptome at a critical developmental timepoint. While not determinant, these altered transcriptional states may underlie sex-biased risk or resilience to stressful experiences later in life.
Collapse
Affiliation(s)
- Yasmine M Cissé
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Jennifer C Chan
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Bridget M Nugent
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Caitlin Banducci
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Tracy L Bale
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States.
| |
Collapse
|
49
|
Placental miRNAs in feto-maternal communication mediated by extracellular vesicles. Placenta 2020; 102:27-33. [PMID: 33218575 DOI: 10.1016/j.placenta.2020.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
A complex network composed of at least 1900 microRNA (miRNA) species orchestrates the development and function of the human placenta. These molecules regulate genes and pathways operating major functional processes in trophoblast cells such as proliferation, invasion, differentiation, and metabolism. Nevertheless, the cellular localization and role of most placental miRNAs remain to be determined. The existence of eutherian- (C14MC) and primate-specific miRNA clusters (C19MC), together with human placenta-specific miRNAs, indicate the relevance of these molecules in evolution and diversification of the placenta, including the acquisition of its unique features in humans. They may be related also to diseases that are exclusively present in primates, such as preeclampsia. Changes in the miRNA expression profile have been reported in several placental pathologies. Which miRNAs are involved in the pathomechanism of these diseases or act to maintain placental homeostasis is uncertain. Placenta-derived miRNAs are packed into extracellular vesicles (EVs) and distributed through the maternal circulation to distant organs, where they contribute to adaptations required during pregnancy. Similarly, the placenta also receives molecular information from other tissues to adapt fetoplacental metabolic demands to the maternal energetic supply. These processes can be impaired in pathologic conditions. Therefore, the collection of circulating placental miRNAs constitutes potentially a minimally-invasive approach to assess the fetoplacental status and to diagnose pregnancy diseases. Future therapies may include manipulation of miRNA levels for prevention and treatment of placental complications to protect maternal health and fetal development.
Collapse
|
50
|
Czernek L, Düchler M. Exosomes as Messengers Between Mother and Fetus in Pregnancy. Int J Mol Sci 2020; 21:E4264. [PMID: 32549407 PMCID: PMC7352303 DOI: 10.3390/ijms21124264] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
The ability of exosomes to transport different molecular cargoes and their ability to influence various physiological factors is already well known. An exciting area of research explores the functions of exosomes in healthy and pathological pregnancies. Placenta-derived exosomes were identified in the maternal circulation during pregnancy and their contribution in the crosstalk between mother and fetus are now starting to become defined. In this review, we will try to summarize actual knowledge about this topic and to answer the question of how important exosomes are for a healthy pregnancy.
Collapse
Affiliation(s)
| | - Markus Düchler
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112, Sienkiewicza Street, 90-363 Lodz, Poland;
| |
Collapse
|