1
|
Jama A, Alshudukhi AA, Burke S, Dong L, Kamau JK, Morris B, Alkhomsi IA, Finck BN, Voss AA, Ren H. Exploring lipin1 as a promising therapeutic target for the treatment of Duchenne muscular dystrophy. J Transl Med 2024; 22:664. [PMID: 39014470 PMCID: PMC11253568 DOI: 10.1186/s12967-024-05494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a progressive and devastating muscle disease, resulting from the absence of dystrophin. This leads to cell membrane instability, susceptibility to contraction-induced muscle damage, subsequent muscle degeneration, and eventually disability and early death of patients. Currently, there is no cure for DMD. Our recent studies identified that lipin1 plays a critical role in maintaining myofiber stability and integrity. However, lipin1 gene expression levels are dramatically reduced in the skeletal muscles of DMD patients and mdx mice. METHODS To identify whether increased lipin1 expression could prevent dystrophic pathology, we employed unique muscle-specific mdx:lipin1 transgenic (mdx:lipin1Tg/0) mice in which lipin1 was restored in the dystrophic muscle of mdx mice, intramuscular gene delivery, as well as cell culture system. RESULTS We found that increased lipin1 expression suppressed muscle degeneration and inflammation, reduced fibrosis, strengthened membrane integrity, and resulted in improved muscle contractile and lengthening force, and muscle performance in mdx:lipin1Tg/0 compared to mdx mice. To confirm the role of lipin1 in dystrophic muscle, we then administered AAV1-lipin1 via intramuscular injection in mdx mice. Consistently, lipin1 restoration inhibited myofiber necroptosis and lessened muscle degeneration. Using a cell culture system, we further found that differentiated primary mdx myoblasts had elevated expression levels of necroptotic markers and medium creatine kinase (CK), which could be a result of sarcolemmal damage. Most importantly, increased lipin1 expression levels in differentiated myoblasts from mdx:lipin1Tg/0 mice substantially inhibited the elevation of necroptotic markers and medium CK levels. CONCLUSIONS Overall, our data suggest that lipin1 is a promising therapeutic target for the treatment of dystrophic muscles.
Collapse
Affiliation(s)
- Abdulrahman Jama
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435-0001, USA
| | - Abdullah A Alshudukhi
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435-0001, USA
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Steve Burke
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | - Lixin Dong
- Mumetel LLC, University Technology Park at IIT, Chicago, IL, USA
| | - John Karanja Kamau
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435-0001, USA
| | - Brooklyn Morris
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435-0001, USA
| | - Ibrahim A Alkhomsi
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435-0001, USA
| | - Brian N Finck
- Division of Geriatrics & Nutritional Science, Washington University School of Medicine, St. Louis, USA
| | - Andrew Alvin Voss
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | - Hongmei Ren
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435-0001, USA.
| |
Collapse
|
2
|
Slane EG, Tambrini SJ, Cummings BS. Therapeutic potential of lipin inhibitors for the treatment of cancer. Biochem Pharmacol 2024; 222:116106. [PMID: 38442792 DOI: 10.1016/j.bcp.2024.116106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Lipins are phosphatidic acid phosphatases (PAP) that catalyze the conversion of phosphatidic acid (PA) to diacylglycerol (DAG). Three lipin isoforms have been identified: lipin-1, -2 and -3. In addition to their PAP activity, lipin-1 and -2 act as transcriptional coactivators and corepressors. Lipins have been intensely studied for their role in regulation of lipid metabolism and adipogenesis; however, lipins are hypothesized to mediate several pathologies, such as those involving metabolic diseases, neuropathy and even cognitive impairment. Recently, an emerging role for lipins have been proposed in cancer. The study of lipins in cancer has been hampered by lack of inhibitors that have selectivity for lipins, that differentiate between lipin family members, or that are suitable for in vivo studies. Such inhibitors have the potential to be extremely useful as both molecular tools and therapeutics. This review describes the expression and function of lipins in various tissues and their roles in several diseases, but with an emphasis on their possible role in cancer. The mechanisms by which lipins mediate cancer cell growth are discussed and the potential usefulness of selective lipin inhibitors is hypothesized. Finally, recent studies reporting the crystallization of lipin-1 are discussed to facilitate rational design of novel lipin inhibitors.
Collapse
Affiliation(s)
- Elizabeth G Slane
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samantha J Tambrini
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Brian S Cummings
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
3
|
Alabed HBR, Pellegrino RM, Buratta S, Lema Fernandez AG, La Starza R, Urbanelli L, Mecucci C, Emiliani C, Gorello P. Metabolic Profiling as an Approach to Differentiate T-Cell Acute Lymphoblastic Leukemia Cell Lines Belonging to the Same Genetic Subgroup. Int J Mol Sci 2024; 25:3921. [PMID: 38612731 PMCID: PMC11011837 DOI: 10.3390/ijms25073921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive tumor mainly affecting children and adolescents. It is driven by multiple genetic mutations that together define the leukemic phenotype. Interestingly, based on genetic alterations and/or deregulated expression, at least six genetic subgroups have been recognized. The TAL/LMO subgroup is one of the most represented genetic subgroups, characterizing 30-45% of pediatric T-ALL cases. The study of lipid and metabolic profiles is increasingly recognized as a valuable tool for comprehending the development and progression of tumors. In this study, metabolic and lipidomic analysis via LC/MS have been carried out on four T-ALL cell lines belonging to the TAL/LMO subgroup (Jurkat, Molt-4, Molt-16, and CCRF-CEM) to identify new potential metabolic biomarkers and to provide a subclassification of T-ALL cell lines belonging to the same subgroup. A total of 343 metabolites were annotated, including 126 polar metabolites and 217 lipid molecules. The statistical analysis, for both metabolic and lipid profiles, shows significant differences and similarities among the four cell lines. The Molt-4 cell line is the most distant cell line and CCRF-CEM shows a high activity in specific pathways when compared to the other cell lines, while Molt-16 and Jurkat show a similar metabolic profile. Additionally, this study highlighted the pathways that differ in each cell line and the possible enzymes involved using bioinformatic tools, capable of predicting the pathways involved by studying the differences in the metabolic profiles. This experiment offers an approach to differentiate T-ALL cell lines and could open the way to verify and confirm the obtained results directly in patients.
Collapse
Affiliation(s)
- Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Anair Graciela Lema Fernandez
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.G.L.F.); (C.M.)
| | - Roberta La Starza
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.G.L.F.); (C.M.)
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Cristina Mecucci
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.G.L.F.); (C.M.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Paolo Gorello
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
4
|
Banerjee S, Hatimuria M, Sarkar K, Das J, Pabbathi A, Sil PC. Recent Contributions of Mass Spectrometry-Based "Omics" in the Studies of Breast Cancer. Chem Res Toxicol 2024; 37:137-180. [PMID: 38011513 DOI: 10.1021/acs.chemrestox.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Breast cancer (BC) is one of the most heterogeneous groups of cancer. As every biotype of BC is unique and presents a particular "omic" signature, they are increasingly characterized nowadays with novel mass spectrometry (MS) strategies. BC therapeutic approaches are primarily based on the two features of human epidermal growth factor receptor 2 (HER2) and estrogen receptor (ER) positivity. Various strategic MS implementations are reported in studies of BC also involving data independent acquisitions (DIAs) of MS which report novel differential proteomic, lipidomic, proteogenomic, phosphoproteomic, and metabolomic characterizations associated with the disease and its therapeutics. Recently many "omic" studies have aimed to identify distinct subsidiary biotypes for diagnosis, prognosis, and targets of treatment. Along with these, drug-induced-resistance phenotypes are characterized by "omic" changes. These identifying aspects of the disease may influence treatment outcomes in the near future. Drug quantifications and characterizations are also done regularly and have implications in therapeutic monitoring and in drug efficacy assessments. We report these studies, mentioning their implications toward the understanding of BC. We briefly provide the MS instrumentation principles that are adopted in such studies as an overview with a brief outlook on DIA-MS strategies. In all of these, we have chosen a model cancer for its revelations through MS-based "omics".
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Physiology, Surendranath College, University of Calcutta, Kolkata 700009, India
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Madushmita Hatimuria
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Kasturi Sarkar
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Joydeep Das
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Ashok Pabbathi
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Parames C Sil
- Department of Molecular Medicine Bose Institute, Kolkata 700054, India
| |
Collapse
|
5
|
Daneshmand-Parsa M, Nikpour P. Introduction of LPIN1 as a potential diagnostic and prognostic biomarker for gastric cancer via integrative bioinformatics analysis of a competing endogenous RNA network and experimental validation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1456-1463. [PMID: 39386228 PMCID: PMC11459342 DOI: 10.22038/ijbms.2024.74686.16216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 08/05/2024] [Indexed: 10/12/2024]
Abstract
Objectives Identification of effective biomarkers is crucial for the heterogeneous disease of gastric cancer (GC). Recent studies have focused on the role of pseudogenes regulating gene expression through competing endogenous RNA (ceRNA) networks, however, the pseudogene-associated ceRNA networks in GC remain largely unknown. The current study aimed to construct and analyze a three-component ceRNA network in GC and experimentally validate a ceRNA. Materials and Methods A comprehensive analysis was conducted on the RNA-seq and miRNA-seq data of The Cancer Genome Atlas (TCGA) stomach adenocarcinoma (STAD) dataset to identify differentially-expressed mRNAs (DEMs), pseudogenes (DEPs), and miRNAs (DEMis). Pseudogene-associated ceRNA and protein-protein interaction (PPI) networks were constructed, and functional enrichment analyses were performed. DEMs and DEPs with degree centralities≥2 were selected for survival analysis. A ceRNA was further selected for experimental validation. Results 10,145 DEMs, 3576 DEPs, and 66 DEMis were retrieved and a ceRNA network was then constructed by including DEMis with concurrent interactions with at least a DEM and a DEP. Functional enrichment analysis demonstrated that DEMs of the ceRNA network were significantly enriched in cancer-associated pathways. LPIN1 and WBP1L were two mRNAs showing an association with STAD patients overall survival. Expression analysis of LPIN1 showed a significant decrease in GC tumors compared to non-tumor tissues (P=0.003). Conclusion Our research emphasizes the significant implications of ceRNA networks in the development of new biomarkers for the detection and prognosis of cancer. Further examination is necessary to explore the functional roles of LPIN1 in the pathogenesis of GC.
Collapse
Affiliation(s)
- Milad Daneshmand-Parsa
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Neurochemistry and Psychiatry, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Lee J, Bang JH, Ryu YC, Hwang BH. Multiple suppressing small interfering RNA for cancer treatment-Application to triple-negative breast cancer. Biotechnol J 2023; 18:e2300060. [PMID: 37478121 DOI: 10.1002/biot.202300060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Certain cancers, such as triple-negative breast cancer (TNBC), pose a challenging prognosis due to the absence of identifiable hormone-related receptors and effective targeted therapies. Consequently, novel therapeutics are required for these cancers, offering minimal side effects and reduced drug resistance. Unexpectedly, siRNA-7, initially employed as a control, exhibited significant efficacy in inhibiting cell viability in MDA-MB-231 cells. Through a genome-wide search of seed sequences, the targets of siRNA-7 were identified as cancer-related genes, namely PRKCE, RBPJ, ZNF737, and CDC7 in MDA-MB-231 cells. The mRNA repression analysis confirmed the simultaneous suppression by siRNA-7. Combinatorial administration of single-targeting siRNAs demonstrated a comparable reduction in viability to that achieved by siRNA-7. Importantly, siRNA-7 selectively inhibited cell viability in MDA-MB-231 cells, while normal HDF-n cells remained unaffected. Furthermore, in a xenograft mouse model, siRNA-7 exhibited a remarkable 76% reduction in tumor volume without any loss in body weight. These findings position siRNA-7 as a promising candidate for a novel, safe, specific, and potent TNBC cancer therapeutic. Moreover, the strategy of multiple suppressing small interfering RNA holds potential for the treatment of various diseases associated with gene overexpression.
Collapse
Affiliation(s)
- Jaewook Lee
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Jang Hyuk Bang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Yeong Chae Ryu
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Byeong Hee Hwang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
- Research Center for Bio Material & Process Development, Incheon National University, Incheon, Republic of Korea
- Institute for New Drug Development, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
7
|
Stojanovic B, Gajovic N, Jurisevic M, Stojanovic MD, Jovanovic M, Jovanovic I, Stojanovic BS, Milosevic B. Decoding the IL-33/ST2 Axis: Its Impact on the Immune Landscape of Breast Cancer. Int J Mol Sci 2023; 24:14026. [PMID: 37762328 PMCID: PMC10531367 DOI: 10.3390/ijms241814026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Interleukin-33 (IL-33) has emerged as a critical cytokine in the regulation of the immune system, showing a pivotal role in the pathogenesis of various diseases including cancer. This review emphasizes the role of the IL-33/ST2 axis in breast cancer biology, its contribution to cancer progression and metastasis, its influence on the tumor microenvironment and cancer metabolism, and its potential as a therapeutic target. The IL-33/ST2 axis has been shown to have extensive pro-tumorigenic features in breast cancer, starting from tumor tissue proliferation and differentiation to modulating both cancer cells and anti-tumor immune response. It has also been linked to the resistance of cancer cells to conventional therapeutics. However, the role of IL-33 in cancer therapy remains controversial due to the conflicting effects of IL-33 in tumorigenesis and anti-tumor response. The possibility of targeting the IL-33/ST2 axis in tumor immunotherapy, or as an adjuvant in immune checkpoint blockade therapy, is discussed.
Collapse
Affiliation(s)
- Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia (I.J.)
| | - Milena Jurisevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia (I.J.)
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marina Jovanovic
- Department of Otorinolaringology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia (I.J.)
| | - Bojana S. Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia (I.J.)
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Milosevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| |
Collapse
|
8
|
Bergamini C, Leoni I, Rizzardi N, Melli M, Galvani G, Coada CA, Giovannini C, Monti E, Liparulo I, Valenti F, Ferracin M, Ravaioli M, Cescon M, Vasuri F, Piscaglia F, Negrini M, Stefanelli C, Fato R, Gramantieri L, Fornari F. MiR-494 induces metabolic changes through G6pc targeting and modulates sorafenib response in hepatocellular carcinoma. J Exp Clin Cancer Res 2023; 42:145. [PMID: 37301960 DOI: 10.1186/s13046-023-02718-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Metabolic reprogramming is a well-known marker of cancer, and it represents an early event during hepatocellular carcinoma (HCC) development. The recent approval of several molecular targeted agents has revolutionized the management of advanced HCC patients. Nevertheless, the lack of circulating biomarkers still affects patient stratification to tailored treatments. In this context, there is an urgent need for biomarkers to aid treatment choice and for novel and more effective therapeutic combinations to avoid the development of drug-resistant phenotypes. This study aims to prove the involvement of miR-494 in metabolic reprogramming of HCC, to identify novel miRNA-based therapeutic combinations and to evaluate miR-494 potential as a circulating biomarker. METHODS Bioinformatics analysis identified miR-494 metabolic targets. QPCR analysis of glucose 6-phosphatase catalytic subunit (G6pc) was performed in HCC patients and preclinical models. Functional analysis and metabolic assays assessed G6pc targeting and miR-494 involvement in metabolic changes, mitochondrial dysfunction, and ROS production in HCC cells. Live-imaging analysis evaluated the effects of miR-494/G6pc axis in cell growth of HCC cells under stressful conditions. Circulating miR-494 levels were assayed in sorafenib-treated HCC patients and DEN-HCC rats. RESULTS MiR-494 induced the metabolic shift of HCC cells toward a glycolytic phenotype through G6pc targeting and HIF-1A pathway activation. MiR-494/G6pc axis played an active role in metabolic plasticity of cancer cells, leading to glycogen and lipid droplets accumulation that favored cell survival under harsh environmental conditions. High miR-494 serum levels associated with sorafenib resistance in preclinical models and in a preliminary cohort of HCC patients. An enhanced anticancer effect was observed for treatment combinations between antagomiR-494 and sorafenib or 2-deoxy-glucose in HCC cells. CONCLUSIONS MiR-494/G6pc axis is critical for the metabolic rewiring of cancer cells and associates with poor prognosis. MiR-494 deserves attention as a candidate biomarker of likelihood of response to sorafenib to be tested in future validation studies. MiR-494 represents a promising therapeutic target for combination strategies with sorafenib or metabolic interference molecules for the treatment of HCC patients who are ineligible for immunotherapy.
Collapse
Affiliation(s)
- Christian Bergamini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Ilaria Leoni
- Centre for Applied Biomedical Research - CRBA, University of Bologna, Policlinico di Sant'Orsola, 40138, Bologna, Italy
- Department for Life Quality Studies, University of Bologna, 47921, Rimini, Italy
| | - Nicola Rizzardi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Mattia Melli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Giuseppe Galvani
- Centre for Applied Biomedical Research - CRBA, University of Bologna, Policlinico di Sant'Orsola, 40138, Bologna, Italy
- Department for Life Quality Studies, University of Bologna, 47921, Rimini, Italy
| | | | - Catia Giovannini
- Centre for Applied Biomedical Research - CRBA, University of Bologna, Policlinico di Sant'Orsola, 40138, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
| | - Elisa Monti
- Centre for Applied Biomedical Research - CRBA, University of Bologna, Policlinico di Sant'Orsola, 40138, Bologna, Italy
- Department for Life Quality Studies, University of Bologna, 47921, Rimini, Italy
| | - Irene Liparulo
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Francesca Valenti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Matteo Ravaioli
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
- Hepato-biliary Surgery and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Matteo Cescon
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
- Hepato-biliary Surgery and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Francesco Vasuri
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti, 9, 40138, Bologna, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44100, Ferrara, Italy
| | - Claudio Stefanelli
- Department for Life Quality Studies, University of Bologna, 47921, Rimini, Italy
| | - Romana Fato
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti, 9, 40138, Bologna, Italy.
| | - Francesca Fornari
- Centre for Applied Biomedical Research - CRBA, University of Bologna, Policlinico di Sant'Orsola, 40138, Bologna, Italy.
- Department for Life Quality Studies, University of Bologna, 47921, Rimini, Italy.
| |
Collapse
|
9
|
Talapatra J, Reddy MM. Lipid Metabolic Reprogramming in Embryonal Neoplasms with MYCN Amplification. Cancers (Basel) 2023; 15:cancers15072144. [PMID: 37046804 PMCID: PMC10093342 DOI: 10.3390/cancers15072144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Tumor cells reprogram their metabolism, including glucose, glutamine, nucleotide, lipid, and amino acids to meet their enhanced energy demands, redox balance, and requirement of biosynthetic substrates for uncontrolled cell proliferation. Altered lipid metabolism in cancer provides lipids for rapid membrane biogenesis, generates the energy required for unrestricted cell proliferation, and some of the lipids act as signaling pathway mediators. In this review, we focus on the role of lipid metabolism in embryonal neoplasms with MYCN dysregulation. We specifically review lipid metabolic reactions in neuroblastoma, retinoblastoma, medulloblastoma, Wilms tumor, and rhabdomyosarcoma and the possibility of targeting lipid metabolism. Additionally, the regulation of lipid metabolism by the MYCN oncogene is discussed.
Collapse
Affiliation(s)
- Jyotirmayee Talapatra
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Mamatha M Reddy
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| |
Collapse
|
10
|
Celik C, Lee SYT, Yap WS, Thibault G. Endoplasmic reticulum stress and lipids in health and diseases. Prog Lipid Res 2023; 89:101198. [PMID: 36379317 DOI: 10.1016/j.plipres.2022.101198] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
The endoplasmic reticulum (ER) is a complex and dynamic organelle that regulates many cellular pathways, including protein synthesis, protein quality control, and lipid synthesis. When one or multiple ER roles are dysregulated and saturated, the ER enters a stress state, which, in turn, activates the highly conserved unfolded protein response (UPR). By sensing the accumulation of unfolded proteins or lipid bilayer stress (LBS) at the ER, the UPR triggers pathways to restore ER homeostasis and eventually induces apoptosis if the stress remains unresolved. In recent years, it has emerged that the UPR works intimately with other cellular pathways to maintain lipid homeostasis at the ER, and so does at cellular levels. Lipid distribution, along with lipid anabolism and catabolism, are tightly regulated, in part, by the ER. Dysfunctional and overwhelmed lipid-related pathways, independently or in combination with ER stress, can have reciprocal effects on other cellular functions, contributing to the development of diseases. In this review, we summarize the current understanding of the UPR in response to proteotoxic stress and LBS and the breadth of the functions mitigated by the UPR in different tissues and in the context of diseases.
Collapse
Affiliation(s)
- Cenk Celik
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Wei Sheng Yap
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore.
| |
Collapse
|
11
|
Zhang C, Zhu N, Li H, Gong Y, Gu J, Shi Y, Liao D, Wang W, Dai A, Qin L. New dawn for cancer cell death: Emerging role of lipid metabolism. Mol Metab 2022; 63:101529. [PMID: 35714911 PMCID: PMC9237930 DOI: 10.1016/j.molmet.2022.101529] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resistance to cell death, a protective mechanism for removing damaged cells, is a "Hallmark of Cancer" that is essential for cancer progression. Increasing attention to cancer lipid metabolism has revealed a number of pathways that induce cancer cell death. SCOPE OF REVIEW We summarize emerging concepts regarding lipid metabolic reprogramming in cancer that is mainly involved in lipid uptake and trafficking, de novo synthesis and esterification, fatty acid synthesis and oxidation, lipogenesis, and lipolysis. During carcinogenesis and progression, continuous metabolic adaptations are co-opted by cancer cells, to maximize their fitness to the ever-changing environmental. Lipid metabolism and the epigenetic modifying enzymes interact in a bidirectional manner which involves regulating cancer cell death. Moreover, lipids in the tumor microenvironment play unique roles beyond metabolic requirements that promote cancer progression. Finally, we posit potential therapeutic strategies targeting lipid metabolism to improve treatment efficacy and survival of cancer patient. MAJOR CONCLUSIONS The profound comprehension of past findings, current trends, and future research directions on resistance to cancer cell death will facilitate the development of novel therapeutic strategies targeting the lipid metabolism.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Neng Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, PR China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yongzhen Gong
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Duanfang Liao
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Aiguo Dai
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
12
|
Dadhich R, Kapoor S. Lipidomic and Membrane Mechanical Signatures in Triple-Negative Breast Cancer: Scope for Membrane-Based Theranostics. Mol Cell Biochem 2022; 477:2507-2528. [PMID: 35595957 DOI: 10.1007/s11010-022-04459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer associated with poor prognosis, higher grade, and a high rate of metastatic occurrence. Limited therapeutic interventions and the compounding issue of drug resistance in triple-negative breast cancer warrants the discovery of novel therapeutic targets and diagnostic modules. To this view, in addition to proteins, lipids also regulate cellular functions via the formation of membranes that modulate membrane protein function, diffusion, and their localization; thus, orchestrating signaling hot spots enriched in specific lipids/proteins on cell membranes. Lipid deregulation in cancer leads to reprogramming of the membrane dynamics and functions impacting cell proliferation, metabolism, and metastasis, providing exciting starting points for developing lipid-based approaches for treating TNBC. In this review, we provide a detailed account of specific lipidic changes in breast cancer, link the altered lipidome with membrane structure and mechanical properties, and describe how these are linked to subsequent downstream functions implicit in cancer progression, metastasis, and chemoresistance. At the fundamental level, we discuss how the lipid-centric findings in TNBC are providing cues for developing lipid-inspired theranostic strategies while bridging existing gaps in our understanding of the functional involvement of lipid membranes in cancer.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India. .,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8528, Japan.
| |
Collapse
|
13
|
Jayathirtha M, Neagu AN, Whitham D, Alwine S, Darie CC. Investigation of the effects of overexpression of jumping translocation breakpoint (JTB) protein in MCF7 cells for potential use as a biomarker in breast cancer. Am J Cancer Res 2022; 12:1784-1823. [PMID: 35530281 PMCID: PMC9077082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023] Open
Abstract
Jumping translocation breakpoint (JTB) gene acts as a tumor suppressor or an oncogene in different malignancies, including breast cancer (BC), where it was reported as overexpressed. However, the molecular functions, biological processes and underlying mechanisms through which JTB protein causes increased cell growth, proliferation and invasion is still not fully deciphered. Our goal is to identify the functions of JTB protein by cellular proteomics approaches. MCF7 breast cancer cells were transfected with sense orientation of hJTB cDNA in HA, His and FLAG tagged CMV expression vector to overexpress hJTB and the expression levels were confirmed by Western blotting (WB). Proteins extracted from transfected cells were separated by SDS-PAGE and the in-gel digested peptides were analyzed by nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). By comparing the proteome of cells with upregulated conditions of JTB vs control and identifying the protein dysregulation patterns, we aim to understand the function of this protein and its contribution to tumorigenesis. Gene Set Enrichment Analysis (GSEA) algorithm was performed to investigate the biological processes and pathways that are associated with the JTB protein upregulation. The results demonstrated four significantly enriched gene sets from the following significantly upregulated pathways: mitotic spindle assembly, estrogen response late, epithelial-to-mesenchymal transition (EMT) and estrogen response early. JTB protein itself is involved in mitotic spindle pathway by its role in cell division/cytokinesis, and within estrogen response early and late pathways, contributing to discrimination between luminal and mesenchymal breast cancer. Thus, the overexpressed JTB condition was significantly associated with an increased expression of ACTNs, FLNA, FLNB, EZR, MYOF, COL3A1, COL11A1, HSPA1A, HSP90A, WDR, EPPK1, FASN and FOXA1 proteins related to deregulation of cytoskeletal organization and biogenesis, mitotic spindle organization, ECM remodeling, cellular response to estrogen, proliferation, migration, metastasis, increased lipid biogenesis, endocrine therapy resistance, antiapoptosis and discrimination between different breast cancer subtypes. Other upregulated proteins for overexpressed JTB condition are involved in multiple cellular functions and pathways that become dysregulated, such as tumor microenvironment (TME) acidification, the transmembrane transport pathways, glycolytic flux, iron metabolism and oxidative stress, metabolic reprogramming, nucleocytosolic mRNA transport, transcriptional activation, chromatin remodeling, modulation of cell death pathways, stress responsive pathways, and cancer drug resistance. The downregulated proteins for overexpressed JTB condition are involved in adaptive communication between external and internal environment of cells and maintenance between pro-apoptotic and anti-apoptotic signaling pathways, vesicle trafficking and secretion, DNA lesions repair and suppression of genes involved in tumor progression, proteostasis, redox state regulation, biosynthesis of macromolecules, lipolytic pathway, carbohydrate metabolism, dysregulation of ubiquitin-mediated degradation system, cancer cell immune escape, cell-to-cell and cell-to-ECM interactions, and cytoskeletal behaviour. There were no significantly enriched downregulated pathways.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IasiCarol I Bvd. No. 22, Iasi 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
14
|
Dai W, White R, Liu J, Liu H. Organelles coordinate milk production and secretion during lactation: Insights into mammary pathologies. Prog Lipid Res 2022; 86:101159. [PMID: 35276245 DOI: 10.1016/j.plipres.2022.101159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
The mammary gland undergoes a spectacular series of changes during its development and maintains a remarkable capacity to remodel and regenerate during progression through the lactation cycle. This flexibility of the mammary gland requires coordination of multiple processes including cell proliferation, differentiation, regeneration, stress response, immune activity, and metabolic changes under the control of diverse cellular and hormonal signaling pathways. The lactating mammary epithelium orchestrates synthesis and apical secretion of macromolecules including milk lipids, milk proteins, and lactose as well as other minor nutrients that constitute milk. Knowledge about the subcellular compartmentalization of these metabolic and signaling events, as they relate to milk production and secretion during lactation, is expanding. Here we review how major organelles (endoplasmic reticulum, Golgi apparatus, mitochondrion, lysosome, and exosome) within mammary epithelial cells collaborate to initiate, mediate, and maintain lactation, and how study of these organelles provides insight into options to maintain mammary/breast health.
Collapse
Affiliation(s)
- Wenting Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Robin White
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Hosseini M, Baghaei K, Hajivalili M, Zali MR, Ebtekar M, Amani D. The anti-tumor effects of CT-26 derived exosomes enriched by MicroRNA-34a on murine model of colorectal cancer. Life Sci 2021; 290:120234. [PMID: 34953890 DOI: 10.1016/j.lfs.2021.120234] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022]
Abstract
AIMS As conventional therapeutics failed to provide satisfied outcomes against one of the most prevalent cancers, colorectal cancer (CRC), we purposed to implicate MicroRNA (miR)-34a, as a major tumor suppressor, to be delivered by tumor-derived exosomes (TEXs) and investigated its anti-tumor functions in-vivo. MAIN METHODS TEXs were isolated from CT-26 cell line and loaded with miR-34a mimic. Then, mice bearing CRC were treated with miR-34a-enriched TEX (TEX-miR-34a) and then examined for the relative tumor-suppressive impacts of the TEX as well as its potential in promoting an anti-tumor immune response. KEY FINDINGS TEX-miR-34a significantly reduced tumor size and prolonged survival of mice bearing CRC. TEX-miR-34a was able to diminish gene expressions related to invasion, angiogenesis and immune evasion. It was also capable of inducing T cell polarization toward CD8+ T subsets among tumor-infiltrating lymphocytes, draining lymph nodes (DLNs) and spleen cells. Moreover, cytotoxic T cells were professionally induced in mice receiving TEX-miR-34a and the secretion of interleukin (IL)-6, IL-17A and tumor necrosis factor (TGF)-β was reduced in DLNs. However, the enhanced levels of interferon-γ were evaluated in DLN and spleen displaying the polarization of anti-tumor immune responses. Interestingly, mice receiving TEX alone showed a noticeable reduction in certain oncogenic gene expressions as well as IL-17A secretion in DLNs. SIGNIFICANCE TEX-miR-34a demonstrated the potential to induce beneficial anti-tumor immune responses and TEXs, aside from the delivery function of miRNA, revealed certain anti-tumor beneficial characteristics which could introduce TEX-miR-34a as a promising approach in CRC combination therapies.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Hajivalili
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Masoumeh Ebtekar
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Davar Amani
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Cong P, Wang T, Tong C, Liu Y, Shi L, Mao S, Shi X, Jin H, Liu Y, Hou M. Resveratrol ameliorates thoracic blast exposure-induced inflammation, endoplasmic reticulum stress and apoptosis in the brain through the Nrf2/Keap1 and NF-κB signaling pathway. Injury 2021; 52:2795-2802. [PMID: 34454721 DOI: 10.1016/j.injury.2021.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 02/02/2023]
Abstract
Blast injuries include the various types of internal and external trauma caused by the impact force of high-speed blast waves with multiple mechanisms involved. Thoracic blast exposure could induce neurotrauma as well, but effective therapies are lacking. Resveratrol is a polyphenol flavonoid secreted by plants and has been shown to provide cardiovascular protection and play anti-inflammatory, anti-oxidation and anti-cancer roles. However, the effects of resveratrol on thoracic blast exposure-induced brain injury have not been investigated. To explore this, a mouse model of thoracic blast exposure-induced brain injury was established. Sixty C57BL/6 wild type mice were randomly divided equally into four groups (one control group, one model group, and model groups with 25 or 50 mg/kg resveratrol injected intraperitoneally). As traumatic brain injury often accompanied by mental symptoms, cognitive dysfunction and anxious behavior were evaluated by Y maze, elevated plus maze and open field test. We also examined the mice for histopathological changes by hematoxylin-eosin staining; the expressions of inflammatory-related factors by ELISA; endoplasmic reticulum stress in brain tissue via the generation of reactive oxygen species (ROS) and the expressions of inositol-requiring enzyme-α (IRE-α) and C/EBP homologous protein (CHOP); apoptosis by measuring levels of Bax, p53 and Bcl-2. In addition, proteins of related pathways were also studied by western blotting. We found that resveratrol significantly reduced the levels of inflammatory-related factors, including interleukin (IL)-1β, IL-4, and high mobility group box protein 1(HMGB1), and increased the level of anti-inflammatory-related factor, IL-10, under thoracic blast exposure (P < 0.05). Cognitive dysfunction and anxious behavior were also ameliorated by resveratrol. In brain tissue, resveratrol significantly attenuated thoracic blast exposure-induced generation of ROS and expressions of IRE-α and CHOP, lowered the expressions of Bax and p53, and maintained Bcl-2 expression (P < 0.05). Additionally, resveratrol significantly ameliorated thoracic blast exposure-induced increases of Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor (NF)-κB and the decrease in nuclear factor erythroid 2-related factor 2(Nrf2) expression in the brain (P < 0.05). Our results indicate that resveratrol has a protective effect on thoracic blast exposure-induced brain injury that is likely mediated through the Nrf2/Keap1 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Peifang Cong
- College of Medicine and Biological Information Engineering, Northeastern University, No. 195, Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110016, China.
| | - Teng Wang
- Jining No.1 people's Hospital of Shandong Province, No. 6, Jiankang Road, Jining, Shandong Province, 272011, China.
| | - Changci Tong
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China.
| | - Ying Liu
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China.
| | - Lin Shi
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China.
| | - Shun Mao
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China.
| | - Xiuyun Shi
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China.
| | - Hongxu Jin
- Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China.
| | - Yunen Liu
- Shenyang Medical College, No. 146, Huanghe North Street, Huanggu District, Shenyang, Liaoning Province, 110034, China; Emergency Medicine Department of General Hospital of Northern theatre command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China.
| | - Mingxiao Hou
- College of Medicine and Biological Information Engineering, Northeastern University, No. 195, Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110016, China; Shenyang Medical College, No. 146, Huanghe North Street, Huanggu District, Shenyang, Liaoning Province, 110034, China; The Second Affiliated Hospital of Shenyang Medical College. The Veterans General Hospital of Liaoning Province, No.20 Beijiu Road, Heping District, Shenyang, Liaoning Province, 110001, China.
| |
Collapse
|
17
|
Hosseini M, Baghaei K, Amani D, Ebtekar M. Tumor-derived exosomes encapsulating miR-34a promote apoptosis and inhibit migration and tumor progression of colorectal cancer cells under in vitro condition. ACTA ACUST UNITED AC 2021; 29:267-278. [PMID: 34405380 DOI: 10.1007/s40199-021-00400-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/05/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND MicroRNA (miR)-34a, as a master tumor suppressor in colorectal cancer (CRC), could regulate multiple genes participating in tumor proliferation, invasion, immune evasion, and inflammation-induced progression. Exosomes, as novel nano-carriers, were found to be capable of shuttling crucial mediators to various cells. Since the conventional CRC therapeutics currently are a matter of debate, implication of microRNAs in malignancy remedies have been addressed illustrating promising outlooks. OBJECTIVES In this study, we aimed to investigate the delivery of miR-34a to CRC cell line CT-26 by encapsulating into tumor-derived exosomes (TEXs), in order to evaluate the anti-proliferative and progressive effects of the novel nano-carrier complex under in vitro condition. METHODS Exosomes were purified from the starved CT-26 cells and then enriched by miR-34a using the calcium chloride (Cacl2) modified solution. Following the detection of miR-34a expression in the enriched TEXs, the viability of CT-26 cells treated by multiplicity concentrations of either TEXs or TEX-miR-34a was examined. Moreover, the apoptosis rate of the cells was evaluated, and the migration of CT-26 cells subjected to both TEX-miR-34a and TEX was also measured. Thereafter, the expressions of miR-34a target genes, as IL-6R, STAT3, PD-L1, and VEGF-A, which play roles in tumor progression, were determined in the treated CT-26 cells. RESULTS The viability of CT-26 cells was harnessed following the treatment with TEX-miR-34a and the apoptosis levels of the cells were also observed to be enhanced dose-dependently. TEX-miR-34a was able to diminish the migration rate of the TEX-miR-34a treated cells and the expressions of IL-6R, STAT3, PD-L1, and VEGF-A were significantly restricted. Moreover, TEXs alone increased the apoptosis rate of tumor cells and repressed the proliferation and migration of these cells which were boosted by enrichment of TEXs with miR-34a. CONCLUSION Exosomes isolated from the starved CT-26 cells were found to have a potential to deliver miR-34a into tumor cells properly with high functionality maintenance for miR-34a in case of regulating genes related to tumor progression and TEXs which showed no positive effect favoring cancer cells, presumably act as a favorable adjuvant in the CRC therapy.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davar Amani
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Ebtekar
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
18
|
Kim JY, Kim G, Lim SC, Choi HS. IL-33-Induced Transcriptional Activation of LPIN1 Accelerates Breast Tumorigenesis. Cancers (Basel) 2021; 13:cancers13092174. [PMID: 33946554 PMCID: PMC8124251 DOI: 10.3390/cancers13092174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Phospholipids are crucial materials that are not only required for cell membrane construction but also play significant roles as signaling molecules. LPIN1 is an enzyme that displays phosphatidate phosphatase activity in the triglyceride and phospholipid synthesis pathway. Recent studies have shown that overexpression of LPIN1 is involved in breast tumorigenesis, but the underlying mechanism regulating LPIN1 expression has not been elucidated yet. In the present study, we showed that the IL-33-induced COT-JNK1/2 signaling pathway regulates LPIN1 mRNA and protein expression by recruiting c-Jun to the LPIN1 promoter in breast cancer cells. IL-33 dose-dependently and time-dependently increased LPIN1 mRNA and protein expression. Moreover, IL-33 promoted colony formation and mammary tumorigenesis via induction of LPIN1 expression, while inhibition of LPIN1 disturbed IL-33-induced cell proliferation and mammary tumorigenesis. IL-33-driven LPIN1 expression was mediated by the COT-JNK1/2 signaling pathway, and inhibition of COT or JNK1/2 reduced LPIN1 expression. COT-JNK1/2-mediated IL-33 signaling activated c-Jun and promoted its binding to the promoter region of LPIN1 to induce LPIN1 expression. These findings demonstrated the regulatory mechanism of LPIN1 transcription by the IL-33-induced COT/JNK1/2 pathway for the first time, providing a potential mechanism underlying the upregulation of LPIN1 in cancer.
Collapse
Affiliation(s)
- Jin-Young Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (J.-Y.K.); (G.K.)
| | - Garam Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (J.-Y.K.); (G.K.)
| | - Sung-Chul Lim
- Department of Pathology, School of Medicine, Chosun University, Gwangju 61452, Korea;
| | - Hong-Seok Choi
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (J.-Y.K.); (G.K.)
- Correspondence: ; Fax: +82-62-222-5414
| |
Collapse
|
19
|
IL-33-Induced Transcriptional Activation of LPIN1 Accelerates Breast Tumorigenesis. Cancers (Basel) 2021. [PMID: 33946554 DOI: 10.3390/cancers13092174.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phospholipids are crucial materials that are not only required for cell membrane construction but also play significant roles as signaling molecules. LPIN1 is an enzyme that displays phosphatidate phosphatase activity in the triglyceride and phospholipid synthesis pathway. Recent studies have shown that overexpression of LPIN1 is involved in breast tumorigenesis, but the underlying mechanism regulating LPIN1 expression has not been elucidated yet. In the present study, we showed that the IL-33-induced COT-JNK1/2 signaling pathway regulates LPIN1 mRNA and protein expression by recruiting c-Jun to the LPIN1 promoter in breast cancer cells. IL-33 dose-dependently and time-dependently increased LPIN1 mRNA and protein expression. Moreover, IL-33 promoted colony formation and mammary tumorigenesis via induction of LPIN1 expression, while inhibition of LPIN1 disturbed IL-33-induced cell proliferation and mammary tumorigenesis. IL-33-driven LPIN1 expression was mediated by the COT-JNK1/2 signaling pathway, and inhibition of COT or JNK1/2 reduced LPIN1 expression. COT-JNK1/2-mediated IL-33 signaling activated c-Jun and promoted its binding to the promoter region of LPIN1 to induce LPIN1 expression. These findings demonstrated the regulatory mechanism of LPIN1 transcription by the IL-33-induced COT/JNK1/2 pathway for the first time, providing a potential mechanism underlying the upregulation of LPIN1 in cancer.
Collapse
|
20
|
Brohée L, Crémer J, Colige A, Deroanne C. Lipin-1, a Versatile Regulator of Lipid Homeostasis, Is a Potential Target for Fighting Cancer. Int J Mol Sci 2021; 22:ijms22094419. [PMID: 33922580 PMCID: PMC8122924 DOI: 10.3390/ijms22094419] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
The rewiring of lipid metabolism is a major adaptation observed in cancer, and it is generally associated with the increased aggressiveness of cancer cells. Targeting lipid metabolism is therefore an appealing therapeutic strategy, but it requires a better understanding of the specific roles played by the main enzymes involved in lipid biosynthesis. Lipin-1 is a central regulator of lipid homeostasis, acting either as an enzyme or as a co-regulator of transcription. In spite of its important functions it is only recently that several groups have highlighted its role in cancer. Here, we will review the most recent research describing the role of lipin-1 in tumor progression when expressed by cancer cells or cells of the tumor microenvironment. The interest of its inhibition as an adjuvant therapy to amplify the effects of anti-cancer therapies will be also illustrated.
Collapse
|
21
|
Matsushita Y, Nakagawa H, Koike K. Lipid Metabolism in Oncology: Why It Matters, How to Research, and How to Treat. Cancers (Basel) 2021; 13:474. [PMID: 33530546 PMCID: PMC7865757 DOI: 10.3390/cancers13030474] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Lipids in our body, which are mainly composed of fatty acids, triacylglycerides, sphingolipids, phospholipids, and cholesterol, play important roles at the cellular level. In addition to being energy sources and structural components of biological membranes, several types of lipids serve as signaling molecules or secondary messengers. Metabolic reprogramming has been recognized as a hallmark of cancer, but changes in lipid metabolism in cancer have received less attention compared to glucose or glutamine metabolism. However, recent innovations in mass spectrometry- and chromatography-based lipidomics technologies have increased our understanding of the role of lipids in cancer. Changes in lipid metabolism, so-called "lipid metabolic reprogramming", can affect cellular functions including the cell cycle, proliferation, growth, and differentiation, leading to carcinogenesis. Moreover, interactions between cancer cells and adjacent immune cells through altered lipid metabolism are known to support tumor growth and progression. Characterization of cancer-specific lipid metabolism can be used to identify novel metabolic targets for cancer treatment, and indeed, several clinical trials are currently underway. Thus, we discuss the latest findings on the roles of lipid metabolism in cancer biology and introduce current advances in lipidomics technologies, focusing on their applications in cancer research.
Collapse
Affiliation(s)
| | - Hayato Nakagawa
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.M.); (K.K.)
| | | |
Collapse
|
22
|
Xu J, Taubert S. Beyond Proteostasis: Lipid Metabolism as a New Player in ER Homeostasis. Metabolites 2021; 11:52. [PMID: 33466824 PMCID: PMC7830277 DOI: 10.3390/metabo11010052] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Biological membranes are not only essential barriers that separate cellular and subcellular structures, but also perform other critical functions such as the initiation and propagation of intra- and intercellular signals. Each membrane-delineated organelle has a tightly regulated and custom-made membrane lipid composition that is critical for its normal function. The endoplasmic reticulum (ER) consists of a dynamic membrane network that is required for the synthesis and modification of proteins and lipids. The accumulation of unfolded proteins in the ER lumen activates an adaptive stress response known as the unfolded protein response (UPR-ER). Interestingly, recent findings show that lipid perturbation is also a direct activator of the UPR-ER, independent of protein misfolding. Here, we review proteostasis-independent UPR-ER activation in the genetically tractable model organism Caenorhabditis elegans. We review the current knowledge on the membrane lipid composition of the ER, its impact on organelle function and UPR-ER activation, and its potential role in human metabolic diseases. Further, we summarize the bi-directional interplay between lipid metabolism and the UPR-ER. We discuss recent progress identifying the different respective mechanisms by which disturbed proteostasis and lipid bilayer stress activate the UPR-ER. Finally, we consider how genetic and metabolic disturbances may disrupt ER homeostasis and activate the UPR and discuss how using -omics-type analyses will lead to more comprehensive insights into these processes.
Collapse
Affiliation(s)
- Jiaming Xu
- Graduate Program in Cell and Developmental Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Healthy Starts Theme, British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Stefan Taubert
- Graduate Program in Cell and Developmental Biology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Healthy Starts Theme, British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
23
|
Nagarajan SR, Butler LM, Hoy AJ. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab 2021; 9:2. [PMID: 33413672 PMCID: PMC7791669 DOI: 10.1186/s40170-020-00237-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor cellular metabolism exhibits distinguishing features that collectively enhance biomass synthesis while maintaining redox balance and cellular homeostasis. These attributes reflect the complex interactions between cell-intrinsic factors such as genomic-transcriptomic regulation and cell-extrinsic influences, including growth factor and nutrient availability. Alongside glucose and amino acid metabolism, fatty acid metabolism supports tumorigenesis and disease progression through a range of processes including membrane biosynthesis, energy storage and production, and generation of signaling intermediates. Here, we highlight the complexity of cellular fatty acid metabolism in cancer, the various inputs and outputs of the intracellular free fatty acid pool, and the numerous ways that these pathways influence disease behavior.
Collapse
Affiliation(s)
- Shilpa R Nagarajan
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
24
|
Lesko J, Triebl A, Stacher-Priehse E, Fink-Neuböck N, Lindenmann J, Smolle-Jüttner FM, Köfeler HC, Hrzenjak A, Olschewski H, Leithner K. Phospholipid dynamics in ex vivo lung cancer and normal lung explants. Exp Mol Med 2021; 53:81-90. [PMID: 33408336 PMCID: PMC8080582 DOI: 10.1038/s12276-020-00547-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2020] [Accepted: 11/04/2020] [Indexed: 01/29/2023] Open
Abstract
In cancer cells, metabolic pathways are reprogrammed to promote cell proliferation and growth. While the rewiring of central biosynthetic pathways is being extensively studied, the dynamics of phospholipids in cancer cells are still poorly understood. In our study, we sought to evaluate de novo biosynthesis of glycerophospholipids (GPLs) in ex vivo lung cancer explants and corresponding normal lung tissue from six patients by utilizing a stable isotopic labeling approach. Incorporation of fully 13C-labeled glucose into the backbone of phosphatidylethanolamine (PE), phosphatidylcholine (PC), and phosphatidylinositol (PI) was analyzed by liquid chromatography/mass spectrometry. Lung cancer tissue showed significantly elevated isotopic enrichment within the glycerol backbone of PE, normalized to its incorporation into PI, compared to that in normal lung tissue; however, the size of the PE pool normalized to the size of the PI pool was smaller in tumor tissue. These findings indicate enhanced PE turnover in lung cancer tissue. Elevated biosynthesis of PE in lung cancer tissue was supported by enhanced expression of the PE biosynthesis genes ETNK2 and EPT1 and decreased expression of the PC and PI biosynthesis genes CHPT1 and CDS2, respectively, in different subtypes of lung cancer in publicly available datasets. Our study demonstrates that incorporation of glucose-derived carbons into the glycerol backbone of GPLs can be monitored to study phospholipid dynamics in tumor explants and shows that PE turnover is elevated in lung cancer tissue compared to normal lung tissue.
Collapse
Affiliation(s)
- Julia Lesko
- grid.11598.340000 0000 8988 2476Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria
| | - Alexander Triebl
- grid.11598.340000 0000 8988 2476Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, Graz, Austria
| | - Elvira Stacher-Priehse
- grid.11598.340000 0000 8988 2476Institute of Pathology, Medical University of Graz, Graz, Austria ,grid.6363.00000 0001 2218 4662Present Address: Institute of Pathology, Asklepios Clinic Munich-Gauting, Munich, Germany
| | - Nicole Fink-Neuböck
- grid.11598.340000 0000 8988 2476Division of Thoracic and Hyperbaric Surgery, Medical University of Graz, Graz, Austria
| | - Jörg Lindenmann
- grid.11598.340000 0000 8988 2476Division of Thoracic and Hyperbaric Surgery, Medical University of Graz, Graz, Austria
| | - Freyja-Maria Smolle-Jüttner
- grid.11598.340000 0000 8988 2476Division of Thoracic and Hyperbaric Surgery, Medical University of Graz, Graz, Austria
| | - Harald C. Köfeler
- grid.11598.340000 0000 8988 2476Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, Graz, Austria
| | - Andelko Hrzenjak
- grid.11598.340000 0000 8988 2476Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria ,grid.489038.eLudwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- grid.11598.340000 0000 8988 2476Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria ,grid.489038.eLudwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Katharina Leithner
- grid.11598.340000 0000 8988 2476Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
25
|
Pralea IE, Moldovan RC, Țigu AB, Ionescu C, Iuga CA. Mass Spectrometry-Based Omics for the Characterization of Triple-Negative Breast Cancer Bio-Signature. J Pers Med 2020; 10:jpm10040277. [PMID: 33322818 PMCID: PMC7768464 DOI: 10.3390/jpm10040277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) represents an unmet medical need due to a high rate of metastatic occurrence and poor overall survival, pathology aggressiveness, heterogeneous clinical behavior and limited cytotoxic chemotherapy options available because of the absence of targetable receptors. The current standard of care in TNBC is represented by chemotherapy and surgery associated with low overall survival and high relapse rates. Hopes of overcoming current limited and unspecific approaches of TNBC therapy lie in studying the metabolic rewiring of these types of breast cancer, thus understanding the mechanisms involved in the occurrence and progression of the disease. Due to its heterogeneity, a clinically relevant sub-classification of this type of breast cancer based on biomarker panels is greatly needed in order to guide treatment decisions. Mass spectrometry-based omics may provide very useful tools to address the current needs of targetable biomarker discovery and validation. The present review aims to provide a comprehensive view of the current clinical diagnosis and therapy of TNBC highlighting the need for a new approach. Therefore, this paper offers a detailed mass spectrometry-based snapshot of TNBC metabolic adjustment, emphasizing a complex network of variables governing the diverse and aggressive clinical behavior of TNBC.
Collapse
Affiliation(s)
- Ioana-Ecaterina Pralea
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 4-6, 400349 Cluj-Napoca, Romania; (I.-E.P.); (R.-C.M.)
| | - Radu-Cristian Moldovan
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 4-6, 400349 Cluj-Napoca, Romania; (I.-E.P.); (R.-C.M.)
| | - Adrian-Bogdan Țigu
- Department of Translational Medicine, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania;
| | - Corina Ionescu
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania;
| | - Cristina-Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 4-6, 400349 Cluj-Napoca, Romania; (I.-E.P.); (R.-C.M.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
26
|
Song L, Liu Z, Hu HH, Yang Y, Li TY, Lin ZZ, Ye J, Chen J, Huang X, Liu DT, Zhou J, Shi Y, Zhao H, Xie C, Chen L, Song E, Lin SY, Lin SC. Proto-oncogene Src links lipogenesis via lipin-1 to breast cancer malignancy. Nat Commun 2020; 11:5842. [PMID: 33203880 PMCID: PMC7672079 DOI: 10.1038/s41467-020-19694-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
Increased lipogenesis has been linked to an increased cancer risk and poor prognosis; however, the underlying mechanisms remain obscure. Here we show that phosphatidic acid phosphatase (PAP) lipin-1, which generates diglyceride precursors necessary for the synthesis of glycerolipids, interacts with and is a direct substrate of the Src proto-oncogenic tyrosine kinase. Obesity-associated microenvironmental factors and other Src-activating growth factors, including the epidermal growth factor, activate Src and promote Src-mediated lipin-1 phosphorylation on Tyr398, Tyr413 and Tyr795 residues. The tyrosine phosphorylation of lipin-1 markedly increases its PAP activity, accelerating the synthesis of glycerophospholipids and triglyceride. Alteration of the three tyrosine residues to phenylalanine (3YF-lipin-1) disables lipin-1 from mediating Src-enhanced glycerolipid synthesis, cell proliferation and xenograft growth. Re-expression of 3YF-lipin-1 in PyVT;Lpin1-/- mice fails to promote progression and metastasis of mammary tumours. Human breast tumours exhibit increased p-Tyr-lipin-1 levels compared to the adjacent tissues. Importantly, statistical analyses show that levels of p-Tyr-lipin-1 correlate with tumour sizes, lymph node metastasis, time to recurrence and survival of the patients. These results illustrate a direct lipogenesis-promoting role of the pro-oncogenic Src, providing a mechanistic link between obesity-associated mitogenic signaling and breast cancer malignancy.
Collapse
Affiliation(s)
- Lintao Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Zhihua Liu
- Center of Intestinal Barrier and Fecal Microbiota Transplantation, The Fifth Affiliated Hospital of Guangzhou Medical University, 510700, Guangdong, China
| | - Hui-Hui Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Ying Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Terytty Yang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Zhi-Zhong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Jing Ye
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, 710000, Shaanxi, China
| | - Jianing Chen
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Dong-Tai Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Jing Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Yiran Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Hao Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Erwei Song
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, China.
| |
Collapse
|
27
|
Fernández LP, Gómez de Cedrón M, Ramírez de Molina A. Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and Treatment. Front Oncol 2020; 10:577420. [PMID: 33194695 PMCID: PMC7655926 DOI: 10.3389/fonc.2020.577420] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer remains the second leading cause of mortality worldwide. In the course of this multistage and multifactorial disease, a set of alterations takes place, with genetic and environmental factors modulating tumorigenesis and disease progression. Metabolic alterations of tumors are well-recognized and are considered as one of the hallmarks of cancer. Cancer cells adapt their metabolic competences in order to efficiently supply their novel demands of energy to sustain cell proliferation and metastasis. At present, there is a growing interest in understanding the metabolic switch that occurs during tumorigenesis. Together with the Warburg effect and the increased glutaminolysis, lipid metabolism has emerged as essential for tumor development and progression. Indeed, several investigations have demonstrated the consequences of lipid metabolism alterations in cell migration, invasion, and angiogenesis, three basic steps occurring during metastasis. In addition, obesity and associated metabolic alterations have been shown to augment the risk of cancer and to worsen its prognosis. Consequently, an extensive collection of tumorigenic steps has been shown to be modulated by lipid metabolism, not only affecting the growth of primary tumors, but also mediating progression and metastasis. Besides, key enzymes involved in lipid-metabolic pathways have been associated with cancer survival and have been proposed as prognosis biomarkers of cancer. In this review, we will analyze the impact of obesity and related tumor microenviroment alterations as modifiable risk factors in cancer, focusing on the lipid alterations co-occurring during tumorigenesis. The value of precision technologies and its application to target lipid metabolism in cancer will also be discussed. The degree to which lipid alterations, together with current therapies and intake of specific dietary components, affect risk of cancer is now under investigation, and innovative therapeutic or preventive applications must be explored.
Collapse
Affiliation(s)
- Lara P Fernández
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| |
Collapse
|
28
|
Cruz-Gil S, Fernández LP, Sánchez-Martínez R, Gómez de Cedrón M, Ramírez de Molina A. Non-Coding and Regulatory RNAs as Epigenetic Remodelers of Fatty Acid Homeostasis in Cancer. Cancers (Basel) 2020; 12:E2890. [PMID: 33050166 PMCID: PMC7599548 DOI: 10.3390/cancers12102890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells commonly display metabolic fluctuations. Together with the Warburg effect and the increased glutaminolysis, alterations in lipid metabolism homeostasis have been recognized as a hallmark of cancer. Highly proliferative cancer cells upregulate de novo synthesis of fatty acids (FAs) which are required to support tumor progression by exerting multiple roles including structural cell membrane composition, regulators of the intracellular redox homeostasis, ATP synthesis, intracellular cell signaling molecules, and extracellular mediators of the tumor microenvironment. Epigenetic modifications have been shown to play a crucial role in human development, but also in the initiation and progression of complex diseases. The study of epigenetic processes could help to design new integral strategies for the prevention and treatment of metabolic disorders including cancer. Herein, we first describe the main altered intracellular fatty acid processes to support cancer initiation and progression. Next, we focus on the most important regulatory and non-coding RNAs (small noncoding RNA-sncRNAs-long non-coding RNAs-lncRNAs-and other regulatory RNAs) which may target the altered fatty acids pathway in cancer.
Collapse
Affiliation(s)
| | | | | | - Marta Gómez de Cedrón
- Correspondence: (M.G.d.C.); (A.R.d.M.); Tel.: +34-67-213-49-21 (A.R.d.M.); Fax: +34-91-830-59-61 (A.R.d.M.)
| | - Ana Ramírez de Molina
- Laboratory of Molecular Oncology, IMDEA-Food Institute, CEI UAM + CSIC, 28049 Madrid, Spain; (S.C.-G.); (L.P.F.); (R.S.-M.)
| |
Collapse
|
29
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 303] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
30
|
Bendau E, Smith J, Zhang L, Ackerstaff E, Kruchevsky N, Wu B, Koutcher JA, Alfano R, Shi L. Distinguishing metastatic triple-negative breast cancer from nonmetastatic breast cancer using second harmonic generation imaging and resonance Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e202000005. [PMID: 32219996 PMCID: PMC7433748 DOI: 10.1002/jbio.202000005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 05/10/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subset of breast cancer that is more common in African-American and Hispanic women. Early detection followed by intensive treatment is critical to improving poor survival rates. The current standard to diagnose TNBC from histopathology of biopsy samples is invasive and time-consuming. Imaging methods such as mammography and magnetic resonance (MR) imaging, while covering the entire breast, lack the spatial resolution and specificity to capture the molecular features that identify TNBC. Two nonlinear optical modalities of second harmonic generation (SHG) imaging of collagen, and resonance Raman spectroscopy (RRS) potentially offer novel rapid, label-free detection of molecular and morphological features that characterize cancerous breast tissue at subcellular resolution. In this study, we first applied MR methods to measure the whole-tumor characteristics of metastatic TNBC (4T1) and nonmetastatic estrogen receptor positive breast cancer (67NR) models, including tumor lactate concentration and vascularity. Subsequently, we employed for the first time in vivo SHG imaging of collagen and ex vivo RRS of biomolecules to detect different microenvironmental features of these two tumor models. We achieved high sensitivity and accuracy for discrimination between these two cancer types by quantitative morphometric analysis and nonnegative matrix factorization along with support vector machine. Our study proposes a new method to combine SHG and RRS together as a promising novel photonic and optical method for early detection of TNBC.
Collapse
Affiliation(s)
- Ethan Bendau
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Jason Smith
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Lin Zhang
- Institute for Ultrafast Spectroscopy and Lasers, The City College of New York, New York, New York
| | - Ellen Ackerstaff
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Natalia Kruchevsky
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Binlin Wu
- Physics Department, CSCU Center for Nanotechnology, Southern Connecticut State University, New Haven, Connecticut
| | - Jason A. Koutcher
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medical Physics and Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, Cornell University, New York, New York
| | - Robert Alfano
- Institute for Ultrafast Spectroscopy and Lasers, The City College of New York, New York, New York
| | - Lingyan Shi
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| |
Collapse
|
31
|
Eiriksson FF, Nøhr MK, Costa M, Bödvarsdottir SK, Ögmundsdottir HM, Thorsteinsdottir M. Lipidomic study of cell lines reveals differences between breast cancer subtypes. PLoS One 2020; 15:e0231289. [PMID: 32287294 PMCID: PMC7156077 DOI: 10.1371/journal.pone.0231289] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/19/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most prevalent type of cancer in women in western countries. BC mortality has not declined despite early detection by screening, indicating the need for better informed treatment decisions. Therefore, a novel noninvasive diagnostic tool for BC would give the opportunity of subtype-specific treatment and improved prospects for the patients. Heterogeneity of BC tumor subtypes is reflected in the expression levels of enzymes in lipid metabolism. The aim of the study was to investigate whether the subtype defined by the transcriptome is reflected in the lipidome of BC cell lines. A liquid chromatography mass spectrometry (LC-MS) platform was applied to analyze the lipidome of six cell lines derived from human BC cell lines representing different BC subtypes. We identified an increased abundance of triacylglycerols (TG) ≥ C-48 with moderate or multiple unsaturation in fatty acyl chains and down-regulated ether-phosphatidylethanolamines (PE) (C-34 to C-38) in cell lines representing estrogen receptor and progesterone receptor positive tumor subtypes. In a cell line representing HER2-overexpressing tumor subtype an elevated expression of TG (≤ C-46), phosphatidylcholines (PC) and PE containing short-chained (≤ C-16) saturated or monounsaturated fatty acids were observed. Increased abundance of PC ≥ C-40 was found in cell lines of triple negative BC subtype. In addition, differences were detected in lipidomes within these previously defined subtypes. We conclude that subtypes defined by the transcriptome are indeed reflected in differences in the lipidome and, furthermore, potentially biologically relevant differences may exist within these defined subtypes.
Collapse
Affiliation(s)
- Finnur Freyr Eiriksson
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- ArcticMass, Reykjavík, Iceland
| | - Martha Kampp Nøhr
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| | - Margarida Costa
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavík, Iceland
- ArcticMass, Reykjavík, Iceland
| | - Sigridur Klara Bödvarsdottir
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| | - Helga Margret Ögmundsdottir
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
| | - Margret Thorsteinsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavík, Iceland
- ArcticMass, Reykjavík, Iceland
- Biomedical Center, University of Iceland, Reykjavík, Iceland
- * E-mail:
| |
Collapse
|
32
|
Wang Z, Jiang Q, Dong C. Metabolic reprogramming in triple-negative breast cancer. Cancer Biol Med 2020; 17:44-59. [PMID: 32296576 PMCID: PMC7142847 DOI: 10.20892/j.issn.2095-3941.2019.0210] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
Since triple-negative breast cancer (TNBC) was first defined over a decade ago, increasing studies have focused on its genetic and molecular characteristics. Patients diagnosed with TNBC, compared to those diagnosed with other breast cancer subtypes, have relatively poor outcomes due to high tumor aggressiveness and lack of targeted treatment. Metabolic reprogramming, an emerging hallmark of cancer, is hijacked by TNBC to fulfill bioenergetic and biosynthetic demands; maintain the redox balance; and further promote oncogenic signaling, cell proliferation, and metastasis. Understanding the mechanisms of metabolic remodeling may guide the design of metabolic strategies for the effective intervention of TNBC. Here, we review the metabolic reprogramming of glycolysis, oxidative phosphorylation, amino acid metabolism, lipid metabolism, and other branched pathways in TNBC and explore opportunities for new biomarkers, imaging modalities, and metabolically targeted therapies.
Collapse
Affiliation(s)
- Zhanyu Wang
- Department of Surgical Oncology (Breast Center) of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qianjin Jiang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chenfang Dong
- Department of Surgical Oncology (Breast Center) of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
33
|
Dinarvand N, Khanahmad H, Hakimian SM, Sheikhi A, Rashidi B, Bakhtiari H, Pourfarzam M. Expression and clinicopathological significance of lipin-1 in human breast cancer and its association with p53 tumor suppressor gene. J Cell Physiol 2020; 235:5835-5846. [PMID: 31970786 DOI: 10.1002/jcp.29523] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/09/2020] [Indexed: 01/04/2023]
Abstract
Breast cancer (BC) is an important cause of female cancer-related death. It has recently been demonstrated that metabolic disorders including lipid metabolism are a hallmark of cancer cells. Lipin-1 is an enzyme that displays phosphatidate phosphatase activity and regulates the rate-limiting step in the pathway of triglycerides and phospholipids synthesis. The objective of this study was to evaluate lipin-1 expression, its prognostic significance, and its correlation with p53 tumor suppressor in patients with BC. In this study, 55 pairs of fresh samples of BC and adjacent noncancerous tissue were used to analyze lipin-1, using quantitative real-time polymerase chain reaction and immunohistochemistry (IHC) staining. The expression of other clinicopathological variables and p53 was also examined using IHC technique. The cell migration was studied in MCF-7 and MDA-MB231 cells following the inhibition of lipin-1 by propranolol. Our results show that the relative expression of lipin-1 messenger RNA was significantly higher in BC tissues compared with the adjacent normal tissue and its inhibition reduced cell migration in cancer cells. This upregulation was negatively correlated with histological grade of tumor and p53 status (p = .001 and p = .034) respectively and positively correlated with the tumor size (p = .006). Our results also seem to indicate that the high lipin-1 expression is related to a good prognosis in patients with BC. The expression of lipin-1 may be considered as a novel independent prognostic factor. The inhibition of lipin-1 may also have therapeutic significance for patients with BC. The correlation between lipin-1 and p53 confirms the role of p53 in the regulation of lipid metabolism in cancer cells.
Collapse
Affiliation(s)
- Negar Dinarvand
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetic and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Abdolkarim Sheikhi
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hadi Bakhtiari
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morteza Pourfarzam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
34
|
Xiong J, He J, Xie WP, Hinojosa E, Ambati CSR, Putluri N, Kim HE, Zhu MX, Du G. Rapid affinity purification of intracellular organelles using a twin strep tag. J Cell Sci 2019; 132:jcs.235390. [PMID: 31780580 DOI: 10.1242/jcs.235390] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Cells are internally organized into compartmentalized organelles that execute specialized functions. To understand the functions of individual organelles and their regulations, it is critical to resolve the compositions of individual organelles, which relies on a rapid and efficient isolation method for specific organellar populations. Here, we introduce a robust affinity purification method for rapid isolation of intracellular organelles (e.g. lysosomes, mitochondria and peroxisomes) by taking advantage of the extraordinarily high affinity between the twin strep tag and streptavidin variants. With this method, we can isolate desired organelles with high purity and yield in 3 min from the post-nuclear supernatant of mammalian cells or less than 8 min for the whole purification process. Using lysosomes as an example, we show that the rapid procedure is especially useful for studying transient and fast cellular activities, such as organelle-initiated signaling and organellar contents of small-molecular metabolites. Therefore, our method offers a powerful tool to dissect spatiotemporal regulation and functions of intracellular organelles.
Collapse
Affiliation(s)
- Jian Xiong
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Biochemistry and Cell Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jingquan He
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wendy P Xie
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ezekiel Hinojosa
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chandra Shekar R Ambati
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular & Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyun-Eui Kim
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Biochemistry and Cell Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA .,Biochemistry and Cell Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA .,Biochemistry and Cell Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
35
|
Balboa MA, de Pablo N, Meana C, Balsinde J. The role of lipins in innate immunity and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1328-1337. [DOI: 10.1016/j.bbalip.2019.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/07/2019] [Accepted: 06/01/2019] [Indexed: 02/08/2023]
|
36
|
Wang Z, Cai M, Tay LWR, Zhang F, Wu P, Huynh A, Cao X, Di Paolo G, Peng J, Milewicz DM, Du G. Phosphatidic acid generated by PLD2 promotes the plasma membrane recruitment of IQGAP1 and neointima formation. FASEB J 2019; 33:6713-6725. [PMID: 30811216 DOI: 10.1096/fj.201800390rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Very little is known about how lipid signaling regulates intima hyperplasia after vascular injury. Herein, we report that deletion and pharmacological inhibition of phospholipase D (PLD)2, which generates the signaling lipid phosphatidic acid (PA), reduced neointimal formation in the mouse carotid artery ligation model. PLD2 deficiency inhibits migration of vascular smooth muscle cells (VSMCs) into the intima in mice as well as migration and formation of membrane ruffles in primary VSMCs. PA specifically binds to the IQ motif-containing guanosine triphosphatase-activating protein 1 (IQGAP1) scaffold protein. The binding between PA and IQGAP is required for the plasma membrane recruitment of IQGAP1. Similar to PLD2 inhibition, knockdown of IQGAP1 blocks ruffle formation and migration in VSMCs, which are rescued by expression of the exogenous IQGAP1 but not the PA binding-deficient mutant. These data reveal that the PLD2-PA-IQGAP1 pathway plays an important role in VSMC migration and injury-induced vascular remodeling, and implicate PLD2 as a candidate target for therapeutic interventions.-Wang, Z., Cai, M., Tay, L. W. R., Zhang, F., Wu, P., Huynh, A., Cao, X., Di Paolo, G., Peng, J., Milewicz, D. M., Du, G. Phosphatidic acid generated by PLD2 promotes the plasma membrane recruitment of IQGAP1 and neointima formation.
Collapse
Affiliation(s)
- Ziqing Wang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ming Cai
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Gastrointestinal Surgery, Union Hospital-Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wei Rachel Tay
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Feng Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ping Wu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anh Huynh
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xiumei Cao
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; and
| | - Dianna M Milewicz
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
37
|
Distinct isoforms of Nrf1 diversely regulate different subsets of its cognate target genes. Sci Rep 2019; 9:2960. [PMID: 30814566 PMCID: PMC6393581 DOI: 10.1038/s41598-019-39536-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
The single Nrf1 gene has capability to be differentially transcripted alongside with alternative mRNA-splicing and subsequent translation through different initiation signals so as to yield distinct lengths of polypeptide isoforms. Amongst them, three of the most representatives are Nrf1α, Nrf1β and Nrf1γ, but the putative specific contribution of each isoform to regulating ARE-driven target genes remains unknown. To address this, we have herein established three cell lines on the base of the Flp-In T-REx system, which are allowed for the tetracycline-inducibly stable expression of Nrf1α, Nrf1β and Nrf1γ. Consequently, the RNA-Sequencing results have demonstrated that a vast majority of differentially expressed genes (i.e. >90% DEGs detected) were dominantly up-regulated by Nrf1α and/or Nrf1β following induction by tetracycline. By contrast, the other DEGs regulated by Nrf1γ were far less than those regulated by Nrf1α/β (i.e. ~11% of Nrf1α and ~7% of Nrf1β). However, further transcriptomic analysis revealed that the tetracycline-induced expression of Nrf1γ significantly increased the percentage of down-regulated genes in total DEGs. These statistical data were further validated by quantitative real-time PCR. The experimental results indicate that distinct Nrf1 isoforms make diverse and even opposing contributions to regulating different subsets of target genes, such as those encoding 26S proteasomal subunits and others involved in various biological processes and functions. Collectively, Nrf1γ acts as a major dominant-negative inhibitor competitively against Nrf1α/β activity, such that a number of DEGs regulated by Nrf1α/β are counteracted by Nrf1γ.
Collapse
|
38
|
Hennessy M, Granade ME, Hassaninasab A, Wang D, Kwiatek JM, Han GS, Harris TE, Carman GM. Casein kinase II-mediated phosphorylation of lipin 1β phosphatidate phosphatase at Ser-285 and Ser-287 regulates its interaction with 14-3-3β protein. J Biol Chem 2019; 294:2365-2374. [PMID: 30617183 DOI: 10.1074/jbc.ra118.007246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/04/2019] [Indexed: 12/20/2022] Open
Abstract
The mammalian lipin 1 phosphatidate phosphatase is a key regulatory enzyme in lipid metabolism. By catalyzing phosphatidate dephosphorylation, which produces diacylglycerol, the enzyme plays a major role in the synthesis of triacylglycerol and membrane phospholipids. The importance of lipin 1 to lipid metabolism is exemplified by cellular defects and lipid-based diseases associated with its loss or overexpression. Phosphorylation of lipin 1 governs whether it is associated with the cytoplasm apart from its substrate or with the endoplasmic reticulum membrane where its enzyme reaction occurs. Lipin 1β is phosphorylated on multiple sites, but less than 10% of them are ascribed to a specific protein kinase. Here, we demonstrate that lipin 1β is a bona fide substrate for casein kinase II (CKII), a protein kinase that is essential to viability and cell cycle progression. Phosphoamino acid analysis and phosphopeptide mapping revealed that lipin 1β is phosphorylated by CKII on multiple serine and threonine residues, with the former being major sites. Mutational analysis of lipin 1β and its peptides indicated that Ser-285 and Ser-287 are both phosphorylated by CKII. Substitutions of Ser-285 and Ser-287 with nonphosphorylatable alanine attenuated the interaction of lipin 1β with 14-3-3β protein, a regulatory hub that facilitates the cytoplasmic localization of phosphorylated lipin 1. These findings advance our understanding of how phosphorylation of lipin 1β phosphatidate phosphatase regulates its interaction with 14-3-3β protein and intracellular localization and uncover a mechanism by which CKII regulates cellular physiology.
Collapse
Affiliation(s)
- Meagan Hennessy
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Mitchell E Granade
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Azam Hassaninasab
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Dana Wang
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Joanna M Kwiatek
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Gil-Soo Han
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Thurl E Harris
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - George M Carman
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| |
Collapse
|
39
|
Meana C, García-Rostán G, Peña L, Lordén G, Cubero Á, Orduña A, Győrffy B, Balsinde J, Balboa MA. The phosphatidic acid phosphatase lipin-1 facilitates inflammation-driven colon carcinogenesis. JCI Insight 2018; 3:97506. [PMID: 30232275 DOI: 10.1172/jci.insight.97506] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Colon cancer is a devastating illness that is associated with gut inflammation. Here, we explored the possible role of lipin-1, a phosphatidic acid phosphatase, in the development of colitis-associated tumorigenesis. Azoxymethane and dextran sodium sulfate-treated (DSS-treated) animals deficient in lipin-1 harbored fewer tumors and carcinomas than WT animals due to decreased cellular proliferation, lower expression of antiapoptotic and protumorigenic factors, and a reduced infiltration of macrophages in colon tumors. They also displayed increased resistance to DSS-induced colitis by producing less proinflammatory cytokines and experiencing less immune infiltration. Lipin-1-deficient macrophages from the colon were less activated and displayed lower phosphatidic acid phosphatase activity than WT macrophages isolated from DSS-treated animals. Transference of WT macrophages into lipin-1-deficient animals was sufficient to increase colitis burden. Furthermore, treatment of lipin-1-deficient mice with IL-23 exacerbated colon inflammation. Analysis of human databases from colon cancer and ulcerative colitis patients showed that lipin-1 expression is increased in those disorders and correlates with the expression of the proinflammatory markers CXCL1 and CXCL2. And finally, clinically, LPIN1 expression had prognostic value in inflammatory and stem-cell subtypes of colon cancers. Collectively, these data demonstrate that lipin-1 is a critical regulator of intestinal inflammation and inflammation-driven colon cancer development.
Collapse
Affiliation(s)
- Clara Meana
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Ginesa García-Rostán
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain
| | - Lucía Peña
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Gema Lordén
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - África Cubero
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Antonio Orduña
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Balázs Győrffy
- MTA-TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology and Semmelweis University 2nd Department of Pediatrics, Budapest, Hungary
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
40
|
Fatostatin induces pro- and anti-apoptotic lipid accumulation in breast cancer. Oncogenesis 2018; 7:66. [PMID: 30140005 PMCID: PMC6107643 DOI: 10.1038/s41389-018-0076-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 12/27/2022] Open
Abstract
Given the dependence of cancers on de novo lipogenesis, we tested the effect of fatostatin, a small molecule thought to target this pathway by blocking activation of SREBP transcription factors, in breast cancer cell lines and xenograft tumors. We found that estrogen receptor (ER) positive cells were more sensitive to fatostatin than ER negative cells and responded with cell cycle arrest and apoptosis. Surprisingly, we found that rather than inhibiting lipogenesis, fatostatin caused an accumulation of lipids as a response to endoplasmic reticulum stress rather than inhibition of SREBP activity. In particular, ceramide and dihydroceramide levels increased and contributed to the apoptotic effects of fatostatin. In addition, an accumulation of triacylglycerides (TAGs), particularly those containing polyunsaturated fatty acids (PUFAs), was also observed as a result of elevated diacylglycerol transferase activity. Blocking PUFA-TAG production enhanced the apoptotic effect of fatostatin, suggesting that these lipids play a protective role and limit fatostatin response. Together, these findings indicate that the ability of breast cancer cells to respond to fatostatin depends on induction of endoplasmic reticulum stress and subsequent ceramide accumulation, and that limiting production of PUFA-TAGs may be therapeutically beneficial in specific tumor subtypes.
Collapse
|
41
|
Pillai AN, Shukla S, Gautam S, Rahaman A. Small phosphatidate phosphatase (TtPAH2) of Tetrahymena complements respiratory function and not membrane biogenesis function of yeast PAH1. J Biosci 2018; 42:613-621. [PMID: 29229879 DOI: 10.1007/s12038-017-9712-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Phosphatidate phosphatases (PAH) play a central role in lipid metabolism and intracellular signaling. Herein, we report the presence of a low-molecular-weight PAH homolog in the single-celled ciliate Tetrahymena thermophila. In vitro phosphatase assay showed that TtPAH2 belongs to the magnesium-dependent phosphatidate phosphatase (PAP1) family. Loss of function of TtPAH2 did not affect the growth of Tetrahymena. Unlike other known PAH homologs, TtPAH2 did not regulate lipid droplet number and ER morphology. TtPAH2 did not rescue growth and ER/nuclear membrane defects of the pah1Δ yeast cells, suggesting that the phosphatidate phosphatase activity of the protein is not sufficient to perform these cellular functions. Surprisingly, TtPAH2 complemented the respiratory defect in the pah1Δ yeast cells indicating a specific role of TtPAH2 in respiration. Overall, our results indicate that TtPAH2 possesses the minimal function of PAH protein family in respiration. We suggest that the amino acid sequences absent from TtPAH2 but present in all other known PAH homologs are critical for lipid homeostasis and membrane biogenesis.
Collapse
Affiliation(s)
- Anoop Narayana Pillai
- National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Khurda 752 050, India
| | | | | | | |
Collapse
|
42
|
Fan X, Weng Y, Bai Y, Wang Z, Wang S, Zhu J, Zhang F. Lipin-1 determines lung cancer cell survival and chemotherapy sensitivity by regulation of endoplasmic reticulum homeostasis and autophagy. Cancer Med 2018; 7:2541-2554. [PMID: 29659171 PMCID: PMC6010863 DOI: 10.1002/cam4.1483] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/15/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer cells undergo comprehensive metabolic reprogramming to meet the increased requirements of energy and building blocks for proliferation. Lipin-1, a phosphatidic acid phosphatase converting phosphatidic acid (PA) to diacylglycerol (DAG), is upregulated in lung adenocarcinoma (LUAD) cell lines and tumor tissues. In this study, we reveal high lipin-1 expression is correlated with poor prognosis of patients with LUAD. Knockdown of lipin-1 decreases cell viability and proliferation in LUAD cells, whereas it has less effect on nontumorigenic lung cells. Autophagy and ER stress play important roles in tumor initiation and progression. Lipin-1 knockdown induces the initiation of autophagy while disrupts formation of autolysosome. Lipin-1 silencing induces the activation of ER stress through the IRE1α pathway. Furthermore, we demonstrate disrupted ER homeostasis contributes to the cell phenotype, and the elevated autophagy initiation is due to the ER stress in part. For the first time, we show lack of lipin-1 enhances the sensitivity of LUAD cells to cisplatin treatment. Our results suggest that lipin-1 is a potential target, alone or combined with other treatment, for lung cancer therapy.
Collapse
Affiliation(s)
- Xueyu Fan
- Core FacilityDepartment of Clinical LaboratoryQuzhou People's HospitalQuzhou, ZhejiangChina
| | - Yuanyuan Weng
- Core FacilityDepartment of Clinical LaboratoryQuzhou People's HospitalQuzhou, ZhejiangChina
| | - Yongfeng Bai
- Core FacilityDepartment of Clinical LaboratoryQuzhou People's HospitalQuzhou, ZhejiangChina
| | - Zongpan Wang
- Department of OncologyQuzhou People's HospitalQuzhou, ZhejiangChina
| | - Siwei Wang
- Core FacilityDepartment of Clinical LaboratoryQuzhou People's HospitalQuzhou, ZhejiangChina
- Department of PharmacologyQuzhou People's HospitalQuzhou, ZhejiangChina
| | - Jin Zhu
- Core FacilityDepartment of Clinical LaboratoryQuzhou People's HospitalQuzhou, ZhejiangChina
| | - Feng Zhang
- Core FacilityDepartment of Clinical LaboratoryQuzhou People's HospitalQuzhou, ZhejiangChina
| |
Collapse
|
43
|
Propranolol sensitizes prostate cancer cells to glucose metabolism inhibition and prevents cancer progression. Sci Rep 2018; 8:7050. [PMID: 29728578 PMCID: PMC5935740 DOI: 10.1038/s41598-018-25340-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/18/2018] [Indexed: 02/04/2023] Open
Abstract
Propranolol, a widely used non-selective beta-adrenergic receptor blocker, was recently shown to display anticancer properties. Its potential to synergize with certain drugs has been also outlined. However, it is necessary to take into account all the properties of propranolol to select a drug that could be efficiently combined with. Propranolol was reported to block the late phase of autophagy. Hence, we hypothesized that in condition enhancing autophagy flux, cancer cells should be especially sensitive to propranolol. 2DG, a glycolysis inhibitor, is an anti-tumor agent having limited effect in monotherapy notably due to induction of pro-survival autophagy. Here, we report that treatment of cancer cells with propranolol in combination with the glycolysis inhibitor 2DG induced a massive accumulation of autophagosome due to autophagy blockade. The propranolol +2DG treatment efficiently prevents prostate cancer cell proliferation, induces cell apoptosis, alters mitochondrial morphology, inhibits mitochondrial bioenergetics and aggravates ER stress in vitro and also suppresses tumor growth in vivo. Our study underlines for the first time the interest to take advantage of the ability of propranolol to inhibit autophagy to design new anti-cancer therapies.
Collapse
|
44
|
Wang Z, Zhang F, He J, Wu P, Tay LWR, Cai M, Nian W, Weng Y, Qin L, Chang JT, McIntire LB, Di Paolo G, Xu J, Peng J, Du G. Binding of PLD2-Generated Phosphatidic Acid to KIF5B Promotes MT1-MMP Surface Trafficking and Lung Metastasis of Mouse Breast Cancer Cells. Dev Cell 2017; 43:186-197.e7. [PMID: 29033361 DOI: 10.1016/j.devcel.2017.09.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/19/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022]
Abstract
Little is known about the cellular events promoting metastasis. We show that knockout of phospholipase D2 (PLD2), which generates the signaling lipid phosphatidic acid (PA), inhibits lung metastases in the mammary tumor virus (MMTV)-Neu transgenic mouse breast cancer model. PLD2 promotes local invasion through the regulation of the plasma membrane targeting of MT1-MMP and its associated invadopodia. A liposome pull-down screen identifies KIF5B, the heavy chain of the motor protein kinesin-1, as a new PA-binding protein. In vitro assays reveal that PA specifically and directly binds to the C terminus of KIF5B. The binding between PLD2-generated PA and KIF5B is required for the vesicular association of KIF5B, surface localization of MT1-MMP, invadopodia, and invasion in cancer cells. Taken together, these results identify a role of PLD2-generated PA in the regulation of kinesin-1 motor functions and breast cancer metastasis and suggest PLD2 as a potential therapeutic target for metastatic breast cancer.
Collapse
Affiliation(s)
- Ziqing Wang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Feng Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA; Core Facility, Department of Clinical Laboratory, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Jingquan He
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Ping Wu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Li Wei Rachel Tay
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Ming Cai
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Weiqi Nian
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Hospital & Institute & Cancer Center, Chongqing 400030, China
| | - Yuanyuan Weng
- Core Facility, Department of Clinical Laboratory, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Li Qin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Laura B McIntire
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA.
| |
Collapse
|
45
|
Santuario-Facio SK, Cardona-Huerta S, Perez-Paramo YX, Trevino V, Hernandez-Cabrera F, Rojas-Martinez A, Uscanga-Perales G, Martinez-Rodriguez JL, Martinez-Jacobo L, Padilla-Rivas G, Muñoz-Maldonado G, Gonzalez-Guerrero JF, Valero-Gomez J, Vazquez-Guerrero AL, Martinez-Rodriguez HG, Barboza-Quintana A, Barboza-Quintana O, Garza-Guajardo R, Ortiz-Lopez R. A New Gene Expression Signature for Triple Negative Breast Cancer Using Frozen Fresh Tissue before Neoadjuvant Chemotherapy. Mol Med 2017; 23:101-111. [PMID: 28474731 PMCID: PMC5469719 DOI: 10.2119/molmed.2016.00257] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/17/2017] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer tumors. Comparisons between TNBC and non-triple negative breast cancer (nTNBC) may help to differentiate key components involved in TNBC neoplasms. The purpose of the study was to analyze the expression profile of TNBC versus nTNBC tumors in a homogeneous population from northeastern Mexico. A prospective study of 50 patients was conducted (25 TNBC and 25 nTNBC). Clinic parameters were equally distributed for TNBC and nTNBC: age at diagnosis (51 vs 47 years, p=0.1), glucose levels (107 mg/dl vs 104 mg/dl, p=0.64), and body mass index (28 vs 29, p=0.14), respectively. Core biopsies were collected for histopathological diagnosis and gene expression analyses. Total RNA was isolated and expression profiling was performed. 40 genes showed differential expression pattern in TNBC tumors. Among these, 9 over-expressed genes (PRKX/PRKY, UGT8, HMGA1, LPIN1, HAPLN3, and ANKRD11), and one under-expressed (ANX9) gene are involved in general metabolism. Based on this biochemical peculiarity, and the over-expression of BCL11A and FOXC1 (involved in tumor growth and metastasis, respectively) we validated by qPCR the expression profile of 7 genes out of the signature. In this report, a new gene signature for TNBC is proposed. To our knowledge, this is the first TNBC signature which describes genes involved in general metabolism. The findings may be pertinent for Mexican patients and require to be evaluated in further ethnic groups and populations.
Collapse
Affiliation(s)
- Sandra K Santuario-Facio
- Universidad Autonoma de Nuevo Leon, Centro de Investigación y Desarrollo en Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
- Tecnologico de Monterrey, Escuela Nacional de Medicina, Monterrey, Nuevo Leon, Mexico
| | - Servando Cardona-Huerta
- Tecnologico de Monterrey, Hospital San Jose, Centro de Cancer de Mama, Monterrey, Nuevo Leon, Mexico
| | - Yadira X Perez-Paramo
- Pharmaceutical Sciences Department, College of Pharmacy, Washington State University, Spokane, Washington, United States of America
| | - Victor Trevino
- Tecnológico de Monterrey, Escuela Nacional de Medicina, Grupo de Investigacion en Bioinformatica, Monterrey, Nuevo Leon, Mexico
| | - Francisco Hernandez-Cabrera
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Fisico Matematicas, Centro Investigación en Ciencias Físico Matemáticas, Monterrey, Nuevo Leon, Mexico
| | - Augusto Rojas-Martinez
- Universidad Autonoma de Nuevo Leon, Centro de Investigación y Desarrollo en Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
- Tecnologico de Monterrey, Escuela Nacional de Medicina, Monterrey, Nuevo Leon, Mexico
| | - Grecia Uscanga-Perales
- Universidad Autonoma de Nuevo Leon, Facultad de Medicina, Departamento de Bioquimica y Medicina Molecular, Monterrey, Nuevo Leon, Mexico
| | - Jorge L Martinez-Rodriguez
- Tecnologico de Monterrey, Hospital San Jose, Centro de Cancer de Mama, Monterrey, Nuevo Leon, Mexico
- Universidad Autonoma de Nuevo Leon, Hospital Universitario Dr. Jose Eleuterio Gonzalez, Centro Universitario Contra el Cancer, Servicio de Oncologia, Monterrey, Nuevo Leon, Mexico
| | - Lizeth Martinez-Jacobo
- Universidad Autonoma de Nuevo Leon, Facultad de Medicina, Departamento de Bioquimica y Medicina Molecular, Monterrey, Nuevo Leon, Mexico
| | - Gerardo Padilla-Rivas
- Universidad Autonoma de Nuevo Leon, Facultad de Medicina, Departamento de Bioquimica y Medicina Molecular, Monterrey, Nuevo Leon, Mexico
| | - Gerardo Muñoz-Maldonado
- Universidad Autonoma de Nuevo Leon, Hospital Universitario Dr. Jose Eleuterio Gonzalez, Servicio de Cirugia General, Monterrey, Nuevo Leon, Mexico
| | - Juan Francisco Gonzalez-Guerrero
- Universidad Autonoma de Nuevo Leon, Hospital Universitario Dr. Jose Eleuterio Gonzalez, Centro Universitario Contra el Cancer, Servicio de Oncologia, Monterrey, Nuevo Leon, Mexico
| | - Javier Valero-Gomez
- Tecnologico de Monterrey, Hospital San Jose, Centro de Cancer de Mama, Monterrey, Nuevo Leon, Mexico
| | - Ana L Vazquez-Guerrero
- Tecnologico de Monterrey, Hospital San Jose, Centro de Cancer de Mama, Monterrey, Nuevo Leon, Mexico
| | - Herminia G Martinez-Rodriguez
- Universidad Autonoma de Nuevo Leon, Facultad de Medicina, Departamento de Bioquimica y Medicina Molecular, Monterrey, Nuevo Leon, Mexico
| | - Alvaro Barboza-Quintana
- Tecnologico de Monterrey, Hospital San Jose, Centro de Cancer de Mama, Monterrey, Nuevo Leon, Mexico
| | - Oralia Barboza-Quintana
- Universidad Autonoma de Nuevo Leon, Hospital Universitario Dr. Jose Eleuterio Gonzalez, Servicio de Anatomia Patologica y Citopatologia, Monterrey, Nuevo Leon, Mexico
| | - Raquel Garza-Guajardo
- Universidad Autonoma de Nuevo Leon, Hospital Universitario Dr. Jose Eleuterio Gonzalez, Servicio de Anatomia Patologica y Citopatologia, Monterrey, Nuevo Leon, Mexico
| | - Rocio Ortiz-Lopez
- Universidad Autonoma de Nuevo Leon, Centro de Investigación y Desarrollo en Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
- Tecnologico de Monterrey, Escuela Nacional de Medicina, Monterrey, Nuevo Leon, Mexico
| |
Collapse
|