1
|
Batty P, Lillicrap D. Adeno-associated viral vector integration: implications for long-term efficacy and safety. J Thromb Haemost 2024; 22:2945-2960. [PMID: 39097231 DOI: 10.1016/j.jtha.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 08/05/2024]
Abstract
Adeno-associated virus (AAV) vector gene therapy provides a promising platform for treatment of monogenic inherited disorders. Clinical studies have demonstrated long-term expression with reduction in bleeding using this approach for the treatment of hemophilia. Despite these advances, there are unknowns surrounding the natural history of recombinant AAV (rAAV) vectors and the cellular mechanisms mediating vector persistence. These unknowns underpin questions regarding long-term efficacy and safety. The predominant mechanism via which AAV is proposed to persist is in circular double-stranded extrachromosomal DNA structures (episomes) within the nucleus. Studies of wild-type AAV (WT-AAV) and rAAV have demonstrated that AAV also persists via integration into a host cell's DNA. It is important to determine whether these integration events can mediate expression or could result in any long-term safety concerns. WT-AAV infection affects a large proportion of the general population, which is thought to have no long-term sequelae. Recent studies have highlighted that this WT-AAV has been detected in cases of acute hepatitis in children and in a minority of cases of hepatocellular carcinoma. Integration following treatment using rAAV has also been reported in preclinical and clinical studies. There have been variable reports on the potential implications of integration for rAAV vectors, with data in some murine studies demonstrating recurrent integration with development of hepatocellular carcinoma. These findings have not been seen in other preclinical or clinical studies. In this review, we will summarize current understanding of the natural history of AAV (wild-type and recombinant) with a focus on genomic integration and cellular implications.
Collapse
Affiliation(s)
- Paul Batty
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
2
|
Kong C, Yin G, Wang X, Sun Y. In Utero Gene Therapy and its Application in Genetic Hearing Loss. Adv Biol (Weinh) 2024; 8:e2400193. [PMID: 39007241 DOI: 10.1002/adbi.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Indexed: 07/16/2024]
Abstract
For monogenic genetic diseases, in utero gene therapy (IUGT) shows the potential for early prevention against irreversible and lethal pathological changes. Moreover, animal models have also demonstrated the effectiveness of IUGT in the treatment of coagulation disorders, hemoglobinopathies, neurogenetic disorders, and metabolic and pulmonary diseases. For major alpha thalassemia and severe osteogenesis imperfecta, in utero stem cell transplantation has entered the phase I clinical trial stage. Within the realm of the inner ear, genetic hearing loss significantly hampers speech, cognitive, and intellectual development in children. Nowadays, gene therapies offer substantial promise for deafness, with the success of clinical trials in autosomal recessive deafness 9 using AAV-OTOF gene therapy. However, the majority of genetic mutations that cause deafness affect the development of cochlear structures before the birth of fetuses. Thus, gene therapy before alterations in cochlear structure leading to hearing loss has promising applications. In this review, addressing advances in various fields of IUGT, the progress, and application of IUGT in the treatment of genetic hearing loss are focused, in particular its implementation methods and unique advantages.
Collapse
Affiliation(s)
- Chenyang Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ge Yin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Borges B, Varthaliti A, Schwab M, Clarke MT, Pivetti C, Gupta N, Cadwell CR, Guibinga G, Phillips S, Del Rio T, Ozsolak F, Imai-Leonard D, Kong L, Laird DJ, Herzeg A, Sumner CJ, MacKenzie TC. Prenatal AAV9-GFP administration in fetal lambs results in transduction of female germ cells and maternal exposure to virus. Mol Ther Methods Clin Dev 2024; 32:101263. [PMID: 38827250 PMCID: PMC11141462 DOI: 10.1016/j.omtm.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
Prenatal somatic cell gene therapy (PSCGT) could potentially treat severe, early-onset genetic disorders such as spinal muscular atrophy (SMA) or muscular dystrophy. Given the approval of adeno-associated virus serotype 9 (AAV9) vectors in infants with SMA by the U.S. Food and Drug Administration, we tested the safety and biodistribution of AAV9-GFP (clinical-grade and dose) in fetal lambs to understand safety and efficacy after umbilical vein or intracranial injection on embryonic day 75 (E75) . Umbilical vein injection led to widespread biodistribution of vector genomes in all examined lamb tissues and in maternal uteruses at harvest (E96 or E140; term = E150). There was robust GFP expression in brain, spinal cord, dorsal root ganglia (DRGs), without DRG toxicity and excellent transduction of diaphragm and quadriceps muscles. However, we found evidence of systemic toxicity (fetal growth restriction) and maternal exposure to the viral vector (transient elevation of total bilirubin and a trend toward elevation in anti-AAV9 antibodies). There were no antibodies against GFP in ewes or lambs. Analysis of fetal gonads demonstrated GFP expression in female (but not male) germ cells, with low levels of integration-specific reads, without integration in select proto-oncogenes. These results suggest potential therapeutic benefit of AAV9 PSCGT for neuromuscular disorders, but warrant caution for exposure of female germ cells.
Collapse
Affiliation(s)
- Beltran Borges
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, CA 94158, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Antonia Varthaliti
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marisa Schwab
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Maria T Clarke
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, CA 94158, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher Pivetti
- Department of Surgery, University of California, Davis, Davis, CA 95817, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cathryn R Cadwell
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Weill Neurohub, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ghiabe Guibinga
- Novartis Institutes for BioMedical Research Biologics Center, San Diego, CA 92121, USA
| | - Shirley Phillips
- Novartis Institutes for BioMedical Research Biologics Center, San Diego, CA 92121, USA
| | - Tony Del Rio
- Novartis Institutes for BioMedical Research Biologics Center, San Diego, CA 92121, USA
| | - Fatih Ozsolak
- Novartis Institutes for BioMedical Research Biologics Center, San Diego, CA 92121, USA
| | - Denise Imai-Leonard
- Comparative Pathology Laboratory, University of California, Davis, Davis, CA 95616, USA
| | - Lingling Kong
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Diana J Laird
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Akos Herzeg
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, CA 94158, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Tippi C MacKenzie
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, CA 94158, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Waddington SN, Peranteau WH, Rahim AA, Boyle AK, Kurian MA, Gissen P, Chan JKY, David AL. Fetal gene therapy. J Inherit Metab Dis 2024; 47:192-210. [PMID: 37470194 PMCID: PMC10799196 DOI: 10.1002/jimd.12659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Fetal gene therapy was first proposed toward the end of the 1990s when the field of gene therapy was, to quote the Gartner hype cycle, at its "peak of inflated expectations." Gene therapy was still an immature field but over the ensuing decade, it matured and is now a clinical and market reality. The trajectory of treatment for several genetic diseases is toward earlier intervention. The ability, capacity, and the will to diagnose genetic disease early-in utero-improves day by day. A confluence of clinical trials now signposts a trajectory toward fetal gene therapy. In this review, we recount the history of fetal gene therapy in the context of the broader field, discuss advances in fetal surgery and diagnosis, and explore the full ambit of preclinical gene therapy for inherited metabolic disease.
Collapse
Affiliation(s)
- Simon N Waddington
- EGA Institute for Women's Health, University College London, London, UK
- Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, Johannesburg, South Africa
| | - William H Peranteau
- The Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London, UK
| | - Ashley K Boyle
- EGA Institute for Women's Health, University College London, London, UK
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, GOS-Institute of Child Health, University College London, London, UK
- Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Paul Gissen
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK
| | - Jerry K Y Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
- Experimental Fetal Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anna L David
- EGA Institute for Women's Health, University College London, London, UK
| |
Collapse
|
5
|
Rodriguez M, Trevisan B, Ramamurthy RM, George SK, Diaz J, Alexander J, Meares D, Schwahn DJ, Quilici DR, Figueroa J, Gautreaux M, Farland A, Atala A, Doering CB, Spencer HT, Porada CD, Almeida-Porada G. Transplanting FVIII/ET3-secreting cells in fetal sheep increases FVIII levels long-term without inducing immunity or toxicity. Nat Commun 2023; 14:4206. [PMID: 37452013 PMCID: PMC10349136 DOI: 10.1038/s41467-023-39986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Hemophilia A is the most common X-linked bleeding disorder affecting more than half-a-million individuals worldwide. Persons with severe hemophilia A have coagulation FVIII levels <1% and experience spontaneous debilitating and life-threatening bleeds. Advances in hemophilia A therapeutics have significantly improved health outcomes, but development of FVIII inhibitory antibodies and breakthrough bleeds during therapy significantly increase patient morbidity and mortality. Here we use sheep fetuses at the human equivalent of 16-18 gestational weeks, and we show that prenatal transplantation of human placental cells (107-108/kg) bioengineered to produce an optimized FVIII protein, results in considerable elevation in plasma FVIII levels that persists for >3 years post-treatment. Cells engraft in major organs, and none of the recipients mount immune responses to either the cells or the FVIII they produce. Thus, these studies attest to the feasibility, immunologic advantage, and safety of treating hemophilia A prior to birth.
Collapse
Affiliation(s)
- Martin Rodriguez
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Brady Trevisan
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Ritu M Ramamurthy
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Sunil K George
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Jonathan Diaz
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Jordan Alexander
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Diane Meares
- Special Hematology Laboratory, Wake Forest School of Medicine, Winston Salem, NC, USA
| | | | - David R Quilici
- The Mick Hitchcock Ph.D. Nevada Proteomics Center, University of Nevada Reno, Reno, NV, USA
| | - Jorge Figueroa
- Center for Research in Obstetrics and Gynecology, WFSOM, Winston Salem, NC, USA
| | - Michael Gautreaux
- HLA/Immunogenetics and Immunodiagnostics Laboratories, Winston Salem, NC, USA
| | - Andrew Farland
- Special Hematology Laboratory, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Christopher B Doering
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - H Trent Spencer
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA.
| |
Collapse
|
6
|
Pham QDM, Thomson SM, Schaible BN, Mills KD, Atala A, Porada CD, Almeida-Porada G. Acceptability of prenatal diagnosis and prenatal treatment of haemophilia using cell and gene therapies within US haemophilia community. Haemophilia 2023; 29:1024-1031. [PMID: 37228173 PMCID: PMC10524589 DOI: 10.1111/hae.14805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The overall burden of disease in persons with haemophilia continues to be high despite the latest advancements in therapeutics. Clinical trials testing prenatal treatments for several genetic disorders are underway or are recruiting subjects, attesting to the much-needed change in paradigm of how patients with monogenic disorders can be treated. Here we investigate the overall attitude towards prenatal diagnosis, preferences on types of prenatal therapies for haemophilia, the level of 'acceptable' risk tolerated, and which social and moral pressures or disease personal experiences may predict willingness of individuals to consider foetal therapy in a future pregnancy. RESULTS A multidisciplinary team designed the survey, and the study was carried out using REDCap, and publicized through the National Haemophilia Foundation. Subjects ≥18 years of age were eligible to participate in the study. We assessed participants' attitudes towards prenatal therapy and their level of 'acceptable' risk towards the procedure and therapy. The survey was completed by 67 adults, the majority females. Respondents were willing to undergo prenatal diagnosis, and their main concerns related to the well-being of the pregnant woman and the foetus regarding lasting therapeutic efficacy, side effects of the therapy, and procedural risks, but they were likely to accept a wide range of prenatal therapeutic options, particularly if the foetal therapy proved to be long-lasting and safe. CONCLUSIONS These data demonstrate the willingness of persons with haemophilia, and the haemophilia community, to explore new treatment options beyond the currently offered approaches.
Collapse
Affiliation(s)
- Quan D. M. Pham
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Sharon M. Thomson
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Burk N. Schaible
- Center for Research in Obstetrics and Gynecology, WFSOM, Winston Salem, NC, USA
| | | | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Christopher D. Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| |
Collapse
|
7
|
Mattar CNZ, Chan JKY, Choolani M. Gene modification therapies for hereditary diseases in the fetus. Prenat Diagn 2023; 43:674-686. [PMID: 36965009 PMCID: PMC10946994 DOI: 10.1002/pd.6347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/27/2023]
Abstract
Proof-of-principle disease models have demonstrated the feasibility of an intrauterine gene modification therapy (in utero gene therapy (IUGT)) approach to hereditary diseases as diverse as coagulation disorders, haemoglobinopathies, neurogenetic disorders, congenital metabolic, and pulmonary diseases. Gene addition, which requires the delivery of an integrating or episomal transgene to the target cell nucleus to be transcribed, and gene editing, where the mutation is corrected within the gene of origin, have both been used successfully to increase normal protein production in a bid to reverse or arrest pathology in utero. While most experimental models have employed lentiviral, adenoviral, and adeno-associated viral vectors engineered to efficiently enter target cells, newer models have also demonstrated the applicability of non-viral lipid nanoparticles. Amelioration of pathology is dependent primarily on achieving sustained therapeutic transgene expression, silencing of transgene expression, production of neutralising antibodies, the dilutional effect of the recipient's growth on the mass of transduced cells, and the degree of pre-existing cellular damage. Safety assessment of any IUGT strategy will require long-term postnatal surveillance of both the fetal recipient and the maternal bystander for cell and genome toxicity, oncogenic potential, immune-responsiveness, and germline mutation. In this review, we discuss advances in the field and the push toward clinical translation of IUGT.
Collapse
Affiliation(s)
- Citra N. Z. Mattar
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| | - Jerry K. Y. Chan
- KK Women's and Children's HospitalSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
| | - Mahesh Choolani
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| |
Collapse
|
8
|
Comment on: Premature delivery in the domestic sow in response to in utero delivery of AAV9 to fetal piglets. Gene Ther 2023; 30:232-235. [PMID: 36918654 DOI: 10.1038/s41434-023-00395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
|
9
|
Herzeg A, Almeida-Porada G, Charo RA, David AL, Gonzalez-Velez J, Gupta N, Lapteva L, Lianoglou B, Peranteau W, Porada C, Sanders SJ, Sparks TN, Stitelman DH, Struble E, Sumner CJ, MacKenzie TC. Prenatal Somatic Cell Gene Therapies: Charting a Path Toward Clinical Applications (Proceedings of the CERSI-FDA Meeting). J Clin Pharmacol 2022; 62 Suppl 1:S36-S52. [PMID: 36106778 PMCID: PMC9547535 DOI: 10.1002/jcph.2127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/24/2022] [Indexed: 01/19/2023]
Abstract
We are living in a golden age of medicine in which the availability of prenatal diagnosis, fetal therapy, and gene therapy/editing make it theoretically possible to repair almost any defect in the genetic code. Furthermore, the ability to diagnose genetic disorders before birth and the presence of established surgical techniques enable these therapies to be delivered safely to the fetus. Prenatal therapies are generally used in the second or early third trimester for severe, life-threatening disorders for which there is a clear rationale for intervening before birth. While there has been promising work for prenatal gene therapy in preclinical models, the path to a clinical prenatal gene therapy approach is complex. We recently held a conference with the University of California, San Francisco-Stanford Center of Excellence in Regulatory Science and Innovation, researchers, patient advocates, regulatory (members of the Food and Drug Administration), and other stakeholders to review the scientific background and rationale for prenatal somatic cell gene therapy for severe monogenic diseases and initiate a dialogue toward a safe regulatory path for phase 1 clinical trials. This review represents a summary of the considerations and discussions from these conversations.
Collapse
Affiliation(s)
- Akos Herzeg
- UCSF Center for Maternal-Fetal PrecisionMedicine, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
- Department of Obstetrics and Gynecology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Graca Almeida-Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, North Carolina, USA
- Wake Forest University, School of Medicine, Winston-Salem, North Carolina, USA
| | - R. Alta Charo
- University of Wisconsin Law School, Madison, Wisconsin, USA
| | - Anna L. David
- Elizabeth Garrett Anderson Institute for Women’s Health, University College London Medical School, London, UK
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Juan Gonzalez-Velez
- UCSF Center for Maternal-Fetal PrecisionMedicine, San Francisco, California, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, California, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Brain Tumor Center, University of California San Francisco, San Francisco, California, USA
- Department of Pediatrics and Benioff Children’s Hospital, University of California San Francisco, San Francisco, California, USA
| | - Larissa Lapteva
- Office of Tissues and Advanced Therapies/Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Washington, DC, USA
| | - Billie Lianoglou
- UCSF Center for Maternal-Fetal PrecisionMedicine, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
| | - William Peranteau
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christopher Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, North Carolina, USA
- Wake Forest University, School of Medicine, Winston-Salem, North Carolina, USA
| | - Stephan J. Sanders
- UCSF Center for Maternal-Fetal PrecisionMedicine, San Francisco, California, USA
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| | - Teresa N. Sparks
- UCSF Center for Maternal-Fetal PrecisionMedicine, San Francisco, California, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, California, USA
| | - David H. Stitelman
- Yale University School of Medicine, Department of Surgery, Division of Pediatric Surgery, New Haven, CT, USA
| | - Evi Struble
- Office of Tissues and Advanced Therapies/Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Washington, DC, USA
| | - Charlotte J. Sumner
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tippi C. MacKenzie
- UCSF Center for Maternal-Fetal PrecisionMedicine, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, California, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, California, USA
- Department of Pediatrics and Benioff Children’s Hospital, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
10
|
de Coppi P, Loukogeorgakis S, Götherström C, David AL, Almeida-Porada G, Chan JKY, Deprest J, Wong KKY, Tam PKH. Regenerative medicine: prenatal approaches. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:643-653. [PMID: 35963269 PMCID: PMC10664288 DOI: 10.1016/s2352-4642(22)00192-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 10/15/2022]
Abstract
This two-paper Series focuses on recent advances and applications of regenerative medicine that could benefit paediatric patients. Innovations in genomic, stem-cell, and tissue-based technologies have created progress in disease modelling and new therapies for congenital and incurable paediatric diseases. Prenatal approaches present unique opportunities associated with substantial biotechnical, medical, and ethical obstacles. Maternal plasma fetal DNA analysis is increasingly adopted as a noninvasive prenatal screening or diagnostic test for chromosomal and monogenic disorders. The molecular basis for cell-free DNA detection stimulated the development of circulating tumour DNA testing for adult cancers. In-utero stem-cell, gene, gene-modified cell (and to a lesser extent, tissue-based) therapies have shown early clinical promise in a wide range of paediatric disorders. Fetal cells for postnatal treatment and artificial placenta for ex-utero fetal therapies are new frontiers in this exciting field.
Collapse
Affiliation(s)
- Paolo de Coppi
- Stem Cell and Regenerative Medicine Section, Department of Developmental Biology and Cancer Research and Teaching, Great Ormond Street Institute of Child Health, University College London, London, UK; Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Stavros Loukogeorgakis
- Stem Cell and Regenerative Medicine Section, Department of Developmental Biology and Cancer Research and Teaching, Great Ormond Street Institute of Child Health, University College London, London, UK; Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Cecilia Götherström
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Womens Health, University College London, London, UK
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem NC, USA
| | - Jerry K Y Chan
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore; Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore
| | - Jan Deprest
- Clinical Department of Obstetrics and Gynaecology, UZ Leuven, Leuven, Belgium
| | - Kenneth Kak Yuen Wong
- Division of Paediatric Surgery, Department of Surgery, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, Special Administrative Region, China
| | - Paul Kwong Hang Tam
- Division of Paediatric Surgery, Department of Surgery, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, Special Administrative Region, China; Faculty of Medicine, Macau University of Science and Technology, Macau Special Administrative Region, China.
| |
Collapse
|
11
|
Lederer CW, Koniali L, Buerki-Thurnherr T, Papasavva PL, La Grutta S, Licari A, Staud F, Bonifazi D, Kleanthous M. Catching Them Early: Framework Parameters and Progress for Prenatal and Childhood Application of Advanced Therapies. Pharmaceutics 2022; 14:pharmaceutics14040793. [PMID: 35456627 PMCID: PMC9031205 DOI: 10.3390/pharmaceutics14040793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 01/19/2023] Open
Abstract
Advanced therapy medicinal products (ATMPs) are medicines for human use based on genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset, timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application may substantially improve efficiency, economy and accessibility compared with application in adults. Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates and corrections of disease parameters for younger patients, in addition to reduced overall cell and vector requirements, illustrating that early application may resolve key obstacles to the widespread application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key framework parameters of clinical prenatal and pediatric ATMP application.
Collapse
Affiliation(s)
- Carsten W. Lederer
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
- Correspondence: ; Tel.: +357-22-392764
| | - Lola Koniali
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland;
| | - Panayiota L. Papasavva
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Stefania La Grutta
- Institute of Translational Pharmacology, IFT National Research Council, 90146 Palermo, Italy;
| | - Amelia Licari
- Pediatric Clinic, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic;
| | - Donato Bonifazi
- Consorzio per Valutazioni Biologiche e Farmacologiche (CVBF) and European Paediatric Translational Research Infrastructure (EPTRI), 70122 Bari, Italy;
| | - Marina Kleanthous
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| |
Collapse
|
12
|
Abstract
Prenatal gene therapy could provide a cure for many monogenic diseases. Prenatal gene therapy has multiple potential advantages over postnatal therapy, including treating before the onset of disease, the ability to induce tolerance and cross the blood-brain barrier. In this chapter, we will describe in utero gene therapy and its rationale, clinical trials of postnatal gene therapy, preclinical studies of in utero gene therapy, and potential risks to the mother and fetus.
Collapse
Affiliation(s)
- Marisa E Schwab
- Center for Maternal-Fetal Precision Medicine
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Tippi C MacKenzie
- Center for Maternal-Fetal Precision Medicine
- Department of Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
13
|
Coons B, Peranteau WH. Prenatal Gene Therapy for Metabolic Disorders. Clin Obstet Gynecol 2021; 64:904-916. [PMID: 34652302 PMCID: PMC8713251 DOI: 10.1097/grf.0000000000000662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gene therapy has traditionally involved the delivery of exogenous genetic material to a cell-most commonly to replace defective genes causing monogenic disorders. This allows cells to produce proteins that are otherwise absent in sufficient quantities, ideally for a therapeutic purpose. Since its inception over 40 years ago, the field of gene therapy has significantly expanded and now includes targeted gene editing strategies, including, but not limited to, clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs).
Collapse
Affiliation(s)
- Barbara Coons
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | |
Collapse
|
14
|
Mattar CNZ, Labude MK, Lee TN, Lai PS. Ethical considerations of preconception and prenatal gene modification in the embryo and fetus. Hum Reprod 2021; 36:3018-3027. [PMID: 34665851 DOI: 10.1093/humrep/deab222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
The National Academies of Sciences and Medicine 2020 consensus statement advocates the reinstatement of research in preconception heritable human genome editing (HHGE), despite the ethical concerns that have been voiced about interventions in the germline, and outlines criteria for its eventual clinical application to address monogenic disorders. However, the statement does not give adequate consideration to alternative technologies. Importantly, it omits comparison to fetal gene therapy (FGT), which involves gene modification applied prenatally to the developing fetus and which is better researched and less ethically contentious. While both technologies are applicable to the same monogenic diseases causing significant prenatal or early childhood morbidity, the benefits and risks of HHGE are distinct from FGT though there are important overlaps. FGT has the current advantage of a wealth of robust preclinical data, while HHGE is nascent technology and its feasibility for specific diseases still requires scientific proof. The ethical concerns surrounding each are unique and deserving of further discussion, as there are compelling arguments supporting research and eventual clinical translation of both technologies. In this Opinion, we consider HHGE and FGT through technical and ethical lenses, applying common ethical principles to provide a sense of their feasibility and acceptability. Currently, FGT is in a more advanced position for clinical translation and may be less ethically contentious than HHGE, so it deserves to be considered as an alternative therapy in further discussions on HHGE implementation.
Collapse
Affiliation(s)
- Citra Nurfarah Zaini Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Health System, Singapore, Singapore
| | - Markus Klaus Labude
- Science, Health and Policy-Relevant Ethics in Singapore (SHAPES) Initiative, Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Timothy Nicholas Lee
- Science, Health and Policy-Relevant Ethics in Singapore (SHAPES) Initiative, Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Dalwadi DA, Calabria A, Tiyaboonchai A, Posey J, Naugler WE, Montini E, Grompe M. AAV integration in human hepatocytes. Mol Ther 2021; 29:2898-2909. [PMID: 34461297 DOI: 10.1016/j.ymthe.2021.08.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Recombinant adeno-associated viral (rAAV) vectors are considered promising tools for gene therapy directed at the liver. Whereas rAAV is thought to be an episomal vector, its single-stranded DNA genome is prone to intra- and inter-molecular recombination leading to rearrangements and integration into the host cell genome. Here, we ascertained the integration frequency of rAAV in human hepatocytes transduced either ex vivo or in vivo and subsequently expanded in a mouse model of xenogeneic liver regeneration. Chromosomal rAAV integration events and vector integrity were determined using the capture-PacBio sequencing approach, a long-read next-generation sequencing method that has not previously been used for this purpose. Chromosomal integrations were found at a surprisingly high frequency of 1%-3% both in vitro and in vivo. Importantly, most of the inserted rAAV sequences were heavily rearranged and were accompanied by deletions of the host genomic sequence at the integration site.
Collapse
Affiliation(s)
- Dhwanil A Dalwadi
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Amita Tiyaboonchai
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jeffrey Posey
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Willscott E Naugler
- Department of Medicine, Division of Gastroenterology and Hepatology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Markus Grompe
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
16
|
das Neves J, Notario-Pérez F, Sarmento B. Women-specific routes of administration for drugs: A critical overview. Adv Drug Deliv Rev 2021; 176:113865. [PMID: 34280514 DOI: 10.1016/j.addr.2021.113865] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
The woman's body presents a number of unique anatomical features that can constitute valuable routes for the administration of drugs, either for local or systemic action. These are associated with genitalia (vaginal, endocervical, intrauterine, intrafallopian and intraovarian routes), changes occurring during pregnancy (extra-amniotic, intra-amniotic and intraplacental routes) and the female breast (breast intraductal route). While the vaginal administration of drug products is common, other routes have limited clinical application and are fairly unknown even for scientists involved in drug delivery science. Understanding the possibilities and limitations of women-specific routes is of key importance for the development of new preventative, diagnostic and therapeutic strategies that will ultimately contribute to the advancement of women's health. This article provides an overview on women-specific routes for the administration of drugs, focusing on aspects such as biological features pertaining to drug delivery, relevance in current clinical practice, available drug dosage forms/delivery systems and administration techniques, as well as recent trends in the field.
Collapse
|
17
|
Bolt MW, Brady JT, Whiteley LO, Khan KN. Development challenges associated with rAAV-based gene therapies. J Toxicol Sci 2021; 46:57-68. [PMID: 33536390 DOI: 10.2131/jts.46.57] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The number of gene therapies in development continues to increase, as they represent a novel method to treat, and potentially cure, many diseases. Gene therapies can be conducted with an in vivo or ex vivo approach, to cause gene augmentation, gene suppression, or genomic editing. Adeno-associated viruses are commonly used to deliver gene therapies, but their use is associated with several manufacturing, nonclinical and clinical challenges. As these challenges emerge, regulatory agency expectations continue to evolve. Following administration of rAAV-based gene therapies, nonclinical toxicities may occur, which includes immunogenicity, hepatotoxicity, neurotoxicity, and the potential risks for insertional mutagenesis and subsequent tumorgenicity. The mechanism for these findings and translation into the clinical setting are unclear at this time but have influenced the nonclinical studies that regulatory agencies are increasingly requesting to support clinical trials and marketing authorizations. These evolving regulatory expectations and toxicities, as well as future nonclinical considerations, are discussed herein.
Collapse
Affiliation(s)
- Michael W Bolt
- Pfizer Inc., Drug Safety Research and Development, Cambridge, MA, USA
| | - Joseph T Brady
- Pfizer Inc., Drug Safety Research and Development, Cambridge, MA, USA
| | | | - K Nasir Khan
- Pfizer Inc., Drug Safety Research and Development, Groton, CA, USA
| |
Collapse
|
18
|
Abstract
Significant advances in the safety and efficacy of gene therapy have sparked a new frontier in therapeutics for genetic diseases as evidenced by the greater than 700 active gene therapy investigational new drug applications reported by the NIH and the US Food and Drug Association. Although postnatal gene therapy trials are encouraging, limitations to effective therapy including an immune barrier and initiation of treatment after disease onset can exist. Advances in prenatal diagnostics provide hope that many genetic abnormalities will be able to be diagnosed before birth. Prenatal gene therapy has the potential to take advantage of normal developmental properties of the fetus and overcome some of the current limitations to efficient postnatal gene therapy. The rationale for prenatal gene therapy includes the small fetal size, the tolerogenic fetal immune system, the presence of highly proliferative and accessible stem/progenitor cells of multiple organs, and, ultimately, the ability to treat diseases in which irreversible pathology begins prior to birth. This rationale is based on and supported by a number of published animal studies. Unique ethical considerations exist in the context of prenatal gene therapy, including the importance of rigorous evaluation of the effect of the therapy on fetal germ cells and developing organs as well as the mother. To date, animal studies have not demonstrated any significant germline or maternal effect of prenatal gene therapy. Finally, practical considerations of future clinical prenatal gene therapy will include, but not be limited to, determining the initial target disease characteristics and the importance of non-directive prenatal counseling of families carrying a fetus with a genetic diagnosis.
Collapse
Affiliation(s)
- William H Peranteau
- Division of Pediatric General, Thoracic and Fetal Surgery, The Center for Fetal Research, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, ARC 1116E, Philadelphia, PA, 19104, USA.
| | - Alan W Flake
- Division of Pediatric General, Thoracic and Fetal Surgery, The Center for Fetal Research, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, ARC 1116E, Philadelphia, PA, 19104, USA
| |
Collapse
|
19
|
Palanki R, Peranteau WH, Mitchell MJ. Delivery technologies for in utero gene therapy. Adv Drug Deliv Rev 2021; 169:51-62. [PMID: 33181188 PMCID: PMC7855052 DOI: 10.1016/j.addr.2020.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
Advances in prenatal imaging, molecular diagnostic tools, and genetic screening have unlocked the possibility to treat congenital diseases in utero prior to the onset of clinical symptoms. While fetal surgery and in utero stem cell transplantation can be harnessed to treat specific structural birth defects and congenital hematological disorders, respectively, in utero gene therapy allows for phenotype correction of a wide range of genetic disorders within the womb. However, key challenges to realizing the broad potential of in utero gene therapy are biocompatibility and efficiency of intracellular delivery of transgenes. In this review, we outline the unique considerations to delivery of in utero gene therapy components and highlight advances in viral and non-viral delivery platforms that meet these challenges. We also discuss specialized delivery technologies for in utero gene editing and provide future directions to engineer novel delivery modalities for clinical translation of this promising therapeutic approach.
Collapse
Affiliation(s)
- Rohan Palanki
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William H Peranteau
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Wang Q, Zhong X, Li Q, Su J, Liu Y, Mo L, Deng H, Yang Y. CRISPR-Cas9-Mediated In Vivo Gene Integration at the Albumin Locus Recovers Hemostasis in Neonatal and Adult Hemophilia B Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:520-531. [PMID: 32775489 PMCID: PMC7393320 DOI: 10.1016/j.omtm.2020.06.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/25/2020] [Indexed: 02/05/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 loaded by vectors could induce high rates of specific site genome editing and correct disease-causing mutations. However, most monogenic genetic diseases such as hemophilia are caused by different mutations dispersed in one gene, instead of an accordant mutation. Vectors developed for correcting specific mutations may not be suited to different mutations at other positions. Site-specific gene addition provides an ideal solution for long-term, stable gene therapy. We have demonstrated SaCas9-mediated homology-directed factor IX (FIX) in situ targeting for sustained treatment of hemophilia B. In this study, we tested a more efficient dual adeno-associated virus (AAV) strategy with lower vector dose for liver-directed genome editing that enables CRISPR-Cas9-mediated site-specific integration of therapeutic transgene within the albumin gene, and we aimed to develop a more universal gene-targeting approach. We successfully achieved coagulation function in newborn and adult hemophilia B mice by a single injection of dual AAV vectors. FIX levels in treated mice persisted even after a two-thirds partial hepatectomy, indicating stable gene integration. Our results suggest that this CRISPR-Cas9-mediated site-specific gene integration in hepatocytes could transform into a common clinical therapeutic method for hemophilia B and other genetic diseases.
Collapse
Affiliation(s)
- Qingnan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Xiaomei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Qian Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Jing Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Li Mo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
- Corresponding author: Yang Yang, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, Sichuan 610041, China.
| |
Collapse
|
21
|
Defining the Optimal FVIII Transgene for Placental Cell-Based Gene Therapy to Treat Hemophilia A. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:465-477. [PMID: 32258210 PMCID: PMC7109377 DOI: 10.1016/j.omtm.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
The delivery of factor VIII (FVIII) through gene and/or cellular platforms has emerged as a promising hemophilia A treatment. Herein, we investigated the suitability of human placental cells (PLCs) as delivery vehicles for FVIII and determined an optimal FVIII transgene to produce/secrete therapeutic FVIII levels from these cells. Using three PLC cell banks we demonstrated that PLCs constitutively secreted low levels of FVIII, suggesting their suitability as a transgenic FVIII production platform. Furthermore, PLCs significantly increased FVIII secretion after transduction with a lentiviral vector (LV) encoding a myeloid codon-optimized bioengineered FVIII containing high-expression elements from porcine FVIII. Importantly, transduced PLCs did not upregulate cellular stress or innate immunity molecules, demonstrating that after transduction and FVIII production/secretion, PLCs retained low immunogenicity and cell stress. When LV encoding five different bioengineered FVIII transgenes were compared for transduction efficiency, FVIII production, and secretion, data showed that PLCs transduced with LV encoding hybrid human/porcine FVIII transgenes secreted substantially higher levels of FVIII than did LV encoding B domain-deleted human FVIII. In addition, data showed that in PLCs, myeloid codon optimization is needed to increase FVIII secretion to therapeutic levels. These studies have identified an optimal combination of FVIII transgene and cell source to achieve clinically meaningful levels of secreted FVIII.
Collapse
|
22
|
Almeida-Porada G, Waddington SN, Chan JKY, Peranteau WH, MacKenzie T, Porada CD. In Utero Gene Therapy Consensus Statement from the IFeTIS. Mol Ther 2019; 27:705-707. [PMID: 30837116 DOI: 10.1016/j.ymthe.2019.02.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Winston Salem, NC 27157, USA.
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK; Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jerry K Y Chan
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore; Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - William H Peranteau
- Division of Pediatric General, Thoracic and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tippi MacKenzie
- Department of Surgery, Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Winston Salem, NC 27157, USA
| |
Collapse
|