1
|
Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 2024; 134:1718-1751. [PMID: 38843294 PMCID: PMC11164543 DOI: 10.1161/circresaha.124.323658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine at the University of Freiburg, Freiburg, Germany
| | - Stefan Frantz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
2
|
Jiang S, Shi D, Bai L, Niu T, Kang R, Liu Y. Inhibition of interleukin-6 trans-signaling improves survival and prevents cognitive impairment in a mouse model of sepsis. Int Immunopharmacol 2023; 119:110169. [PMID: 37058750 DOI: 10.1016/j.intimp.2023.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Sepsis-associated encephalopathy (SAE) manifests clinically as acute and chronic cognitive impairments, which is associated with increased morbidity and mortality. Interleukin-6 (IL-6), a pro-inflammatory cytokine, is consistently up-regulated in sepsis. IL-6 initiates proinflammatory effects after binding to soluble IL-6 receptor (IL-6R) through trans-signalling, which requires the transducer gp130. In this study, we investigated whether inhibition of IL-6 trans-signalling is a putative therapeutic target for sepsis and SAE. Twenty-five patients (12 septic and 13 non-septic patients) were recruited for the study. A significant increase of IL-6, IL-1β, IL-10, and IL-8 was observed in the septic patients 24 h after ICU admission. In animal study, cecal ligation and puncture (CLP) was used to induce sepsis in male C57BL/6J mice. One hour before or after inducing sepsis, mice were treated with sgp130, a selective IL-6 trans-signaling inhibitor, respectively. Survival rate, cognition, levels of inflammatory cytokines, integrity of blood-brain barrier (BBB), and oxidative stress were assessed. In addition, immune cells activation and transmigration were evaluated in peripheral blood and brains. Sgp130 improved survival rate and cognitive functions, reduced levels of inflammatory cytokines, including IL-6, TNF-α, IL-10, and MCP-1, in plasma and hippocampus (hipp), mitigated BBB disruption, and ameliorated sepsis-induced oxidative stress. Sgp130 also affected monocytes/macrophages and lymphocytes transmigration and activation in septic mice. Our results indicate that selective inhibition of IL-6 trans-signaling by sgp130 exerts protective effects against SAE in a mouse model of sepsis, suggesting a potential therapeutic strategy.
Collapse
Affiliation(s)
- Sufang Jiang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
| | - Dandan Shi
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
| | - Long Bai
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
| | - Tianfu Niu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
| | - Rongtian Kang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
| | - Ya Liu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
3
|
Chantree P, Tarasuk M, Prathaphan P, Ruangtong J, Jamklang M, Chumkiew S, Martviset P. Type I Cystatin Derived from Fasciola gigantica Suppresses Macrophage-Mediated Inflammatory Responses. Pathogens 2023; 12:pathogens12030395. [PMID: 36986318 PMCID: PMC10051455 DOI: 10.3390/pathogens12030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
There is an inverse relationship between the high incidence of helminth infection and the low incidence of inflammatory disease. Hence, it may be that helminth molecules have anti-inflammatory effects. Helminth cystatins are being extensively studied for anti-inflammatory potential. Therefore, in this study, the recombinant type I cystatin (stefin-1) of Fasciola gigantica (rFgCyst) was verified to have LPS-activated anti-inflammatory potential, including in human THP-1-derived macrophages and RAW 264.7 murine macrophages. The results from the MTT assay suggest that rFgCyst did not alter cell viability; moreover, it exerted anti-inflammatory activity by decreasing the production of proinflammatory cytokines and mediators, including IL-1β, IL-6, IL-8, TNF-α, iNOS, and COX-2 at the gene transcription and protein expression levels, as determined by qRT-PCR and Western blot analysis, respectively. Further, the secretion levels of IL-1β, IL-6, and TNF-α determined by ELISA and the NO production level determined by the Griess test were decreased. Furthermore, in Western blot analysis, the anti-inflammatory effects involved the downregulation of pIKKα/β, pIκBα, and pNF-κB in the NF-κB signaling pathway, hence reducing the translocation from the cytosol into the nucleus of pNF-κB, which subsequently turned on the gene of proinflammatory molecules. Therefore, cystatin type 1 of F. gigantica is a potential candidate for inflammatory disease treatment.
Collapse
Affiliation(s)
- Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Mayuri Tarasuk
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Parisa Prathaphan
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Jittiporn Ruangtong
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Mantana Jamklang
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirilak Chumkiew
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Correspondence: ; Tel.: +66-863590511
| |
Collapse
|
4
|
Li H, Qiu D, Yuan Y, Wang X, Wu F, Yang H, Wang S, Ma M, Qian Y, Zhan B, Yang X. Trichinella spiralis cystatin alleviates polymicrobial sepsis through activating regulatory macrophages. Int Immunopharmacol 2022; 109:108907. [PMID: 35691271 DOI: 10.1016/j.intimp.2022.108907] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Sepsis is a life-threateningorgandysfunction caused by the cytokine storm induced by the severe bacterial infection. Excessive inflammatory responses are responsible for the lethal organ damage during the early stage of sepsis. Helminth infection and helminth-derived proteins have been identified to have the ability to immunomodulate the host immune system by reducing inflammation against inflammatory diseases. Trichinella spiralis cystatin (Ts-Cys) is a cysteine protease inhibitor with strong immunomodulatory functions on host immune system. Our previous studies have shown that excretory-secretory proteins of T. spiralis reduced sepsis-induced inflammation and Ts-Cys was able to inhibit macrophages to produce inflammatory cytokines. Whether Ts-Cys has a therapeutic effect on polymicrobial sepsis and related immunological mechanism are not yet known. METHODS Sepsis was induced in BALB/c mice using cecal ligation and puncture (CLP), followed by intraperitoneal injection of 15 µg recombinant Ts-Cys (rTs-Cys). The therapeutic effect of rTs-Cys on sepsis was evaluated by observing the 72-hour survival rates of CLP-induced septic mice and the acute injury of lung and kidney through measuring the wet/dry weight ratio of lung, the levels of blood urea nitrogen (BUN) and creatinine (Cr) in sera and the tissue section pathology. The potential underlying mechanism was investigated using mouse bone marrow-derived macrophages (BMDMs) by observing the effect of rTs-Cys on LPS-stimulated macrophage polarization. The expression of genes associated with macrophage polarization in BMDMs and tissues of septic mice was measured by Western Blotting and qPCR. RESULTS In this study, we demonstrated the treatment with rTs-Cys alleviated CLP-induced sepsis in mice with significantly reduced pathological injury in vital organs of lung and kidney and reduced mortality of septic mice. The further study identified that treatment with rTs-Cys promoted macrophage polarization from classically activated macrophage (M1) to alternatively activated macrophage (M2) phenotype via inhibiting TLR2/MyD88 signal pathway and increasing expression of mannose receptor (MR), inhibited pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and increased regulatory anti-inflammatory cytokines (IL-10 and TGF-β) in sera and tissues (lung and kidney) of mice with polymicrobial sepsis. CONCLUSIONS Our results demonstrated that rTs-Cys had a therapeutic effect on sepsis through activating regulatory macrophages possibly via suppressing TLR2/MyD88 signal pathway. We also identified that rTs-Cys-induced M2 macrophage differentiation was associated with increased expression of MR on the surface of macrophages. Our results underscored the importance of MR in regulating macrophages during the treatment with rTs-Cys, providing another immunological mechanism in which helminths and their derived proteins modulate the host immune system. The findings in this study suggest that rTs-Cys is a potential therapeutic agent for the prevention and treatment of sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
- Huihui Li
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Dapeng Qiu
- Department of Orthopedics, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuan Yuan
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Xiaoli Wang
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Fengjiao Wu
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Huijuan Yang
- Department of Nephrology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shuying Wang
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Mengxi Ma
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Yayun Qian
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiaodi Yang
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.
| |
Collapse
|
5
|
Duan H, Jing L, Xiang J, Ju C, Wu Z, Liu J, Ma X, Chen X, Liu Z, Feng J, Yan X. CD146 Associates with Gp130 to Control a Macrophage Pro-inflammatory Program That Regulates the Metabolic Response to Obesity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103719. [PMID: 35258174 PMCID: PMC9069186 DOI: 10.1002/advs.202103719] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The mechanism of obesity-related metabolic dysfunction involves the development of systemic inflammation, largely mediated by macrophages. Switching of M1-like adipose tissue macrophages (ATMs) to M2-like ATMs, a population of macrophages associated with weight loss and insulin sensitivity, is considered a viable therapeutic strategy for obesity-related metabolic syndrome. However, mechanisms for reestablishing the polarization of ATMs remain elusive. This study demonstrates that CD146+ ATMs accumulate in adipose tissue during diet-induced obesity and are associated with increased body weight, systemic inflammation, and obesity-induced insulin resistance. Inactivating the macrophage CD146 gene or antibody targeting of CD146 alleviates obesity-related chronic inflammation and metabolic dysfunction. Macrophage CD146 interacts with Glycoprotein 130 (Gp130), the common subunit of the receptor signaling complex for the interleukin-6 family of cytokines. CD146/Gp130 interaction promotes pro-inflammatory polarization of ATMs by activating JNK signaling and inhibiting the activation of STAT3, a transcription factor for M2-like polarization. Disruption of their interaction by anti-CD146 antibody or interleukin-6 steers ATMs toward anti-inflammatory polarization, thus attenuating obesity-induced chronic inflammation and metabolic dysfunction in mice. The results suggest that macrophage CD146 is an important determinant of pro-inflammatory polarization and plays a pivotal role in obesity-induced metabolic dysfunction. CD146 could constitute a novel therapeutic target for obesity complications.
Collapse
Affiliation(s)
- Hongxia Duan
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Lin Jing
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049China
| | - Jianquan Xiang
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049China
| | - Chenhui Ju
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Zhenzhen Wu
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Jingyu Liu
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049China
| | - Xinran Ma
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049China
| | - Xuehui Chen
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Zheng Liu
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Jing Feng
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Xiyun Yan
- Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049China
- Joint Laboratory of Nanozymes in Zhengzhou UniversitySchool of Basic Medical SciencesZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
6
|
Zhu YC, Liang B, Gu N. Cellular and Molecular Mechanism of Traditional Chinese Medicine on Ventricular Remodeling. Front Cardiovasc Med 2021; 8:753095. [PMID: 34926607 PMCID: PMC8671630 DOI: 10.3389/fcvm.2021.753095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Ventricular remodeling is related to the renin-angiotensin-aldosterone system, immune system, and various cytokines involved in inflammation, apoptosis, and cell signal regulation. Accumulated studies have shown that traditional Chinese medicine can significantly inhibit the process of ventricular remodeling, which may be related to the mechanism mentioned above. Here, we conducted a system overview to critically review the cellular and molecular mechanism of traditional Chinese medicine on ventricular remodeling. We mainly searched PubMed for basic research about the anti-ventricular remodeling of traditional Chinese medicine in 5 recent years, and then objectively summarized these researches. We included more than 25 kinds of Chinese herbal medicines including Qi-Li-Qian-Xin, Qi-Shen-Yi-Qi Pill, Xin-Ji-Er-Kang Formula, and Yi-Qi-Wen-Yang Decoction, and found that they can inhibit ventricular remodeling effectively through multi-components and multi-action targets, which are promoting the clinical application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Yong-Chun Zhu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Li H, Qiu D, Yang H, Yuan Y, Wu L, Chu L, Zhan B, Wang X, Sun Y, Xu W, Yang X. Therapeutic Efficacy of Excretory-Secretory Products of Trichinella spiralis Adult Worms on Sepsis-Induced Acute Lung Injury in a Mouse Model. Front Cell Infect Microbiol 2021; 11:653843. [PMID: 33842398 PMCID: PMC8024484 DOI: 10.3389/fcimb.2021.653843] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022] Open
Abstract
Acute lung injury (ALI) is a common complication of systemic inflammation or sepsis with high morbidity and mortality. Although many studies have confirmed that helminth-derived proteins had strong immunomodulatory functions and could be used to treat inflammatory diseases, there is no report on the therapeutic effect of excretory-secretory products of Trichinella spiralis adult worms (Ts-AES) on sepsis-induced ALI. In this study, the therapeutic efficacy of Ts-AES on sepsis-induced ALI and the underlying immunological mechanism and the signaling pathway were investigated. The results indicated that after being treated with Ts-AES, the survival rate of mice with CLP-induced sepsis was significantly increased to 50% for 72 hours after CLP surgery compared to PBS control group with all mice died. The sepsis-induced ALI was largely mitigated characterized by reduced inflammation cell infiltration and pathological changes in lung tissue, with decreased lung injury scores and lung wet/dry weight ratio. The therapeutic efficacy of Ts-AES is associated with stimulated Tregs response with increased regulatory cytokines IL-10 and TGF-β and downregulated pro-inflammatory cytokines (TNF-α, IL-6, IL-1β). The expression of HMGB1, TLR2 and MyD88 in lung tissue was inhibited after treatment of Ts-AES. Our results demonstrated that Ts-AES play an important role in immunomodulation and confer a therapeutic effect on sepsis-induced ALI through inhibiting pro-inflammatory cytokines. The activation of Tregs and increased level of regulatory cytokines IL-10 and TGF-β are possibly involved in the immunomodulatory functions of Ts-AES through HMGB1/TLR2/MyD88 signal pathway. The findings suggest Ts-AES is a potential therapeutic agent for prevention and treatment of sepsis-induced ALI and other inflammatory diseases.
Collapse
Affiliation(s)
- Huihui Li
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Dapeng Qiu
- Department of Orthopedics, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huijuan Yang
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Yuan Yuan
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Lingqin Wu
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Liang Chu
- Department of Orthopedics, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Xiaoli Wang
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Yan Sun
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Wei Xu
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Xiaodi Yang
- Department of Basic Medical College, Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| |
Collapse
|
8
|
Vasiliev G, Chadaeva I, Rasskazov D, Ponomarenko P, Sharypova E, Drachkova I, Bogomolov A, Savinkova L, Ponomarenko M, Kolchanov N, Osadchuk A, Oshchepkov D, Osadchuk L. A Bioinformatics Model of Human Diseases on the Basis of Differentially Expressed Genes (of Domestic Versus Wild Animals) That Are Orthologs of Human Genes Associated with Reproductive-Potential Changes. Int J Mol Sci 2021; 22:2346. [PMID: 33652917 PMCID: PMC7956675 DOI: 10.3390/ijms22052346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Earlier, after our bioinformatic analysis of single-nucleotide polymorphisms of TATA-binding protein-binding sites within gene promoters on the human Y chromosome, we suggested that human reproductive potential diminishes during self-domestication. Here, we implemented bioinformatics models of human diseases using animal in vivo genome-wide RNA-Seq data to compare the effect of co-directed changes in the expression of orthologous genes on human reproductive potential and during the divergence of domestic and wild animals from their nearest common ancestor (NCA). For example, serotonin receptor 3A (HTR3A) deficiency contributes to sudden death in pregnancy, consistently with Htr3a underexpression in guinea pigs (Cavia porcellus) during their divergence from their NCA with cavy (C. aperea). Overall, 25 and three differentially expressed genes (hereinafter, DEGs) in domestic animals versus 11 and 17 DEGs in wild animals show the direction consistent with human orthologous gene-markers of reduced and increased reproductive potential. This indicates a reliable association between DEGs in domestic animals and human orthologous genes reducing reproductive potential (Pearson's χ2 test p < 0.001, Fisher's exact test p < 0.05, binomial distribution p < 0.0001), whereas DEGs in wild animals uniformly match human orthologous genes decreasing and increasing human reproductive potential (p > 0.1; binomial distribution), thus enforcing the norm (wild type).
Collapse
Affiliation(s)
- Gennady Vasiliev
- Novosibirsk State University, 630090 Novosibirsk, Russia;
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Ekaterina Sharypova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Irina Drachkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Alexander Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Ludmila Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| |
Collapse
|
9
|
Xie H, Wu L, Chen X, Gao S, Li H, Yuan Y, Liang J, Wang X, Wang S, Xu C, Chu L, Zhan B, Zhou R, Yang X. Schistosoma japonicum Cystatin Alleviates Sepsis Through Activating Regulatory Macrophages. Front Cell Infect Microbiol 2021; 11:617461. [PMID: 33718268 PMCID: PMC7943722 DOI: 10.3389/fcimb.2021.617461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Multi-organ failure caused by the inflammatory cytokine storm induced by severe infection is the major cause of death for sepsis. Sj-Cys is a cysteine protease inhibitor secreted by Schistosoma japonicum with strong immunomodulatory functions on host immune system. Our previous studies have shown that treatment with Sj-Cys recombinant protein (rSj-Cys) attenuated inflammation caused by sepsis. However, the immunological mechanism underlying the immunomodulation of Sj-Cys for regulating inflammatory diseases is not yet known. In this study, we investigated the effect of Sj-Cys on the macrophage M2 polarization and subsequent therapeutic effect on sepsis. The rSj-Cys was expressed in yeast Pichia pastoris. Incubation of mouse bone marrow-derived macrophages (BMDMs) with yeast-expressed rSj-Cys significantly activated the polarization of macrophages to M2 subtype characterized by the expression of F4/80+ CD206+ with the elated secretion of IL-10 and TGF-β. Adoptive transfer of rSj-Cys treated BMDMs to mice with sepsis induced by cecal ligation and puncture (CLP) significantly improved their survival rates and the systemic clinical manifestations of sepsis compared with mice receiving non-treated normal BMDMs. The therapeutic effect of Sj-Cys-induced M2 macrophages on sepsis was also reflected by the reduced pathological damages in organs of heart, lung, liver and kidney and reduced serological levels of tissue damage-related ALT, AST, BUN and Cr, associated with downregulated pro-inflammatory cytokines (IFN-gamma and IL-6) and upregulated regulatory anti-inflammatory cytokines (IL-10 and TGF-β). Our results demonstrated that Sj-Cys is a strong immunomodulatory protein with anti-inflammatory features through activating M2 macrophage polarization. The findings of this study suggested that Sj-Cys itself or Sj-Cys-induced M2 macrophages could be used as therapeutic agents in the treatment of sepsis or other inflammatory diseases.
Collapse
Affiliation(s)
- Hong Xie
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Lingqin Wu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Pediatric, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xingzhi Chen
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Shifang Gao
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Huihui Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Yuan Yuan
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Jinbao Liang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Xiaoli Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Shuying Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Pediatric, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Changyan Xu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Liang Chu
- Department of General Surgery, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Rui Zhou
- Department of Pediatric, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases of Bengbu Medical College, Bengbu, China
| | - Xiaodi Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| |
Collapse
|
10
|
Abstract
Heart failure exhibits remarkable pathophysiologic heterogeneity. A large body of evidence suggests that regardless of the underlying etiology, heart failure is associated with induction of cytokines and chemokines that may contribute to the pathogenesis of adverse remodeling, and systolic and diastolic dysfunction. The pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-6 have been extensively implicated in the pathogenesis of heart failure. Inflammatory cytokines modulate phenotype and function of all myocardial cells, suppressing contractile function in cardiomyocytes, inducing inflammatory activation in macrophages, stimulating microvascular inflammation and dysfunction, and promoting a matrix-degrading phenotype in fibroblasts. Moreover, cytokine-induced growth factor synthesis may exert chronic fibrogenic actions contributing to the pathogenesis of heart failure with preserved ejection fraction (HFpEF). In addition to their role in adverse cardiac remodeling, some inflammatory cytokines may also exert protective actions on cardiomyocytes under conditions of stress. Chemokines, such as CCL2, are also upregulated in failing hearts and may stimulate recruitment of pro-inflammatory leukocytes, promoting myocardial injury, fibrotic remodeling, and dysfunction. Although experimental evidence suggests that cytokine and chemokine targeting may hold therapeutic promise in heart failure, clinical translation remains challenging. This review manuscript summarizes our knowledge on the role of TNF-α, IL-1, IL-6, and CCL2 in the pathogenesis of heart failure, and discusses the promises and challenges of targeted anti-cytokine therapy. Dissection of protective and maladaptive cellular actions of cytokines in the failing heart, and identification of patient subsets with overactive or dysregulated myocardial inflammatory responses are required for design of successful therapeutic approaches.
Collapse
|
11
|
Wueest S, Konrad D. The controversial role of IL-6 in adipose tissue on obesity-induced dysregulation of glucose metabolism. Am J Physiol Endocrinol Metab 2020; 319:E607-E613. [PMID: 32715746 DOI: 10.1152/ajpendo.00306.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Interleukin (IL)-6 is a pleotropic cytokine with various physiological and pathophysiological functions in different cells and tissues. In cells residing within white adipose tissue, several, and sometimes conflicting, IL-6 actions have been described in the development of obesity-associated derangements of glucose metabolism. Herein, we aim to summarize opposing findings and discuss recent evidence that IL-6 signaling in adipose tissue is regulated in a depot and cell-specific manner.
Collapse
Affiliation(s)
- Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Liu J, Du J, Cheng X, Zhang X, Li Y, Fu X, Chen X. Effect of Netrin-1 Anti-Inflammatory Factor on Acute Lung Injury in Sepsis Rats. Med Sci Monit 2019; 25:7928-7935. [PMID: 31639817 PMCID: PMC6820332 DOI: 10.12659/msm.917279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) often occurs early and seriously in the progress of sepsis. Netrin-1 is demonstrated to be an effective anti-inflammatory agent. However, whether netrin-1 can relieve sepsis-induced ALI remains unknown. MATERIAL AND METHODS The sepsis rat model was built with the method of cecal ligation and puncture (CLP). The lung tissue changes were represented as the results of hematoxylin-eosin (HE) staining, wet-to-dry (W/D) ratio, Western blot analysis, and immunohistochemistry. An in vitro lung injury model was simulated with LPS-induced BEAS-2B cells. The cell transfection effects were evaluated by Western blot analysis and RT-qPCR analysis. TNF-alpha, IL-1ß, and IL-6 levels were detected by Western blot analysis in LPS-induced BEAS-2B cells. RESULTS Obvious inflammation caused by sepsis appeared in lung tissues with the increase of the W/D ratio and expression of inflammatory cytokines. Netrin-1 and its receptor UNC5B were reduced in sepsis. However, upregulation of netrin-1 alleviated the levels of inflammation and increased the UNC5B levels in BEAS-2B cells. CONCLUSIONS Netrin-1 protects against ALI in sepsis rats through its anti-inflammation effect and may provide a novel treatment to prevent lung injury caused by sepsis.
Collapse
Affiliation(s)
- Jisong Liu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland).,Department of Burn and Plastic Surgery, Third Hospital of Bengbu, Bengbu, Anhui, China (mainland)
| | - Juan Du
- Department of Minimally Invasive Surgery, Third Hospital of Bengbu, Bengbu, Anhui, China (mainland)
| | - Xiu Cheng
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Xiangzhou Zhang
- Department of Burn and Plastic Surgery, Third Hospital of Bengbu, Bengbu, Anhui, China (mainland)
| | - Yong Li
- Department of Burn and Plastic Surgery, Third Hospital of Bengbu, Bengbu, Anhui, China (mainland)
| | - Xiujun Fu
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Xulin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| |
Collapse
|
13
|
Murakami M, Kamimura D, Hirano T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity 2019; 50:812-831. [DOI: 10.1016/j.immuni.2019.03.027] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
|