1
|
Yeh KL, Wu SW, Chiang CY, Chen CJ, Chen WY, Tseng CC, Kuan YH, Chou CC. Enhancing ocular protection against UVB: The role of irigenin in modulating oxidative stress and apoptotic pathways In Vivo. Biomed Pharmacother 2024; 179:117346. [PMID: 39232385 DOI: 10.1016/j.biopha.2024.117346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Oxidative damage contributes to age-related macular degeneration. Irigenin possesses diverse pharmacologic properties, including antioxidative and antiapoptotic effects. Our in vivo experiments indicated that irigenin mitigates UVB-induced histopathologic changes and oxidative DNA damage. Histologic analyses and TUNEL staining revealed that this compound dose-dependently ameliorated UVB-induced retinal damage and apoptosis. Furthermore, irigenin substantially reduced the level of 8-hydroxyguanosine, a biomarker of UVB-induced oxidative DNA damage. We further explored the molecular mechanisms that mediate the protective effects of irigenin. Our findings suggested that UVB-induced generation of ROS disrupts the stability of the mitochondrial membrane, activating intrinsic apoptotic pathways; the underlying mechanisms include the release of cytochrome c, activation of caspase-9 and caspase-3, and subsequent degradation of PARP-1. Notably, irigenin reversed mitochondrial disruption and apoptosis. It also modulated the Bax and Bcl-2 expression but influenced the mitochondrial apoptotic pathways. Our study highlights the role of the Nrf2 pathway in mitigating the effects of oxidative stress. We found that UVB exposure downregulated, but irigenin treatment upregulated the expression of Nrf2 and antioxidant enzymes. Therefore, irigenin activates the Nrf2 pathway to address oxidative stress. In conclusion, irigenin exhibits protective effects against UVB-induced ocular damage, evidenced by the diminution of histological alterations. It mitigates oxidative DNA damage and apoptosis in the retinal tissues by modulating the intrinsic apoptotic pathways and the AIF mechanisms. Furthermore, irigenin effectively reduces lipid peroxidation, enhancing the activity of antioxidant enzymes by stimulating the Nrf2 pathway. This protective mechanism underscores the potential benefit of irigenin in combating UVB-mediated ocular damage.
Collapse
Affiliation(s)
- Kun-Lin Yeh
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Wen Wu
- Division of Nephrology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chen-Yu Chiang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Chi Tseng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Dermatology, Shiso Municipal Hospital, Hyogo, Japan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
2
|
Brandli A, Vessey KA, Fletcher EL. The contribution of pattern recognition receptor signalling in the development of age related macular degeneration: the role of toll-like-receptors and the NLRP3-inflammasome. J Neuroinflammation 2024; 21:64. [PMID: 38443987 PMCID: PMC10913318 DOI: 10.1186/s12974-024-03055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss, characterised by the dysfunction and death of the photoreceptors and retinal pigment epithelium (RPE). Innate immune cell activation and accompanying para-inflammation have been suggested to contribute to the pathogenesis of AMD, although the exact mechanism(s) and signalling pathways remain elusive. Pattern recognition receptors (PRRs) are essential activators of the innate immune system and drivers of para-inflammation. Of these PRRs, the two most prominent are (1) Toll-like receptors (TLR) and (2) NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3)-inflammasome have been found to modulate the progression of AMD. Mutations in TLR2 have been found to be associated with an increased risk of developing AMD. In animal models of AMD, inhibition of TLR and NLRP3 has been shown to reduce RPE cell death, inflammation and angiogenesis signalling, offering potential novel treatments for advanced AMD. Here, we examine the evidence for PRRs, TLRs2/3/4, and NLRP3-inflammasome pathways in macular degeneration pathogenesis.
Collapse
Affiliation(s)
- Alice Brandli
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Kirstan A Vessey
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
3
|
Gurubaran IS. Mitochondrial damage and clearance in retinal pigment epithelial cells. Acta Ophthalmol 2024; 102 Suppl 282:3-53. [PMID: 38467968 DOI: 10.1111/aos.16661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase β. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1β in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.
Collapse
Affiliation(s)
- Iswariyaraja Sridevi Gurubaran
- Department of Medicine, Clinical Medicine Unit, University of Eastern Finland Institute of Clinical Medicine, Kuopio, Northern Savonia, Finland
| |
Collapse
|
4
|
Korhonen E, Piippo N, Hytti M, Kaarniranta K, Kauppinen A. Cis-urocanic acid improves cell viability and suppresses inflammasome activation in human retinal pigment epithelial cells. Biochem Pharmacol 2023; 216:115790. [PMID: 37683842 DOI: 10.1016/j.bcp.2023.115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Age-related macular degeneration (AMD) is a common eye disease among the elderly, which can result in impaired vision and irreversible loss of vision. The majority of patients suffer from the dry (also known as the atrophic) form of the disease, which is completely lacking an effective treatment. In the present study, we evaluated the potential of cis-urocanic acid (cis-UCA) to protect human ARPE-19 cells from cell damage and inflammasome activation induced by UVB light. Urocanic acid is a molecule normally present in human epidermis. Its cis-form has recently been found to alleviate UVB-induced inflammasome activation in human corneal epithelial cells. Here, we observed that cis-UCA is well-tolerated also by human retinal pigment epithelial (RPE) cells at a concentration of 100 μg/ml. Moreover, cis-UCA was cytoprotective and efficiently diminished the levels of mature IL-1β, IL-18, and cleaved caspase-1 in UVB-irradiated ARPE-19 cells. Interestingly, cis-UCA also reduced DNA damage, whereas its effect against ROS production was negligible. Collectively, cis-UCA protected ARPE-19 cells from UVB-induced phototoxicity and inflammasome activation. This study indicates that due to its beneficial properties of preserving cell viability and preventing inflammation, cis-UCA has potential in drug development of chronic ocular diseases, such as AMD.
Collapse
Affiliation(s)
- Eveliina Korhonen
- Immuno-Ophthalmology, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, FI-70211 Kuopio, Finland.
| | - Niina Piippo
- Immuno-Ophthalmology, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, FI-70211 Kuopio, Finland
| | - Maria Hytti
- Immuno-Ophthalmology, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, FI-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O.Box 100, FI-70029 Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.Box 1627, FI-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O.Box 100, FI-70029 Kuopio, Finland
| | - Anu Kauppinen
- Immuno-Ophthalmology, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
5
|
Johnson AF, Sands JS, Trivedi KM, Russell R, LaRock DL, LaRock CN. Constitutive secretion of pro-IL-18 allows keratinocytes to initiate inflammation during bacterial infection. PLoS Pathog 2023; 19:e1011321. [PMID: 37068092 PMCID: PMC10138833 DOI: 10.1371/journal.ppat.1011321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023] Open
Abstract
Group A Streptococcus (GAS, Streptococcus pyogenes) is a professional human pathogen that commonly infects the skin. Keratinocytes are one of the first cells to contact GAS, and by inducing inflammation, they can initiate the earliest immune responses to pathogen invasion. Here, we characterized the proinflammatory cytokine repertoire produced by primary human keratinocytes and surrogate cell lines commonly used in vitro. Infection induces several cytokines and chemokines, but keratinocytes constitutively secrete IL-18 in a form that is inert (pro-IL-18) and lacks proinflammatory activity. Canonically, IL-18 activation and secretion are coupled through a single proteolytic event that is regulated intracellularly by the inflammasome protease caspase-1 in myeloid cells. The pool of extracellular pro-IL-18 generated by keratinocytes is poised to sense extracellular proteases. It is directly processed into a mature active form by SpeB, a secreted GAS protease that is a critical virulent factor during skin infection. This mechanism contributes to the proinflammatory response against GAS, resulting in T cell activation and the secretion of IFN-γ. Under these conditions, isolates of several other major bacterial pathogens and microbiota of the skin were found to not have significant IL-18-maturing ability. These results suggest keratinocyte-secreted IL-18 is a sentinel that sounds an early alarm that is highly sensitive to GAS, yet tolerant to non-invasive members of the microbiota.
Collapse
Affiliation(s)
- Anders F Johnson
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Jenna S Sands
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Keya M Trivedi
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Raedeen Russell
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Doris L LaRock
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Christopher N LaRock
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
- Department of Medicine, Division of Infectious Diseases, Emory School of Medicine, Atlanta, Georgia, United States of America
- Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| |
Collapse
|
6
|
Volatier T, Schumacher B, Meshko B, Hadrian K, Cursiefen C, Notara M. Short-Term UVB Irradiation Leads to Persistent DNA Damage in Limbal Epithelial Stem Cells, Partially Reversed by DNA Repairing Enzymes. BIOLOGY 2023; 12:265. [PMID: 36829542 PMCID: PMC9953128 DOI: 10.3390/biology12020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
The cornea is frequently exposed to ultraviolet (UV) radiation and absorbs a portion of this radiation. UVB in particular is absorbed by the cornea and will principally damage the topmost layer of the cornea, the epithelium. Epidemiological research shows that the UV damage of DNA is a contributing factor to corneal diseases such as pterygium. There are two main DNA photolesions of UV: cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts (6-4PPs). Both involve the abnormal linking of adjacent pyrimide bases. In particular, CPD lesions, which account for the vast majority of UV-induced lesions, are inefficiently repaired by nucleotide excision repair (NER) and are thus mutagenic and linked to cancer development in humans. Here, we apply two exogenous enzymes: CPD photolyase (CPDPL) and T4 endonuclease V (T4N5). The efficacy of these enzymes was assayed by the proteomic and immunofluorescence measurements of UVB-induced CPDs before and after treatment. The results showed that CPDs can be rapidly repaired by T4N5 in cell cultures. The usage of CPDPL and T4N5 in ex vivo eyes revealed that CPD lesions persist in the corneal limbus. The proteomic analysis of the T4N5-treated cells shows increases in the components of the angiogenic and inflammatory systems. We conclude that T4N5 and CPDPL show great promise in the treatment of CPD lesions, but the complete clearance of CPDs from the limbus remains a challenge.
Collapse
Affiliation(s)
- Thomas Volatier
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 62, 50937 Cologne, Germany
| | - Björn Schumacher
- Cologne Excellence Cluster for Cellular Stress Responses, Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
- Institute for Genome Stability in Aging and Disease, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Berbang Meshko
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 62, 50937 Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 62, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 21, 50931 Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 62, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 21, 50931 Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 62, 50937 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses, Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| |
Collapse
|
7
|
Kaarniranta K, Blasiak J, Liton P, Boulton M, Klionsky DJ, Sinha D. Autophagy in age-related macular degeneration. Autophagy 2023; 19:388-400. [PMID: 35468037 PMCID: PMC9851256 DOI: 10.1080/15548627.2022.2069437] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 01/22/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairment in the aging population with limited understanding of its pathogenesis and a lack of effective treatment. The progression of AMD is initially characterized by atrophic alterations in the retinal pigment epithelium, as well as the formation of lysosomal lipofuscin and extracellular drusen deposits. Damage caused by chronic oxidative stress, protein aggregation and inflammatory processes may lead to geographic atrophy and/or choroidal neovascularization and fibrosis. The role of macroautophagy/autophagy in AMD pathology is steadily emerging. This review describes selective and secretory autophagy and their role in drusen biogenesis, senescence-associated secretory phenotype, inflammation and epithelial-mesenchymal transition in the pathogenesis of AMD.Abbreviations: Aβ: amyloid-beta; AMBRA1: autophagy and beclin 1 regulator 1; AMD: age-related macular degeneration; ATF6: activating transcription factor 6; ATG: autophagy related; BACE1: beta-secretase 1; BHLHE40: basic helix-loop-helix family member e40; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; C: complement; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CARD: caspase recruitment domain; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CFB: complement factor B; DELEC1/Dec1; deleted in esophageal cancer 1; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EMT: epithelial-mesenchymal transition; ER: endoplasmic reticulum; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; FUNDC1: FUN14 domain containing 1; GABARAP: GABA type A receptor-associated protein; HMGB1: high mobility group box 1; IL: interleukin; KEAP1: kelch like ECH associated protein 1; LAP: LC3-associated phagocytosis; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NFE2L2: NFE2 like bZIP transcription factor 2; NLRP3; NLR family pyrin domain containing 3; NFKB/NFκB: nuclear factor kappa B; OPTN: optineurin; PARL: presenilin associated rhomboid like; PGAM5: PGAM family member 5, mitochondrial serine/threonine protein phosphatase; PINK1: PTEN induced kinase 1; POS: photoreceptor outer segment; PPARGC1A: PPARG coactivator 1 alpha; PRKN: parkin RBR E3 ubiquitin protein ligase; PYCARD/ASC: PYD and CARD domain containing; ROS: reactive oxygen species; RPE: retinal pigment epithelium; SA: secretory autophagy; SASP: senescence-associated secretory phenotype; SEC22B: SEC22 homolog B, vesicle trafficking protein; SNAP: synaptosome associated protein; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; STX: syntaxin; TGFB2: transforming growth factor beta 2; TRIM16: tripartite motif containing 16; TWIST: twist family bHLH transcription factor; Ub: ubiquitin; ULK: unc-51 like autophagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; V-ATPase: vacuolar-type H+-translocating ATPase; VIM: vimentin.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Paloma Liton
- Duke University, Department of Ophthalmology, Durham, NC, USA
| | - Michael Boulton
- University of Alabama at Birmingham, Department of Ophthalmology and Visual Sciences, Birmingham, AL, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Debasish Sinha
- University of Pittsburgh School of Medicine, Departments of Ophthalmology, Cell Biology, and Developmental Biology, Pittsburgh, PA, USA
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Harju N. Regulation of oxidative stress and inflammatory responses in human retinal pigment epithelial cells. Acta Ophthalmol 2022; 100 Suppl 273:3-59. [DOI: 10.1111/aos.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niina Harju
- School of Pharmacy University of Eastern Finland Kuopio Finland
| |
Collapse
|
9
|
Barczuk J, Siwecka N, Lusa W, Rozpędek-Kamińska W, Kucharska E, Majsterek I. Targeting NLRP3-Mediated Neuroinflammation in Alzheimer’s Disease Treatment. Int J Mol Sci 2022; 23:ijms23168979. [PMID: 36012243 PMCID: PMC9409081 DOI: 10.3390/ijms23168979] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the general population and, to date, constitutes a major therapeutic challenge. In the pathogenesis of AD, aggregates of amyloid β (Aβ) and neurofibrillary tangles (NFTs) containing Tau-microtubule-associated protein (tau) are known to trigger a neuroinflammatory response with subsequent formation of an inflammasome. In particular, the NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is thought to play a crucial role in AD-related pathology. While the mechanisms for NLRP3 activation are not fully understood, it has been demonstrated that, after detection of protein aggregates, NLRP3 induces pro-inflammatory cytokines, such as interleukin 18 (IL-18) or interleukin 1β (IL-1β), that further potentiate AD progression. Specific inhibitors of NLRP3 that exhibit various mechanisms to attenuate the activity of NLRP3 have been tested in in vivo studies and have yielded promising results, as shown by the reduced level of tau and Aβ aggregates and diminished cognitive impairment. Herein, we would like to summarize the current state of knowledge on NLRP3 inflammasome priming, activation, and its actual role in AD pathogenesis, and to characterize the NLRP3 inhibitors that have been studied most and their impact on AD-related pathology.
Collapse
Affiliation(s)
- Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | - Weronika Lusa
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | | | - Ewa Kucharska
- Department of Gerontology, Geriatrics and Social Work, Jesuit University Ignatianum, 31-501 Krakow, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
- Correspondence: ; Tel.: +48-42-272-53-00
| |
Collapse
|
10
|
Chen M, Rong R, Xia X. Spotlight on pyroptosis: role in pathogenesis and therapeutic potential of ocular diseases. J Neuroinflammation 2022; 19:183. [PMID: 35836195 PMCID: PMC9281180 DOI: 10.1186/s12974-022-02547-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pyroptosis is a programmed cell death characterized by swift plasma membrane disruption and subsequent release of cellular contents and pro-inflammatory mediators (cytokines), including IL‐1β and IL‐18. It differs from other types of programmed cell death such as apoptosis, autophagy, necroptosis, ferroptosis, and NETosis in terms of its morphology and mechanism. As a recently discovered form of cell death, pyroptosis has been demonstrated to be involved in the progression of multiple diseases. Recent studies have also suggested that pyroptosis is linked to various ocular diseases. In this review, we systematically summarized and discussed recent scientific discoveries of the involvement of pyroptosis in common ocular diseases, including diabetic retinopathy, age-related macular degeneration, AIDS-related human cytomegalovirus retinitis, glaucoma, dry eye disease, keratitis, uveitis, and cataract. We also organized new and emerging evidence suggesting that pyroptosis signaling pathways may be potential therapeutic targets in ocular diseases, hoping to provide a summary of overall intervention strategies and relevant multi-dimensional evaluations for various ocular diseases, as well as offer valuable ideas for further research and development from the perspective of pyroptosis.
Collapse
Affiliation(s)
- Meini Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
11
|
Sridevi Gurubaran I, Hytti M, Kaarniranta K, Kauppinen A. Epoxomicin, a Selective Proteasome Inhibitor, Activates AIM2 Inflammasome in Human Retinal Pigment Epithelium Cells. Antioxidants (Basel) 2022; 11:antiox11071288. [PMID: 35883779 PMCID: PMC9311580 DOI: 10.3390/antiox11071288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 02/04/2023] Open
Abstract
Emerging evidence suggests that the intracellular clearance system plays a vital role in maintaining homeostasis and in regulating oxidative stress and inflammation in retinal pigment epithelium (RPE) cells. Dysfunctional proteasomes and autophagy in RPE cells have been associated with the pathogenesis of age-related macular degeneration. We have previously shown that the inhibition of proteasomes using MG-132 activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome in human RPE cells. However, MG-132 is a non-selective proteasome inhibitor. In this study, we used the selective proteasome inhibitor epoxomicin to study the effect of non-functional intracellular clearance systems on inflammasome activation. Our data show that epoxomicin-induced proteasome inhibition promoted both nicotinamide adenine dinucleotide phosphate oxidase and mitochondria-mediated oxidative stress and release of mitochondrial DNA to the cytosol, which resulted in potassium efflux-dependent absence in melanoma 2 (AIM2) inflammasome activation and subsequent interleukin-1β secretion in ARPE-19 cells. The non-specific proteasome inhibitor MG-132 activated both NLRP3 and AIM2 inflammasomes and oxidative stress predominated as the activation mechanism, but modest potassium efflux was also detected. Collectively, our data suggest that a selective proteasome inhibitor is a potent inflammasome activator in human RPE cells and emphasize the role of the AIM2 inflammasome in addition to the more commonly known NLRP3 inflammasome.
Collapse
Affiliation(s)
- Iswariyaraja Sridevi Gurubaran
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (I.S.G.); (K.K.)
| | - Maria Hytti
- Immuno-Ophthalmology, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (I.S.G.); (K.K.)
- Department of Ophthalmology, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70029 Kuopio, Finland
| | - Anu Kauppinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (I.S.G.); (K.K.)
- Immuno-Ophthalmology, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
- Correspondence:
| |
Collapse
|
12
|
Generation of antagonistic monoclonal antibodies against the neoepitope of active mouse interleukin (IL)-18 cleaved by inflammatory caspases. Arch Biochem Biophys 2022; 727:109322. [PMID: 35709966 DOI: 10.1016/j.abb.2022.109322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022]
Abstract
Interleukin 18 (IL-18) is a member of the IL-1 family and plays an important role in both the innate and acquired immune systems. It is constitutively expressed as an inactive precursor (24 kDa) in various cell types, and the mature IL-18 (18 kDa) cleaved by inflammatory caspase-1/4 binds to the interleukin-18 receptor, thereby activating downstream signaling pathways. We previously generated anti-human IL-18 antibodies that specifically recognize the human IL-18 neoepitope cleaved by inflammatory caspase-1/4. Because the N-terminal amino acid sequences of the neoepitopes are different between human IL-18 and mouse IL-18, the anti-human IL-18 neoepitope antibodies do not recognize mouse mature IL-18. We have now generated novel anti-mouse IL-18 neoepitope antibodies. We also confirmed CXCL2 secretion from P-815 mouse cells by mouse IL-18 stimulation, and established a simple assay to evaluate the activity of mouse IL-18. Using this evaluation system, we confirmed that the anti-mouse IL-18 neoepitope antibodies could inhibit mouse IL-18. By demonstrating the therapeutic efficacy of the anti-mouse IL-18 neoepitope and function-blocking mAbs established in the present study in mouse models, corresponding to human inflammatory diseases in which IL-18 may be involved, such as inflammatory bowel diseases, we can provide the proof-of-concept that the previously established anti-human IL-18 neoepitope and function-blocking mAbs work in human inflammatory disorders corresponding to mouse models.
Collapse
|
13
|
Hsu WH, Chung CP, Wang YY, Kuo YH, Yeh CH, Lee IJ, Lin YL. Dendrobium nobile protects retinal cells from UV-induced oxidative stress damage via Nrf2/HO-1 and MAPK pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114886. [PMID: 34856359 DOI: 10.1016/j.jep.2021.114886] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/19/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Excessive UV irradiation and ROS exposure are the main contributors of ocular pathologies. Pseudobulb of Dendrobium nobile Lindl. is one of the sources of Shihu and has long been used in traditional Chinese medicine as a tonic to nourish stomach, replenish body fluid, antipyretic and anti-inflammation. AIM OF STUDY This study aimed to investigate whether D. nobile could protect ocular cells against oxidative stress damage. MATERIALS AND METHODS Retinal-related cell lines, ARPE-19 and RGC-5 cells, were pretreated with D. nobile extracts before H2O2- and UV-treatment. Cell viability and the oxidative stress were monitored by sulforhodamine B (SRB) and SOD1 and CAT assay kits, respectively. The oxidative stress related proteins were measured by Western blotting. RESULTS Under activity-guided fractionation, a sesquiterpene-enriched fraction (DN-2) and a major component (1) could ameliorate H2O2- and UV-induced cytotoxicity and SOD1 and CAT activity, but not dendrobine, the chemical marker of D. nobile. Western blotting showed both DN-2 and compound 1 protected ARPE-19 cells against UV-induced oxidative stress damage by regulating MAPK and Nrf2/HO-1 signaling. CONCLUSION Our results suggest D. nobile extract protects retinal pigment epithelia cells from UV- and oxidative stress-damage, which may have a beneficial effect on eye diseases.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Cheng-Pei Chung
- Department of Nutrition and Health Science, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | | | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
| | - Chih-Hsin Yeh
- Taoyuan District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Taoyuan 32754, Taiwan
| | - I-Jung Lee
- Herbal Medicine Department, Yokohama University of Pharmacy, Yokohama Kanagawa 245-0046, Japan
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; Department of Pharmacy, National Taiwan University, Taipei 10050, Taiwan.
| |
Collapse
|
14
|
Neroeva NV, Balatskaya NV, Neroev VV, Svetlova EV, Ryabinа MV, Ilyukhin PA, Karmokova AG. Features of Local Expression of Genes of Immune Response Cytokines and Trophic and Vasoregulatory Factors in Modeling of Retinal Pigment Epithelium Atrophy. Bull Exp Biol Med 2022; 172:453-459. [PMID: 35175467 DOI: 10.1007/s10517-022-05412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 10/19/2022]
Abstract
Local expression of genes encoding IL-1β, IL-18, MCP-1/CCL2, PEDF, VEGF-A, and ZO-1 in the retina-retinal pigment epithelium-chorioidea tissue complex was studied in healthy rabbits and animals with simulated retinal pigment epithelium atrophy. Retinal pigment epithelium atrophy was modeled by single subretinal injection of 0.01 ml 0.9% NaCl (group 1; n=17) or 0.01 ml solution containing angiogenesis inhibitor bevacizumab in a dose of 0.025 mg (group 2; n=18). The gene expression was evaluated by reverse transcription PCR. In 27.7% cases, atrophic changes in the fundus were accompanied by a significant increase of IL-1β gene expression and in more than 50% cases by an increase in VEGF-A and MCP-1/CCL2 mRNA levels. These factors contribute to an increase in the permeability of the blood-retina barrier and abolition of the immune privilege of the posterior eye segment, which should be taken into account when testing invasive approaches, in particular, for approbation of various options of replacement therapy with retinal pigment epithelium stem cells and development and use of neuroprotectors and drugs of targeted action.
Collapse
Affiliation(s)
- N V Neroeva
- Helmholtz National Medical Research Center of Eye Diseases, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N V Balatskaya
- Helmholtz National Medical Research Center of Eye Diseases, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V V Neroev
- Helmholtz National Medical Research Center of Eye Diseases, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E V Svetlova
- Helmholtz National Medical Research Center of Eye Diseases, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M V Ryabinа
- Helmholtz National Medical Research Center of Eye Diseases, Ministry of Health of the Russian Federation, Moscow, Russia
| | - P A Ilyukhin
- Helmholtz National Medical Research Center of Eye Diseases, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A G Karmokova
- Helmholtz National Medical Research Center of Eye Diseases, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
15
|
Korhonen E, Hytti M, Piippo N, Kaarniranta K, Kauppinen A. Antimycin A-induced mitochondrial dysfunction regulates inflammasome signaling in human retinal pigment epithelial cells. Exp Eye Res 2021; 209:108687. [PMID: 34216617 DOI: 10.1016/j.exer.2021.108687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/30/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022]
Abstract
Age-related macular degeneration (AMD) is a severe retinal eye disease where dysfunctional mitochondria and damaged mitochondrial DNA in retinal pigment epithelium (RPE) have been demonstrated to underlie the pathogenesis of this devastating disease. In the present study, we aimed to examine whether damaged mitochondria induce inflammasome activation in human RPE cells. Therefore, ARPE-19 cells were primed with IL-1α and exposed to the mitochondrial electron transport chain complex III inhibitor, antimycin A. We found that antimycin A-induced mitochondrial dysfunction caused caspase-1-dependent inflammasome activation and subsequent production of mature IL-1β and IL-18 in human RPE cells. AIM2 and NLRP3 appeared to be the responsible inflammasome receptors upon antimycin A-induced mitochondrial damage. We aimed at verifying our findings using hESC-RPE cells but antimycin A was absorbed by melanin. Therefore, results were repeated on D407 RPE cell cultures. Antimycin A-induced mitochondrial and NADPH oxidase-dependent ROS production occurred upstream of inflammasome activation, whereas K+ efflux was not required for inflammasome activation in antimycin A-treated human RPE cells. Collectively, our data emphasize that dysfunctional mitochondria regulate the assembly of inflammasome multiprotein complexes in the human RPE cells. The present study associates AIM2 with the pathogenesis of AMD.
Collapse
Affiliation(s)
- Eveliina Korhonen
- Immuno-Ophthalmology, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, FI-70211, Kuopio, Finland; Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, P.O.Box 720, FI-00029, Helsinki, Finland.
| | - Maria Hytti
- Immuno-Ophthalmology, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, FI-70211, Kuopio, Finland
| | - Niina Piippo
- Immuno-Ophthalmology, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, FI-70211, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.Box 1627, FI-70211, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O.Box 100, FI-70029, Kuopio, Finland
| | - Anu Kauppinen
- Immuno-Ophthalmology, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
16
|
Bhattarai N, Korhonen E, Mysore Y, Kaarniranta K, Kauppinen A. Hydroquinone Induces NLRP3-Independent IL-18 Release from ARPE-19 Cells. Cells 2021; 10:cells10061405. [PMID: 34204067 PMCID: PMC8229790 DOI: 10.3390/cells10061405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Age-related macular degeneration (AMD) is a retinal disease leading to impaired vision. Cigarette smoke increases the risk for developing AMD by causing increased reactive oxygen species (ROS) production and damage in the retinal pigment epithelium (RPE). We have previously shown that the cigarette tar component hydroquinone causes oxidative stress in human RPE cells. In the present study, we investigated the propensity of hydroquinone to induce the secretion of interleukin (IL)-1β and IL-18. The activation of these cytokines is usually regulated by the Nucleotide-binding domain, Leucine-rich repeat, and Pyrin domain 3 (NLRP3) inflammasome. ARPE-19 cells were exposed to hydroquinone, and cell viability was monitored using the lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide salt (MTT) assays. Enzyme-linked immunosorbent assays (ELISAs) were used to measure the levels of proinflammatory cytokines IL-1β and IL-18 as well as NLRP3, caspase-1, and poly (ADP-ribose) polymerase (PARP). Hydroquinone did not change IL-1β release but significantly increased the secretion of IL-18. Cytoplasmic NLRP3 levels increased after the hydroquinone treatment of IL-1α-primed RPE cells, but IL-18 was equally released from primed and nonprimed cells. Hydroquinone reduced the intracellular levels of PARP, which were restored by treatment with the ROS scavenger N-acetyl-cysteine (NAC). NAC concurrently reduced the NLRP3 levels but had no effect on IL-18 release. In contrast, the NADPH oxidase inhibitor ammonium pyrrolidinedithiocarbamate (APDC) reduced the release of IL-18 but had no effect on the NLRP3 levels. Collectively, hydroquinone caused DNA damage seen as reduced intracellular PARP levels and induced NLRP3-independent IL-18 secretion in human RPE cells.
Collapse
Affiliation(s)
- Niina Bhattarai
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (E.K.); (Y.M.)
- Correspondence: (N.B.); (A.K.); Tel.: +358-44-983-0424 (N.B.); +358-40-355-3216 (A.K.)
| | - Eveliina Korhonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (E.K.); (Y.M.)
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Yashavanthi Mysore
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (E.K.); (Y.M.)
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (E.K.); (Y.M.)
- Correspondence: (N.B.); (A.K.); Tel.: +358-44-983-0424 (N.B.); +358-40-355-3216 (A.K.)
| |
Collapse
|
17
|
Detrimental Effects of UVB on Retinal Pigment Epithelial Cells and Its Role in Age-Related Macular Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1904178. [PMID: 32855763 PMCID: PMC7443017 DOI: 10.1155/2020/1904178] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 11/25/2022]
Abstract
Retinal pigment epithelial (RPE) cells are an essential part of the human eye because they not only mediate and control the transfer of fluids and solutes but also protect the retina against photooxidative damage and renew photoreceptor cells through phagocytosis. However, their function necessitates cumulative exposure to the sun resulting in UV damage, which may lead to the development of age-related macular degeneration (AMD). Several studies have shown that UVB induces direct DNA damage and oxidative stress in RPE cells by increasing ROS and dysregulating endogenous antioxidants. Activation of different signaling pathways connected to inflammation, cell cycle arrest, and intrinsic apoptosis was reported as well. Besides that, essential functions like phagocytosis, osmoregulation, and water permeability of RPE cells were also affected. Although the melanin within RPE cells can act as a photoprotectant, this photoprotection decreases with age. Nevertheless, the changes in lens epithelium-derived growth factor (LEDGF) and autophagic activity or application of bioactive compounds from natural products can reverse the detrimental effect of UVB. Additionally, in vivo studies on the whole retina demonstrated that UVB irradiation induces gene and protein level dysregulation, indicating cellular stress and aberrations in the chromosome level. Morphological changes like retinal depigmentation and drusen formation were noted as well which is similar to the etiology of AMD, suggesting the connection of UVB damage with AMD. Therefore, future studies, which include mechanism studies via in vitro or in vivo and other potential bioactive compounds, should be pursued for a better understanding of the involvement of UVB in AMD.
Collapse
|