1
|
Corti A, Stefanati M, Leccardi M, De Filippo O, Depaoli A, Cerveri P, Migliavacca F, Corino VDA, Rodriguez Matas JF, Mainardi L, Dubini G. Predicting vulnerable coronary arteries: A combined radiomics-biomechanics approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 260:108552. [PMID: 39662235 DOI: 10.1016/j.cmpb.2024.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND AND OBJECTIVE Nowadays, vulnerable coronary plaque detection from coronary computed tomography angiography (CCTA) is suboptimal, although being crucial for preventing major adverse cardiac events. Moreover, despite the suggestion of various vulnerability biomarkers, encompassing image and biomechanical factors, accurate patient stratification remains elusive, and a comprehensive approach integrating multiple markers is lacking. To this aim, this study introduces an innovative approach for assessing vulnerable coronary arteries and patients by integrating radiomics and biomechanical markers through machine learning methods. METHODS The study included 40 patients (7 high-risk and 33 low-risk) who underwent both CCTA and coronary optical coherence tomography (OCT). The dataset comprised 49 arteries (with 167 plaques), 7 of which (with 28 plaques) identified as vulnerable by OCT. Following image preprocessing and segmentation, CCTA-based radiomic features were extracted and a finite element analysis was performed to compute the biomechanical features. A novel machine learning pipeline was implemented to stratify coronary arteries and patients. For each stratification task, three independent predictive models were developed: a radiomic, a biomechanical and a combined radiomic-biomechanical model. Both k-nearest neighbors (KNN) and decision tree (DT) classifiers were considered. RESULTS The best radiomic model (KNN) detected all 7 vulnerable arteries and patients and was associated with a balanced accuracy of 0.86 (sensitivity=1, specificity=0.71) for the artery model and of 0.83 (sensitivity=1, specificity=0.67) for the patient model. The best biomechanical model (DT) detected 6 over 7 vulnerable arteries and patients and remarkably increased the specificity, resulting in a balanced accuracy of 0.89 (sensitivity=0.86, specificity=0.93) for the artery model and of 0.88 (sensitivity=0.86, specificity=0.91) for the patient model. Notably, the combined approach optimized the performance, with an increase in the balance accuracy up to 0.94 for the artery model and up to 0.92 for the patient model, being associated with sensitivity=1 and high specificity (0.88 and 0.85 for artery and patient models, respectively). CONCLUSION This investigation highlights the promise of radio-mechanical coronary artery phenotyping for patient stratification. If confirmed from larger studies, our approach enables a more personalized management of the disease, with the early identification of high-risk individuals and the reduction of unnecessary interventions for low-risk individuals.
Collapse
Affiliation(s)
- Anna Corti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Marco Stefanati
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Matteo Leccardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Ovidio De Filippo
- Division of Cardiology, Department of Medical Sciences, "Città della Salute e della Scienza di Torino" Hospital, University of Turin, Turin, Italy
| | - Alessandro Depaoli
- Radiology Unit, Department of Surgical Sciences, "Città della Salute e della Scienza di Torino" Hospital, University of Turin, Turin, Italy
| | - Pietro Cerveri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Valentina D A Corino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; Cardiotech Lab, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - José F Rodriguez Matas
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
2
|
Vergallo R, Park SJ, Stone GW, Erlinge D, Porto I, Waksman R, Mintz GS, D'Ascenzo F, Seitun S, Saba L, Vliegenthart R, Alfonso F, Arbab-Zadeh A, Libby P, Di Carli MF, Muller JE, Maurer G, Gropler RJ, Chandrashekhar YS, Braunwald E, Fuster V, Jang IK. Vulnerable or High-Risk Plaque: A JACC: Cardiovascular Imaging Position Statement. JACC Cardiovasc Imaging 2025:S1936-878X(25)00028-2. [PMID: 40019413 DOI: 10.1016/j.jcmg.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 03/01/2025]
Abstract
The concept of high-risk plaque emerged from pathologic and epidemiologic studies 3 decades ago that demonstrated plaque rupture with thrombosis as the predominant mechanism of acute coronary syndrome and sudden cardiac death. Thin-cap fibroatheroma, a plaque with a large lipidic core covered by a thin fibrous cap, is the prototype of the rupture-prone plaque and has been traditionally defined as "vulnerable plaque." Although knowledge on the pathophysiology of plaque instability continues to grow, the risk profile of our patients has shifted and the character of atherosclerotic disease has evolved, partly because of widespread use of lipid-lowering therapies and other preventive measures. In vivo intracoronary imaging studies indicate that superficial erosion causes up to 40% of acute coronary syndromes. This changing landscape calls for broader perspective, expanding the concept of high-risk plaque to the precursors of all major substrates of coronary thrombosis beyond plaque rupture. Other factors to take into consideration include dynamic changes in plaque composition, the importance of plaque burden, inflammatory activation (both local and systemic), healing mechanisms, regional hemodynamic pattern, properties of the fluid phase of blood, and the amount of myocardium at risk subtended by a lesion. Rather than the traditional focus limited to the thin-cap fibroatheroma, the authors advocate a more comprehensive approach that considers both morphologic features and biological activity of plaques and blood. This position paper highlights the challenges to the usual concept of high-risk plaque, proposes a broader definition, and analyzes its key morphologic features, the technological progress of plaque imaging (particularly using intracoronary imaging techniques), advances in pharmacologic therapies for plaque regression and stabilization, and the feasibility and efficacy of focal interventional treatments including preemptive plaque sealing.
Collapse
Affiliation(s)
- Rocco Vergallo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Università di Genova, Genoa, Italy
| | | | - Gregg W Stone
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Italo Porto
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Università di Genova, Genoa, Italy
| | - Ron Waksman
- MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Gary S Mintz
- Cardiovascular Research Foundation, New York, New York, USA
| | | | - Sara Seitun
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Saba
- University of Cagliari, Cagliari, Italy
| | | | - Fernando Alfonso
- Hospital Universitario La Princesa, CIBERCV, IIS-IP, Universidad Autónoma Madrid, Madrid, Spain
| | | | - Peter Libby
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - James E Muller
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Robert J Gropler
- Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Valentin Fuster
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ik-Kyung Jang
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Liang X, Tian S, Zhang H, Sun S, Zhang P, Li J, Li Y, Zhang Y, Liu Z. Efferocytosis: A new star of atherosclerotic plaques reversal. Int Immunopharmacol 2025; 146:113904. [PMID: 39724733 DOI: 10.1016/j.intimp.2024.113904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Efferocytosis is considered the key to eliminate apoptotic cells (ACs) under physiological and pathological conditions in vivo, mainly through different types of macrophages to achieve this process. Especially, tissue-resident macrophages (TRMs) are very significant for inflammation regression and maintenance of homeostasis in vivo. Abnormal efferocytosis will lead to the accumulation of ACs and the release of a variety of pro-inflammatory factors, which mediates the occurrence of many inflammatory diseases, including atherosclerosis (AS). AS is a chronic inflammatory vascular disease with the participation of the immune system. Defective efferocytosis will accelerate the progress of AS to a certain extent. Therefore, it is of great significance to understand the mechanism of efferocytosis and realize the prevention and treatment of AS through efferocytosis. In this review, we will briefly describe the specific process of efferocytosis, deeply discuss the possible molecular mechanism of impaired efferocytosis promoting the development of AS, and summarize the ways to prevent and treat AS through efferocytosis intervention therapy.
Collapse
Affiliation(s)
- Xiangyu Liang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| | - Shuoqi Tian
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| | - Han Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| | - Shusen Sun
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| | - Peixiang Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| | - Jiameng Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| | - Yong Li
- Beijing Yongkang Nian Health Technology Co., Ltd., Beijing, China.
| | - Yanfen Zhang
- Technology Transfer Center, Hebei University, Baoding, China.
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| |
Collapse
|
4
|
Corti A, Lo Iacono F, Ronchetti F, Mushtaq S, Pontone G, Colombo GI, Corino VDA. Enhancing cardiovascular risk stratification: Radiomics of coronary plaque and perivascular adipose tissue - Current insights and future perspectives. Trends Cardiovasc Med 2025; 35:47-59. [PMID: 38960074 DOI: 10.1016/j.tcm.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Radiomics, the quantitative extraction and mining of features from radiological images, has recently emerged as a promising source of non-invasive image-based cardiovascular biomarkers, potentially revolutionizing diagnostics and risk assessment. This review explores its application within coronary plaques and pericoronary adipose tissue, particularly focusing on plaque characterization and cardiac events prediction. By shedding light on the current state-of-the-art, achievements, and prospective avenues, this review contributes to a deeper understanding of the evolving landscape of radiomics in the context of coronary arteries. Finally, open challenges and existing gaps are emphasized to underscore the need for future efforts aimed at ensuring the robustness and reliability of radiomics studies, facilitating their clinical translation.
Collapse
Affiliation(s)
- Anna Corti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan 20133, Italy.
| | - Francesca Lo Iacono
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan 20133, Italy
| | - Francesca Ronchetti
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Gualtiero I Colombo
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Valentina D A Corino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan 20133, Italy; Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
5
|
Buonpane A, Trimarchi G, Ciardetti M, Coceani MA, Alagna G, Benedetti G, Berti S, Andò G, Burzotta F, De Caterina AR. Optical Coherence Tomography in Myocardial Infarction Management: Enhancing Precision in Percutaneous Coronary Intervention. J Clin Med 2024; 13:5791. [PMID: 39407851 PMCID: PMC11477163 DOI: 10.3390/jcm13195791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
In acute myocardial infarction (AMI), the urgency of coronary revascularization through percutaneous coronary intervention (PCI) is paramount, offering notable advantages over pharmacologic treatment. However, the persistent risk of adverse events, including recurrent AMI and heart failure post-revascularization, underscores the necessity for enhanced strategies in managing coronary artery disease. Traditional angiography, while widely employed, presents significant limitations by providing only two-dimensional representations of complex three-dimensional vascular structures, hampering the accurate assessment of plaque characteristics and stenosis severity. Intravascular imaging, specifically optical coherence tomography (OCT), significantly addresses these limitations with superior spatial resolution compared to intravascular ultrasound (IVUS). Within the context of AMI, OCT serves dual purposes: as a diagnostic tool to accurately identify culprit lesions in ambiguous cases and as a guide for optimizing PCI procedures. Its capacity to differentiate between various mechanisms of acute coronary syndrome, such as plaque rupture and spontaneous coronary dissection, enhances its diagnostic potential. Furthermore, OCT facilitates precise lesion preparation, optimal stent sizing, and confirms stent deployment efficacy. Recent meta-analyses indicate that OCT-guided PCI markedly improves safety and efficacy in revascularization, subsequently decreasing the risks of mortality and complications. This review emphasizes the critical role of OCT in refining patient-specific therapeutic approaches, aligning with the principles of precision medicine to enhance clinical outcomes for individuals experiencing AMI.
Collapse
Affiliation(s)
- Angela Buonpane
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Largo Agostino Gemelli, 1, 00168 Roma, Italy; (A.B.); (F.B.)
| | - Giancarlo Trimarchi
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (G.T.); (G.A.)
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Marco Ciardetti
- Cardiology and Pneumology Division, Fondazione Toscana G. Monasterio, 56124 Pisa, Italy; (M.C.); (M.A.C.)
| | - Michele Alessandro Coceani
- Cardiology and Pneumology Division, Fondazione Toscana G. Monasterio, 56124 Pisa, Italy; (M.C.); (M.A.C.)
| | - Giulia Alagna
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (G.T.); (G.A.)
| | - Giovanni Benedetti
- Fondazione Toscana G. Monasterio, Ospedale del Cuore G., Pasquinucci, 54100 Massa, Italy; (G.B.); (S.B.); (A.R.D.C.)
| | - Sergio Berti
- Fondazione Toscana G. Monasterio, Ospedale del Cuore G., Pasquinucci, 54100 Massa, Italy; (G.B.); (S.B.); (A.R.D.C.)
| | - Giuseppe Andò
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (G.T.); (G.A.)
| | - Francesco Burzotta
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Largo Agostino Gemelli, 1, 00168 Roma, Italy; (A.B.); (F.B.)
| | - Alberto Ranieri De Caterina
- Fondazione Toscana G. Monasterio, Ospedale del Cuore G., Pasquinucci, 54100 Massa, Italy; (G.B.); (S.B.); (A.R.D.C.)
| |
Collapse
|
6
|
Kiełbowski K, Żychowska J, Bakinowska E, Pawlik A. Non-Coding RNA Involved in the Pathogenesis of Atherosclerosis-A Narrative Review. Diagnostics (Basel) 2024; 14:1981. [PMID: 39272765 PMCID: PMC11394555 DOI: 10.3390/diagnostics14171981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Atherosclerosis is a highly prevalent condition associated with lipid accumulation in the intima layer of arterial blood vessels. The development of atherosclerotic plaques is associated with the incidence of major cardiovascular events, such as acute coronary syndrome or ischemic stroke. Due to the significant prevalence of atherosclerosis and its subclinical progression, it is associated with severe and potentially lethal complications. The pathogenesis of atherosclerosis is complex and not entirely known. The identification of novel non-invasive diagnostic markers and treatment methods that could suppress the progression of this condition is highly required. Non-coding RNA (ncRNA) involves several subclasses of RNA molecules. microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) differently regulate gene expression. Importantly, these molecules are frequently dysregulated under pathological conditions, which is associated with enhanced or suppressed expression of their target genes. In this review, we aim to discuss the involvement of ncRNA in crucial mechanisms implicated in the pathogenesis of atherosclerosis. We summarize current evidence on the potential use of these molecules as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Justyna Żychowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
7
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) The First Department of Thoracic Surgery Peking University Cancer Hospital and Institute Peking University School of Oncology Beijing China
| | - Jin Zhang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Yuchen Yang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Zhuofeng Liu
- Department of Traditional Chinese Medicine The Third Affiliated Hospital of Xi'an Medical University Xi'an China
| | - Sijia Sun
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Rui Li
- Department of Epidemiology School of Public Health Air Force Medical University Xi'an China
| | - Hui Zhu
- Department of Anatomy Medical College of Yan'an University Yan'an China
- Institute of Medical Research Northwestern Polytechnical University Xi'an China
| | - Tian Li
- School of Basic Medicine Fourth Military Medical University Xi'an China
| | - Jin Zheng
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Jie Li
- Department of Endocrine Xijing 986 Hospital Air Force Medical University Xi'an China
| | - Litian Ma
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
- Department of Gastroenterology Tangdu Hospital Air Force Medical University Xi'an China
- School of Medicine Northwest University Xi'an China
| |
Collapse
|
8
|
Chen X, Cao H, Li Y, Chen F, Peng Y, Zheng T, Chen M. Hemodynamic influence of mild stenosis morphology in different coronary arteries: a computational fluid dynamic modelling study. Front Bioeng Biotechnol 2024; 12:1439846. [PMID: 39157447 PMCID: PMC11327040 DOI: 10.3389/fbioe.2024.1439846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction: Mild stenosis [degree of stenosis (DS) < 50%] is commonly labeled as nonobstructive lesion. Some lesions remain stable for several years, while others precipitate acute coronary syndromes (ACS) rapidly. The causes of ACS and the factors leading to diverse clinical outcomes remain unclear. Method: This study aimed to investigate the hemodynamic influence of mild stenosis morphologies in different coronary arteries. The stenoses were modeled with different morphologies based on a healthy individual data. Computational fluid dynamics analysis was used to obtain hemodynamic characteristics, including flow waveforms, fractional flow reserve (FFR), flow streamlines, time-average wall shear stress (TAWSS), and oscillatory shear index (OSI). Results: Numerical simulation indicated significant hemodynamic differences among different DS and locations. In the 20%-30% range, significant large, low-velocity vortexes resulted in low TAWSS (<4 dyne/cm2) around stenoses. In the 30%-50% range, high flow velocity due to lumen area reduction resulted in high TAWSS (>40 dyne/cm2), rapidly expanding the high TAWSS area (averagely increased by 0.46 cm2) in left main artery and left anterior descending artery (LAD), where high OSI areas remained extensive (>0.19 cm2). Discussion: While mild stenosis does not pose any immediate ischemic risk due to a FFR > 0.95, 20%-50% stenosis requires attention and further subdivision based on location is essential. Rapid progression is a danger for lesions with 20%-30% DS near the stenoses and in the proximal LAD, while lesions with 30%-50% DS can cause plaque injury and rupture. These findings support clinical practice in early assessment, monitoring, and preventive treatment.
Collapse
Affiliation(s)
- Xi Chen
- Department of Mechanics and Engineering, College Architecture and Environment, Sichuan University, Chengdu, China
| | - Haoyao Cao
- Department of Mechanics and Engineering, College Architecture and Environment, Sichuan University, Chengdu, China
- Yibin Institute of Industrial Technology, Sichuan University, Yibin, China
| | - Yiming Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghui Zheng
- Department of Mechanics and Engineering, College Architecture and Environment, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Zhu G, Li Y, Gao H, Li X, Fan H, Fan L. Mzb1 Attenuates Atherosclerotic Plaque Vulnerability in ApoE-/- Mice by Alleviating Apoptosis and Modulating Mitochondrial Function. J Cardiovasc Transl Res 2024; 17:782-794. [PMID: 38294627 DOI: 10.1007/s12265-024-10483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
In this study, we investigated the protective role of Mzb1 in atherosclerotic plaque vulnerability. To explore the impact of Mzb1, we analyzed Mzb1 expression, assessed apoptosis, and evaluated mitochondrial function in atherosclerosis (AS) mouse models and human vascular smooth muscle cells (HVSMCs). We observed a significant decrease in Mzb1 expression in AS mouse models and ox-LDL-treated HVSMCs. Downregulation of Mzb1 increased ox-LDL-induced apoptosis and cholesterol levels of HVSMCs, while Mzb1 overexpression alleviated these effect. Mzb1 was found to enhance mitochondrial function, as evidenced by restored ATP synthesis, mitochondrial membrane potential, and reduced mtROS production. Moreover, Mzb1 overexpression attenuated atherosclerotic plaque vulnerability in ApoE-/- mice. Our findings suggest that Mzb1 overexpression regulates the AMPK/SIRT1 signaling pathway, leading to the attenuation of atherosclerotic plaque vulnerability. This study provides compelling evidence for the protective effect of Mzb1 on atherosclerotic plaques by alleviating apoptosis and modulating mitochondrial function in ApoE-/- mice.
Collapse
MESH Headings
- Animals
- Apoptosis
- Plaque, Atherosclerotic
- Disease Models, Animal
- Mice, Knockout, ApoE
- Signal Transduction
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Humans
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Atherosclerosis/prevention & control
- Sirtuin 1/metabolism
- Sirtuin 1/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- AMP-Activated Protein Kinases/metabolism
- Mice, Inbred C57BL
- Cells, Cultured
- Male
- Lipoproteins, LDL/metabolism
- Mitochondria/metabolism
- Mitochondria/pathology
- Rupture, Spontaneous
- Membrane Potential, Mitochondrial
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/prevention & control
- Apolipoproteins E/genetics
- Apolipoproteins E/deficiency
- Adenosine Triphosphate/metabolism
- Aorta/metabolism
- Aorta/pathology
Collapse
Affiliation(s)
- Guanglang Zhu
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park Road, Qingpu, Shanghai, 201700, People's Republic of China
| | - Yang Li
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongxia Gao
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park Road, Qingpu, Shanghai, 201700, People's Republic of China
| | - Xu Li
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park Road, Qingpu, Shanghai, 201700, People's Republic of China
| | - Heyu Fan
- School of Arts and Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Longhua Fan
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park Road, Qingpu, Shanghai, 201700, People's Republic of China.
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
10
|
Mori M, Sakamoto A, Kawakami R, Guo L, Slenders L, Mosquera JV, Ghosh SKB, Wesseling M, Shiraki T, Bellissard A, Shah P, Weinkauf CC, Konishi T, Sato Y, Cornelissen A, Kawai K, Jinnouchi H, Xu W, Vozenilek AE, Williams D, Tanaka T, Sekimoto T, Kelly MC, Fernandez R, Grogan A, Coslet AJ, Fedotova A, Kurse A, Mokry M, Romero ME, Kolodgie FD, Pasterkamp G, Miller CL, Virmani R, Finn AV. CD163 + Macrophages Induce Endothelial-to-Mesenchymal Transition in Atheroma. Circ Res 2024; 135:e4-e23. [PMID: 38860377 DOI: 10.1161/circresaha.123.324082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Cell phenotype switching is increasingly being recognized in atherosclerosis. However, our understanding of the exact stimuli for such cellular transformations and their significance for human atherosclerosis is still evolving. Intraplaque hemorrhage is thought to be a major contributor to plaque progression in part by stimulating the influx of CD163+ macrophages. Here, we explored the hypothesis that CD163+ macrophages cause plaque progression through the induction of proapoptotic endothelial-to-mesenchymal transition (EndMT) within the fibrous cap. METHODS Human coronary artery sections from CVPath's autopsy registry were selected for pathological analysis. Athero-prone ApoE-/- and ApoE-/-/CD163-/- mice were used for in vivo studies. Human peripheral blood mononuclear cell-induced macrophages and human aortic endothelial cells were used for in vitro experiments. RESULTS In 107 lesions with acute coronary plaque rupture, 55% had pathological evidence of intraplaque hemorrhage in nonculprit vessels/lesions. Thinner fibrous cap, greater CD163+ macrophage accumulation, and a larger number of CD31/FSP-1 (fibroblast specific protein-1) double-positive cells and TUNEL (terminal deoxynucleotidyl transferase-dUTP nick end labeling) positive cells in the fibrous cap were observed in nonculprit intraplaque hemorrhage lesions, as well as in culprit rupture sections versus nonculprit fibroatheroma sections. Human aortic endothelial cells cultured with supernatants from hemoglobin/haptoglobin-exposed macrophages showed that increased mesenchymal marker proteins (transgelin and FSP-1) while endothelial markers (VE-cadherin and CD31) were reduced, suggesting EndMT induction. Activation of NF-κB (nuclear factor kappa β) signaling by proinflammatory cytokines released from CD163+ macrophages directly regulated the expression of Snail, a critical transcription factor during EndMT induction. Western blot analysis for cleaved caspase-3 and microarray analysis of human aortic endothelial cells indicated that apoptosis was stimulated during CD163+ macrophage-induced EndMT. Additionally, CD163 deletion in athero-prone mice suggested that CD163 is required for EndMT and plaque progression. Using single-cell RNA sequencing from human carotid endarterectomy lesions, a population of EndMT was detected, which demonstrated significant upregulation of apoptosis-related genes. CONCLUSIONS CD163+ macrophages provoke EndMT, which may promote plaque progression through fibrous cap thinning.
Collapse
MESH Headings
- Humans
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Animals
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Macrophages/metabolism
- Macrophages/pathology
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Mice
- Cells, Cultured
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Male
- Mice, Knockout, ApoE
- Mice, Inbred C57BL
- Apoptosis
- Female
- Epithelial-Mesenchymal Transition
- Coronary Vessels/pathology
- Coronary Vessels/metabolism
Collapse
Affiliation(s)
- Masayuki Mori
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Atsushi Sakamoto
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
- Hamamatsu University School of Medicine, Shizuoka, Japan (A.S.)
| | - Rika Kawakami
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Liang Guo
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Lotte Slenders
- University Medical Center Utrecht, the Netherlands (L.S., M.W., M. Mokry, G.P.)
| | - Jose Verdezoto Mosquera
- Department of Public Health Sciences, Department of Biochemistry and Molecular Genetics, Center for Public Health Genomics, University of Virginia, Charlottesville (J.V.M., C.L.M.)
| | - Saikat Kumar B Ghosh
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Marian Wesseling
- University Medical Center Utrecht, the Netherlands (L.S., M.W., M. Mokry, G.P.)
| | - Tatsuya Shiraki
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Arielle Bellissard
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Palak Shah
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | | | - Takao Konishi
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Yu Sato
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Anne Cornelissen
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Kenji Kawai
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Hiroyuki Jinnouchi
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Weili Xu
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Aimee E Vozenilek
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Desiree Williams
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Takamasa Tanaka
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Teruo Sekimoto
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Michael C Kelly
- Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD (M.C.K.)
| | - Raquel Fernandez
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Alyssa Grogan
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - A J Coslet
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Alisa Fedotova
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Anjali Kurse
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Michal Mokry
- University Medical Center Utrecht, the Netherlands (L.S., M.W., M. Mokry, G.P.)
| | - Maria E Romero
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Frank D Kolodgie
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Gerard Pasterkamp
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
- University Medical Center Utrecht, the Netherlands (L.S., M.W., M. Mokry, G.P.)
| | - Clint L Miller
- Department of Public Health Sciences, Department of Biochemistry and Molecular Genetics, Center for Public Health Genomics, University of Virginia, Charlottesville (J.V.M., C.L.M.)
| | - Renu Virmani
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
| | - Aloke V Finn
- Department of Pathology, CVPath Institute, Inc, Gaithersburg, MD (M. Mori, A.S., R.K., L.G., S.K.B.G., T. Shiraki, A.B., P.S., T.K., Y.S., A.C., K.K., H.J., W.X., A.E.V., D.W., T.T., T. Sekimoto, R.F., A.G., A.J.C., A.F., A.K., M.E.R., F.D.K., R.V., A.V.F.)
- University of Maryland School of Medicine, Baltimore (A.V.F.)
| |
Collapse
|
11
|
Kawai K, Kawakami R, Finn AV, Virmani R. Differences in Stable and Unstable Atherosclerotic Plaque. Arterioscler Thromb Vasc Biol 2024; 44:1474-1484. [PMID: 38924440 DOI: 10.1161/atvbaha.124.319396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Affiliation(s)
- Kenji Kawai
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., R.K., A.V.F., R.V.)
| | - Rika Kawakami
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., R.K., A.V.F., R.V.)
| | - Aloke V Finn
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., R.K., A.V.F., R.V.)
- University of Maryland School of Medicine, Baltimore (A.V.F.)
| | - Renu Virmani
- Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., R.K., A.V.F., R.V.)
| |
Collapse
|
12
|
Zhang J, Han Y, Jia R, Zhu Q, Wang X, Liu M, Zhang W. Exploring the role of myeloperoxidase in the atherosclerotic process in hypoxic mice based on the MAPK signaling pathway. Biochem Pharmacol 2024; 225:116275. [PMID: 38729447 DOI: 10.1016/j.bcp.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Atherosclerosis (AS) is the common pathophysiological basis of various cardiovascular diseases and the leading cause of death from cardiovascular disease worldwide. When the body is in a hypoxic environment, enhanced oxidative stress and significant accumulation of reactive oxygen species (ROS) in tissue cells exacerbate the inflammatory response, resulting in increased release of myeloperoxidase (MPO), catalyzing the formation of large quantities of hypochlorous acid (HOCl), further oxidative modification of low-density lipoprotein (LDL), and exacerbating the formation and progression of atherosclerotic plaques. The MAPK signaling pathway is important in oxidative stress-mediated promotion of atherogenesis. MPO -/- mice were used in this study to establish a hypoxia model simulating 5000 m altitude and a Western high-fat diet-induced atherosclerosis model for 12 weeks. Exploring the role of MPO in the atherosclerotic process in hypoxic mice by observing the MAPK signaling pathway to provide a therapeutic target for the prevention and treatment of hypoxic atherosclerotic disease in the plateau. We found that hypoxia promotes the formation of atherosclerosis in mice, and the mechanism may be that increased MPO in vivo promotes an inflammatory response, which plays a crucial role in the formation of atherosclerosis. In addition, hypoxia further exacerbates plaque instability by activating the MAPK signaling pathway to upregulate vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP9), which in turn promotes angiogenesis within the plaque. Therefore, a potential target for preventing and treating hypoxic atherosclerotic disease is the inhibition of MPO.
Collapse
Affiliation(s)
- Jingxuan Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Ying Han
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Ruhan Jia
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Qinfang Zhu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China; Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Xiaozhou Wang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China; Department of Hypertension, Qinghai Cardio-Cerebrovascular Hospital, Xining, Qinghai, China
| | - Meiheng Liu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Wei Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China.
| |
Collapse
|
13
|
Jovin DG, Sumpio BE, Greif DM. Manifestations of human atherosclerosis across vascular beds. JVS-VASCULAR INSIGHTS 2024; 2:100089. [PMID: 39822712 PMCID: PMC11737335 DOI: 10.1016/j.jvsvi.2024.100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Objective Atherosclerosis underlies the most common etiologies of mortality worldwide, resulting in nearly 10 million deaths annually. In atherosclerosis, inflammation, metabolic factors, and hemodynamics cause the accumulation of extracellular lipids and the formation of plaques in the tunica intima of specific arteries. Atherosclerotic plaques primarily form in the coronary and carotid arteries, the aorta, and the peripheral arteries of the lower extremities. Although a common conceptual model of atherogenesis across these arteries has evolved over decades, there is a limited understanding of the important differences in regional atherosclerotic disease. Methods This review summarizes clinical studies, meta-analyses, and case reports to compare and contrast the impact, risk, plaque features, and clinical management of carotid, coronary, and femoral atherosclerosis in humans. Results Common risk factors, such as smoking and diabetes, influence disease risk differently across vascular beds. In addition, biological variables demonstrate a region-specific relationship with disease as peripheral atherosclerosis is most heritable, and male sex increases the risk of coronary and carotid, but not peripheral artery disease. The pathology of atherosclerotic lesions also varies between vascular territories. Specifically, carotid plaques are primarily lipid rich, whereas coronary plaques more commonly include fibrotic components with lipid-rich features, and femoral plaques are predominantly fibrocalcific. Clinically, interventional outcomes are worst in the carotid arteries and response to medical therapies, particularly statins, is not consistent across diseased regions, even within individual patients. Conclusions Atherosclerosis manifests in site-specific ways with regional differences in susceptibility and treatment response. Despite advances in the scientific understanding and clinical management of atherosclerosis, little is known about the mechanisms determining vessel-specific disease patterns and risk. Further research is needed urgently to delineate factors controlling plaque initiation and progression specific to vascular beds.
Collapse
Affiliation(s)
- Daniel G. Jovin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Genetics, Yale University
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Stem Cell Center, Yale University
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, MD-PhD Program, Yale University
| | - Bauer E. Sumpio
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Division of Vascular and Endovascular Surgery, Department of Surgery, Yale University
| | - Daniel M. Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Genetics, Yale University
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Stem Cell Center, Yale University
| |
Collapse
|
14
|
Papaioannou I, Dritsoula A, Kang P, Baliga RS, Trinder SL, Cook E, Shiwen X, Hobbs AJ, Denton CP, Abraham DJ, Ponticos M. NKX2-5 regulates vessel remodeling in scleroderma-associated pulmonary arterial hypertension. JCI Insight 2024; 9:e164191. [PMID: 38652537 PMCID: PMC11141943 DOI: 10.1172/jci.insight.164191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
NKX2-5 is a member of the homeobox-containing transcription factors critical in regulating tissue differentiation in development. Here, we report a role for NKX2-5 in vascular smooth muscle cell phenotypic modulation in vitro and in vascular remodeling in vivo. NKX2-5 is upregulated in scleroderma patients with pulmonary arterial hypertension. Suppression of NKX2-5 expression in smooth muscle cells halted vascular smooth muscle proliferation and migration, enhanced contractility, and blocked the expression of extracellular matrix genes. Conversely, overexpression of NKX2-5 suppressed the expression of contractile genes (ACTA2, TAGLN, CNN1) and enhanced the expression of matrix genes (COL1) in vascular smooth muscle cells. In vivo, conditional deletion of NKX2-5 attenuated blood vessel remodeling and halted the progression to hypertension in a mouse chronic hypoxia model. This study revealed that signals related to injury such as serum and low confluence, which induce NKX2-5 expression in cultured cells, is potentiated by TGF-β and further enhanced by hypoxia. The effect of TGF-β was sensitive to ERK5 and PI3K inhibition. Our data suggest a pivotal role for NKX2-5 in the phenotypic modulation of smooth muscle cells during pathological vascular remodeling and provide proof of concept for therapeutic targeting of NKX2-5 in vasculopathies.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Cell Proliferation/genetics
- Disease Models, Animal
- Homeobox Protein Nkx-2.5/genetics
- Homeobox Protein Nkx-2.5/metabolism
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/etiology
- Scleroderma, Systemic/pathology
- Scleroderma, Systemic/complications
- Scleroderma, Systemic/metabolism
- Scleroderma, Systemic/genetics
- Transforming Growth Factor beta/metabolism
- Vascular Remodeling
Collapse
Affiliation(s)
- Ioannis Papaioannou
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Athina Dritsoula
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Ping Kang
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Reshma S. Baliga
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Sarah L. Trinder
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Emma Cook
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Xu Shiwen
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Adrian J. Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Christopher P. Denton
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - David J. Abraham
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Markella Ponticos
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| |
Collapse
|
15
|
Jansen I, Cahalane R, Hengst R, Akyildiz A, Farrell E, Gijsen F, Aikawa E, van der Heiden K, Wissing T. The interplay of collagen, macrophages, and microcalcification in atherosclerotic plaque cap rupture mechanics. Basic Res Cardiol 2024; 119:193-213. [PMID: 38329498 PMCID: PMC11008085 DOI: 10.1007/s00395-024-01033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
The rupture of an atherosclerotic plaque cap overlying a lipid pool and/or necrotic core can lead to thrombotic cardiovascular events. In essence, the rupture of the plaque cap is a mechanical event, which occurs when the local stress exceeds the local tissue strength. However, due to inter- and intra-cap heterogeneity, the resulting ultimate cap strength varies, causing proper assessment of the plaque at risk of rupture to be lacking. Important players involved in tissue strength include the load-bearing collagenous matrix, macrophages, as major promoters of extracellular matrix degradation, and microcalcifications, deposits that can exacerbate local stress, increasing tissue propensity for rupture. This review summarizes the role of these components individually in tissue mechanics, along with the interplay between them. We argue that to be able to improve risk assessment, a better understanding of the effect of these individual components, as well as their reciprocal relationships on cap mechanics, is required. Finally, we discuss potential future steps, including a holistic multidisciplinary approach, multifactorial 3D in vitro model systems, and advancements in imaging techniques. The obtained knowledge will ultimately serve as input to help diagnose, prevent, and treat atherosclerotic cap rupture.
Collapse
Affiliation(s)
- Imke Jansen
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rachel Cahalane
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ranmadusha Hengst
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ali Akyildiz
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Biomechanical Engineering, Technical University Delft, Delft, The Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Frank Gijsen
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Biomechanical Engineering, Technical University Delft, Delft, The Netherlands
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kim van der Heiden
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tamar Wissing
- Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
16
|
de Knegt MC, Linde JJ, Sigvardsen PE, Engstrøm T, Fuchs A, Jensen AK, Elming H, Kühl JT, Hansen PR, Høfsten DE, Kelbæk H, Nordestgaard BG, Hove JD, Køber LV, Kofoed KF. The importance of nonobstructive plaque characteristics in symptomatic and asymptomatic coronary artery disease. J Cardiovasc Comput Tomogr 2024; 18:203-210. [PMID: 38320905 DOI: 10.1016/j.jcct.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/08/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND We examined obstructive and nonobstructive plaque volumes in populations with subclinical and clinically manifested coronary artery disease (CAD) using quantitative computed tomography (QCT). METHODS 855 participants with CAD (274 asymptomatic individuals, 254 acute chest pain patients without acute coronary syndrome (ACS), and 327 patients with ACS) underwent QCT of proximal coronary segments to assess participant-level plaque volumes of dense calcium, fibrous, fibrofatty, and necrotic core tissue. RESULTS Nonobstructive (<50% stenosis) plaque volumes were greater than obstructive plaque volumes, irrespective of population (all p<0.0001): Asymptomatic individuals (mean (95% CI)): 218 [190-250] vs. 16 [12-22] mm3; acute chest pain patients without ACS: 300 [263-341] vs. 51 [41-62] mm3; patients with ACS: 370 [332-412] vs. 159 [139-182] mm3. After multivariable adjustment, nonobstructive fibrous and fibrofatty tissue volumes were greater in acute chest pain patients without ACS compared to asymptomatic individuals (fibrous tissue: 122 [107-139] vs. 175 [155-197] mm3, p<0.01; fibrofatty tissue: 44 [38-50] vs. 71 [63-80] mm3, p<0.01. Necrotic core tissue was greater in ACS patients (29 [26-33] mm3) compared to both asymptomatic individuals (15 [13-18] mm3, p<0.0001) and acute chest pain patients without ACS (21 [18-24] mm3, p<0.05). Nonobstructive dense calcium volumes did not differ between the three populations: 29 [24-36], 29 [23-35], and 41 [34-48] mm3, p>0.3 respectively. CONCLUSION Nonobstructive CAD was the predominant contributor to total atherosclerotic plaque volume in both subclinical and clinically manifested CAD. Nonobstructive fibrous, fibrofatty and necrotic core tissue volumes increased with worsening clinical presentation, while nonobstructive dense calcium tissue volumes did not.
Collapse
Affiliation(s)
- Martina C de Knegt
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jesper J Linde
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Per E Sigvardsen
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Engstrøm
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Fuchs
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas K Jensen
- Section of Biostatistics, Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Elming
- Department of Cardiology, Zealand University Hospital, Roskilde, Denmark
| | - J Tobias Kühl
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter R Hansen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Dan E Høfsten
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henning Kelbæk
- Department of Cardiology, Zealand University Hospital, Roskilde, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens D Hove
- Department of Cardiology, Amager and Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark; Center of Functional Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Lars V Køber
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Klaus F Kofoed
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Radiology, The Diagnostic Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
17
|
Nyayapathi N, Zheng E, Zhou Q, Doyley M, Xia J. Dual-modal Photoacoustic and Ultrasound Imaging: from preclinical to clinical applications. FRONTIERS IN PHOTONICS 2024; 5:1359784. [PMID: 39185248 PMCID: PMC11343488 DOI: 10.3389/fphot.2024.1359784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Photoacoustic imaging is a novel biomedical imaging modality that has emerged over the recent decades. Due to the conversion of optical energy into the acoustic wave, photoacoustic imaging offers high-resolution imaging in depth beyond the optical diffusion limit. Photoacoustic imaging is frequently used in conjunction with ultrasound as a hybrid modality. The combination enables the acquisition of both optical and acoustic contrasts of tissue, providing functional, structural, molecular, and vascular information within the same field of view. In this review, we first described the principles of various photoacoustic and ultrasound imaging techniques and then classified the dual-modal imaging systems based on their preclinical and clinical imaging applications. The advantages of dual-modal imaging were thoroughly analyzed. Finally, the review ends with a critical discussion of existing developments and a look toward the future.
Collapse
Affiliation(s)
- Nikhila Nyayapathi
- Electrical and Computer Engineering, University of Rochester, Rochester, New York, 14627
| | - Emily Zheng
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, 14226
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007
| | - Marvin Doyley
- Electrical and Computer Engineering, University of Rochester, Rochester, New York, 14627
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, 14226
| |
Collapse
|
18
|
Los J, Mensink FB, Mohammadnia N, Opstal TSJ, Damman P, Volleberg RHJA, Peeters DAM, van Royen N, Garcia-Garcia HM, Cornel JH, El Messaoudi S, van Geuns RJM. Invasive coronary imaging of inflammation to further characterize high-risk lesions: what options do we have? Front Cardiovasc Med 2024; 11:1352025. [PMID: 38370159 PMCID: PMC10871865 DOI: 10.3389/fcvm.2024.1352025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Coronary atherosclerosis remains a leading cause of morbidity and mortality worldwide. The underlying pathophysiology includes a complex interplay of endothelial dysfunction, lipid accumulation and inflammatory pathways. Multiple structural and inflammatory features of the atherosclerotic lesions have become targets to identify high-risk lesions. Various intracoronary imaging devices have been developed to assess the morphological, biocompositional and molecular profile of the intracoronary atheromata. These techniques guide interventional and therapeutical management and allow the identification and stratification of atherosclerotic lesions. We sought to provide an overview of the inflammatory pathobiology of atherosclerosis, distinct high-risk plaque features and the ability to visualize this process with contemporary intracoronary imaging techniques.
Collapse
Affiliation(s)
- Jonathan Los
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frans B. Mensink
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Tjerk S. J. Opstal
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Cardiology, Northwest Clinics, Alkmaar, Netherlands
| | - Peter Damman
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Denise A. M. Peeters
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Niels van Royen
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Jan H. Cornel
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Cardiology, Northwest Clinics, Alkmaar, Netherlands
- Dutch Network for Cardiovascular Research (WCN), Utrecht, Netherlands
| | - Saloua El Messaoudi
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | |
Collapse
|
19
|
Gera P, Wasserstein DH, Frishman WH, Aronow WS. Low-Dose Colchicine for the Prevention of Cardiovascular Events After Acute Coronary Syndrome. Cardiol Rev 2024:00045415-990000000-00190. [PMID: 38189365 DOI: 10.1097/crd.0000000000000650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Colchicine, an established anti-inflammatory drug, is examined for its potential in mitigating adverse cardiovascular events following acute coronary syndrome (ACS). ACS, primarily triggered by plaque rupture and subsequent thrombosis, is a critical cardiovascular condition. Colchicine's mechanism of action involves inhibiting microtubule activity, leading to immobilization of white blood cells and reducing inflammation. Clinical data from studies, including low-dose colchicine for secondary prevention of cardiovascular disease two and colchicine cardiovascular outcomes trial, support its efficacy in reducing major cardiovascular events post-ACS, though some studies report varying results. Colchicine can cause transient gastrointestinal side effects and is prescribed with caution in patients with certain medical conditions. The recent FDA approval of a low dose of colchicine reiterates its benefit in reducing cardiovascular risk. The cost-effectiveness of colchicine products (0.5 and 0.6 mg doses) are compared, suggesting the generic 0.6 mg dose of colchicine to be an alternative to branded forms of the drug.
Collapse
Affiliation(s)
- Priyanka Gera
- From the Westchester Medical Center, New York Medical College, Valhalla, NY
| | | | | | | |
Collapse
|
20
|
Dell’Aversana S, Ascione R, Vitale RA, Cavaliere F, Porcaro P, Basile L, Napolitano G, Boccalatte M, Sibilio G, Esposito G, Franzone A, Di Costanzo G, Muscogiuri G, Sironi S, Cuocolo R, Cavaglià E, Ponsiglione A, Imbriaco M. CT Coronary Angiography: Technical Approach and Atherosclerotic Plaque Characterization. J Clin Med 2023; 12:7615. [PMID: 38137684 PMCID: PMC10744060 DOI: 10.3390/jcm12247615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Coronary computed tomography angiography (CCTA) currently represents a robust imaging technique for the detection, quantification and characterization of coronary atherosclerosis. However, CCTA remains a challenging task requiring both high spatial and temporal resolution to provide motion-free images of the coronary arteries. Several CCTA features, such as low attenuation, positive remodeling, spotty calcification, napkin-ring and high pericoronary fat attenuation index have been proved as associated to high-risk plaques. This review aims to explore the role of CCTA in the characterization of high-risk atherosclerotic plaque and the recent advancements in CCTA technologies with a focus on radiomics plaque analysis.
Collapse
Affiliation(s)
- Serena Dell’Aversana
- Department of Radiology, Santa Maria Delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (S.D.); (G.D.C.); (E.C.)
| | - Raffaele Ascione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.A.); (R.A.V.); (F.C.); (P.P.); (L.B.); (G.E.); (A.F.); (M.I.)
| | - Raffaella Antonia Vitale
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.A.); (R.A.V.); (F.C.); (P.P.); (L.B.); (G.E.); (A.F.); (M.I.)
| | - Fabrizia Cavaliere
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.A.); (R.A.V.); (F.C.); (P.P.); (L.B.); (G.E.); (A.F.); (M.I.)
| | - Piercarmine Porcaro
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.A.); (R.A.V.); (F.C.); (P.P.); (L.B.); (G.E.); (A.F.); (M.I.)
| | - Luigi Basile
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.A.); (R.A.V.); (F.C.); (P.P.); (L.B.); (G.E.); (A.F.); (M.I.)
| | | | - Marco Boccalatte
- Coronary Care Unit, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (M.B.); (G.S.)
| | - Gerolamo Sibilio
- Coronary Care Unit, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (M.B.); (G.S.)
| | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.A.); (R.A.V.); (F.C.); (P.P.); (L.B.); (G.E.); (A.F.); (M.I.)
| | - Anna Franzone
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.A.); (R.A.V.); (F.C.); (P.P.); (L.B.); (G.E.); (A.F.); (M.I.)
| | - Giuseppe Di Costanzo
- Department of Radiology, Santa Maria Delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (S.D.); (G.D.C.); (E.C.)
| | - Giuseppe Muscogiuri
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS 1, 24127 Bergamo, Italy; (G.M.); (S.S.)
| | - Sandro Sironi
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS 1, 24127 Bergamo, Italy; (G.M.); (S.S.)
- School of Medicine and Surgery, University of Milano Bicocca, 20126 Milan, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy;
| | - Enrico Cavaglià
- Department of Radiology, Santa Maria Delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (S.D.); (G.D.C.); (E.C.)
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.A.); (R.A.V.); (F.C.); (P.P.); (L.B.); (G.E.); (A.F.); (M.I.)
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.A.); (R.A.V.); (F.C.); (P.P.); (L.B.); (G.E.); (A.F.); (M.I.)
| |
Collapse
|
21
|
Shi X, Tao T, Wang Y, Han Y, Xu X, Yin Q, Wang F, Liu R, Liu X. Heavy macrophage infiltration identified by optical coherence tomography relates to plaque rupture. Ann Clin Transl Neurol 2023; 10:2334-2346. [PMID: 37822283 PMCID: PMC10723231 DOI: 10.1002/acn3.51923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVE Risk stratification plays a critical role in patients with asymptomatic carotid atherosclerotic stenosis. Heavy macrophage infiltration (HMC) is an important factor of plaque destabilization. However, in vivo imaging technologies and screening criteria for HMC remain limited. We aimed to (i) introduce algorithms for in vivo detection of macrophage infiltrations using optical coherence tomography (OCT) and (ii) to investigate the threshold of HMC and its association with plaque vulnerability. METHODS Ex vivo OCT images were co-registered with histopathology in 282 cross-sectional pairs from 19 carotid endarterectomy specimens. Of these, 197 randomly selected pairs were employed to define the parameters, and the remaining 85 pairs were used to evaluate the accuracy of the OCT-based algorithm in detecting macrophage infiltrations. Clinical analysis included 93 patients receiving carotid OCT evaluation. The prevalence and burden of macrophage infiltration were analyzed. Multivariable and subgroup analysis were performed to investigate the association between HMC and plaque rupture. RESULTS The sensitivity and specificity of algorithm for detecting macrophage infiltration were 88.0% and 74.9%, respectively. Of 93 clinical patients, ruptured plaques exhibited higher prevalence of macrophage infiltration than nonruptured plaques (83.7% [36/43] vs 32.0% [16/50], p < 0.001). HMC was identified when the macrophage index was greater than 60.2 (sensitivity = 74.4%, specificity = 84.0%). Multivariable analysis showed that HMC and multiple calcification were independent risk factors for non-lipid-rich plaque rupture. INTERPRETATION This study provides a novel approach and screening criteria for HMC, which might be valuable for atherosclerotic risk stratification.
Collapse
Affiliation(s)
- Xuan Shi
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yi Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yunfei Han
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xiaohui Xu
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Qin Yin
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Fang Wang
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Rui Liu
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xinfeng Liu
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Stroke Center and Department of Neurology, First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
22
|
Shi C, Mammadova-Bach E, Li C, Liu D, Anders HJ. Pathophysiology and targeted treatment of cholesterol crystal embolism and the related thrombotic angiopathy. FASEB J 2023; 37:e23179. [PMID: 37676696 DOI: 10.1096/fj.202301316r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
Cholesterol crystal (CC) embolism is a complication of advanced atherosclerotic plaques located in the major arteries. This pathological condition is primarily induced by interventional and surgical procedures or occurs spontaneously. CC can induce a wide range of tissue injuries including CC embolism syndrome, a spontaneous or intervention-induced complication of advanced atherosclerosis, while treatment of CC embolism has remained empiric. Vascular occlusions caused by CC embolism may exceed the ischemia tolerance of many tissues, particularly when small arteries are affected. The main approach to CC embolism is primary prophylaxis in patients at risk by stabilizing atherosclerotic plaques and avoiding unnecessary catheter interventions. During CC embolism, the use of platelet inhibitors to avoid abnormal activation and aggregation and anticoagulants may reduce the risk of vascular occlusions and tissue ischemia. This probably explains the relatively low prevalence of clinical manifestations of CC embolism, which are frequently found in autopsy studies. In this review, we summarized the current knowledge on the pathophysiology of CC embolism syndrome deriving from clinical observations and experimental mouse models. Furthermore, we described the risk factors of CC embolism in humans as well as the experimental studies based on empiric treatments. We also discuss potential therapeutic interventions based on recent experimental data and emerging drug options evolving from other research domains. Given the substantial unmet medical need to improve the outcomes of CC embolism, the identification of effective treatment strategies is urgently needed.
Collapse
Affiliation(s)
- Chongxu Shi
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Medical College, Nantong University, Nantong, China
| | - Elmina Mammadova-Bach
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Cong Li
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Medical College, Nantong University, Nantong, China
| | - Hans-Joachim Anders
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
23
|
He J, Chuang CY, Hawkins CL, Davies MJ, Hägglund P. Exposure to peroxynitrite impacts the ability of anastellin to modulate the structure of extracellular matrix. Free Radic Biol Med 2023; 206:83-93. [PMID: 37385567 DOI: 10.1016/j.freeradbiomed.2023.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
The extracellular matrix (ECM) of tissues consists of multiple proteins, proteoglycans and glycosaminoglycans that form a 3-dimensional meshwork structure. This ECM is exposed to oxidants including peroxynitrite (ONOO-/ONOOH) generated by activated leukocytes at sites of inflammation. Fibronectin, a major ECM protein targeted by peroxynitrite, self-assembles into fibrils in a cell-dependent process. Fibrillation of fibronectin can also be initiated in a cell-independent process in vitro by anastellin, a recombinant fragment of the first type-III module in fibronectin. Previous studies demonstrated that modification of anastellin by peroxynitrite impairs its fibronectin polymerization activity. We hypothesized that exposure of anastellin to peroxynitrite would also impact on the structure of ECM from cells co-incubated with anastellin, and influence interactions with cell surface receptors. Fibronectin fibrils in the ECM of primary human coronary artery smooth muscle cells exposed to native anastellin are diminished, an effect which is reversed to a significant extent by pre-incubation of anastellin with high (200-fold molar excess) concentrations of peroxynitrite. Treatment with low or moderate levels of peroxynitrite (2-20 fold molar excess) influences interactions between anastellin and heparin polysaccharides, as a model of cell-surface proteoglycan receptors, and modulates anastellin-mediated alterations in fibronectin cell adhesiveness. Based on these observations it is concluded that peroxynitrite has a dose-dependent influence on the ability of anastellin to modulate ECM structure via interactions with fibronectin and other cellular components. These observations may have pathological implications since alterations in fibronectin processing and deposition have been associated with several pathologies, including atherosclerosis.
Collapse
Affiliation(s)
- Jianfei He
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
24
|
Lin PK, Davis GE. Extracellular Matrix Remodeling in Vascular Disease: Defining Its Regulators and Pathological Influence. Arterioscler Thromb Vasc Biol 2023; 43:1599-1616. [PMID: 37409533 PMCID: PMC10527588 DOI: 10.1161/atvbaha.123.318237] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Because of structural and cellular differences (ie, degrees of matrix abundance and cross-linking, mural cell density, and adventitia), large and medium-sized vessels, in comparison to capillaries, react in a unique manner to stimuli that induce vascular disease. A stereotypical vascular injury response is ECM (extracellular matrix) remodeling that occurs particularly in larger vessels in response to injurious stimuli, such as elevated angiotensin II, hyperlipidemia, hyperglycemia, genetic deficiencies, inflammatory cell infiltration, or exposure to proinflammatory mediators. Even with substantial and prolonged vascular damage, large- and medium-sized arteries, persist, but become modified by (1) changes in vascular wall cellularity; (2) modifications in the differentiation status of endothelial cells, vascular smooth muscle cells, or adventitial stem cells (each can become activated); (3) infiltration of the vascular wall by various leukocyte types; (4) increased exposure to critical growth factors and proinflammatory mediators; and (5) marked changes in the vascular ECM, that remodels from a homeostatic, prodifferentiation ECM environment to matrices that instead promote tissue reparative responses. This latter ECM presents previously hidden matricryptic sites that bind integrins to signal vascular cells and infiltrating leukocytes (in coordination with other mediators) to proliferate, invade, secrete ECM-degrading proteinases, and deposit injury-induced matrices (predisposing to vessel wall fibrosis). In contrast, in response to similar stimuli, capillaries can undergo regression responses (rarefaction). In summary, we have described the molecular events controlling ECM remodeling in major vascular diseases as well as the differential responses of arteries versus capillaries to key mediators inducing vascular injury.
Collapse
Affiliation(s)
- Prisca K. Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - George E. Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| |
Collapse
|
25
|
Salem AM, Davis J, Gopalan D, Rudd JHF, Clarke SC, Schofield PM, Bennett MR, Brown AJ, Obaid DR. Characteristics of conventional high-risk coronary plaques and a novel CT defined thin-cap fibroatheroma in patients undergoing CCTA with stable chest pain. Clin Imaging 2023; 101:69-76. [PMID: 37311397 DOI: 10.1016/j.clinimag.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Coronary computed tomography angiography (CCTA) can identify high-risk coronary plaque types. However, the inter-observer variability for high-risk plaque features, including low attenuation plaque (LAP), positive remodelling (PR), and the Napkin-Ring sign (NRS), may reduce their utility, especially amongst less experienced readers. METHODOLOGY In a prospective study, we compared the prevalence, location and inter-observer variability of both conventional CT-defined high-risk plaques with a novel index based on quantifying the ratio of necrotic core to fibrous plaque using individualised X-ray attenuation cut-offs (the CT-defined thin-cap fibroatheroma - CT-TCFA) in 100 patients followed-up for 7 years. RESULTS In total, 346 plaques were identified in all patients. Seventy-two (21%) of all plaques were classified by conventional CT parameters as high-risk (either NRS or PR and LAP combined), and 43 (12%) of plaques were considered high-risk using the novel CT-TCFA definition of (Necrotic Core/fibrous plaque ratio of >0.9). The majority (80%) of the high-risk plaques (LAP&PR, NRS and CT-TCFA) were located in the proximal and mid-LAD and RCA. The kappa co-efficient of inter-observer variability (k) for NRS was 0.4 and for PR and LAP combined 0.4. While the kappa co-efficient of inter-observer variability (k) for the new CT-TCFA definition was 0.7. During follow-up, patients with either conventional high-risk plaques or CT-TCFAs were significantly more likely to have MACE (Major adverse cardiovascular events) compared to patients without coronary plaques (p value 0.03 & 0.03, respectively). CONCLUSION The novel CT-TCFA is associated with MACE and has improved inter-observer variability compared with current CT-defined high-risk plaques.
Collapse
Affiliation(s)
- Ahmed M Salem
- Cardiology Department, Swansea Bay University Health Board, UK; Institute of Life Sciences-2, Swansea University Medical School, UK
| | - Joel Davis
- Southampton General Hospital, Southampton, UK
| | | | - James H F Rudd
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Sarah C Clarke
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | | | - Martin R Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Adam J Brown
- The School of Clinical Sciences at Monash Health, Melbourne, Australia
| | - Daniel R Obaid
- Cardiology Department, Swansea Bay University Health Board, UK; Institute of Life Sciences-2, Swansea University Medical School, UK.
| |
Collapse
|
26
|
Şimsek Z, Alizade E, Abdurahmanova İ, Güner A, Zehir R, Pala S. Serum sortilin as a predictor of stroke in patients with intermediate carotid artery stenosis. Vascular 2023; 31:317-324. [PMID: 35403511 DOI: 10.1177/17085381211067051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sortilin was an important molecular protein involved in the pathogenesis of atherosclerosis. Besides, serum sortilin was associated with adverse cerebrovascular events. Atherosclerotic stenosis in the carotid artery is a major etiology for ischemic stroke. The risk of stroke in patients with intermediate carotid artery stenosis (CAS) was unknown. Hence, the aim of the present study was to evaluate the relationship between serum sortilin levels and stroke in patients with intermediate CAS. METHODS A total of 195 intermediate CAS patients were included in this cross-sectional study. The patients were divided into two groups as symptomatic (N = 95) and asymptomatic (N = 100) patients. Patients with a transient ischemic attack (TIA), retinal ischemic event, or ischemic stroke resulting from the narrowed carotid artery were considered to be symptomatic. Serum sortilin concentrations were measured using the enzyme-linked immunosorbent assay. RESULTS Serum sortilin level was significantly higher in the symptomatic group than in the severe asymptomatic group (1.53 ± 0.25 ng/mL vs 1.34 ± 0.19 ng/mL, p < 0.001). Besides, high serum sortilin levels (odds ratio = 4.91, 95% confidence intervals 1.24-19.51, p = 0.023) were identified as independent predictors of symptomatic carotid plaque. In the receiver operating characteristic curve analysis, serum sortilin levels higher than 1.34 ng/mL predicted stroke/TIA with a sensitivity of 66.3% and a specificity of 67% (AUC = 0.725, p < 0.001). CONCLUSIONS Serum sortilin level is increased in the presence of symptomatic intermediate CAS and may have clinical value in the management of patients with carotid artery disease.
Collapse
Affiliation(s)
- Zeki Şimsek
- Cardiology Department, 111350Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| | - Elnur Alizade
- Cardiology Department, 111350Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| | - İlahe Abdurahmanova
- Department of Cardiology, Ministry of Emergency Situation of the Republic of Azerbaijan, Baku, Azerbaijan
| | - Ahmet Güner
- Department of Cardiology, 187456Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Regayip Zehir
- Cardiology Department, 111350Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| | - Selçuk Pala
- Cardiology Department, 111350Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
27
|
Yanikoglu A. The Probable Role of Chlamydia pneumoniae Infection in Acute Stroke. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.109582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cardiovascular diseases are the most leading cause of worldwide mortality. According to USA statistics, about 1 of 6 cardiovascular deaths is due to stroke. Stroke is the second most common cause of death and a chief cause of disability due to EU data. Treatment, care providing, rehabilitation costs and with the labor loss, the overall cost in EU due to stroke was estimated about €45 billion in year 2017. Acute stroke due to infectious diseases via several possible mechanisms with various clinical presentations were previously reported in the literature. Chlamydia pneumoniae is an obligate intracellular bacteria and extremely common in adult individuals. Besides it being a major cause of pneumonia in adults, association between atherosclerosis and vascular diseases was demonstrated by several sero-epidemiological studies and by direct detection of organism in atherosclerotic lesions by electron microscopy, immunohistochemistry, polymerase chain reaction. Also, several sero-epidemiological studies have demonstrated a link between Chlamydia pneumoniae infection and acute stroke. In this chapter, we will summarize the data in literature regarding the association between Chlamydia pneumoniae infection and acute stroke and we will try to explain the possible mechanisms that could be responsible in pathophysiology of stroke in these patients.
Collapse
|
28
|
Potential relationship between high wall shear stress and plaque rupture causing acute coronary syndrome. Heart Vessels 2023; 38:634-644. [PMID: 36617625 DOI: 10.1007/s00380-022-02224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
The relationship between high wall shear stress (WSS) and plaque rupture (PR) in longitudinal and circumferential locations remains uncertain. Overall, 100 acute coronary syndrome patients whose culprit lesions had PR, documented by optical coherence tomography (OCT), were enrolled. Lesion-specific three-dimensional coronary artery models were created using OCT data. WSS was computed with computational fluid dynamics analysis. PR was classified into upstream-PR, minimum lumen area-PR, and downstream-PR according to the PR's longitudinal location, and into central-PR and lateral-PR according to the disrupted fibrous cap circumferential location. In the longitudinal 3-mm segmental analysis, multivariate analysis demonstrated that higher WSS in the upstream segment was independently associated with upstream-PR, and thinner fibrous cap was independently associated with downstream-PR. In the PR cross-sections, the PR region had a significantly higher average WSS than non-PR region. In the cross-sectional analysis, the in-lesion peak WSS was frequently observed in the lateral (66.7%) and central regions (70%) in lateral-PR and central-PR, respectively. Multivariate analysis demonstrated that the presence of in-lesion peak WSS at the lateral region, thinner broken fibrous cap, and larger lumen area were independently associated with lateral-PR, while the presence of in-lesion peak WSS at the central region and thicker broken fibrous cap were independently associated with central-PR. In conclusion, OCT-based WSS simulation revealed that high WSS might be related to the longitudinal and circumferential locations of PR.
Collapse
|
29
|
Liu S, Xin J, Wu J, Deng Y, Su R, Niessen WJ, Zheng N, van Walsum T. Multi-view Contour-constrained Transformer Network for Thin-cap Fibroatheroma Identification. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Singh A, Nasir U, Segal J, Waheed TA, Ameen M, Hafeez H. The utility of ultrasound and computed tomography in the assessment of carotid artery plaque vulnerability-A mini review. Front Cardiovasc Med 2022; 9:1023562. [PMID: 36465468 PMCID: PMC9709330 DOI: 10.3389/fcvm.2022.1023562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
As the burden of cardiovascular and cerebrovascular events continues to increase, emerging evidence supports the concept of plaque vulnerability as a strong marker of plaque rupture, and embolization. Qualitative assessment of the plaque can identify the degree of plaque instability. Ultrasound and computed tomography (CT) have emerged as safe and accurate techniques for the assessment of plaque vulnerability. Plaque features including but not limited to surface ulceration, large lipid core, thin fibrous cap (FC), intraplaque neovascularization and hemorrhage can be assessed and are linked to plaque instability.
Collapse
Affiliation(s)
- Aniruddha Singh
- College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Usama Nasir
- Tower Health, West Reading, PA, United States
| | - Jared Segal
- Tower Health, West Reading, PA, United States
| | | | | | | |
Collapse
|
31
|
Tornifoglio B, Stone AJ, Kerskens C, Lally C. Ex Vivo Study Using Diffusion Tensor Imaging to Identify Biomarkers of Atherosclerotic Disease in Human Cadaveric Carotid Arteries. Arterioscler Thromb Vasc Biol 2022; 42:1398-1412. [PMID: 36172867 PMCID: PMC9592180 DOI: 10.1161/atvbaha.122.318112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND This study aims to address the potential of ex vivo diffusion tensor imaging to provide insight into the microstructural composition and morphological arrangement of aged human atherosclerotic carotid arteries. METHODS In this study, whole human carotid arteries were investigated both anatomically and by comparing healthy and diseased regions. Nonrigid image registration was used with unsupervised segmentation to investigate the influence of elastin, collagen, cell density, glycosaminoglycans, and calcium on diffusion tensor imaging derived metrics (fractional anisotropy and mean diffusivity). Early stage atherosclerotic features were also investigated in terms of microstructural components and diffusion tensor imaging metrics. RESULTS All vessels displayed a dramatic decrease in fractional anisotropy compared with healthy animal arterial tissue, while the mean diffusivity was sensitive to regions of advanced disease. Elastin content strongly correlated with both fractional anisotropy (r>0.7, P<0.001) and mean diffusivity (r>-0.79, P<0.0002), and the thickened intima was also distinguishable from arterial media by these metrics. CONCLUSIONS These different investigations point to the potential of diffusion tensor imaging to identify characteristics of arterial disease progression, at early and late-stage lesion development.
Collapse
Affiliation(s)
- Brooke Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering (B.T., A.J.S., C.L.), Ireland
| | - Alan J. Stone
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering (B.T., A.J.S., C.L.), Ireland.,Department of Medical Physics and Clinical Engineering, St. Vincent’s University Hospital, Dublin, Ireland (A.J.S.)
| | - Christian Kerskens
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Trinity College Institute of Neuroscience (C.K.), Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering (B.T., A.J.S., C.L.), Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin (C.L.), Ireland
| |
Collapse
|
32
|
Towashiraporn K. Current recommendations for revascularization of non-infarct-related artery in patients presenting with ST-segment elevation myocardial infarction and multivessel disease. Front Cardiovasc Med 2022; 9:969060. [PMID: 36035910 PMCID: PMC9402999 DOI: 10.3389/fcvm.2022.969060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
ST-segment elevation myocardial infarction (STEMI) is a leading cause of morbidity and mortality worldwide. Immediate reperfusion therapy of the infarct-related artery (IRA) is the mainstay of treatment, either via primary percutaneous coronary intervention (PPCI) or thrombolytic therapy when PPCI is not feasible. Several studies have reported the incidence of multivessel disease (MVD) to be about 50% of total STEMI cases. This means that after successful PPCI of the IRA, residual lesion(s) of the non-IRA may persist. Unlike the atherosclerotic plaque of stable coronary artery disease, the residual obstructive lesion of the non-IRA contains a significantly higher prevalence of vulnerable plaques. Since these lesions are a strong predictor of acute coronary syndrome, if left untreated they are a possible cause of future adverse cardiovascular events. Percutaneous coronary intervention (PCI) of the obstructive lesion of the non-IRA to achieve complete revascularization (CR) is therefore preferable. Several major randomized controlled trials (RCTs) and meta-analyses demonstrated the clinical benefits of the CR strategy in the setting of STEMI with MVD, not only for enhancing survival but also for reducing unplanned revascularization. The CR strategy is now supported by recently published clinical practice guidelines. Nevertheless, the benefit of revascularization must be weighed against the risks from additional procedures.
Collapse
|
33
|
Theofilis P, Sagris M, Antonopoulos AS, Oikonomou E, Tsioufis K, Tousoulis D. Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques. Tomography 2022; 8:1742-1758. [PMID: 35894012 PMCID: PMC9326642 DOI: 10.3390/tomography8040147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
Coronary atherosclerosis is a complex, multistep process that may lead to critical complications upon progression, revolving around plaque disruption through either rupture or erosion. Several high-risk features are associated with plaque vulnerability and may add incremental prognostic information. Although invasive imaging modalities such as optical coherence tomography or intravascular ultrasound are considered to be the gold standard in the assessment of vulnerable coronary atherosclerotic plaques (VCAPs), contemporary evidence suggests a potential role for non-invasive methods in this context. Biomarkers associated with deleterious pathophysiologic pathways, including inflammation and extracellular matrix degradation, have been correlated with VCAP characteristics and adverse prognosis. However, coronary computed tomography (CT) angiography has been the most extensively investigated technique, significantly correlating with invasive method-derived VCAP features. The estimation of perivascular fat attenuation as well as radiomic-based approaches represent additional concepts that may add incremental information. Cardiac magnetic resonance imaging (MRI) has also been evaluated in clinical studies, with promising results through the various image sequences that have been tested. As far as nuclear cardiology is concerned, the implementation of positron emission tomography in the VCAP assessment currently faces several limitations with the myocardial uptake of the radiotracer in cases of fluorodeoxyglucose use, as well as with motion correction. Moreover, the search for the ideal radiotracer and the most adequate combination (CT or MRI) is still ongoing. With a look to the future, the possible combination of imaging and circulating inflammatory and extracellular matrix degradation biomarkers in diagnostic and prognostic algorithms may represent the essential next step for the assessment of high-risk individuals.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, “Hippokration” General Hospital, Medical School, University of Athens, 11527 Athens, Greece; (M.S.); (A.S.A.); (E.O.); (K.T.); (D.T.)
- Correspondence:
| | - Marios Sagris
- 1st Cardiology Department, “Hippokration” General Hospital, Medical School, University of Athens, 11527 Athens, Greece; (M.S.); (A.S.A.); (E.O.); (K.T.); (D.T.)
| | - Alexios S. Antonopoulos
- 1st Cardiology Department, “Hippokration” General Hospital, Medical School, University of Athens, 11527 Athens, Greece; (M.S.); (A.S.A.); (E.O.); (K.T.); (D.T.)
| | - Evangelos Oikonomou
- 1st Cardiology Department, “Hippokration” General Hospital, Medical School, University of Athens, 11527 Athens, Greece; (M.S.); (A.S.A.); (E.O.); (K.T.); (D.T.)
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, “Hippokration” General Hospital, Medical School, University of Athens, 11527 Athens, Greece; (M.S.); (A.S.A.); (E.O.); (K.T.); (D.T.)
| | - Dimitris Tousoulis
- 1st Cardiology Department, “Hippokration” General Hospital, Medical School, University of Athens, 11527 Athens, Greece; (M.S.); (A.S.A.); (E.O.); (K.T.); (D.T.)
| |
Collapse
|
34
|
Fatmi SS, Kaur P, Tangco E, Bader F, Aliabadi D. A Rare Case of Persistent ST-Elevation Myocardial Infarction Post-Tissue Plasminogen Activator With White Clot Extraction in a Middle-Aged Woman on Medroxyprogesterone Acetate. Cureus 2022; 14:e26628. [PMID: 35949761 PMCID: PMC9356542 DOI: 10.7759/cureus.26628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
ST-elevation myocardial infarction (STEMI) occurs when vulnerable intravascular plaques rupture and produce eventual occlusion of the coronary circulation. With the increased prevalence of coronary artery disease, STEMIs and NSTEMIs are very well-studied and have generally been known to be caused by red and white thrombi, respectively. STEMIs have been more commonly associated with red clots, while NSTEMIs tend to be caused by white clots. Recent studies have also shown that a third of STEMIs are due to white clot formation, resulting in transmural infarction, most commonly seen at the coronary artery bifurcation. However, no cases of white clot STEMIs post-recombinant tissue plasminogen activator (rTPA) administration have been described in the literature. The data regarding the utility of rTPA in lysing white clots is limited, questioning the overall efficacy of rTPA with white clot lysis. This case report presents a patient on depot contraceptive who had a persistent STEMI despite rTPA administration and was found to have formed a white clot, which was extracted on thrombectomy. As this unique presentation and its associated risk factors are explored in the future, we hope that this case report contributes to the body of knowledge in the detection and management of white clot MIs in the context of rTPA efficacy.
Collapse
Affiliation(s)
- Syed S Fatmi
- Internal Medicine, Southeast Health Medical Center, Dothan, USA
| | - Paramjit Kaur
- Internal Medicine, Southeast Health Medical Center, Dothan, USA
| | - Emmanuel Tangco
- Graduate Medical Education (GME) Internal Medicine, Southeast Health Medical Center, Dothan, USA
| | - Fadi Bader
- Internal Medicine, Southeast Health Medical Center, Dothan, USA
| | | |
Collapse
|
35
|
Shishikura D, Octavia Y, Hayat U, Thondapu V, Barlis P. Atherogenesis and Inflammation. Interv Cardiol 2022. [DOI: 10.1002/9781119697367.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
36
|
Savastano L, Mousavi H, Liu Y, Khalsa SSS, Zheng Y, Davis E, Reddy A, Brinjikji W, Bhambri A, Cockrum J, Pandey AS, Thompson BG, Gordon D, Seibel EJ, Yonas H. Unifying theory of carotid plaque disruption based on structural phenotypes and forces expressed at the lumen/wall interface. Stroke Vasc Neurol 2022; 7:465-475. [PMID: 35649687 PMCID: PMC9811551 DOI: 10.1136/svn-2021-001451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/08/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES To integrate morphological, haemodynamic and mechanical analysis of carotid atheroma driving plaque disruption. MATERIALS AND METHODS First, we analysed the phenotypes of carotid endarterectomy specimens in a photographic dataset A, and matched them with the likelihood of preoperative stroke. Second, laser angioscopy was used to further define the phenotypes in intact specimens (dataset B) and benchmark with histology. Third, representative vascular geometries for each structural phenotype were analysed with Computational Fluid Dynamics (CFD), and the mechanical strength of the complicated atheroma to resist penetrating forces was quantified (n=14). RESULTS In dataset A (n=345), ulceration (fibrous cap disruption) was observed in 82% of all plaques, intraplaque haemorrhage in 68% (93% subjacent to an ulcer) and false luminal formation in 48%. At least one of these 'rupture' phenotypes was found in 97% of symptomatic patients (n=69) compared with 61% in asymptomatic patients. In dataset B (n=30), laser angioscopy redemonstrated the structural phenotypes with near-perfect agreement with histology. In CFD, haemodynamic stress showed a large pulse magnitude, highest upstream to the point of maximal stenosis and on ulceration the inflow stream excavates the necrotic core cranially and then recirculates into the true lumen. Based on mechanical testing (n=14), the necrotic core is mechanically weak and penetrated by the blood on fibrous cap disruption. CONCLUSIONS Fibrous cap ulceration, plaque haemorrhage and excavation are sequential phenotypes of plaque disruption resulting from the chiselling effect of haemodynamic forces over unmatched mechanical tissue strength. This chain of events may result in thromboembolic events independently of the degree of stenosis.
Collapse
Affiliation(s)
| | - Hossein Mousavi
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Yang Liu
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Siri Sahib S Khalsa
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Yihao Zheng
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Evan Davis
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Adithya Reddy
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Ankur Bhambri
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua Cockrum
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Aditya S Pandey
- Neurosurgery, Michigan Medicine, Ann Arbor, Michigan, USA,Radiology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - B Gregory Thompson
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - David Gordon
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric J Seibel
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Howard Yonas
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
37
|
Geiger MA, Flumignan RLG, Sobreira ML, Avelar WM, Fingerhut C, Stein S, Guillaumon AT. Carotid Plaque Composition and the Importance of Non-Invasive in Imaging Stroke Prevention. Front Cardiovasc Med 2022; 9:885483. [PMID: 35651908 PMCID: PMC9149096 DOI: 10.3389/fcvm.2022.885483] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022] Open
Abstract
Luminal stenosis has been the standard feature for the current management strategies in patients with atherosclerotic carotid disease. Histological and imaging studies show considerable differences between plaques with identical degrees of stenosis. They indicate that specific plaque characteristics like Intraplaque hemorrhage, Lipid Rich Necrotic Core, Plaque Inflammation, Thickness and Ulceration are responsible for the increased risk of ischemic events. Intraplaque hemorrhage is defined by the accumulation of blood components within the plaque, Lipid Rich Necrotic Core is composed of macrophages loaded with lipid, Plaque Inflammation is defined as the process of atherosclerosis itself and Plaque thickness and Ulceration are defined as morphological features. Advances in imaging methods like Magnetic Resonance Imaging, Ultrasound, Computed Tomography and Positron Emission Tomography have enabled a more detailed characterization of the plaque, and its vulnerability is linked to these characteristics, changing the management of these patients based only on the degree of plaque stenosis. Studies like Rotterdam, ARIC, PARISK, CAPIAS and BIOVASC were essential to evaluate and prove the relevance of these characteristics with cerebrovascular symptoms. A better approach for the prevention of stroke is needed. This review summarizes the more frequent carotid plaque features and the available validation from recent studies with the latest evidence.
Collapse
Affiliation(s)
- Martin Andreas Geiger
- Division of Vascular Surgery, Department of Surgery, Universidade Estadual de Campinas—UNICAMP, São Paulo, Brazil
| | - Ronald Luiz Gomes Flumignan
- Division of Vascular and Endovascular Surgery, Department of Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcone Lima Sobreira
- Division of Vascular and Endovascular Surgery, Department of Surgery and Orthopedics, Botucatu Medical School, Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| | - Wagner Mauad Avelar
- Department of Neurology, Universidade Estadual de Campinas—UNICAMP, São Paulo, Brazil
| | - Carla Fingerhut
- Division of Radiology, Department of Anesthesiology and Radiology, Universidade Estadual de Campinas—UNICAMP, São Paulo, Brazil
| | - Sokrates Stein
- Division of Vascular Surgery, Department of Surgery, Universidade Estadual de Campinas—UNICAMP, São Paulo, Brazil
| | - Ana Terezinha Guillaumon
- Division of Vascular Surgery, Department of Surgery, Universidade Estadual de Campinas—UNICAMP, São Paulo, Brazil
| |
Collapse
|
38
|
Li Y, Moon S, Jiang Y, Qiu S, Chen Z. Intravascular polarization-sensitive optical coherence tomography based on polarization mode delay. Sci Rep 2022; 12:6831. [PMID: 35477738 PMCID: PMC9046432 DOI: 10.1038/s41598-022-10709-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 04/11/2022] [Indexed: 01/13/2023] Open
Abstract
Intravascular polarization-sensitive optical coherence tomography (IV-PSOCT) provides depth-resolved tissue birefringence which can be used to evaluate the mechanical stability of a plaque. In our previous study, we reported a new strategy to construct polarization-sensitive optical coherence tomography in a microscope platform. Here, we demonstrated that this technology can be implemented in an endoscope platform, which has many clinical applications. A conventional intravascular OCT system can be modified for IV-PSOCT by introducing a 12-m polarization-maintaining fiber-based imaging probe. Its two polarization modes separately produce OCT images of polarization detection channels spatially distinguished by an image separation of 2.7 mm. We experimentally validated our IV-PSOCT with chicken tendon, chicken breast, and coronary artery as the image samples. We found that the birefringent properties can be successfully visualized by our IV-PSOCT.
Collapse
Affiliation(s)
- Yan Li
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92617, USA
| | - Sucbei Moon
- Department of Physics, Kookmin University, Seoul, 02707, South Korea
| | - Yuchen Jiang
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92617, USA.,Department of Physics, Kookmin University, Seoul, 02707, South Korea
| | - Saijun Qiu
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92617, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92617, USA. .,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA. .,The Cardiovascular Innovation and Research Center, University of California, Irvine, , Irvine, CA, 92617, USA.
| |
Collapse
|
39
|
Tissue-engineered collagenous fibrous cap models to systematically elucidate atherosclerotic plaque rupture. Sci Rep 2022; 12:5434. [PMID: 35361847 PMCID: PMC8971478 DOI: 10.1038/s41598-022-08425-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
A significant amount of vascular thrombotic events are associated with rupture of the fibrous cap that overlie atherosclerotic plaques. Cap rupture is however difficult to predict due to the heterogenous composition of the plaque, unknown material properties, and the stochastic nature of the event. Here, we aim to create tissue engineered human fibrous cap models with a variable but controllable collagen composition, suitable for mechanical testing, to scrutinize the reciprocal relationships between composition and mechanical properties. Myofibroblasts were cultured in 1 × 1.5 cm-sized fibrin-based constrained gels for 21 days according to established (dynamic) culture protocols (i.e. static, intermittent or continuous loading) to vary collagen composition (e.g. amount, type and organization). At day 7, a soft 2 mm ∅ fibrin inclusion was introduced in the centre of each tissue to mimic the soft lipid core, simulating the heterogeneity of a plaque. Results demonstrate reproducible collagenous tissues, that mimic the bulk mechanical properties of human caps and vary in collagen composition due to the presence of a successfully integrated soft inclusion and the culture protocol applied. The models can be deployed to assess tissue mechanics, evolution and failure of fibrous caps or complex heterogeneous tissues in general.
Collapse
|
40
|
Platelets, a Key Cell in Inflammation and Atherosclerosis Progression. Cells 2022; 11:cells11061014. [PMID: 35326465 PMCID: PMC8947573 DOI: 10.3390/cells11061014] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/21/2022] Open
Abstract
Platelets play important roles in thrombosis-dependent obstructive cardiovascular diseases. In addition, it has now become evident that platelets also participate in the earliest stages of atherosclerosis, including the genesis of the atherosclerotic lesion. Moreover, while the link between platelet activity and hemostasis has been well established, the role of platelets as modulators of inflammation has only recently been recognized. Thus, through their secretory activities, platelets can chemically attract a diverse repertoire of cells to inflammatory foci. Although monocytes and lymphocytes act as key cells in the progression of an inflammatory event and play a central role in plaque formation and progression, there is also evidence that platelets can traverse the endothelium, and therefore be a direct mediator in the progression of atherosclerotic plaque. This review provides an overview of platelet interactions and regulation in atherosclerosis.
Collapse
|
41
|
Jiang J, Zeng H, Zhuo Y, Wang C, Gu J, Zhang J, Zhang H. Association of Neutrophil to Lymphocyte Ratio With Plaque Rupture in Acute Coronary Syndrome Patients With Only Intermediate Coronary Artery Lesions Assessed by Optical Coherence Tomography. Front Cardiovasc Med 2022; 9:770760. [PMID: 35355959 PMCID: PMC8960066 DOI: 10.3389/fcvm.2022.770760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Plaque vulnerability and rupture rather than plaque size are the major cause of clinical events in patients with intermediate coronary lesions. Therefore, the present study was aimed to explore potential markers associated with plaque rupture in acute coronary syndrome (ACS) patients with intermediate coronary lesions. Methods A total of 82 ACS patients presenting with only intermediate coronary lesions (40–70% stenosis demonstrated by quantitative coronary angiography) and no severe stenosis in other main coronary arteries [median age 63 years, 53 male and 29 female] were enrolled. Plaque morphology were assessed by optical coherence tomography (OCT). Hematological indices were assayed by automated hematological analyzer. Results Plaque rupture was identified in 14 patients by OCT. Neutrophil to lymphocyte ratio (NLR) in patients with plaque rupture (n = 14) was significantly higher than that in patients with non-plaque rupture (n = 68) [3.85 (3.28, 4.77) vs. 2.13 (1.40, 2.81), p < 0.001]. Multivariate logistic regression analysis revealed that NLR was one of the independent risk factors for plaque rupture in intermediate coronary artery lesions (odds ratio 1.64, 95% confidence intervals 1.18–2.29, p = 0.003). ROC curve analysis found a cutoff point of NLR > 2.94 for plaque rupture with 93.8% sensitivity and 77.9% specificity. Conclusion NLR, an inflammatory biomarker, is closely associated with plaque rupture in intermediate coronary artery lesions. Monitoring NLR may be useful in risk stratification and management for intermediate coronary artery lesions.
Collapse
|
42
|
Razzi F, Lovrak M, Gruzdyte D, Den Hartog Y, Duncker DJ, van Esch JH, van Steijn V, van Beusekom HMM. An Implantable Artificial Atherosclerotic Plaque as a Novel Approach for Drug Transport Studies on Drug-Eluting Stents. Adv Healthc Mater 2022; 11:e2101570. [PMID: 34865315 PMCID: PMC11469272 DOI: 10.1002/adhm.202101570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/31/2021] [Indexed: 11/11/2022]
Abstract
Atherosclerotic arteries are commonly treated using drug-eluting stents (DES). However, it remains unclear whether and how the properties of atherosclerotic plaque affect drug transport in the arterial wall. A limitation of the currently used atherosclerotic animal models to study arterial drug distribution is the unpredictability of plaque size, composition, and location. In the present study, the aim is to create an artificial atherosclerotic plaque-of reproducible and controllable complexity and implantable at specific locations-to enable systematic studies on transport phenomena of drugs in stented atherosclerosis-mimicking arteries. For this purpose, mixtures of relevant lipids at concentrations mimicking atherosclerotic plaque are incorporated in gelatin/alginate hydrogels. Lipid-free (control) and lipid-rich hydrogels (artificial plaque) are created, mounted on DES and successfully implanted in porcine coronary arteries ex-vivo. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) is used to measure local drug distribution in the arterial wall behind the prepared hydrogels, showing that the lipid-rich hydrogel significantly hampers drug transport as compared to the lipid-free hydrogel. This observation confirms the importance of studying drug transport phenomena in the presence of lipids and of having an experimental model in which lipids and other plaque constituents can be precisely controlled and systematically studied.
Collapse
Affiliation(s)
- Francesca Razzi
- Department of Experimental CardiologyErasmus Medical CenterDoctor Molewaterplein 40Rotterdam3015 GDThe Netherlands
| | - Matija Lovrak
- Department of Chemical EngineeringDelft University of TechnologyVan der Maasweg 9Delft2629 HZThe Netherlands
| | - Dovile Gruzdyte
- Department of Experimental CardiologyErasmus Medical CenterDoctor Molewaterplein 40Rotterdam3015 GDThe Netherlands
| | - Yvette Den Hartog
- Department of Experimental CardiologyErasmus Medical CenterDoctor Molewaterplein 40Rotterdam3015 GDThe Netherlands
| | - Dirk J. Duncker
- Department of Experimental CardiologyErasmus Medical CenterDoctor Molewaterplein 40Rotterdam3015 GDThe Netherlands
| | - Jan H. van Esch
- Department of Chemical EngineeringDelft University of TechnologyVan der Maasweg 9Delft2629 HZThe Netherlands
| | - Volkert van Steijn
- Department of Chemical EngineeringDelft University of TechnologyVan der Maasweg 9Delft2629 HZThe Netherlands
| | - Heleen M. M. van Beusekom
- Department of Experimental CardiologyErasmus Medical CenterDoctor Molewaterplein 40Rotterdam3015 GDThe Netherlands
| |
Collapse
|
43
|
Abiri P, Luo Y, Huang ZY, Cui Q, Duarte-Vogel S, Roustaei M, Chang CC, Xiao X, Packard R, Cavallero S, Ebrahimi R, Benharash P, Chen J, Tai YC, Hsiai TK. 3-Dimensional electrical impedance spectroscopy for in situ endoluminal mapping of metabolically active plaques. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 354:131152. [PMID: 39391284 PMCID: PMC11466225 DOI: 10.1016/j.snb.2021.131152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Electrical impedance spectroscopy (EIS) has been recognized to characterize oxidized low-density lipoprotein (oxLDL) in the metabolically active plaque. However, intravascular deployment of 3-D EIS-derived electrical impedance tomography (EIT) for endoluminal mapping of oxLDL-laden arterial walls remains an unmet clinical challenge. To this end, we designed the 6-point microelectrode arrays that were circumferentially configurated onto the balloon catheter for 15 intravascular EIS permutations. In parallel, we created the metabolically active plaques by performing partial ligation of right carotid artery in Yorkshire mini-pigs (n = 6 males), followed by demonstrating the plaque progression at baseline, 8 weeks, and 16 weeks of high-fat diet via computed tomography (CT) angiogram. Next, we deployed the 3-D EIS sensors to the right and left carotid arteries, and we demonstrated 3-D EIS mapping of metabolically active endolumen in the right but not left carotid arteries as evidenced by the positive E06 immunostaining for oxLDL-laden regions. By considering electrical conductivity (σ) and permittivity (ε) properties of collagen, lipid, and smooth muscle presence in the arterial wall, we further validated the 3-D EIS-derived EIT by reconstructing the histology of right and left carotid arteries for the finite element modeling of the oxLDL-laden endolumen, and we accurately predicted 3-D EIS mapping. Thus, we establish the capability of 3-D EIS-derived EIT to detect oxLDL-laden arterial walls with translational implication to predict metabolically active plaques prone to acute coronary syndromes or stroke.
Collapse
Affiliation(s)
- Parinaz Abiri
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Yu Huang
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Qingyu Cui
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sandra Duarte-Vogel
- Division of Laboratory Animal Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mehrdad Roustaei
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chih-Chiang Chang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rene Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Susana Cavallero
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ramin Ebrahimi
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peyman Benharash
- Division of Cardiac Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu-Chong Tai
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tzung K. Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
44
|
Detection of Vulnerable Coronary Plaques Using Invasive and Non-Invasive Imaging Modalities. J Clin Med 2022; 11:jcm11051361. [PMID: 35268451 PMCID: PMC8911129 DOI: 10.3390/jcm11051361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Acute coronary syndrome (ACS) mostly arises from so-called vulnerable coronary plaques, particularly prone for rupture. Vulnerable plaques comprise a specific type of plaque, called the thin-cap fibroatheroma (TFCA). A TCFA is characterized by a large lipid-rich necrotic core, a thin fibrous cap, inflammation, neovascularization, intraplaque hemorrhage, microcalcifications or spotty calcifications, and positive remodeling. Vulnerable plaques are often not visible during coronary angiography. However, different plaque features can be visualized with the use of intracoronary imaging techniques, such as intravascular ultrasound (IVUS), potentially with the addition of near-infrared spectroscopy (NIRS), or optical coherence tomography (OCT). Non-invasive imaging techniques, such as computed tomography coronary angiography (CTCA), cardiovascular magnetic resonance (CMR) imaging, and nuclear imaging, can be used as an alternative for these invasive imaging techniques. These invasive and non-invasive imaging modalities can be implemented for screening to guide primary or secondary prevention therapies, leading to a more patient-tailored diagnostic and treatment strategy. Systemic pharmaceutical treatment with lipid-lowering or anti-inflammatory medication leads to plaque stabilization and reduction of cardiovascular events. Additionally, ongoing studies are investigating whether modification of vulnerable plaque features with local invasive treatment options leads to plaque stabilization and subsequent cardiovascular risk reduction.
Collapse
|
45
|
Identification of pathology-confirmed vulnerable atherosclerotic lesions by coronary computed tomography angiography using radiomics analysis. Eur Radiol 2022; 32:4003-4013. [PMID: 35171348 DOI: 10.1007/s00330-021-08518-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/12/2021] [Accepted: 12/13/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To explore whether radiomics-based machine learning (ML) models could outperform conventional diagnostic methods at identifying vulnerable lesions on coronary computed tomographic angiography (CCTA). METHODS In this retrospective study, 36 heart transplant recipients with coronary heart disease (CAD) and end-stage heart failure were included. Pathological cross-section samples of 350 plaques were collected and coregistered to patients' preoperative CCTA images. A total of 1184 radiomic features were extracted from CCTA images. Through feature selection and stratified fivefold cross-validation, we derived eight radiomics-based ML models for lesion vulnerability prediction. An independent set of 196 plaques from another 8 CAD patients who underwent heart transplants was collected to validate radiomics-based ML models' diagnostic accuracy against conventional CCTA feature-based diagnosis (presence of at least 2 high-risk plaque features). The performance of the prediction models was assessed by the area under the receiver operating characteristic curve (AUC) with 95% confidence intervals (CI). RESULTS The training group used to develop radiomics-based ML models contained 200/350 (57.1%) vulnerable plaques and the external validation group was composed of 67.3% (132/196) vulnerable plaques. The radiomics-based ML model based on eight radiomic features showed excellent cross-validation diagnostic accuracy (AUC: 0.900 ± 0.033). In the validation group, diagnosis based on conventional CCTA features demonstrated moderate performance (AUC: 0.656 [95% CI: 0.593 -0.718]), while the radiomics-based ML model showed higher diagnostic ability (0.782 [95% CI: 0.710 -0.846]). CONCLUSIONS Radiomics-based ML models showed better diagnostic ability than the conventional CCTA features at assessing coronary plaque vulnerability. KEY POINTS • CCTA has great potential in the diagnosis of vulnerable coronary artery lesions. • Radiomics model built through CCTA could discriminate coronary vulnerable lesions in good diagnostic ability. • Radiomics model could improve the ability of vulnerability diagnosis against traditional CCTA method, sensitivity especially.
Collapse
|
46
|
Chatzopoulou F, Kyritsis KA, Papagiannopoulos CI, Galatou E, Mittas N, Theodoroula NF, Papazoglou AS, Karagiannidis E, Chatzidimitriou M, Papa A, Sianos G, Angelis L, Chatzidimitriou D, Vizirianakis IS. Dissecting miRNA–Gene Networks to Map Clinical Utility Roads of Pharmacogenomics-Guided Therapeutic Decisions in Cardiovascular Precision Medicine. Cells 2022; 11:cells11040607. [PMID: 35203258 PMCID: PMC8870388 DOI: 10.3390/cells11040607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) create systems networks and gene-expression circuits through molecular signaling and cell interactions that contribute to health imbalance and the emergence of cardiovascular disorders (CVDs). Because the clinical phenotypes of CVD patients present a diversity in their pathophysiology and heterogeneity at the molecular level, it is essential to establish genomic signatures to delineate multifactorial correlations, and to unveil the variability seen in therapeutic intervention outcomes. The clinically validated miRNA biomarkers, along with the relevant SNPs identified, have to be suitably implemented in the clinical setting in order to enhance patient stratification capacity, to contribute to a better understanding of the underlying pathophysiological mechanisms, to guide the selection of innovative therapeutic schemes, and to identify innovative drugs and delivery systems. In this article, the miRNA–gene networks and the genomic signatures resulting from the SNPs will be analyzed as a method of highlighting specific gene-signaling circuits as sources of molecular knowledge which is relevant to CVDs. In concordance with this concept, and as a case study, the design of the clinical trial GESS (NCT03150680) is referenced. The latter is presented in a manner to provide a direction for the improvement of the implementation of pharmacogenomics and precision cardiovascular medicine trials.
Collapse
Affiliation(s)
- Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
- Labnet Laboratories, Department of Molecular Biology and Genetics, 54638 Thessaloniki, Greece
| | - Konstantinos A. Kyritsis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Christos I. Papagiannopoulos
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Eleftheria Galatou
- Department of Life & Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
| | - Nikolaos Mittas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| | - Nikoleta F. Theodoroula
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Andreas S. Papazoglou
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Efstratios Karagiannidis
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Maria Chatzidimitriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Anna Papa
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
| | - Georgios Sianos
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Lefteris Angelis
- Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
- Department of Life & Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
- Correspondence: or
| |
Collapse
|
47
|
Wang J, Yuan S, Qi J, Zhang Q, Ji Z. Advantages and prospects of optical coherence tomography in interventional therapy of coronary heart disease (Review). Exp Ther Med 2022; 23:255. [PMID: 35261627 PMCID: PMC8855506 DOI: 10.3892/etm.2022.11180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/13/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jie Wang
- Department of Cardiology, Tangshan Gongren Hospital Affiliated of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Jingjing Qi
- Department of Cardiology, Tangshan Gongren Hospital Affiliated of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Qinggao Zhang
- Chronic Diseases Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Zheng Ji
- Department of Cardiology, Tangshan Gongren Hospital Affiliated of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
48
|
Sakamoto A, Cornelissen A, Sato Y, Mori M, Kawakami R, Kawai K, Ghosh SKB, Xu W, Abebe BG, Dikongue A, Kolodgie FD, Virmani R, Finn AV. Vulnerable Plaque in Patients with Acute Coronary Syndrome: Identification, Importance, and Management. US CARDIOLOGY REVIEW 2022; 16:e01. [PMID: 39600843 PMCID: PMC11588187 DOI: 10.15420/usc.2021.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/07/2021] [Indexed: 11/04/2022] Open
Abstract
MI is a leading cause of morbidity and mortality worldwide. Coronary artery thrombosis is the final pathologic feature of the most cases of acute MI primarily caused by atherosclerotic coronary artery disease. The concept of vulnerable plaque has evolved over the years but originated from early pioneering work unveiling the crucial role of plaque rupture and subsequent coronary thrombosis as the dominant cause of MI. Along with systemic cardiovascular risk factors, developments of intravascular and non-invasive imaging modalities have allowed us to identify coronary plaques thought to be at high risk for rupture. However, morphological features alone may only be one of many factors which promote plaque progression. The current vulnerable-plaque-oriented approaches to accomplish personalized risk assessment and treatment have significant room for improvement. In this review, the authors discuss recent advances in the understanding of vulnerable plaque and its management strategy from pathology and clinical perspectives.
Collapse
Affiliation(s)
| | | | - Yu Sato
- CVPath InstituteGaithersburg, MD
| | | | | | | | | | - Weili Xu
- CVPath InstituteGaithersburg, MD
| | | | | | | | | | - Aloke V Finn
- CVPath InstituteGaithersburg, MD
- University of Maryland, School of MedicineBaltimore, MD
| |
Collapse
|
49
|
Liang S, Su M, Liu B, Liu R, Zheng H, Qiu W, Zhang Z. Evaluation of Blood Induced Influence for High-Definition Intravascular Ultrasound (HD-IVUS). IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:98-105. [PMID: 34437062 DOI: 10.1109/tuffc.2021.3108163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-definition intravascular ultrasound (HD-IVUS) utilizing more than 80 MHz frequency to assess atherosclerotic plaque, can theoretically achieve an axial resolution of less than [Formula: see text]. However, the blood is a high-attenuation source at high frequency, which would affect the imaging quality. There has been no research evaluating the blood-induced influence on HD-IVUS imaging. And whether a temporary removal of blood is needed for HD-IVUS is unknown. In this study, an ultrahigh-frequency (100 MHz) ultrasound transducer was developed to evaluate the blood-induced attenuation for HD-IVUS imaging. A series of tungsten-wire phantom images in saline and blood at varying hematocrits were obtained. The images showed that blood did influence the ultrahigh-frequency imaging quality greatly. The signal-to-noise ratio (SNR) decrease by 71.7% in porcine whole blood compared to that in saline at the same depth of 2.3 mm. Moreover, the potential flushing schemes for HD-IVUS were studied in varying hematocrits. Three flushing agents commonly used in intravascular optical coherence tomography (IV-OCT) were investigated, including iohexol, mannitol, and dextran 5% and saline as the control group. The attenuation of blood in varying hematocrits/flushing agents was measured from 90 to 110 MHz. The result indicated dextran 5% was a suitable flushing agent for HD-IVUS due to its less signal attenuation compared to others.
Collapse
|
50
|
Lee JE, Park HM, Lim Y, Jeong WGI, Kim YH. Pathophysiology and Role of Coronary CT Angiography in Stable Angina. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2022; 83:42-53. [PMID: 36237352 PMCID: PMC9238201 DOI: 10.3348/jksr.2021.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/11/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022]
Abstract
관상동맥질환의 임상적인 개념은 지난 10년 동안 패러다임의 변화를 보여왔다. 관상동맥질환은 대부분 진행성 질환이며, 관상동맥질환 환자는 질병 진행의 어느 시점에서도 급성 관상동맥 증후군에 직면할 수 있다. 이러한 임상적 맥락에서 2019년 유럽심장학회 가이드라인에서는 조기 진단과 꾸준한 관리가 필요한 관상동맥질환의 임상적인 중요성을 반영하여 “만성 관상동맥증후군”이라는 용어의 사용을 발표하였다. 최근 관상동맥 전산화단층촬영 혈관조영술을 이용한 관상동맥질환의 평가는 많은 발전을 이루었고, 안정형 협심증 또는 만성 관상동맥증후군 환자에서 관상동맥 전산화단층촬영 혈관조영술의 임상적 유용성은 초기 무증상 관상동맥질환의 발견에서부터 죽상경화판의 특성 분석 및 관상동맥질환의 치료 전략 결정에 도움을 주는 역할까지 관상동맥질환의 다양한 단계에 걸쳐 입증되고 있다. 이 종설에서는 안정형 협심증 환자의 이해를 돕는 병태생리를 설명하고 이에 대한 관상동맥 전산화단층촬영의 임상적 적용과 역할에 대해 알아보고자 한다.
Collapse
Affiliation(s)
- Jong Eun Lee
- Department of Radiology, Chonnam National University Hospital, Gwangju, Korea
| | - Hye Mi Park
- Department of Radiology, Chonnam National University Hospital, Gwangju, Korea
| | - Yongwhan Lim
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Won GI Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Yun-Hyeon Kim
- Department of Radiology, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|