1
|
Kim YJ, Son J, Han CS, Park CW. Preparation of Carrier-Free Inhalable Dry Powder of Rivaroxaban Using Two-Step Milling for Lung-Targeted Delivery. Pharmaceutics 2025; 17:634. [PMID: 40430925 PMCID: PMC12114934 DOI: 10.3390/pharmaceutics17050634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: This study aimed to develop a dry powder inhalation (DPI) formulation of rivaroxaban (RVX) using a combination of bead milling (BM) and jet milling (JM) to enhance lung-targeted delivery for the effective treatment of pulmonary embolism while minimizing systemic exposure. Methods: A carrier-free DPI formulation of RVX was developed using sequential BM and JM, with L-leucine incorporated at various concentrations (1%, 5%, and 10%) as a force control agent. The formulations were characterized for particle morphology, size distribution, crystallinity, and thermal properties. The in-vitro aerodynamic performance was evaluated using a next-generation impactor, while ex-vivo studies assessed anticoagulant activity. Pharmacokinetic and tissue distribution studies were carried out in Sprague Dawley rats following intratracheal administration, and the effects of inhaled RVX were compared with those of oral administration. Results: The optimized BM-JM-5L formulation achieved a Dv50 of 2.58 ± 0.01 µm and a fine particle fraction of 72.10 ± 2.46%, indicating suitability for pulmonary delivery. The two-step milling effectively reduced particle size and enhanced dispersibility without altering RVX's physicochemical properties. Ex-vivo anticoagulation tests confirmed maintained or improved activity. In-vivo studies showed that pulmonary administration (5 mg/kg) led to a 493-fold increase in lung drug concentration and 2.56-fold higher relative bioavailability vs. oral dosing, with minimal heart tissue accumulation, confirming targeted lung delivery. Conclusions: The two-step milled RVX DPI formulations, particularly BM-JM-5L with 5% leucine, demonstrated significant potential for pulmonary administration by achieving high local drug concentrations, rapid onset, and improved bioavailability at lower doses. These findings highlight the feasibility of RVX as a DPI formulation for pulmonary delivery in treating pulmonary embolism.
Collapse
Affiliation(s)
| | - Jaewoon Son
- MSAT/DP Team, GC Biopharma, Yongin-si 16924, Republic of Korea;
| | - Chang-Soo Han
- P2KBio, Cheongju 28160, Republic of Korea;
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Chun-Woong Park
- Department of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
2
|
Wang J, Ho P, Nandurkar H, Lim HY. Overall haemostatic potential assay for prediction of outcomes in venous and arterial thrombosis and thrombo-inflammatory diseases. J Thromb Thrombolysis 2024; 57:852-864. [PMID: 38649560 DOI: 10.1007/s11239-024-02975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Thromboembolic diseases including arterial and venous thrombosis are common causes of morbidity and mortality globally. Thrombosis frequently recurs and can also complicate many inflammatory conditions through the process of 'thrombo-inflammation,' as evidenced during the COVID-19 pandemic. Current candidate biomarkers for thrombosis prediction, such as D-dimer, have poor predictive efficacy. This limits our capacity to tailor anticoagulation duration individually and may expose lower risk individuals to undue bleeding risk. Global coagulation assays, such as the Overall Haemostatic Potential (OHP) assay, that investigate fibrin generation and fibrinolysis, may provide a more accurate and functional assessment of hypercoagulability. We present a review of fibrin's critical role as a central modulator of thrombotic risk. The results of our studies demonstrating the OHP assay as a predictive biomarker in venous thromboembolism, chronic renal disease, diabetes mellitus, post-thrombotic syndrome, and COVID-19 are discussed. As a comprehensive and global measurement of fibrin generation and fibrinolytic capacity, the OHP assay may be a valuable addition to future multi-modal predictive tools in thrombosis.
Collapse
Affiliation(s)
- Julie Wang
- Northern Health, 185 Cooper St, Epping, VIC, 3076, Australia.
| | - Prahlad Ho
- Northern Health, 185 Cooper St, Epping, VIC, 3076, Australia
| | - Harshal Nandurkar
- Australian Centre for Blood Diseases, Monash Health, Melbourne, Australia
| | - Hui Yin Lim
- Northern Health, 185 Cooper St, Epping, VIC, 3076, Australia
| |
Collapse
|
3
|
Goodarzi S, Abu-Hanna J, Harper S, Khan D, Morrow G, Curry N. Are all fibrinogen concentrates the same? The effects of two fibrinogen therapies in an afibrinogenemic patient and in a fibrinogen deficient plasma model. A clinical and laboratory case report. Front Med (Lausanne) 2024; 11:1391422. [PMID: 38873197 PMCID: PMC11169818 DOI: 10.3389/fmed.2024.1391422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
The choice of treatments for inherited, or acquired, fibrinogen deficient states is expanding and there are now several fibrinogen concentrate therapies commercially available. Patients with the rare inherited bleeding disorder, afibrinogenemia, commonly require life-long replacement therapy with fibrinogen concentrate to prevent hemorrhagic complications. Recent reports in the setting of acquired bleeding, namely trauma hemorrhage, have highlighted the potential importance of the different compositions of fibrinogen supplements, including cryoprecipitate and the various plasma- derived concentrates. Clot strength and the subsequent susceptibility of a clot to lysis is highly dependent on the amount of fibrinogen as well as its structural composition, the concentration of pro- and anti-coagulant factors, as well as fibrinolytic regulators, such as factor XIII (FXIII). This report details the effects of two commercially available fibrinogen concentrates (Riastap®, CSL Behring and Fibryga®, Octapharma) on important functional measures of clot formation and lysis in a patient with afibrinogenemia. Our report offers insights into the differential effects of these concentrates, at the clot level, according to the variable constituents of each product, thereby emphasizing that the choice of fibrinogen concentrate can influence the stability of a clot in vivo. Whether this alters clinical efficacy is yet to be understood.
Collapse
Affiliation(s)
- Soutiam Goodarzi
- Oxford University Medical School, Medical Sciences Division, John Radcliffe Hospital, Oxford, United Kingdom
- Radcliffe Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Jeries Abu-Hanna
- Radcliffe Department of Medicine, Oxford University, Oxford, United Kingdom
- Oxford Haemophilia and Thrombosis Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Sarah Harper
- Oxford Haemophilia and Thrombosis Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Dalia Khan
- Oxford Haemophilia and Thrombosis Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Gael Morrow
- Radcliffe Department of Medicine, Oxford University, Oxford, United Kingdom
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Nicola Curry
- Radcliffe Department of Medicine, Oxford University, Oxford, United Kingdom
- Oxford Haemophilia and Thrombosis Centre, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
4
|
Bouck EG, Grinsztejn E, Mcnamara M, Stavrou EX, Wolberg AS. Thromboembolic risk with gender-affirming hormone therapy: potential role of global coagulation and fibrinolysis assays. Res Pract Thromb Haemost 2023; 7:102197. [PMID: 37822706 PMCID: PMC10562871 DOI: 10.1016/j.rpth.2023.102197] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 10/13/2023] Open
Abstract
Gender-affirming hormonal therapies are a critical component of the care of transgender individuals. Transgender people are commonly prescribed estrogen or testosterone to promote male-to-female or female-to-male transitions and to preserve gender-specific characteristics long-term. However, some exogenous hormones, especially certain estrogen preparations, are an established risk factor of thrombosis. As the number of individuals seeking gender-based care is rising, there is an urgent need to identify and characterize the mechanisms underlying hormone-associated thrombosis and incorporate this information into clinical algorithms for diagnosis and management. Herein, we discuss historical evidence on the incidence of thrombosis and changes in plasma composition in transgender and cisgender cohorts. We present 3 case studies to demonstrate knowledge gaps in thrombosis risk stratification and prediction tools. We also present data from in vitro coagulation and fibrinolysis assays and discuss how information from these kinds of assays may be used to help guide the clinical management of transgender individuals.
Collapse
Affiliation(s)
- Emma G. Bouck
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Eduarda Grinsztejn
- Department of Medicine, Hematology and Oncology Division, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Megan Mcnamara
- Medicine Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Evi X. Stavrou
- Medicine Service, Section of Hematology-Oncology, Louise Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Medicine, Hematology and Oncology Division, CWRU School of Medicine, Cleveland, OH, USA
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Buzza MS, Pawar NR, Strong AA, Antalis TM. Intersection of Coagulation and Fibrinolysis by the Glycosylphosphatidylinositol (GPI)-Anchored Serine Protease Testisin. Int J Mol Sci 2023; 24:9306. [PMID: 37298257 PMCID: PMC10252689 DOI: 10.3390/ijms24119306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Hemostasis is a delicate balance between coagulation and fibrinolysis that regulates the formation and removal of fibrin, respectively. Positive and negative feedback loops and crosstalk between coagulation and fibrinolytic serine proteases maintain the hemostatic balance to prevent both excessive bleeding and thrombosis. Here, we identify a novel role for the glycosylphosphatidylinositol (GPI)-anchored serine protease testisin in the regulation of pericellular hemostasis. Using in vitro cell-based fibrin generation assays, we found that the expression of catalytically active testisin on the cell surface accelerates thrombin-dependent fibrin polymerization, and intriguingly, that it subsequently promotes accelerated fibrinolysis. We find that the testisin-dependent fibrin formation is inhibited by rivaroxaban, a specific inhibitor of the central prothrombin-activating serine protease factor Xa (FXa), demonstrating that cell-surface testisin acts upstream of factor X (FX) to promote fibrin formation at the cell surface. Unexpectedly, testisin was also found to accelerate fibrinolysis by stimulating the plasmin-dependent degradation of fibrin and enhancing plasmin-dependent cell invasion through polymerized fibrin. Testisin was not a direct activator of plasminogen, but it is able to induce zymogen cleavage and the activation of pro-urokinase plasminogen activator (pro-uPA), which converts plasminogen to plasmin. These data identify a new proteolytic component that can regulate pericellular hemostatic cascades at the cell surface, which has implications for angiogenesis, cancer biology, and male fertility.
Collapse
Affiliation(s)
- Marguerite S. Buzza
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.R.P.); (A.A.S.); (T.M.A.)
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Nisha R. Pawar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.R.P.); (A.A.S.); (T.M.A.)
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Amando A. Strong
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.R.P.); (A.A.S.); (T.M.A.)
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Toni M. Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.R.P.); (A.A.S.); (T.M.A.)
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Bouck EG, Arvanitis M, Osburn WO, Sang Y, Reventun P, Ahmadzia HK, Smith NL, Lowenstein CJ, Wolberg AS. High risk oral contraceptive hormones do not directly enhance endothelial cell procoagulant activity in vitro. PLoS One 2023; 18:e0284333. [PMID: 37075041 PMCID: PMC10115293 DOI: 10.1371/journal.pone.0284333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Oral contraceptive (OC) use increases venous thromboembolism risk 2-5-fold. Procoagulant changes can be detected in plasma from OC users even without thrombosis, but cellular mechanisms that provoke thrombosis have not been identified. Endothelial cell (EC) dysfunction is thought to initiate venous thromboembolism. It is unknown whether OC hormones provoke aberrant procoagulant activity in ECs. OBJECTIVE Characterize the effect of high-risk OC hormones (ethinyl estradiol [EE] and drospirenone) on EC procoagulant activity and the potential interplay with nuclear estrogen receptors ERα and ERβ and inflammatory processes. METHODS Human umbilical vein and dermal microvascular ECs (HUVEC and HDMVEC, respectively) were treated with EE and/or drospirenone. Genes encoding the estrogen receptors ERα and ERβ (ESR1 and ESR2, respectively) were overexpressed in HUVEC and HDMVEC via lentiviral vectors. EC gene expression was assessed by RT-qPCR. The ability of ECs to support thrombin generation and fibrin formation was measured by calibrated automated thrombography and spectrophotometry, respectively. RESULTS Neither EE nor drospirenone, alone or together, changed expression of genes encoding anti- or procoagulant proteins (TFPI, THBD, F3), integrins (ITGAV, ITGB3), or fibrinolytic mediators (SERPINE1, PLAT). EE and/or drospirenone did not increase EC-supported thrombin generation or fibrin formation, either. Our analyses indicated a subset of individuals express ESR1 and ESR2 transcripts in human aortic ECs. However, overexpression of ESR1 and/or ESR2 in HUVEC and HDMVEC did not facilitate the ability of OC-treated ECs to support procoagulant activity, even in the presence of a pro-inflammatory stimulus. CONCLUSIONS The OC hormones EE and drospirenone do not directly enhance thrombin generation potential of primary ECs in vitro.
Collapse
Affiliation(s)
- Emma G. Bouck
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Marios Arvanitis
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - William O. Osburn
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Yaqiu Sang
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Paula Reventun
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Homa K. Ahmadzia
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, George Washington University, Washington, DC, United States of America
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, WA, United States of America
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, United States of America
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, United States of America
| | - Charles J. Lowenstein
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
7
|
Tran DQ, Stelflug N, Hall A, Nallan Chakravarthula T, Alves NJ. Microplastic Effects on Thrombin-Fibrinogen Clotting Dynamics Measured via Turbidity and Thromboelastography. Biomolecules 2022; 12:biom12121864. [PMID: 36551292 PMCID: PMC9775992 DOI: 10.3390/biom12121864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Micro/nanoplastics, whether manufactured or resulting from environmental degradation, can enter the body through ingestion, inhalation, or dermal pathways. Previous research has found that nanoplastics with diameters of ≤100 nm can translocate into the circulatory system in a dose-dependent manner and potentially impact thrombosis and hemostasis. To investigate the direct effects of microplastics on fibrin clot formation, a simplified ex vivo human thrombin/fibrinogen clot model was utilized. The 100 nm polystyrene particles (non-functionalized [nPS] and aminated [aPS]) were preincubated (0-200 µg/mL) with either thrombin or fibrinogen, and fibrin clot formation was characterized via turbidity and thromboelastography (TEG). When the particles were preincubated with fibrinogen, little effect was observed for aPS or nPS on turbidity or TEG up through 100 µg/mL. TEG results demonstrated a significant impact on clot formation rate and strength, in the case of nPS preincubated with thrombin exhibiting a significant dose-dependent inhibitory effect. In conclusion, the presence of microplastics can have inhibitory effects on fibrin clot formation that are dependent upon both particle surface charge and concentration. Negatively charged nPS exhibited the most significant impacts to clot strength, turbidity, and rate of fibrin formation when first incubated with thrombin, with its impact being greatly diminished when preincubated with fibrinogen in this simplified fibrin clot model.
Collapse
Affiliation(s)
- Daniela Q. Tran
- Department of Emergency Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Nathan Stelflug
- Department of Emergency Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Abigail Hall
- Department of Emergency Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Tanmaye Nallan Chakravarthula
- Department of Emergency Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Nathan J. Alves
- Department of Emergency Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
8
|
Ding WY, Davies IG, Gupta D, Lip GYH. Relationship between Renal Function, Fibrin Clot Properties and Lipoproteins in Anticoagulated Patients with Atrial Fibrillation. Biomedicines 2022; 10:biomedicines10092270. [PMID: 36140371 PMCID: PMC9496227 DOI: 10.3390/biomedicines10092270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Mechanisms by which chronic kidney disease (CKD) influences fibrin clot properties in atrial fibrillation (AF) remain ill-defined. We aimed to investigate the effects of AF and CKD on fibrin clot properties and lipoproteins, and determine the relationship between these factors. Methods: Prospective cross-sectional study of patients recruited from cardiology services in Liverpool between September 2019 and October 2021. Primary groups consisted of anticoagulated AF patients with and without CKD in a 1:1 ratio. Control group comprised anticoagulated patients without AF or CKD. Fibrin clot properties were analysed using turbidity and permeation assays. Detailed lipoprotein characteristics, including total cholesterol, low-density lipoprotein cholesterol (LDL-C), small dense LDL and oxidised LDL, were measured. Results: Fifty-six anticoagulated patients were enrolled (median age 72.5; 34% female); 46 with AF (23 with CKD and 23 without CKD) and 10 controls. AF was associated with changes in three indices of fibrin clot properties using PTT (Tlag 314 vs. 358 s, p = 0.047; Abspeak 0.153 vs. 0.111 units, p = 0.031; Tlysis50% 884 vs. 280 s, p = 0.047) and thrombin reagents (Tlag 170 vs. 132 s, p = 0.031; Tmax 590 vs. 462 s, p = 0.047; Tpeak50% 406 vs. 220 s, p = 0.005) while the concomitant presence of CKD led to changes in fibrin clot properties using kaolin (Tlag 1072 vs. 1640 s, p = 0.003; Tmax 1458 vs. 1962 s, p = 0.005; Tpeak50% 1294 vs. 2046, p = 0.008) and PPP reagents (Tlag 566 vs. 748 s, p = 0.044). Neither of these conditions were associated with changes in fibrin clot permeability. Deteriorating eGFR was significantly correlated to the speed of clot formation, and CKD was independently associated with unfavourable clot properties (Tlag −778, p = 0.002; Tmax −867, p = 0.004; Tpeak50% −853, p = 0.004 with kaolin reagent). AF alone was not associated with changes in lipoprotein distribution while AF patients with CKD had lower total cholesterol, LDL-C and small dense LDL due to the presence of other risk factors. No significant relationship was observed between fibrin clot properties and lipoprotein distribution. Conclusions: There are important changes that occur in fibrin clot properties with AF and CKD that may account for the increased risk of thromboembolic complications. However, these changes in fibrin clot properties were not attributable to alterations in lipoprotein distribution.
Collapse
Affiliation(s)
- Wern Yew Ding
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK
- Correspondence:
| | - Ian G. Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 5UX, UK
| | - Dhiraj Gupta
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK
- Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
9
|
Ceznerová E, Kaufmanová J, Stikarová J, Pastva O, Loužil J, Chrastinová L, Suttnar J, Kotlín R, Dyr JE. Thrombosis-associated hypofibrinogenemia: novel abnormal fibrinogen variant FGG c.8G>A with oxidative posttranslational modifications. Blood Coagul Fibrinolysis 2022; 33:228-237. [PMID: 35067535 DOI: 10.1097/mbc.0000000000001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here, we present the first case of fibrinogen variant FGG c.8G>A. We investigated the behaviour of this mutated fibrinogen in blood coagulation using fibrin polymerization, fibrinolysis, fibrinopeptides release measurement, mass spectrometry (MS), and scanning electron microscopy (SEM). The case was identified by routine coagulation testing of a 34-year-old man diagnosed with thrombosis. Initial genetic analysis revealed a heterozygous mutation in exon 1 of the FGG gene encoding gamma chain signal peptide. Fibrin polymerization by thrombin and reptilase showed the normal formation of the fibrin clot. However, maximal absorbance within polymerization was lower and fibrinolysis had a longer degradation phase than healthy control. SEM revealed a significant difference in clot structure of the patient, and interestingly, MS detected several posttranslational oxidations of fibrinogen. The data suggest that the mutation FGG c.8G>A with the combination of the effect of posttranslational modifications causes a novel case of hypofibrinogenemia associated with thrombosis.
Collapse
Affiliation(s)
- Eliška Ceznerová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6, Czech Republic
| | - Jiřina Kaufmanová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6, Czech Republic
| | - Jana Stikarová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| | - Ondřej Pastva
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| | - Jan Loužil
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| | - Leona Chrastinová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| | - Jiři Suttnar
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| | - Roman Kotlín
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| | - Jan Evangelista Dyr
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| |
Collapse
|
10
|
Sharma C, Osmolovskiy A, Singh R. Microbial Fibrinolytic Enzymes as Anti-Thrombotics: Production, Characterisation and Prodigious Biopharmaceutical Applications. Pharmaceutics 2021; 13:1880. [PMID: 34834294 PMCID: PMC8625737 DOI: 10.3390/pharmaceutics13111880] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiac disorders such as acute myocardial infarction, embolism and stroke are primarily attributed to excessive fibrin accumulation in the blood vessels, usually consequential in thrombosis. Numerous methodologies including the use of anti-coagulants, anti-platelet drugs, surgical operations and fibrinolytic enzymes are employed for the dissolution of fibrin clots and hence ameliorate thrombosis. Microbial fibrinolytic enzymes have attracted much more attention in the management of cardiovascular disorders than typical anti-thrombotic strategies because of the undesirable after-effects and high expense of the latter. Fibrinolytic enzymes such as plasminogen activators and plasmin-like proteins hydrolyse thrombi with high efficacy with no significant after-effects and can be cost effectively produced on a large scale with a short generation time. However, the hunt for novel fibrinolytic enzymes necessitates complex purification stages, physiochemical and structural-functional attributes, which provide an insight into their mechanism of action. Besides, strain improvement and molecular technologies such as cloning, overexpression and the construction of genetically modified strains for the enhanced production of fibrinolytic enzymes significantly improve their thrombolytic potential. In addition, the unconventional applicability of some fibrinolytic enzymes paves their way for protein hydrolysis in addition to fibrin/thrombi, blood pressure regulation, anti-microbials, detergent additives for blood stain removal, preventing dental caries, anti-inflammatory and mucolytic expectorant agents. Therefore, this review article encompasses the production, biochemical/structure-function properties, thrombolytic potential and other surplus applications of microbial fibrinolytic enzymes.
Collapse
Affiliation(s)
- Chhavi Sharma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India;
| | - Alexander Osmolovskiy
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Rajni Singh
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India;
| |
Collapse
|
11
|
Inhaled Edoxaban dry powder inhaler formulations: Development, characterization and their effects on the coagulopathy associated with COVID-19 infection. Int J Pharm 2021; 608:121122. [PMID: 34560207 PMCID: PMC8463814 DOI: 10.1016/j.ijpharm.2021.121122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
Herein, we demonstrated the development and characterization of a dry powder inhaler (DPI) formulation of edoxaban (EDX); and investigated the in-vitro anticoagulation effect for the management of pulmonary or cerebral coagulopathy associated with COVID-19 infection. The formulations were prepared by mixing the inhalable micronized drug with a large carrier lactose and dispersibility enhancers, leucine, and magnesium stearate. The drug-excipient interaction was studied using X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) methods. The drug and excipients showed no physical inter particulate interaction. The in-vitro drug aerosolization from the developed formulation was determined by a Twin Stage Impinger (TSI) at a flow rate of 60 ± 5 L /min. The amount of drug deposition was quantified by an established HPLC-UV method. The fine particle fraction (FPF) of EDX API from drug alone formulation was 7%, whereas the formulations with excipients increased dramatically to almost 7-folds up to 47%. The developed DPI formulation of EDX showed a promising in-vitro anticoagulation effect at a very low concentration. This novel DPI formulation of EDX could be a potential and effective inhalation therapy for managing pulmonary venous thromboembolism (VTE) associated with COVID-19 infection. Further studies are warranted to investigate the toxicity and clinical application of the inhaled EDX DPI formulation.
Collapse
|
12
|
Modulating the rate of fibrin formation and clot structure attenuates microvascular thrombosis in systemic inflammation. Blood Adv 2021; 4:1340-1349. [PMID: 32259201 DOI: 10.1182/bloodadvances.2020001500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
Systemic inflammation can lead to coagulopathy and disseminated intravascular coagulation (DIC). In prior studies, the recombinant A2 domain of human von Willebrand factor (VWF; A2 protein) attenuated DIC and decreased mortality in lipopolysaccharide (LPS)-treated mice. Here, we performed studies to dissect the mechanism by which the A2 protein moderates DIC. We used confocal microscopy to analyze the fibrin clot structure in plasma from healthy humans and endotoxemic mice, turbidity assays to examine fibrin polymerization, and a murine model for LPS-induced DIC and introduced a loss-of-function mutation into the A2 protein for fibrin. The mutation of the residue E1567 located in the α2 helix of the folded A2 domain of VWF inhibited binding activity for fibrin, possibly mapping a novel region containing a putative binding site for fibrin. The A2 protein increased the initial rate of change of fibrin polymerization, intercalated into the fibrin network, and modified the resultant clot structure in vitro. Furthermore, ex vivo experiments using plasma from mice with endotoxemia treated with the A2 protein revealed an increased rate of fibrin formation and an altered clot structure as compared with plasma from nontreated sick animals. Moreover, and in contrast to the A2 mutant, the A2 protein improved survival and reduced fibrin deposition and microvascular thrombosis in mice with endotoxemia-induced DIC. Importantly, in vivo and in vitro studies indicated that the A2 protein did not affect experimental thrombosis. Thus, we provide evidence for a novel treatment to attenuate systemic inflammation-induced coagulopathy/DIC via targeting fibrin formation, without an increased risk for bleeding.
Collapse
|
13
|
Pearce KJ, Nellenbach K, Smith RC, Brown AC, Haider MA. Modeling and Parameter Subset Selection for Fibrin Polymerization Kinetics with Applications to Wound Healing. Bull Math Biol 2021; 83:47. [PMID: 33751272 PMCID: PMC8237246 DOI: 10.1007/s11538-021-00876-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/25/2021] [Indexed: 11/29/2022]
Abstract
During the hemostatic phase of wound healing, vascular injury leads to endothelial cell damage, initiation of a coagulation cascade involving platelets, and formation of a fibrin-rich clot. As this cascade culminates, activation of the protease thrombin occurs and soluble fibrinogen is converted into an insoluble polymerized fibrin network. Fibrin polymerization is critical for bleeding cessation and subsequent stages of wound healing. We develop a cooperative enzyme kinetics model for in vitro fibrin matrix polymerization capturing dynamic interactions among fibrinogen, thrombin, fibrin, and intermediate complexes. A tailored parameter subset selection technique is also developed to evaluate parameter identifiability for a representative data curve for fibrin accumulation in a short-duration in vitro polymerization experiment. Our approach is based on systematic analysis of eigenvalues and eigenvectors of the classical information matrix for simulations of accumulating fibrin matrix via optimization based on a least squares objective function. Results demonstrate robustness of our approach in that a significant reduction in objective function cost is achieved relative to a more ad hoc curve-fitting procedure. Capabilities of this approach to integrate non-overlapping subsets of the data to enhance the evaluation of parameter identifiability are also demonstrated. Unidentifiable reaction rate parameters are screened to determine whether individual reactions can be eliminated from the overall system while preserving the low objective cost. These findings demonstrate the high degree of information within a single fibrin accumulation curve, and a tailored model and parameter subset selection approach for improving optimization and reducing model complexity in the context of polymerization experiments.
Collapse
Affiliation(s)
- Katherine J Pearce
- Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC, 27695-8205, USA
| | - Kimberly Nellenbach
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Raleigh, NC, 27695, USA
| | - Ralph C Smith
- Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC, 27695-8205, USA
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Raleigh, NC, 27695, USA
| | - Mansoor A Haider
- Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC, 27695-8205, USA.
| |
Collapse
|
14
|
Becatti M, Mannucci A, Argento FR, Gitto S, Vizzutti F, Marra F, Taddei N, Fiorillo C, Laffi G. Super-Resolution Microscopy Reveals an Altered Fibrin Network in Cirrhosis: The Key Role of Oxidative Stress in Fibrinogen Structural Modifications. Antioxidants (Basel) 2020; 9:antiox9080737. [PMID: 32806658 PMCID: PMC7464401 DOI: 10.3390/antiox9080737] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cirrhotic patients show a reduced synthesis of both pro- and anti-coagulant factors. Recent reports indicate that they are characterized by a higher risk of thrombotic rather than hemorrhagic complications, but the mechanisms conferring this risk are not fully elucidated. Oxidative-mediated fibrinogen modifications may explain, at least in part, a prothrombotic profile. The aim of the present pilot study was to investigate the alterations in fibrinogen structure and function in patients with cirrhosis of various severity and to correlate these findings with the mechanisms of thrombus formation. We assessed in plasma specific oxidative stress markers and measured oxidative modifications, functional and structural parameters in purified fibrinogen fractions obtained from cirrhotic patients and control subjects. We enrolled 15 cirrhotic patients (5 patients belonging to each of the three Child-Turcotte-Pugh classes) and 20 age- and sex-matched healthy controls. Plasma redox status, fibrinogen oxidative modifications, thrombin-catalyzed fibrin polymerization and fibrin resistance to plasmin-induced lysis were significantly altered in cirrhotic patients and were associated to disease severity. Importantly, clot structure obtained by stimulated emission depletion (STED) super-resolution microscopy indicated modifications in fiber diameter and in clot porosity in cirrhotic patients. Fibrin fiber diameter significantly decreased in cirrhotic patients when compared to controls, and this difference became more marked with disease progression. In parallel, fibrin pore size progressively decreased along with disease severity. In cirrhotic patients, fibrinogen clot analysis and oxidative-dependent changes reveal novel structural and functional fibrinogen modifications which may favor thrombotic complications in cirrhosis.
Collapse
Affiliation(s)
- Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (A.M.); (F.R.A.); (N.T.); (C.F.)
- Correspondence: ; Tel.: +39-0552751261
| | - Amanda Mannucci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (A.M.); (F.R.A.); (N.T.); (C.F.)
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (A.M.); (F.R.A.); (N.T.); (C.F.)
| | - Stefano Gitto
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.G.); (F.V.); (F.M.); (G.L.)
| | - Francesco Vizzutti
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.G.); (F.V.); (F.M.); (G.L.)
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.G.); (F.V.); (F.M.); (G.L.)
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (A.M.); (F.R.A.); (N.T.); (C.F.)
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (A.M.); (F.R.A.); (N.T.); (C.F.)
| | - Giacomo Laffi
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.G.); (F.V.); (F.M.); (G.L.)
| |
Collapse
|
15
|
Huang J, Fan H, Yin X, Huang F. Isolation of a Novel Metalloproteinase from Agkistrodon Venom and Its Antithrombotic Activity Analysis. Int J Mol Sci 2019; 20:E4088. [PMID: 31438579 PMCID: PMC6747553 DOI: 10.3390/ijms20174088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 12/12/2022] Open
Abstract
Snake venom contains large amounts of active proteins and peptides. In this study, a novel snake protein, metalloproteinase SP, was successfully isolated from the venom of Agkistrodon acutus by multi-gel chromatography. The isolated protein exhibits anti-platelet aggregation activity. Animal experiments showed that it exhibited defibration, anticoagulation, and antithrombotic effects and contributes to improved blood rheology and antiplatelet aggregation. In vivo experiments demonstrated that it prolonged clotting time, partial thromboplastin time, prothrombin time, thrombin time, fibrinogen time and reduced fibrinogen content of mice. Also, metalloproteinase SP inhibited carrageenan-induced tail thrombosis, ADP-induced acute pulmonary embolism, and ADP, Arachidonic acid (AA), or collagen-induced platelet aggregation. In vitro experiments showed that the protein cleaved the α, β, and γ chains of fibrinogen. Metabolomic analysis upon metalloproteinase SP treatment revealed that 14 metabolites, which are mainly involved in phenylalanine, tyrosine, and tryptophan biosynthesis, responded to metalloproteinase SP treatment. In summary, the isolated snake venom protein inhibits formation of acute pulmonary embolism probably through regulating and restoring perturbed energy, lipid, and amino acid metabolism.
Collapse
Affiliation(s)
- Jin Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Fan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojian Yin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
- Chinese Medicine College, China Pharmaceutical University, Nanjing 210009, China.
| | - Fang Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
- Chinese Medicine College, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
16
|
Kattula S, Byrnes JR, Wolberg AS. Fibrinogen and Fibrin in Hemostasis and Thrombosis. Arterioscler Thromb Vasc Biol 2019; 37:e13-e21. [PMID: 28228446 DOI: 10.1161/atvbaha.117.308564] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sravya Kattula
- From the Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - James R Byrnes
- From the Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Alisa S Wolberg
- From the Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill.
| |
Collapse
|
17
|
Fibrinography: A Multiwavelength Light-Scattering Assay of Fibrin Structure. Hemasphere 2019; 3:e166. [PMID: 31723805 PMCID: PMC6745935 DOI: 10.1097/hs9.0000000000000166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
We have previously developed a fibrin structural assay dedicated to purified fibrinogen-thrombin system. Here, we extend the pertinence of this test, called Fibrinography, to tissue factor-triggered plasma coagulation. We show that Fibrinography determines quantitatively the structure of fibrin fibers in plasma with an excellent reproducibility. We compare this assay with the commonly used single wavelength turbidity method, showing that the latter is not a proper structural assay, but determines essentially the fibrinogen content in plasma. In addition, we also show, in model plasmas, that Fibrinography is able to discriminate normal and hypocoagulant plasmas, and even between hypercoagulant plasmas. Therefore, Fibrinography, by measuring the final step of the coagulation cascade, may be used to evaluate patients’ plasma in hypo- or hypercoagulant diseases.
Collapse
|
18
|
Wang X, Luo Y, Yang Y, Zheng B, Yan F, Wei F, Friis TE, Crawford RW, Xiao Y. Alteration of clot architecture using bone substitute biomaterials (beta-tricalcium phosphate) significantly delays the early bone healing process. J Mater Chem B 2018; 6:8204-8213. [PMID: 32254940 DOI: 10.1039/c8tb01747f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
When a bone substitute biomaterial is implanted into the body, the material's surface comes into contact with circulating blood, which results in the formation of a peri-implant hematoma or blood clot. Although hematoma formation is vital for the early bone healing process, knowledge concerning the biomaterial-induced structural properties of blood clots is limited. Here, we report that implantation of beta-tricalcium phosphate (β-TCP) in a bone defect healing model in rats resulted in significantly delayed early bone healing compared to empty controls (natural healing). In vitro studies showed that β-TCP had a profound effect on the overall structure of hematomas, as was observed by fibrin turbidity, scanning electron microscopy (SEM), compaction assays, and fibrinolysis. Under the influence of β-TCP, clot formation had a significantly shortened lag time and there was enhanced lateral fibrin aggregation during the clot polymerization, which resulted in clots composed of thinner fibers. Furthermore, fibrin clots that formed around β-TCP exhibited reduced compaction and increased resistance to fibrinolysis. Together, these results provide a plausible mechanism for how implanted bone-substitute materials may impact the structural properties of the hematoma, thereby altering the early bone healing processes, such as cell infiltration, growth factor release and angiogenesis.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Becatti M, Emmi G, Bettiol A, Silvestri E, Di Scala G, Taddei N, Prisco D, Fiorillo C. Behçet's syndrome as a tool to dissect the mechanisms of thrombo-inflammation: clinical and pathogenetic aspects. Clin Exp Immunol 2018; 195:322-333. [PMID: 30472725 DOI: 10.1111/cei.13243] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2018] [Indexed: 01/01/2023] Open
Abstract
Behçet's syndrome (BS) is a complex disease with different organ involvement. The vascular one is the most intriguing, considering the existence of a specific group of patients suffering from recurrent vascular events involving the venous and, more rarely, the arterial vessels. Several clinical clues suggest the inflammatory nature of thrombosis in BS, especially of the venous involvement, thus BS is considered a model of inflammation-induced thrombosis. Unique among other inflammatory conditions, venous involvement (together with the arterial one) is currently treated with immunosuppressants, rather than with anti-coagulants. Although many in-vitro studies have suggested the different roles of the multiple players involved in clot formation, in-vivo models are crucial to study this process in a physiological context. At present, no clear mechanisms describing the pathophysiology of thrombo-inflammation in BS exist. Recently, we focused our attention on BS patients as a human in-vivo model of inflammation-induced thrombosis to investigate a new mechanism of clot formation. Indeed, fibrinogen displays a critical role not only in inflammatory processes, but also in clot formation, both in the fibrin network and in platelet aggregation. Reactive oxygen species (ROS)-derived modifications represent the main post-translational fibrinogen alterations responsible for structural and functional changes. Recent data have revealed that neutrophils (pivotal in the pathogenetic mechanisms leading to BS damage) promote fibrinogen oxidation and thrombus formation in BS. Altogether, these new findings may help understand the pathogenetic bases of inflammation-induced thrombosis and, more importantly, may suggest potential targets for innovative therapeutic approaches.
Collapse
Affiliation(s)
- M Becatti
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Firenze, Italy
| | - G Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Italy
| | - A Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Italy.,Department of Neurosciences, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Firenze, Italy
| | - E Silvestri
- Department of Experimental and Clinical Medicine, University of Firenze, Italy
| | - G Di Scala
- Department of Experimental and Clinical Medicine, University of Firenze, Italy
| | - N Taddei
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Firenze, Italy
| | - D Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Italy
| | - C Fiorillo
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Firenze, Italy
| |
Collapse
|
20
|
Königsbrügge O, Weigel G, Quehenberger P, Pabinger I, Ay C. Plasma clot formation and clot lysis to compare effects of different anticoagulation treatments on hemostasis in patients with atrial fibrillation. Clin Exp Med 2018; 18:325-336. [DOI: 10.1007/s10238-018-0490-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/24/2018] [Indexed: 11/30/2022]
|
21
|
Jeffery U, Brooks MB, LeVine DN. Development of a fibrinolysis assay for canine plasma. Vet J 2017; 229:19-25. [PMID: 29183569 DOI: 10.1016/j.tvjl.2017.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/11/2017] [Accepted: 10/25/2017] [Indexed: 11/28/2022]
Abstract
Unbalanced coagulation and fibrinolysis leads to hemorrhage or thrombosis. Thromboelastography has been used to characterize hypo- and hyper-fibrinolysis in dogs, however the technique requires specialized instrumentation and proprietary reagents that limit its availability. The aim of this study was to develop a simple microplate method for assessment of fibrinolysis in canine plasma. Plasma from healthy dogs was mixed in a microwell plate with tissue factor, calcium, phospholipid and tissue plasminogen activator. Light absorbance was measured at regular intervals until return to baseline. Peak optical density (milli-absorption units, mAU), formation velocity (mAU/s), lysis velocity (mAU/s) and area under the curve (mAU.s) were calculated. The influence of potential interferents, variation in fibrinogen and ex vivo addition of heparin and aminocaproic acid on assay performance was determined. Inter-day coefficients of variation were ≤15% for all variables. Bilirubin≤1.88mg/dL and hemoglobin≤0.09mg/dL did not interfere with assay variables. Aminocaproic acid (40μg/mL) and heparin (0.125U/mL) caused almost complete inhibition of fibrinolysis and coagulation, respectively. All variables except lysis velocity (R2=0.08) were associated with fibrinogen concentration (R2>0.8). This assay showed acceptable performance characteristics for measurement of fibrinolysis in normal canine plasma. The assay utilizes small volume citrate plasma samples and readily available instrumentation and reagents, is not influenced by mild to moderate hemolysis or icterus and detects the presence of fibrinolysis inhibitors.
Collapse
Affiliation(s)
- U Jeffery
- Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - M B Brooks
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - D N LeVine
- Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
22
|
Brooks MB, Stablein AP, Johnson L, Schultze AE. Preanalytic processing of rat plasma influences thrombin generation and fibrinolysis assays. Vet Clin Pathol 2017; 46:496-507. [DOI: 10.1111/vcp.12534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Marjory B. Brooks
- Departments of Population Medicine and Diagnostic Sciences; College of Veterinary Medicine; Cornell University; Ithaca NY USA
| | - Alyssa P. Stablein
- Departments of Population Medicine and Diagnostic Sciences; College of Veterinary Medicine; Cornell University; Ithaca NY USA
| | - Lynn Johnson
- Cornell Statistical Consulting Unit; Cornell University; Ithaca NY USA
| | | |
Collapse
|
23
|
Leenaerts D, Aernouts J, Van Der Veken P, Sim Y, Lambeir AM, Hendriks D. Plasma carboxypeptidase U (CPU, CPB2, TAFIa) generation during in vitro clot lysis and its interplay between coagulation and fibrinolysis. Thromb Haemost 2017; 117:1498-1508. [PMID: 28692110 DOI: 10.1160/th17-02-0097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/02/2017] [Indexed: 11/05/2022]
Abstract
Carboxypeptidase U (CPU, CPB2, TAFIa) is a basic carboxypeptidase that is able to attenuate fibrinolysis. The inactive precursor procarboxypeptidase U is converted to its active form by thrombin, the thrombin-thrombomodulin complex or plasmin. The aim of this study was to investigate and characterise the time course of CPU generation in healthy individuals. In plasma of 29 healthy volunteers, CPU generation was monitored during in vitro clot lysis. CPU activity was measured by means of an enzymatic assay that uses the specific substrate Bz-o-cyano-Phe-Arg. An algorithm was written to plot the CPU generation curve and calculate the parameters that define it. In all individuals, CPU generation was biphasic. Marked inter-individual differences were present and a reference range was determined. The endogenous CPU generation potential is the composite effect of multiple factors. With respect to the first CPU activity peak characteristics, we found correlations with baseline proCPU concentration, proCPU Thr325Ile polymorphism, time to clot initiation and the clot lysis time. The second CPU peak related with baseline proCPU levels and with the maximum turbidity of the clot lysis profile. In conclusion, our method offers a technique to determine the endogenous CPU generation potential of an individual. The parameters obtained by the method quantitatively describe the different mechanisms that influence CPU generation during the complex interplay between coagulation and fibrinolysis, which are in line with the threshold hypothesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Dirk Hendriks
- Prof. D. Hendriks, Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium, Tel.: +32 3 265 27 27, E-mail:
| |
Collapse
|
24
|
Voleisis A, Kazys R, Voleisiene B, Sliteris R, Mazeika L. Ultrasonic method for monitoring the clotting process during whole blood coagulation. ULTRASONICS 2017; 78:146-151. [PMID: 28347872 DOI: 10.1016/j.ultras.2017.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
The purpose of this work was to develop a multichannel ultrasonic measurement method for monitoring a spatially non-uniform blood clotting process. This novel method is based on simultaneous multi-channel measurements of ultrasound propagation velocities in different horizontal cross-sections of clotting blood. The most common method used for determining blood-clotting time is the capillary tube method. For this purpose ultrasonic methods based on measurements of the velocities of ultrasound waves in clotting blood are also used. Measurement results essentially depend on the propagation path of the ultrasonic wave in a blood sample. The ultrasound velocity changes as fresh blood transforms into clot plus serum. The objective of this work was to develop a measurement method that allows one to measure ultrasound velocity and its evolution in time and space in an evolving clot while avoiding the influence of serum. To achieve this objective, a novel method has been proposed that is based on ultrasound propagation velocity measurements in different horizontal cross-sections of clotting blood using a pulse-echo mode. Such a technique enables researchers to monitor the clotting process and a clot's spatial structure, which are different in different layers due to the influence of gravity. The four-channel measurement chamber utilizing this method has been designed and manufactured. For the generation and reception of ultrasonic waves of high frequency, wide band (3-20MHz at -6dB) ultrasonic transducers were developed. To verify that the multi-channel measurement system was operational, a special procedure based on monitoring of a polymerisation process in the acrylamide solution was proposed. Performance of the developed method was investigated by measuring clotting blood (sample volumes of less than 0.6ml) at the frequency of 12MHz. The results revealed that a clot structure indeed varies within a blood sample due to the influence of gravity; clotting times are different in different horizontal layers of the clot and range from 9 to 15min, defined by the standard capillary method. Clotting times are determined precisely from abrupt increases in ultrasound velocity. Uncertainty of the ultrasound velocity measurements was less than ±0.05m/s. The experiments were performed at 36.90±0.01°C. The proposed method may be exploited for monitoring polymerisation reactions in the chemistry field, as well.
Collapse
Affiliation(s)
- A Voleisis
- Ultrasound Institute, Kaunas University of Technology, Barsausko str. 59, LT-51368 Kaunas, Lithuania
| | - R Kazys
- Ultrasound Institute, Kaunas University of Technology, Barsausko str. 59, LT-51368 Kaunas, Lithuania.
| | - B Voleisiene
- Ultrasound Institute, Kaunas University of Technology, Barsausko str. 59, LT-51368 Kaunas, Lithuania
| | - R Sliteris
- Ultrasound Institute, Kaunas University of Technology, Barsausko str. 59, LT-51368 Kaunas, Lithuania.
| | - L Mazeika
- Ultrasound Institute, Kaunas University of Technology, Barsausko str. 59, LT-51368 Kaunas, Lithuania.
| |
Collapse
|
25
|
Sylman JL, Daalkhaijav U, Zhang Y, Gray EM, Farhang PA, Chu TT, Zilberman-Rudenko J, Puy C, Tucker EI, Smith SA, Morrissey JH, Walker TW, Nan XL, Gruber A, McCarty OJT. Differential Roles for the Coagulation Factors XI and XII in Regulating the Physical Biology of Fibrin. Ann Biomed Eng 2017; 45:1328-1340. [PMID: 27933406 PMCID: PMC5398924 DOI: 10.1007/s10439-016-1771-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/30/2016] [Indexed: 01/03/2023]
Abstract
In the contact activation pathway of the coagulation, zymogen factor XII (FXII) is converted to FXIIa, which triggers activation of FXI leading to the activation of FIX and subsequent thrombin generation and fibrin formation. Feedback activation of FXI by thrombin has been shown to promote thrombin generation in a FXII-independent manner and FXIIa can bypass FXI to directly activate FX and prothrombin in the presence of highly negatively charged molecules, such as long-chain polyphosphates (LC polyP). We sought to determine whether activation of FXII or FXI differentially regulate the physical biology of fibrin formation. Fibrin formation was initiated with tissue factor, ellagic acid (EA), or LC polyP in the presence of inhibitors of FXI and FXII. Our data demonstrated that inhibition of FXI decreased the rate of fibrin formation and fiber network density, and increased the fibrin network strength and rate of fibrinolysis when gelation was initiated via the contact activation pathway with EA. FXII inhibition decreased the fibrin formation and fibrin density, and increased the fibrinolysis rate only when fibrin formation was initiated via the contact activation pathway with LC polyP. Overall, we demonstrate that inhibition of FXI and FXII distinctly alter the biophysical properties of fibrin.
Collapse
Affiliation(s)
- Joanna L Sylman
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR, 97239, USA.
| | - Uranbileg Daalkhaijav
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Ying Zhang
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR, 97239, USA
| | - Elliot M Gray
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR, 97239, USA
| | - Parsa A Farhang
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR, 97239, USA
| | - Tiffany T Chu
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR, 97239, USA
| | - Jevgenia Zilberman-Rudenko
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR, 97239, USA
| | - Cristina Puy
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR, 97239, USA
| | - Erik I Tucker
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR, 97239, USA
- Aronora, Inc., Portland, OR, USA
| | - Stephanie A Smith
- Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - James H Morrissey
- Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Travis W Walker
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Xiaolin L Nan
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR, 97239, USA
| | - András Gruber
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR, 97239, USA
- Aronora, Inc., Portland, OR, USA
| | - Owen J T McCarty
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR, 97239, USA
| |
Collapse
|
26
|
Arata PX, Quintana I, Raffo MP, Ciancia M. Novel sulfated xylogalactoarabinans from green seaweed Cladophora falklandica : Chemical structure and action on the fibrin network. Carbohydr Polym 2016; 154:139-50. [DOI: 10.1016/j.carbpol.2016.07.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/11/2016] [Accepted: 07/20/2016] [Indexed: 11/17/2022]
|
27
|
Pitkänen HH, Jouppila A, Lemponen M, Ilmakunnas M, Ahonen J, Lassila R. Factor XIII deficiency enhances thrombin generation due to impaired fibrin polymerization - An effect corrected by Factor XIII replacement. Thromb Res 2016; 149:56-61. [PMID: 27902939 DOI: 10.1016/j.thromres.2016.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/31/2016] [Accepted: 11/12/2016] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Factor XIII (FXIII) cross-links fibrin, completing blood coagulation. Congenital FXIII deficiency is managed with plasma-derived FXIII (pdFXIII) or recombinant FXIII (rFXIII) concentrates. AIM As the mechanisms protecting patients with low FXIII levels (<5IU/dL) from spontaneous bleeds remain unknown we assessed the interplay between thrombin generation (TG), fibrin formation and clot kinetics before and after FXIII administration in three patients with FXIII deficiency. METHODS Patients received initially rFXIII (35IU/kg, A-subunit) following with pdFXIII at 1250IU or 2500IU (12-30IU/kg) monthly. TG (CAT), thromboelastometry (ROTEM), prothrombin fragments F1+2, fibrinogen and FXIII activity (FXIII:C) were measured at baseline and one-hour recovery. RESULTS FXIII was at the target level of 20±6IU/dL at the 4-week trough. rFXIII corrected FXIII to 98±15 and high-dose pdFXIII to a level of 90±6, whereas low-dose/half dose pdFXIII reached 45±4IU/dL. Although fibrinogen (Clauss Method) was normal, coagulation in FIBTEM was impaired, which FXIII administration tended to correct. CAT implied 1.6- to 1.9-fold enhanced TG, which FXIII administration normalized. Inhibition of fibrin polymerization by Gly-Pro-Arg-Pro peptide mimicked FXIII deficiency in CAT by enhancing TG both in control and FXIII recovery plasma. Antithrombin, α2-macroblobulin-thrombin complex and prothrombin were normal, whereas F1+2 were elevated compatible with in vivo TG. DISCUSSION FXIII deficiency impairs fibrinogen function and fibrin formation simultaneously enhancing TG on the poorly polymerizing fibrin strands, when fibrin's antithrombin I -like function is absent. Our study suggests an inverse link between low FXIII levels and enhanced TG modifying structure-function relationship of fibrin to support hemostasis.
Collapse
Affiliation(s)
- Hanna H Pitkänen
- Helsinki University Hospital Research Institute, Helsinki, Finland; Helsinki University, Division of Anaesthesiology, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Annukka Jouppila
- Helsinki University Hospital Research Institute, Helsinki, Finland
| | - Marja Lemponen
- Coagulation Disorders Unit, Department of Haematology, Comprehensive Cancer Center, and HUSLAB and Laboratory Services HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Minna Ilmakunnas
- Helsinki University, Division of Anaesthesiology, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jouni Ahonen
- Helsinki University, Division of Anaesthesiology, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Maternity Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Riitta Lassila
- Coagulation Disorders Unit, Department of Haematology, Comprehensive Cancer Center, and HUSLAB and Laboratory Services HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
28
|
Siegemund T, Scholz U, Schobess R, Siegemund A. Clot waveform analysis in patients with haemophilia A. Hamostaseologie 2015; 34 Suppl 1:S48-52. [PMID: 25382770 DOI: 10.5482/hamo-14-02-0016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 10/08/2014] [Indexed: 11/05/2022] Open
Abstract
UNLABELLED Clot waveform analysis extends the interpretation of aPTT measurement curves. The curve is mathematically processed to obtain information about fibrin formation kinetics including semiquantitative determination of thrombin, prothrombinase and tenase activity. PATIENTS, METHOD In this study the feasibility of clot waveform analysis for monitoring of haemophilia A was investigated using blood samples from healthy controls as well as haemophilia A patients under various clinical conditions. RESULTS Thrombin, prothrombinase and tenase activity show a high correlation to factor VIII levels. Tenase activity was found to exhibit a linear relationship to factor VIII levels over a very large concentration range and was able to discriminate patients with severe, moderate and mild haemophilia. CONCLUSION Clot waveform analysis is an easy, fast and cheap method to access disturbances in clot formation and can be done without any additional measurements beside an aPTT.
Collapse
Affiliation(s)
- T Siegemund
- T. Siegemund, MVZ Lab Dr. Reising-Ackermann and Colleagues, Center of Coagulation Disorders, Strümpellstr. 40, 04289 Leipzig, Germany
| | | | | | | |
Collapse
|
29
|
Genoud V, Lauricella AM, Kordich LC, Quintana I. Impact of homocysteine-thiolactone on plasma fibrin networks. J Thromb Thrombolysis 2015; 38:540-5. [PMID: 24659173 DOI: 10.1007/s11239-014-1063-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epidemiologic studies have shown that hyperhomocysteinemia is an independent risk factor for vascular disease. Homocysteine (Hcy) circulates as different species, mostly protein bound, and approximately 1% as its reduced form and the cyclic thioester homocysteine-thiolactone (HTL). Despite the level of plasma thiolactone being markedly low, detrimental effects are related to its high reactivity. HTL reacts with proteins by acylation of free basic amino groups; in particular, the epsilon-amino group of lysine residues forms adducts and induces structural and functional changes in plasma proteins. In order to assess the effects of HTL on plasma fibrin networks, a pool of normal plasma incubated with HTL (100, 500 and 1,000 μmol/L, respectively) was evaluated by global coagulation tests and fibrin formation kinetic assays, and the resulting fibrin was observed by scanning electron microscopy. HTL significantly prolonged global coagulation tests in a concentration-dependent manner with respect to control, and increases were up to 14.5%. Fibrin formation kinetic parameters displayed statistically significant differences between HTL-treated plasma and control in a concentration-dependent way, showing higher lag phase and lower maximum reaction velocity and final network optical density. Electron microscopy analysis of HTL plasma networks revealed a compact architecture, with more branches and shorter fibers than control. We can conclude that HTL induced a slower coagulation process, rendering more tightly packed fibrin clots. Since these features of the networks have been related to impaired fibrinolysis, the N-homocysteinylation reactions would be involved in the prothrombotic effects associated to hyperhomocysteinemia.
Collapse
Affiliation(s)
- Valeria Genoud
- Laboratory of Hemostasis and Thrombosis, Department of Biological Chemistry, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
30
|
Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev 2015; 29:17-24. [PMID: 25294122 PMCID: PMC4314363 DOI: 10.1016/j.blre.2014.09.003] [Citation(s) in RCA: 507] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/02/2014] [Indexed: 12/11/2022]
Abstract
Fibrin plays an essential role in hemostasis as both the primary product of the coagulation cascade and the ultimate substrate for fibrinolysis. Fibrinolysis efficiency is greatly influenced by clot structure, fibrinogen isoforms and polymorphisms, the rate of thrombin generation, the reactivity of thrombus-associated cells such as platelets, and the overall biochemical environment. Regulation of the fibrinolytic system, like that of the coagulation cascade, is accomplished by a wide array of cofactors, receptors, and inhibitors. Fibrinolytic activity can be generated either on the surface of a fibrin-containing thrombus, or on cells that express profibrinolytic receptors. In a widening spectrum of clinical disorders, acquired and congenital defects in fibrinolysis contribute to disease morbidity, and new assays of global fibrinolysis now have potential predictive value in multiple clinical settings. Here, we summarize the basic elements of the fibrinolytic system, points of interaction with the coagulation pathway, and some recent clinical advances.
Collapse
Affiliation(s)
- John C Chapin
- Division of Hematology-Oncology, Department of Medicine, Weill Cornell Medical College, 520 East 70th Street, New York, NY 10065, USA.
| | - Katherine A Hajjar
- Division of Hematology-Oncology, Department of Medicine, Weill Cornell Medical College, 520 East 70th Street, New York, NY 10065, USA; Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
31
|
Arata PX, Quintana I, Canelón DJ, Vera BE, Compagnone RS, Ciancia M. Chemical structure and anticoagulant activity of highly pyruvylated sulfated galactans from tropical green seaweeds of the order Bryopsidales. Carbohydr Polym 2014; 122:376-86. [PMID: 25817682 DOI: 10.1016/j.carbpol.2014.10.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/24/2014] [Accepted: 10/08/2014] [Indexed: 11/30/2022]
Abstract
Sulfated and pyruvylated galactans were isolated from three tropical species of the Bryopsidales, Penicillus capitatus, Udotea flabellum, and Halimeda opuntia. They represent the only important sulfated polysaccharides present in the cell walls of these highly calcified seaweeds of the suborder Halimedineae. Their structural features were studied by chemical analyses and NMR spectroscopy. Their backbone comprises 3-, 6-, and 3,6-linkages, constituted by major amounts of 3-linked 4,6-O-(1'-carboxy)ethylidene-d-galactopyranose units in part sulfated on C-2. Sulfation on C-2 was not found in galactans from other seaweeds of this order. In addition, a complex sulfation pattern, comprising also 4-, 6-, and 4,6-disulfated galactose units was found. A fraction from P. capitatus, F1, showed a moderate anticoagulant activity, evaluated by general coagulation tests and also kinetics of fibrin formation was assayed. Besides, preliminary results suggest that one of the possible mechanisms involved is direct thrombin inhibition.
Collapse
Affiliation(s)
- Paula X Arata
- Cátedra de Química de Biomoléculas, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE Buenos Aires, Argentina
| | - Irene Quintana
- Laboratorio de Hemostasia y Trombosis, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria - Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Dilsia J Canelón
- Escuela de Bioanálisis, Facultad de Medicina, Universidad Central de Venezuela, Av. Carlos Raúl Villanueva, Ciudad Universitaria, Los Chaguaramos, 1051 Caracas, Venezuela
| | - Beatriz E Vera
- Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Av. Paseo de los Ilustres, Ciudad Universitaria, Los Chaguaramos, 1450 Caracas, Venezuela
| | - Reinaldo S Compagnone
- Laboratorio de Ecología y Taxonomía de Macrófitas Marinas, Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Apdo.47114, Caracas, Venezuela
| | - Marina Ciancia
- Cátedra de Química de Biomoléculas, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE Buenos Aires, Argentina; CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
| |
Collapse
|
32
|
Zucker M, Seligsohn U, Salomon O, Wolberg AS. Abnormal plasma clot structure and stability distinguish bleeding risk in patients with severe factor XI deficiency. J Thromb Haemost 2014; 12:1121-30. [PMID: 24815347 PMCID: PMC4107079 DOI: 10.1111/jth.12600] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/25/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Factor XI (FXI) deficiency is a rare autosomal recessive disorder. Many patients with even very low FXI levels (< 20 IU dL(-1) ) are asymptomatic or exhibit only mild bleeding, whereas others experience severe bleeding, usually following trauma. Neither FXI antigen nor activity predicts the risk of bleeding in FXI-deficient patients. OBJECTIVES (i) Characterize the formation, structure and stability of plasma clots from patients with severe FXI deficiency and (ii) determine whether these assays can distinguish asymptomatic patients ('non-bleeders') from those with a history of bleeding ('bleeders'). METHODS Platelet-poor plasmas were prepared from 16 severe FXI-deficient patients who were divided into bleeders or non-bleeders, based on bleeding associated with at least two tooth extractions without prophylaxis. Clot formation was triggered by recalcification and addition of tissue factor and phospholipids in the absence or presence of tissue plasminogen activator and/or thrombomodulin. Clot formation and fibrinolysis were measured by turbidity and fibrin network structure by laser scanning confocal microscopy. RESULTS Non-bleeders and bleeders had similarly low FXI levels, normal prothrombin times, normal levels of fibrinogen, factor VIII, von Willebrand factor and factor XIII, and normal platelet number and function. Compared with non-bleeders, bleeders exhibited lower fibrin network density and lower clot stability in the presence of tissue plasminogen activator. In the presence of thrombomodulin, seven of eight bleeders failed to form a clot, whereas only three of eight non-bleeders did not clot. CONCLUSIONS Plasma clot structure and stability assays distinguished non-bleeders from bleeders. These assays may reveal hemostatic mechanisms in FXI-deficient patients and have clinical utility for assessing the risk of bleeding.
Collapse
Affiliation(s)
- M Zucker
- Thrombosis and Hemostasis Unit, Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
33
|
Comparative response of platelet fV and plasma fV to activated protein C and relevance to a model of acute traumatic coagulopathy. PLoS One 2014; 9:e99181. [PMID: 24921658 PMCID: PMC4055642 DOI: 10.1371/journal.pone.0099181] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/12/2014] [Indexed: 12/31/2022] Open
Abstract
Background Acute traumatic coagulopathy (ATC) has been linked to an increase in activated protein C (aPC) from 40 pM in healthy individuals to 175 pM. aPC exerts its activity primarily through cleavage of active coagulation factor Va (fVa). Platelets reportedly possess fVa which is more resistant to aPC cleavage than plasma fVa; this work examines the hypothesis that normal platelets are sufficient to maintain coagulation in the presence of elevated aPC. Methods Coagulation responses of normal plasma, fV deficient plasma (fVdp), and isolated normal platelets in fVdp were conducted: prothrombin (PT) tests, turbidimetry, and thromboelastography (TEG), including the dose response of aPC on the samples. Results PT and turbidimetric assays demonstrate that normal plasma is resistant to aPC at doses much higher than those found in ATC. Additionally, an average physiological number of washed normal platelets (200,000 platelets/mm3) was sufficient to eliminate the anti-coagulant effects of aPC up to 10 nM, nearly two orders of magnitude above the ATC concentration and even the steady-state pharmacological concentration of human recombinant aPC, as measured by TEG. aPC also demonstrated no significant effect on clot lysis in normal plasma samples with or without platelets. Conclusions Although platelet fVa shows slightly superior resistance to aPC's effects compared to plasma fVa in static models, neither fVa is sufficiently cleaved in simulations of ATC or pharmacologically-delivered aPC to diminish coagulation parameters. aPC is likely a correlative indicator of ATC or may play a cooperative role with other activity altering products generated in ATC.
Collapse
|
34
|
Lai BF, Zou Y, Yang X, Yu X, Kizhakkedathu JN. Abnormal blood clot formation induced by temperature responsive polymers by altered fibrin polymerization and platelet binding. Biomaterials 2014; 35:2518-28. [DOI: 10.1016/j.biomaterials.2013.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 12/08/2013] [Indexed: 12/25/2022]
|
35
|
Lauricella AM, Castañon MM, Kordich LC, Quintana IL. Alterations of fibrin network structure mediated by dermatan sulfate. J Thromb Thrombolysis 2013; 35:257-63. [PMID: 22987196 DOI: 10.1007/s11239-012-0804-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Dermatan sulfate (DS) is well-known for its anticoagulant activity through binding to heparin cofactor II (HCII) to enhance thrombin inhibition. It has also been reported that DS has a profibrinolytic effect. We have evaluated the effects of DS solutions (4-20 μg/mL) on the formation (by kinetic studies), structure (by electron microscopy and compaction assays) and lysis (with urokinase-type plasminogen activator) of plasma fibrin networks. The results showed that DS significantly prolonged the lag phase and decreased the fibrin formation rate and the optical density of the final networks versus control, in a concentration dependent way. DS-associated networks presented a minor network percentage compared with control, composed of lower number of fibers per field, which resulted significantly thinner and longer. Moreover, DS rendered gels more sensible to rupture by centrifugal force and more susceptible to lysis. When fibrin formation kinetic assays were performed with purified fibrinogen instead of plasma, in the absence of HCII, the optical density of final DS-associated networks was statistically lower than control. Therefore, a direct effect of DS on the thickness of fibers was observed. Since in all in vitro assays low DS concentrations were used, it could be postulated that the fibrin features described above are plausible to be found in in vivo thrombi and therefore, DS would contribute to the formation of less thrombogenic clots.
Collapse
Affiliation(s)
- Ana María Lauricella
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, piso 4°, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
36
|
Rahmany MB, Hantgan RR, Van Dyke M. A mechanistic investigation of the effect of keratin-based hemostatic agents on coagulation. Biomaterials 2013; 34:2492-500. [DOI: 10.1016/j.biomaterials.2012.12.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
|
37
|
|
38
|
Stępień E, Kabłak-Ziembicka A, Musiałek P, Tylko G, Przewłocki T. Fibrinogen and carotid intima media thickness determine fibrin density in different atherosclerosis extents. Int J Cardiol 2012; 157:411-3. [PMID: 22483257 DOI: 10.1016/j.ijcard.2012.03.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 03/15/2012] [Indexed: 11/26/2022]
|
39
|
Swedberg JE, Harris JM. Plasmin Substrate Binding Site Cooperativity Guides the Design of Potent Peptide Aldehyde Inhibitors. Biochemistry 2011; 50:8454-62. [DOI: 10.1021/bi201203y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Joakim E. Swedberg
- Institute of Health and
Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland
4059, Australia
| | - Jonathan M. Harris
- Institute of Health and
Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland
4059, Australia
| |
Collapse
|
40
|
Yeromonahos C, Polack B, Caton F. Nanostructure of the fibrin clot. Biophys J 2011; 99:2018-27. [PMID: 20923635 DOI: 10.1016/j.bpj.2010.04.059] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/23/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022] Open
Abstract
The nanostructure of the fibrin fibers in fibrin clots is investigated by using spectrometry and small angle x-ray scattering measurements. First, an autocoherent analysis of the visible light spectra transmitted through formed clots is demonstrated to provide robust measurements of both the radius and density of the fibrin fibers. This method is validated via comparison with existing small-angle and dynamic light-scattering data. The complementary use of small angle x-ray scattering spectra and light spectrometry unambiguously shows the disjointed nature of the fibrin fibers. Indeed, under quasiphysiological conditions, the fibers are approximately one-half as dense as their crystalline fiber counterparts. Further, although the fibers are locally crystalline, they appear to possess a lateral fractal structure.
Collapse
Affiliation(s)
- C Yeromonahos
- Centre National de la Recherche Scientifique, Université Joseph Fourier, Grenoble, France
| | | | | |
Collapse
|
41
|
The influence of poly-N-[(2,2-dimethyl-1,3-dioxolane)methyl]acrylamide on fibrin polymerization, cross-linking and clot structure. Biomaterials 2010; 31:5749-58. [PMID: 20435346 DOI: 10.1016/j.biomaterials.2010.03.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 03/30/2010] [Indexed: 11/21/2022]
Abstract
Poly-N-[(2,2-dimethyl-1,3-dioxolane)methyl]acrylamide (PDMDOMA) is a neutral synthetic water-soluble polymer. In this report, we evaluated the influence of PDMDOMA on blood hemostasis by studying the fibrin polymerization process, the three-dimensional clot structure, and the mechanical properties and fibrinolysis. PDMDOMA altered the normal fibrin polymerization by changing the rate of protofibril aggregation and resulting in a 5-fold increase in the overall turbidity. Fibrin clots formed in presence of PDMDOMA exhibited thinner fibers with less branching which resulted in a more porous and heterogeneous clot structure in scanning electron micrographs. The overall strength and rigidity of the whole blood clot also decreased up to 10-fold. When a combination of plasminogen and tissue-plasminogen activators were included in clotting reactions, fibrin clots formed in the presence of PDMDOMA exhibited highly shortened clot lysis times and was supported by the enhanced clot lysis measured by thromboelastography in whole blood. Further evidence of the altered clot structure and clot cross-linking was obtained from the significant decrease in d-dimer levels measured from degraded plasma clot. Thus, PDMDOMA may play an important role as an antithrombotic agent useful in prophylactic treatments for thrombosis by modulating fibrin clot structure to enhance fibrinolysis.
Collapse
|
42
|
Effects of Acetylsalicylic Acid on Increase of Fibrin Network Porosity and the Consequent Upregulation of Fibrinolysis. J Cardiovasc Pharmacol 2009; 53:24-9. [DOI: 10.1097/fjc.0b013e3181953e0f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Campbell RA, Overmyer KA, Bagnell CR, Wolberg AS. Cellular procoagulant activity dictates clot structure and stability as a function of distance from the cell surface. Arterioscler Thromb Vasc Biol 2008; 28:2247-54. [PMID: 18974382 PMCID: PMC2773697 DOI: 10.1161/atvbaha.108.176008] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Thrombin concentration modulates fibrin structure and fibrin structure modulates clot stability; however, the impact of localized, cell surface-driven in situ thrombin generation on fibrin structure and stability has not previously been evaluated. METHODS AND RESULTS Human fibroblasts were incubated with factors Xa, Va, prothrombin and fibrinogen, or plasma. Fibrin formation, structure, and lysis were examined using laser scanning confocal microscopy and transmission electron microscopy. In situ thrombin generation on the cell surface produced clots with a significantly denser fiber network in a 10-microm region proximal versus distal to (40 to 50 microm) the cell surface. This morphology was not altered by addition of integrin-blocking RGDS peptide and was not apparent in clots made by exogenous thrombin addition, suggesting that spatial morphology was dictated predominantly by localized thrombin generation on the fibroblast surface. The fibrin network lysed more rapidly distal versus proximal to the cell surface, suggesting that the structural heterogeneity of the clot affected its fibrinolytic stability. CONCLUSIONS In situ thrombin generation on the cell surface modulates the three-dimensional structure and stability of the clot. Thrombus formation in vivo may reflect the ability of the local cell population to support thrombin generation and, therefore, the three-dimensional structure and stability of the fibrin network.
Collapse
Affiliation(s)
- Robert A. Campbell
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525
| | - Katherine A. Overmyer
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525
| | - C. Robert Bagnell
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
44
|
Smith SA, Morrissey JH. Polyphosphate enhances fibrin clot structure. Blood 2008; 112:2810-6. [PMID: 18544683 PMCID: PMC2556616 DOI: 10.1182/blood-2008-03-145755] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 06/01/2008] [Indexed: 11/20/2022] Open
Abstract
Polyphosphate, a linear polymer of inorganic phosphate, is present in platelet dense granules and is secreted on platelet activation. We recently reported that polyphosphate is a potent hemostatic regulator, serving to activate the contact pathway of blood clotting and accelerate factor V activation. Because polyphosphate did not alter thrombin clotting times, it appeared to exert all its procoagulant actions upstream of thrombin. We now report that polyphosphate enhances fibrin clot structure in a calcium-dependent manner. Fibrin clots formed in the presence of polyphosphate had up to 3-fold higher turbidity, had higher mass-length ratios, and exhibited thicker fibers in scanning electron micrographs. The ability of polyphosphate to enhance fibrin clot turbidity was independent of factor XIIIa activity. When plasmin or a combination of plasminogen and tissue plasminogen activators were included in clotting reactions, fibrin clots formed in the presence of polyphosphate exhibited prolonged clot lysis times. Release of polyphosphate from activated platelets or infectious microorganisms may play an important role in modulating fibrin clot structure and increasing its resistance to fibrinolysis. Polyphosphate may also be useful in enhancing the structure of surgical fibrin sealants.
Collapse
Affiliation(s)
- Stephanie A Smith
- Departments of Internal Medicine and Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, USA
| | | |
Collapse
|
45
|
Abstract
Hemostatic clot formation entails thrombin-mediated cleavage of fibrinogen to fibrin. Previous in vitro studies have shown that the thrombin concentration present during clot formation dictates the ultimate fibrin structure. In most prior studies of fibrin structure, clotting was initiated by adding thrombin to a solution of fibrinogen; however, clot formation in vivo occurs in an environment in which the concentration of free thrombin changes over the reaction course. These changes depend on local cellular properties and available concentrations of pro- and anti-coagulants. Recent studies suggest that abnormal thrombin generation patterns produce abnormally structured clots that are associated with an increased risk of bleeding or thrombosis. Further studies of fibrin formation during in situ thrombin generation are needed to understand fibrin clot formation in vivo.
Collapse
Affiliation(s)
- Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, 815 Brinkhous-Bullitt Building, CB #7525, Chapel Hill, NC 27599-7525, USA.
| | | |
Collapse
|
46
|
Campbell RA, Fischer TH, Wolberg AS. A novel approach to improving recombinant factor VIIa activity with a preserved platelet preparation. Br J Haematol 2007; 138:82-93. [PMID: 17555451 DOI: 10.1111/j.1365-2141.2007.06617.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recombinant activated factor VII (NovoSeven, rFVIIa) is used to abrogate bleeding in haemophiliacs with inhibitors and is hypothesised to work by increasing activated factor X generation on the platelet surface. We hypothesised that rFVIIa activity could be increased by the co-addition of platelet procoagulant surface. This study characterised the ability of a rehydrated, lyophilised (RL) platelet preparation to increase rFVIIa activity in haemophilic conditions. RL platelets supported thrombin generation in the presence of factors VIII and IX but, in the absence of factors VIII and IX, thrombin generation was significantly reduced. RL platelets supported rFVIIa-mediated thrombin generation in a rFVIIa-concentration dependent manner. In a cell-based in vitro model of haemophilia, the presence of RL platelets increased the rFVIIa-dependent thrombin generation rate 2.8-fold compared with rFVIIa alone. Similarly, the addition of RL platelets plus rFVIIa to the in vitro model of haemophilia and to haemophilic platelet-rich plasma shortened the onset of clot formation and increased clot stability in a fibrinolytic environment versus rFVIIa alone. These results suggest that RL platelets can support rFVIIa-mediated thrombin generation, and that co-administration of RL platelets with rFVIIa may increase the efficacy of rFVIIa in some patients.
Collapse
Affiliation(s)
- Robert A Campbell
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA
| | | | | |
Collapse
|
47
|
Braff MH, Jones AL, Skerrett SJ, Rubens CE. Staphylococcus aureus exploits cathelicidin antimicrobial peptides produced during early pneumonia to promote staphylokinase-dependent fibrinolysis. J Infect Dis 2007; 195:1365-72. [PMID: 17397009 PMCID: PMC2366818 DOI: 10.1086/513277] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 11/22/2006] [Indexed: 01/15/2023] Open
Abstract
The increasing prevalence of Staphylococcus aureus strains isolated from hospital- and community-acquired respiratory tract infections is an important public health concern worldwide. The majority of S. aureus strains produce staphylokinase, a plasminogen activator capable of inactivating neutrophil alpha-defensins and of impairing phagocytosis via opsonin degradation. Cathelicidin antimicrobial peptides are present at sites of infection before the release of neutrophil alpha-defensins. Therefore, we hypothesized that staphylokinase interacts with cathelicidin during the early pathogenesis of S. aureus airway infection. In a mouse intranasal infection model, cathelicidin was strongly up-regulated in the airways during the development of staphylococcal pneumonia. In vitro, cathelicidin bound directly to staphylokinase and augmented staphylokinase-dependent plasminogen activation and fibrinolysis at concentrations consistent with those detected in the airways during infection. These data suggest that staphylokinase production may be a novel virulence mechanism by which S. aureus exploits cathelicidin to promote fibrinolysis, leading to enhanced bacterial dissemination and invasive infection.
Collapse
Affiliation(s)
- Marissa H. Braff
- Division of Infectious Disease, Children’s Hospital and Regional Medical Center, University of Washington, Seattle
- Department of Pediatrics, University of Washington, Seattle
| | - Amanda L. Jones
- Division of Infectious Disease, Children’s Hospital and Regional Medical Center, University of Washington, Seattle
- Department of Pediatrics, University of Washington, Seattle
| | | | - Craig E. Rubens
- Division of Infectious Disease, Children’s Hospital and Regional Medical Center, University of Washington, Seattle
- Department of Pediatrics, University of Washington, Seattle
| |
Collapse
|
48
|
Abstract
Generation of a hemostatic clot requires thrombin-mediated conversion of fibrinogen to fibrin. Previous in vitro studies have demonstrated that the thrombin concentration present at the time of gelation profoundly influences fibrin clot structure. Clots formed in the presence of low thrombin concentrations are composed of thick fibrin fibers and are highly susceptible to fibrinolysis; while, clots formed in the presence of high thrombin concentrations are composed of thin fibers and are relatively resistant to fibrinolysis. While most studies of clot formation have been performed by adding a fixed amount of purified thrombin to fibrinogen, clot formation in vivo occurs in a context of continuous, dynamic changes in thrombin concentration. These changes depend on the local concentrations of pro- and anti-coagulants and cellular activities. Recent studies suggest that patterns of abnormal thrombin generation produce clots with altered fibrin structure and that these changes are associated with an increased risk of bleeding or thrombosis. Furthermore, it is likely that clot structure also contributes to cellular events during wound healing. These findings suggest that studies explicitly evaluating fibrin formation during in situ thrombin generation are warranted to explain and fully appreciate mechanisms of normal and abnormal fibrin clot formation in vivo.
Collapse
Affiliation(s)
- Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 816A Brinkhous Bullitt Building, CB #7525, Chapel Hill, NC 27599-7525, United States.
| |
Collapse
|
49
|
Allen GA, Persson E, Campbell RA, Ezban M, Hedner U, Wolberg AS. A variant of recombinant factor VIIa with enhanced procoagulant and antifibrinolytic activities in an in vitro model of hemophilia. Arterioscler Thromb Vasc Biol 2007; 27:683-9. [PMID: 17204663 DOI: 10.1161/01.atv.0000257204.82396.2b] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Recombinant factor VIIa (rFVIIa, NovoSeven) has proven efficacy in treating bleeding in hemophilia patients with inhibitors. A rFVIIa analog with mutations V158D/E296V/M298Q (NN1731) exhibits increased procoagulant activity in in vitro and in vivo models. The aim of this work was to define the effects of NN1731 toward factor X activation, platelet activation, thrombin generation, and fibrin clot formation and stability. METHODS AND RESULTS In a cell-based in vitro model of hemophilia, rFVIIa and NN1731 similarly increased factor X activation on tissue factor-bearing cells; however, NN1731 exhibited 30-fold higher factor Xa generation on platelets than similar rFVIIa concentrations. NN1731-mediated thrombin generation depended on platelet activation, but NN1731 did not directly activate platelets. NN1731 produced 4- to 10-fold higher maximal thrombin generation rates than equal rFVIIa concentrations. Both rFVIIa and NN1731 shortened clotting times in the absence of factors IX and VIII; however, NN1731 did so at 50-fold lower concentrations than were required of rFVIIa. In fibrinolytic conditions, both rFVIIa and NN1731 increased fibrin formation and stability; however, NN1731 was effective at 50-fold lower concentrations than were required of rFVIIa. CONCLUSIONS By increasing factor Xa generation, NN1731 promotes the formation of thrombin and a stable clot to a greater degree than rFVIIa.
Collapse
Affiliation(s)
- Geoffrey A Allen
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
50
|
Sauls DL, Arnold EK, Bell CW, Allen JC, Hoffman M. Pro-thrombotic and pro-oxidant effects of diet-induced hyperhomocysteinemia. Thromb Res 2007; 120:117-26. [PMID: 16979225 DOI: 10.1016/j.thromres.2006.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 07/28/2006] [Accepted: 08/03/2006] [Indexed: 11/26/2022]
Abstract
Elevated plasma homocysteine levels are associated with the risk of atherosclerosis and arterial and venous thrombosis. We have previously demonstrated that rabbits rendered hyperhomocysteinemic by parenteral administration of homocysteine develop a dysfibrinogenemia that is associated with the formation of fibrin clots that are abnormally resistant to fibrinolysis. We suggested that this acquired dysfibrinogenemia contributes to the thrombotic tendency in hyperhomocysteinemia. However, it was possible that the homocysteine-associated dysfibrinogenemia was an artifact of the parenteral administration model. Therefore, the goals of the current study were to develop a diet-induced model of homocysteinemia in rabbits and determine whether a dysfibrinogenemia and evidence of oxidative stress develop in this model as they do when homocysteine is injected. We found that rabbits fed a diet severely deficient in folate and mildly deficient in choline develop mild hyperhomocysteinemia: 14.8+/-4.0 microM in deficient rabbits compared to 9.0+/-1.7 microM in controls. The deficient rabbits also develop evidence of oxidant stress: increased lipid peroxidation in liver, impaired mitochondrial enzyme activities in liver and elevated caspase-3 levels in plasma. Most importantly, the deficient rabbits also develop a dysfibrinogenemia characterized by increased resistance to fibrinolysis. We believe that this dietary model of homocysteinemia is clinically relevant and reproduces many features associated with hyperhomocysteinemia in previous work using in vitro and in vivo models. Our findings suggest that an acquired dysfibrinogenemia could play a role in the increased risk of atherothrombotic disease in mildly hyperhomocysteinemic human subjects.
Collapse
Affiliation(s)
- Derrick L Sauls
- Pathology and Lab Medicine Service, Durham Veterans Affairs Medical Center, Durham, Nutrition Program, Department Food Science, NC State University, Raleigh, NC, USA
| | | | | | | | | |
Collapse
|