1
|
Zheng H, Katsurada K, Nandi S, Li Y, Patel KP. A Critical Role for the Paraventricular Nucleus of the Hypothalamus in the Regulation of the Volume Reflex in Normal and Various Cardiovascular Disease States. Curr Hypertens Rep 2022; 24:235-246. [PMID: 35384579 DOI: 10.1007/s11906-022-01187-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW This review focuses on studies implicating forebrain neural pathways and neuromodulator systems, particularly, the nitric oxide system within the paraventricular nucleus of the hypothalamus in regulating neurohumoral drive, autonomic pathways, and fluid balance. RECENT FINDINGS Accumulating evidence from animals with experimental models of hypertension and heart failure as well as humans with hypertension suggests that alterations in central neural pathways, particularly, within the PVN neuromodulated by neuronal nitric oxide, are involved in regulating sympathetic outflow particularly to the kidney resulting in alterations in fluid balance commonly observed in hypertension and heart failure states. The characteristics of the hypertensive and heart failure states include alterations in neuronal nitric oxide within the PVN to cause an increase in renal sympathetic nerve activity to result in sodium and fluid retention in these diseases. A comprehensive understanding of these mechanisms will enhance our ability to treat hypertensive and heart failure conditions and their cardiovascular complications more efficiently.
Collapse
Affiliation(s)
- Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, SD 57069, Vermillion, USA
| | - Kenichi Katsurada
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | - Shyam Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | - Yifan Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, SD 57069, Vermillion, USA
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA.
| |
Collapse
|
2
|
Ji BS, Cen J, He L, Liu M, Liu YQ, Liu L. Modulation of P-glycoprotein in rat brain microvessel endothelial cells under oxygen glucose deprivation. J Pharm Pharmacol 2013; 65:1508-17. [DOI: 10.1111/jphp.12122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/04/2013] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
To investigate modulation of P-glycoprotein (P-gp) in rat brain microvessel endothelial cells (rBMECs) under oxygen glucose deprivation (OGD).
Methods
The coculture of rBMECs and astrocytes was established to investigate the time course of P-gp, tumour necrosis factor-α (TNF-α), endothelin-1 (ET-1), nitric oxide synthase (NOS) and protein kinase C (PKC) expression in the rBMECs as well as rhodamine 123 (Rh123) transendothelial transfer under OGD using Western blot and HPLC, respectively. The influence of pharmacological tools including H398, JKC-301, RES-701-1, L-NMMA, BIM and SN50 on the P-gp expression as well as Rh123 transendothelial transfer was evaluated at 3 h time point of OGD.
Key findings
Elevated P-gp, TNF-α, ET-1, NOS and PKC expression in the rBMECs, as well as increased P-gp efflux activity were observed after 2 h or more time of OGD. Incubation of H398 and other pharmacological tools downregulated P-gp expression and functional activity in the rBMECs at 3 h time point of OGD.
Conclusions
This report suggested that TNF-α, ET-1, NOS and PKC may mediate upregulation of P-gp in the rBMECs under OGD, which may be worthy of being referenced for the investigation of P-gp at the blood–brain barrier in the early period of stroke.
Collapse
Affiliation(s)
- Bian-Sheng Ji
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, China
| | - Juan Cen
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Meng Liu
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, China
| | - Yan-Qing Liu
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, China
| | - Lu Liu
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Filosa JA, Naskar K, Perfume G, Iddings JA, Biancardi VC, Vatta MS, Stern JE. Endothelin-mediated calcium responses in supraoptic nucleus astrocytes influence magnocellular neurosecretory firing activity. J Neuroendocrinol 2012; 24:378-92. [PMID: 22007724 DOI: 10.1111/j.1365-2826.2011.02243.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In addition to their peripheral vasoactive effects, accumulating evidence supports an important role for endothelins (ETs) in the regulation of the hypothalamic magnocellular neurosecretory system, which produces and releases the neurohormones vasopressin (VP) and oxytocin (OT). Still, the precise cellular substrates, loci and mechanisms underlying the actions of ETs on the magnocellular system are poorly understood. In the present study, we combined patch-clamp electrophysiology, confocal Ca(2+) imaging and immunohistochemistry to study the actions of ETs on supraoptic nucleus (SON) magnocellular neurosecretory neurones and astrocytes. Our studies show that ET-1 evoked rises in [Ca(2+) ](i) levels in SON astrocytes (but not neurones), an effect largely mediated by the activation of ET(B) receptors and mobilisation of thapsigargin-sensitive Ca(2+) stores. The presence of ET(B) receptors in SON astrocytes was also verified immunohistochemically. ET(B) receptor activation either increased (75%) or decreased (25%) SON firing activity, both in VP and putative OT neurones, and these effects were prevented when slices were preincubated in glutamate receptor blockers or nitric oxide synthase blockers, respectively. Moreover, ET(B) -mediated effects in SON neurones were also prevented by a gliotoxin compound, and when changes in [Ca(2+) ](i) were prevented with bath-applied BAPTA-AM or thapsigargin. Conversely, intracellular Ca(2+) chelation in the recorded SON neurones failed to block ET(B) -mediated effects. In summary, our results indicate that ET(B) receptor activation in SON astrocytes induces the mobilisation of [Ca(2+) ](i) , likely resulting in the activation of glutamate and nitric oxide signalling pathways, evoking in turn excitatory and inhibitory SON neuronal responses, respectively. Taken together, our study supports an important role for astrocytes in mediating the actions of ETs on the magnocellular neurosecretory system.
Collapse
Affiliation(s)
- J A Filosa
- Department of Physiology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Wang HH, Hsieh HL, Wu CY, Yang CM. Endothelin-1 enhances cell migration via matrix metalloproteinase-9 up-regulation in brain astrocytes. J Neurochem 2010; 113:1133-49. [PMID: 20345768 DOI: 10.1111/j.1471-4159.2010.06680.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The bioactivity of endothelin-1 (ET-1) has been suggested in the development of CNS diseases, including disturbance of water homeostasis and blood-brain barrier integrity. Recent studies suggest that hypoxic/ischemic injury of the brain induces release of ET-1, behaving through a G-protein coupled ET receptor family. The deleterious effects of ET-1 on astrocytes may aggravate brain inflammation. Increased plasma levels of matrix metalloproteinases (MMPs), in particular MMP-9, have been observed in patients with neuroinflammatory disorders. However, the detailed mechanisms underlying ET-1-induced MMP-9 expression remain unknown. In this study, the data obtained with zymographic, western blotting, real-time PCR, and immunofluorescent staining analyses showed that ET-1-induced MMP-9 expression was mediated through an ET(B)-dependent transcriptional activation. Engagement of G(i/o)- and G(q)-coupled ET(B) receptor by ET-1 led to activation of p42/p44 MAPK and then activated transcription factors including Ets-like kinase, nuclear factor-kappa B, and activator protein-1 (c-Jun/c-Fos). These activated transcription factors translocated into nucleus and bound to their corresponding binding sites in MMP-9 promoter, thereby turning on MMP-9 gene transcription. Eventually, up-regulation of MMP-9 by ET-1 enhanced the migration of astrocytes. Taken together, these results suggested that in astrocytes, activation of Ets-like kinase, nuclear factor-kappa B, and activator protein-1 by ET(B)-dependent p42/p44 MAPK signaling is necessary for ET-1-induced MMP-9 gene up-regulation. Understanding the mechanisms of MMP-9 expression and functional changes regulated by ET-1/ET(B) system on astrocytes may provide rational therapeutic interventions for brain injury associated with increased MMP-9 expression.
Collapse
Affiliation(s)
- Hui-Hsin Wang
- Department of Pharmacology, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | |
Collapse
|
5
|
Gómez-Santos C, Barrachina M, Giménez-Xavier P, Dalfó E, Ferrer I, Ambrosio S. Induction of C/EBP beta and GADD153 expression by dopamine in human neuroblastoma cells. Relationship with alpha-synuclein increase and cell damage. Brain Res Bull 2005; 65:87-95. [PMID: 15680548 DOI: 10.1016/j.brainresbull.2004.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 09/30/2004] [Accepted: 11/15/2004] [Indexed: 12/21/2022]
Abstract
Expression of CCAAT/enhancer-binding protein beta (C/EBP beta) and growth-arrest DNA damage-inducible 153/C/EBP beta homology protein (GADD153/CHOP) increased after incubation of human neuroblastoma SH-SY5Y cells with a range of dopamine concentrations. Dopamine (100 microM) caused an increase in C/EBP beta expression between 2 and 12 h of treatment, with no evident intracellular morphological changes. Dopamine (500 microM) led to the appearance of autophagic-like vacuoles and a marked increase in GADD153/CHOP between 6 and 24 h of treatment. The expression of alpha-synuclein, the main protein of Lewy bodies in Parkinson's disease and other neurological disorders, increased with a profile similar to C/EBP beta. In addition, overexpression of C/EBP beta caused a concomitant increase in the expression of alpha-synuclein but not of GADD153. In contrast, the overexpression of GADD153 did not alter the expression of alpha-synuclein. Inhibition of JNK by SP600125 reduced increases in C/EBP beta and alpha-synuclein expression, whereas inhibition of both JNK and p38MAPK (with SB203580) blocked the increase in GADD153 expression. We conclude that dopamine, through a mechanism driven by stress-activated MAPKs, triggers C/EBP beta and GADD153 expression in a dose-dependent way. Given that the promoter region of the alpha-synuclein gene contains distinct zones that are susceptible to regulation by C/EBP beta, this factor could be involved in the increased expression of alpha-synuclein after dopamine-induced cell stress. GADD153 increase seems to be related with the endoplasmic reticulum stress, autophagy and cell death observed at high dopamine concentrations.
Collapse
|
6
|
Wang Y, Liu XF, Cornish KG, Zucker IH, Patel KP. Effects of nNOS antisense in the paraventricular nucleus on blood pressure and heart rate in rats with heart failure. Am J Physiol Heart Circ Physiol 2004; 288:H205-13. [PMID: 15331368 DOI: 10.1152/ajpheart.00497.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using neuronal NO synthase (nNOS)-specific antisense oligonucleotides, we examined the role of nitric oxide (NO) in the paraventricular nucleus (PVN) on control of blood pressure and heart rate (HR) in conscious sham rats and rats with chronic heart failure (CHF). After 6-8 wk, rats with chronic coronary ligation showed hemodynamic and echocardiographic signs of CHF. In sham rats, we found that microinjection of sodium nitroprusside (SNP, 20 nmol, 100 nl) into the PVN induced a significant decrease in mean arterial pressure (MAP). SNP also induced a significant decrease in HR over the next 10 min. In contrast, the NOS inhibitor N(G)-monomethyl-L-arginine (L-NMMA, 200 pmol, 100 nl) significantly increased MAP and HR over the next 18-20 min. After injection of nNOS antisense, MAP was significantly increased in sham rats over the next 7 h. The peak response was 27.6 +/- 4.1% above baseline pressure. However, in the CHF rats, only MAP was significantly increased. The peak magnitude was 12.9 +/- 5.4% of baseline, which was significantly attenuated compared with sham rats (P < 0.01). In sham rats, the pressor response was completely abolished by alpha-receptor blockade. HR was significantly increased from hour 1 to hour 7 in sham and CHF rats. There was no difference in magnitude of HR responses. The tachycardia could not be abolished by the beta(1)-blocker metoprolol. However, the muscarinic receptor antagonist atropine did not further augment the tachycardia. We conclude that NO induces a significant depressor and bradycardiac response in normal rats. The pressor response is mediated by an elevated sympathetic tone, whereas the tachycardia is mediated by withdrawal of parasympathetic tone in sham rats. These data are consistent with a downregulation of nNOS within the PVN in CHF.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-4575, USA
| | | | | | | | | |
Collapse
|
7
|
Van Geldre LA, Lefebvre RA. Nitrergic relaxation in rat gastric fundus: influence of mechanism of induced tone and possible role of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase. Life Sci 2004; 74:3259-74. [PMID: 15094326 DOI: 10.1016/j.lfs.2003.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
The aim of this study was to investigate the influence of the mechanism of induced tone and the role of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) in nitrergic relaxation of rat gastric fundus. Prostaglandin F(2alpha) (PGF(2alpha)), thapsigargin (TSG) and cyclopiazonic acid (CPA) were used in concentrations that induced a similar contraction (20 g force/g tissue). Nifedipine (3 x 10(-7) M) completely relaxed PGF(2alpha)-contracted tissues and relaxed tissues contracted by TSG and CPA by 20 +/- 6% and 56 +/- 12% respectively; contraction induced by the three contractile agents was fully reversed by a general Ca2+ entry blocker 1-[2-(4-methoxyphenyl)-2-[3-(4-metoxyphenyl)propoxy]ethyl-1H-imidazole HCl (SKF 96365; 10(-5) M). In the presence of nifedipine (3 x 10(-7) M) or verapamil (10(-5) M), PGF(2alpha) and CPA-induced contractions were still approximately 50% relaxed by SKF 96365. This suggests that contractions induced by PGF(2alpha) are related to Ca2+ entry through L-type voltage-operated Ca2+ channels and that contractions by TSG are mainly related to Ca2+ entry through store-operated Ca2+ channels. Relaxant responses to exogenous nitric oxide (NO), to endogenous NO released by electrical field stimulation, and to vasoactive intestinal polypeptide (VIP) were studied in tissues contracted by TSG and CPA and compared to responses in tissues contracted by PGF(2alpha). Responses to exogenous and endogenous NO were greatly attenuated in TSG-contracted tissues, but not in CPA-contracted tissues. When contraction was induced by CPA in the presence of nifedipine or verapamil, relaxations to exogenous and endogenous NO were also significantly reduced. Relaxation induced by VIP was reduced in tissues contracted by either TSG or CPA in the presence of nifedipine or verapamil. These results suggest that the ability of the nitrergic neurotransmitter to induce relaxation of rat gastric fundus is influenced by the mechanism used to induce tone and are indicative for a role for SERCA in nitrergic relaxation. However, activation of SERCA appears to not be unique for nitrergic relaxation, but might also be used by VIP, a co-transmitter of NO in this tissue.
Collapse
Affiliation(s)
- Lieve A Van Geldre
- Heymans Institute of Pharmacology, Ghent University, De Pintelaan 185, B-9000 Gent, Belgium
| | | |
Collapse
|
8
|
Baltrons MA, García A. The nitric oxide/cyclic GMP system in astroglial cells. PROGRESS IN BRAIN RESEARCH 2001; 132:325-37. [PMID: 11545001 DOI: 10.1016/s0079-6123(01)32086-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- M A Baltrons
- Instituto de Biomedicina y Biotecnologia V. Villar Palasí, Departamento de Bioquímica y Biología Molecular, Universidad Autónoma de Barcelona, Campus de Bellaterra, 08193 Barcelona, Spain
| | | |
Collapse
|
9
|
Bowman CL, Yohe L, Lohr JW. Regulation of cytoplasmic calcium levels by two nitric oxide receptors. Am J Physiol Cell Physiol 2001; 281:C876-85. [PMID: 11502565 DOI: 10.1152/ajpcell.2001.281.3.c876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effects of dissolved nitric oxide (NO) gas on cytoplasmic calcium levels ([Ca(2+)](i)) in C6 glioma cells under anoxic conditions. The maximum elevation (27 +/- 3 nM) of [Ca(2+)](i) was reached at 10 microM NO. A second application of NO was ineffective if the first was >0.5 microM. The NO donor diethylamine/NO mimicked the effects of NO. Acute exposure of the cells to low calcium levels was without effect on the NO-evoked response. Thapsigargin (TG) increased [Ca(2+)](i) and was less effective if cells were pretreated with NO. Hemoglobin inhibited the effects of NO at a molar ratio of 10:1. 8-Bromo-cGMP was without effect on the NO-evoked response. If cells were pretreated with TG or exposed chronically to nominal amounts of calcium, NO decreased [Ca(2+)](i). The results suggest that C6 glioma cells have two receptors for NO. One receptor (NO(A)) elevates [Ca(2+)](i) and resides on the endoplasmic reticulum (ER). The other receptor (NO(B)) decreases [Ca(2+)](i) and resides on the plasmalemma or the ER. The latter receptor dominates when the level of calcium within intracellular stores is diminished.
Collapse
Affiliation(s)
- C L Bowman
- Buffalo Institute for Medical Research, Veterans Administration Medical Center, Buffalo, New York 14215-1129, USA.
| | | | | |
Collapse
|
10
|
Abstract
The biochemistry and physiology of L-arginine have to be reconsidered in the light of the recent discovery that the amino acid is the only substrate of all isoforms of nitric oxide synthase (NOS). Generation of nitric oxide, NO, a versatile molecule in signaling processes and unspecific immune defense, is intertwined with synthesis, catabolism and transport of arginine which thus ultimately participates in the regulation of a fine-tuned balance between normal and pathophysiological consequences of NO production. The complex composition of the brain at the cellular level is reflected in a complex differential distribution of the enzymes of arginine metabolism. Argininosuccinate synthetase (ASS) and argininosuccinate lyase which together can recycle the NOS coproduct L-citrulline to L-arginine are expressed constitutively in neurons, but hardly colocalize with each other or with NOS in the same neuron. Therefore, trafficking of citrulline and arginine between neurons necessitates transport capacities in these cells which are fulfilled by well-described carriers for cationic and neutral amino acids. The mechanism of intercellular exchange of argininosuccinate, a prerequisite also for its proposed function as a neuromodulator, remains to be elucidated. In cultured astrocytes transcription and protein expression of arginine transport system y(+) and of ASS are upregulated concomittantly with immunostimulant-mediated induction of NOS-2. In vivo ASS-immunoreactivity was found in microglial cells in a rat model of brain inflammation and in neurons and glial cells in the brains of Alzheimer patients. Any attempt to estimate the contributions of arginine transport and synthesis to substrate supply for NOS has to consider competition for arginine between NOS and arginase, the latter enzyme being expressed as mitochondrial isoform II in nervous tissue. Generation of NOS inhibitors agmatine and methylarginines is documented for the nervous system. Suboptimal supply of NOS with arginine leads to production of detrimental peroxynitrite which may result in neuronal cell death. Data have been gathered recently which point to a particular role of astrocytes in neural arginine metabolism. Arginine appears to be accumulated in astroglial cells and can be released after stimulation with a variety of signals. It is proposed that an intercellular citrulline-NO cycle is operating in brain with astrocytes storing arginine for the benefit of neighbouring cells in need of the amino acid for a proper synthesis of NO.
Collapse
Affiliation(s)
- H Wiesinger
- Physiologisch-Chemisches Institut der Universität, Hoppe-Seyler-Strasse 4, D-72076, Tübingen, Germany.
| |
Collapse
|
11
|
Gebke E, Müller AR, Pehl U, Gerstberger R. Astrocytes in sensory circumventricular organs of the rat brain express functional binding sites for endothelin. Neuroscience 2000; 97:371-81. [PMID: 10799769 DOI: 10.1016/s0306-4522(00)00051-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sensory circumventricular organs bordering the anterior third cerebral ventricle, the subfornical organ and the organum vasculosum laminae terminalis, lack blood-brain barrier characteristics and are therefore accessible to circulating peptides like endothelins. Astrocytes of the rat subfornical organ and organum vasculosum laminae terminalis additionally showed immunocytochemical localization of endothelin-1/endothelin-3-like peptides, possibly acting as circumventricular organ-intrinsic modulators. Employing [125I]endothelin-1 as radioligand, quantitative autoradiography demonstrated specific binding sites throughout the rat organum vasculosum laminae terminalis and subfornical organ, and competitive displacement studies revealed expression of both ET(A) and ET(B) receptor subtypes for either circumventricular organ. ET(B) receptor binding prevailed for the whole brain and ET(A) receptors could be labelled in the peripheral vascular system. To characterize endothelin-specific receptors in astrocytes of both circumventricular organs, alterations in the intracellular calcium concentration due to endothelin-1/endothelin-3 stimulation were studied in primary culture of subfornical organ and organum vasculosum laminae terminalis cells obtained from early postnatal rat pups. Endothelin-1 and endothelin-3 induced Ca(2+) transients in 9-13% of either subfornical organ or organum vasculosum laminae terminalis astrocytes, respectively, and some glial cells (subfornical organ: 2%, organum vasculosum laminae terminalis: 5%) responded to both endothelin analogues. The antagonistic action of BQ123 specific for ET(A) receptors (74% of all astrocytes tested), and the pronounced responsiveness to the ET(B) receptor agonist [4Ala]ET-1 (subfornical organ: 27%, organum vasculosum laminae terminalis: 35%) demonstrated glial expression of both endothelin receptor subtypes. Agonist-induced elevations in the intracellular calcium concentration proved to be independent of extracellular Ca(2+). In summary, the results indicate that endothelin(s) interact(s) with circumventricular organ astrocytes. Competitive receptor binding techniques using brain tissue sections as well as a fura-2 loaded primary cell culture system of the subfornical organ and organum vasculosum laminae terminalis demonstrate glial expression of functional ET(A) and ET(B) receptors, with calcium as intracellular messenger emerging primarily from intracellular stores. Endothelin(s) of both circulating and circumventricular organ-intrinsic origin may afferently transfer information important for cardiovascular homeostasis to circumventricular organs serving as "windows to the brain".
Collapse
Affiliation(s)
- E Gebke
- Max-Planck-Institute for Physiological and Clinical Research, W.G. Kerckhoff-Institute, Parkstrasse 1, D-61231, Bad Nauheim, Germany
| | | | | | | |
Collapse
|
12
|
Keilhoff G, Reiser M, Stanarius A, Aoki E, Wolf G. Citrulline immunohistochemistry for demonstration of NOS activity in vivo and in vitro. Nitric Oxide 2000; 4:343-53. [PMID: 10944418 DOI: 10.1006/niox.2000.0298] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO), a biomolecule with major cytotoxic potency, is generated by NO synthases (NOS) utilizing l-arginine as substrate and citrulline is formed as a "side product." In brain tissue, citrulline is considered to be produced exclusively by NOS, due to the incomplete urea cycle in the brain. We aimed to characterize NOS activity by citrulline immunostaining in different cell types of the brain under in situ conditions and in slice and culture experiments. NOS-positive neurons and activated microglial cells were the most prominent citrulline-positive structures. Lack of citrulline immunoreaction in neurons of nNOS knockout mice emphasizes the dependency of citrulline positivity on NOS activity, and likewise there was no citrulline staining after application of the NOS inhibitors 7-nitroindazole and NIL. Interestingly, only a portion of NOS-containing neurons costained for citrulline. The inhibition of argininosuccinate synthetase by alpha-methyl-dl-aspartate increased the number of citrulline-positive cells, apparently due to reduction of the turnover rate of citrulline. Cells positive for NOS but negative for citrulline may indicate that the enzyme is either not activated or inhibited by cellular control mechanisms. The fact that not all citrulline-positive cells were NOS positive may be explained by an insufficient detection sensitivity or by disparate sites of citrulline production and recycling. The present results show that citrulline immunocytochemistry offers a viable and convenient means for studying NOS activity at the single-cell level to elicit its posttranslational control under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- G Keilhoff
- Institute of Medical Neurobiology, Otto-von-Guericke University of Magdeburg, Leipziger Strasse 44, Magdeburg, D-39120, Germany.
| | | | | | | | | |
Collapse
|