1
|
Lorenc-Koci E, Kamińska K, Lenda T, Konieczny J. The Effect of Chronic Treatment with the Inhibitor of Phosphodiesterase 5 (PDE5), Sildenafil, in Combination with L-DOPA on Asymmetric Behavior and Monoamine Catabolism in the Striatum and Substantia Nigra of Unilaterally 6-OHDA-Lesioned Rats. Molecules 2024; 29:4318. [PMID: 39339313 PMCID: PMC11434559 DOI: 10.3390/molecules29184318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The use of phosphodiesterase inhibitors in the treatment of Parkinson's disease is currently widely discussed. The study aimed to investigate the impact of acute and chronic treatment with the phosphodiesterase 5 inhibitor, sildenafil, at low and moderate doses of 2 mg/kg and 6 mg/kg, and L-DOPA (12.5 mg/kg), alone or in combination, on asymmetric behavior and dopamine (DA) and serotonin metabolism in the striatum and substantia nigra of unilaterally 6-OHDA-lesioned rats. Acute administration of sildenafil at both tested doses jointly with L-DOPA significantly increased the number of contralateral rotations during a 2 h measurement compared to L-DOPA alone. The effect of a lower dose of sildenafil combined with L-DOPA was much greater in the second hour of measurement. However, the acute combined administration of a higher dose of sildenafil with L-DOPA resulted in an immediate and much stronger increase in the number of contralateral rotations compared to L-DOPA alone, already visible in the first hour of measurement. Interestingly, the chronic combined administration of 2 mg/kg of sildenafil and L-DOPA significantly reduced the number of contralateral rotations, especially during the first hour of measurement, compared to the long-term treatment with L-DOPA alone. Such an effect was not observed after the long-term combined treatment of a higher dose of sildenafil and L-DOPA compared to L-DOPA alone. The concentration of DA in the ipsilateral striatum and substantia nigra after the last combined chronic dose of sildenafil (2 or 6 mg/kg) and L-DOPA (12.5 mg/kg) was significantly higher than after L-DOPA alone. In spite of much stronger increases in the DA concentration in the ipsilateral striatum and substantia nigra, the number of contralateral rotations was reduced in the group of rats treated with the combination of 2 mg/kg sildenafil and L-DOPA compared to the group receiving L-DOPA alone. Moreover, the combined treatment with a low dose of sildenafil and L-DOPA had an opposite effect on DA catabolism, as assessed by DOPAC/DA and HVA/DA indexes, and these indexes were reduced in the ipsilateral striatum but increased in the contralateral striatum and substantia nigra compared to the treatment with L-DOPA alone. The results of the present study show that the addition of a low dose of a PDE5 inhibitor to the standard L-DOPA therapy differently modulates rotational behavior, the tissue DA concentration and its catabolism in the striatum and substantia nigra.
Collapse
Affiliation(s)
- Elżbieta Lorenc-Koci
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (K.K.); (T.L.); (J.K.)
| | | | | | | |
Collapse
|
2
|
Ballardin D, Makrini-Maleville L, Seper A, Valjent E, Rebholz H. 5-HT4R agonism reduces L-DOPA-induced dyskinesia via striatopallidal neurons in unilaterally 6-OHDA lesioned mice. Neurobiol Dis 2024; 198:106559. [PMID: 38852753 DOI: 10.1016/j.nbd.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Parkinson's disease is caused by a selective vulnerability and cell loss of dopaminergic neurons of the Substantia Nigra pars compacta and, consequently, striatal dopamine depletion. In Parkinson's disease therapy, dopamine loss is counteracted by the administration of L-DOPA, which is initially effective in ameliorating motor symptoms, but over time leads to a burdening side effect of uncontrollable jerky movements, termed L-DOPA-induced dyskinesia. To date, no efficient treatment for dyskinesia exists. The dopaminergic and serotonergic systems are intrinsically linked, and in recent years, a role has been established for pre-synaptic 5-HT1a/b receptors in L-DOPA-induced dyskinesia. We hypothesized that post-synaptic serotonin receptors may have a role and investigated the effect of modulation of 5-HT4 receptor on motor symptoms and L-DOPA-induced dyskinesia in the unilateral 6-OHDA mouse model of Parkinson's disease. Administration of RS 67333, a 5-HT4 receptor partial agonist, reduces L-DOPA-induced dyskinesia without altering L-DOPA's pro-kinetic effect. In the dorsolateral striatum, we find 5-HT4 receptor to be predominantly expressed in D2R-containing medium spiny neurons, and its expression is altered by dopamine depletion and L-DOPA treatment. We further show that 5-HT4 receptor agonism not only reduces L-DOPA-induced dyskinesia, but also enhances the activation of the cAMP-PKA pathway in striatopallidal medium spiny neurons. Taken together, our findings suggest that agonism of the post-synaptic serotonin receptor 5-HT4 may be a novel therapeutic approach to reduce L-DOPA-induced dyskinesia.
Collapse
Affiliation(s)
- Demetra Ballardin
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014 Paris, France
| | | | - Alexander Seper
- Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria
| | - Emmanuel Valjent
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| | - Heike Rebholz
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014 Paris, France; Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria; GHU-Paris Psychiatrie et Neuroscience, Hôpital Sainte Anne, F-75014 Paris, France.
| |
Collapse
|
3
|
Seiler JL, Zhuang X, Nelson AB, Lerner TN. Dopamine across timescales and cell types: Relevance for phenotypes in Parkinson's disease progression. Exp Neurol 2024; 374:114693. [PMID: 38242300 DOI: 10.1016/j.expneurol.2024.114693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Dopamine neurons in the substantia nigra pars compacta (SNc) synthesize and release dopamine, a critical neurotransmitter for movement and learning. SNc dopamine neurons degenerate in Parkinson's Disease (PD), causing a host of motor and non-motor symptoms. Here, we review recent conceptual advances in our basic understanding of the dopamine system - including our rapidly advancing knowledge of dopamine neuron heterogeneity - with special attention to their importance for understanding PD. In PD patients, dopamine neuron degeneration progresses from lateral SNc to medial SNc, suggesting clinically relevant heterogeneity in dopamine neurons. With technical advances in dopamine system interrogation, we can understand the relevance of this heterogeneity for PD progression and harness it to develop new treatments.
Collapse
Affiliation(s)
- Jillian L Seiler
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Xiaowen Zhuang
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA; Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Alexandra B Nelson
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA; Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Talia N Lerner
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program (NUIN), Evanston, IL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
4
|
Buchanan AM, Mena S, Choukari I, Vasa A, Crawford JN, Fadel J, Maxwell N, Reagan L, Cruikshank A, Best J, Nijhout HF, Reed M, Hashemi P. Serotonin as a biomarker of toxin-induced Parkinsonism. Mol Med 2024; 30:33. [PMID: 38429661 PMCID: PMC10908133 DOI: 10.1186/s10020-023-00773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/18/2023] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Loss of dopaminergic neurons underlies the motor symptoms of Parkinson's disease (PD). However stereotypical PD symptoms only manifest after approximately 80% of dopamine neurons have died making dopamine-related motor phenotypes unreliable markers of the earlier stages of the disease. There are other non-motor symptoms, such as depression, that may present decades before motor symptoms. METHODS Because serotonin is implicated in depression, here we use niche, fast electrochemistry paired with mathematical modelling and machine learning to, for the first time, robustly evaluate serotonin neurochemistry in vivo in real time in a toxicological model of Parkinsonism, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). RESULTS Mice treated with acute MPTP had lower concentrations of in vivo, evoked and ambient serotonin in the hippocampus, consistent with the clinical comorbidity of depression with PD. These mice did not chemically respond to SSRI, as strongly as control animals did, following the clinical literature showing that antidepressant success during PD is highly variable. Following L-DOPA administration, using a novel machine learning analysis tool, we observed a dynamic shift from evoked serotonin release in the hippocampus to dopamine release. We hypothesize that this finding shows, in real time, that serotonergic neurons uptake L-DOPA and produce dopamine at the expense of serotonin, supporting the significant clinical correlation between L-DOPA and depression. Finally, we found that this post L-DOPA dopamine release was less regulated, staying in the synapse for longer. This finding is perhaps due to lack of autoreceptor control and may provide a ground from which to study L-DOPA induced dyskinesia. CONCLUSIONS These results validate key prior hypotheses about the roles of serotonin during PD and open an avenue to study to potentially improve therapeutics for levodopa-induced dyskinesia and depression.
Collapse
Affiliation(s)
- Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Iman Choukari
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Aditya Vasa
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Jesseca N Crawford
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Jim Fadel
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Nick Maxwell
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Lawrence Reagan
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
- Columbia VA Health Care System, Columbia, SC, 29208, USA
| | | | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | | | - Michael Reed
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
5
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
6
|
Pogorelov VM, Martini ML, Jin J, Wetsel WC, Caron MG. Dopamine-Depleted Dopamine Transporter Knockout (DDD) Mice: Dyskinesia with L-DOPA and Dopamine D1 Agonists. Biomolecules 2023; 13:1658. [PMID: 38002340 PMCID: PMC10669682 DOI: 10.3390/biom13111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
L-DOPA is the mainstay of treatment for Parkinson's disease (PD). However, over time this drug can produce dyskinesia. A useful acute PD model for screening novel compounds for anti-parkinsonian and L-DOPA-induced dyskinesia (LID) are dopamine-depleted dopamine-transporter KO (DDD) mice. Treatment with α-methyl-para-tyrosine rapidly depletes their brain stores of DA and renders them akinetic. During sensitization in the open field (OF), their locomotion declines as vertical activities increase and upon encountering a wall they stand on one leg or tail and engage in climbing behavior termed "three-paw dyskinesia". We have hypothesized that L-DOPA induces a stereotypic activation of locomotion in DDD mice, where they are unable to alter the course of their locomotion, and upon encountering walls engage in "three-paw dyskinesia" as reflected in vertical counts or beam-breaks. The purpose of our studies was to identify a valid index of LID in DDD mice that met three criteria: (a) sensitization with repeated L-DOPA administration, (b) insensitivity to a change in the test context, and (c) stimulatory or inhibitory responses to dopamine D1 receptor agonists (5 mg/kg SKF81297; 5 and 10 mg/kg MLM55-38, a novel compound) and amantadine (45 mg/kg), respectively. Responses were compared between the OF and a circular maze (CM) that did not hinder locomotion. We found vertical counts and climbing were specific for testing in the OF, while oral stereotypies were sensitized to L-DOPA in both the OF and CM and responded to D1R agonists and amantadine. Hence, in DDD mice oral stereotypies should be used as an index of LID in screening compounds for PD.
Collapse
Affiliation(s)
- Vladimir M. Pogorelov
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 354 Sands Building, 303 Research Drive, Durham, NC 27710, USA
| | - Michael L. Martini
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.L.M.); (J.J.)
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.L.M.); (J.J.)
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 354 Sands Building, 303 Research Drive, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA;
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA;
| |
Collapse
|
7
|
Khsime I, Boulain M, Fettah A, Chagraoui A, Courtand G, De Deurwaerdère P, Juvin L, Barrière G. Limiting Monoamines Degradation Increases L-DOPA Pro-Locomotor Action in Newborn Rats. Int J Mol Sci 2023; 24:14747. [PMID: 37834195 PMCID: PMC10572489 DOI: 10.3390/ijms241914747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
L-DOPA, the precursor of catecholamines, exerts a pro-locomotor action in several vertebrate species, including newborn rats. Here, we tested the hypothesis that decreasing the degradation of monoamines can promote the pro-locomotor action of a low, subthreshold dose of L-DOPA in five-day-old rats. The activity of the degrading pathways involving monoamine oxidases or catechol-O-methyltransferase was impaired by injecting nialamide or tolcapone, respectively. At this early post-natal stage, the capacity of the drugs to trigger locomotion was investigated by monitoring the air-stepping activity expressed by the animals suspended in a harness above the ground. We show that nialamide (100 mg/kg) or tolcapone (100 mg/kg), without effect on their own promotes maximal expression of air-stepping sequences in the presence of a sub-effective dose of L-DOPA (25 mg/kg). Tissue measurements of monoamines (dopamine, noradrenaline, serotonin and some of their metabolites) in the cervical and lumbar spinal cord confirmed the regional efficacy of each inhibitor toward their respective enzyme. Our experiments support the idea that the raise of monoamines boost L-DOPA's locomotor action. Considering that both inhibitors differently altered the spinal monoamines levels in response to L-DOPA, our data also suggest that maximal locomotor response can be reached with different monoamines environment.
Collapse
Affiliation(s)
- Inès Khsime
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | - Marie Boulain
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | - Abderrahman Fettah
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, UNIROUEN, INSERM U1239, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), F-76000 Rouen, France;
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, F-76000 Rouen, France
| | - Gilles Courtand
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | | | - Laurent Juvin
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | - Grégory Barrière
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| |
Collapse
|
8
|
di Biase L, Pecoraro PM, Carbone SP, Caminiti ML, Di Lazzaro V. Levodopa-Induced Dyskinesias in Parkinson's Disease: An Overview on Pathophysiology, Clinical Manifestations, Therapy Management Strategies and Future Directions. J Clin Med 2023; 12:4427. [PMID: 37445461 DOI: 10.3390/jcm12134427] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Since its first introduction, levodopa has become the cornerstone for the treatment of Parkinson's disease and remains the leading therapeutic choice for motor control therapy so far. Unfortunately, the subsequent appearance of abnormal involuntary movements, known as dyskinesias, is a frequent drawback. Despite the deep knowledge of this complication, in terms of clinical phenomenology and the temporal relationship during a levodopa regimen, less is clear about the pathophysiological mechanisms underpinning it. As the disease progresses, specific oscillatory activities of both motor cortical and basal ganglia neurons and variation in levodopa metabolism, in terms of the dopamine receptor stimulation pattern and turnover rate, underlie dyskinesia onset. This review aims to provide a global overview on levodopa-induced dyskinesias, focusing on pathophysiology, clinical manifestations, therapy management strategies and future directions.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Pasquale Maria Pecoraro
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Simona Paola Carbone
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Maria Letizia Caminiti
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Vincenzo Di Lazzaro
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
9
|
Nakamura T, Nishijima H, Mori F, Kinoshita I, Kon T, Suzuki C, Wakabayashi K, Tomiyama M. Axon terminal hypertrophy of striatal projection neurons with levodopa-induced dyskinesia priming. Front Neurosci 2023; 17:1169336. [PMID: 37351424 PMCID: PMC10282195 DOI: 10.3389/fnins.2023.1169336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
Background A rat model of levodopa-induced dyskinesia (LID) showed enlarged axon terminals of striatal direct pathway neurons in the internal segment of the globus pallidus (GPi) with excessive gamma-aminobutyric acid (GABA) storage in them. Massive GABA release to GPi upon levodopa administration determines the emergence of LID. Objectives We examined whether LID and axon terminal hypertrophy gradually develop with repeated levodopa treatment in Parkinsonian rats to examine if the hypertrophy reflects dyskinesia priming. Methods 6-hydroxydopamine-lesioned hemiparkinsonian rats were randomly allocated to receive saline injections (placebo group, 14 days; n = 4), injections of 6 mg/kg levodopa methyl ester combined with 12.5 mg/kg benserazide (levodopa-treated groups, 3-day-treatment; n = 4, 7-day-treatment; n = 4, 14-day-treatment; n = 4), or injections of 6 mg/kg levodopa methyl ester with 12.5 mg/kg benserazide and 1 mg/kg 8-hydroxy-2-(di-n-propylamino)tetralin for 14 days (8-OH-DPAT-treated group; n = 4). We evaluated abnormal involuntary movement (AIM) scores and axon terminals in the GPi. Results The AIM score increased with levodopa treatment, as did the hypertrophy of axon terminals in the GPi, showing an increased number of synaptic vesicles in hypertrophied terminals. Conclusion Increased GABA storage in axon terminals of the direct pathway neurons represents the priming process of LID.
Collapse
Affiliation(s)
- Takashi Nakamura
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Haruo Nishijima
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Iku Kinoshita
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoya Kon
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Chieko Suzuki
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
10
|
Nagatsu T, Nakashima A, Watanabe H, Ito S, Wakamatsu K, Zucca FA, Zecca L, Youdim M, Wulf M, Riederer P, Dijkstra JM. The role of tyrosine hydroxylase as a key player in neuromelanin synthesis and the association of neuromelanin with Parkinson's disease. J Neural Transm (Vienna) 2023; 130:611-625. [PMID: 36939908 PMCID: PMC10121510 DOI: 10.1007/s00702-023-02617-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 03/21/2023]
Abstract
The dark pigment neuromelanin (NM) is abundant in cell bodies of dopamine (DA) neurons in the substantia nigra (SN) and norepinephrine (NE) neurons in the locus coeruleus (LC) in the human brain. During the progression of Parkinson's disease (PD), together with the degeneration of the respective catecholamine (CA) neurons, the NM levels in the SN and LC markedly decrease. However, questions remain among others on how NM is associated with PD and how it is synthesized. The biosynthesis pathway of NM in the human brain has been controversial because the presence of tyrosinase in CA neurons in the SN and LC has been elusive. We propose the following NM synthesis pathway in these CA neurons: (1) Tyrosine is converted by tyrosine hydroxylase (TH) to L-3,4-dihydroxyphenylalanine (L-DOPA), which is converted by aromatic L-amino acid decarboxylase to DA, which in LC neurons is converted by dopamine β-hydroxylase to NE; (2) DA or NE is autoxidized to dopamine quinone (DAQ) or norepinephrine quinone (NEQ); and (3) DAQ or NEQ is converted to eumelanic NM (euNM) and pheomelanic NM (pheoNM) in the absence and presence of cysteine, respectively. This process involves proteins as cysteine source and iron. We also discuss whether the NM amounts per neuromelanin-positive (NM+) CA neuron are higher in PD brain, whether NM quantitatively correlates with neurodegeneration, and whether an active lifestyle may reduce NM formation.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi, Japan.
| | - Akira Nakashima
- Department of Physiological Chemistry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate (Milan), Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate (Milan), Italy
| | - Moussa Youdim
- Technion-Rappaport Family Faculty of Medicine, Haifa, Israel
- Department of Biology, Yonsey World Central University, Seoul, South Korea
| | - Maximilian Wulf
- Medical Proteome-Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
- Medizinisches Proteom‑Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Peter Riederer
- Clinic and Polyclinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg, Germany
- Department and Research Unit of Psychiatry, Syddansk University, Odense, Denmark
| | | |
Collapse
|
11
|
Chambers NE, Millett M, Moehle MS. The muscarinic M4 acetylcholine receptor exacerbates symptoms of movement disorders. Biochem Soc Trans 2023; 51:691-702. [PMID: 37013974 PMCID: PMC10212540 DOI: 10.1042/bst20220525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023]
Abstract
Barbeau's seesaw hypothesis of dopamine-acetylcholine balance has predominated movement disorders literature for years. Both the simplicity of the explanation and the matching efficacy of anticholinergic treatment in movement disorders seem to support this hypothesis. However, evidence from translational and clinical studies in movement disorders indicates that many features of this simple balance are lost, broken, or absent from movement disorders models or in imaging studies of patients with these disorders. This review reappraises the dopamine-acetylcholine balance hypothesis in light of recent evidence and describes how the Gαi/o coupled muscarinic M4 receptor acts in opposition to dopamine signaling in the basal ganglia. We highlight how M4 signaling can ameliorate or exacerbate movement disorders symptoms and physiological correlates of these symptoms in specific disease states. Furthermore, we propose future directions for investigation of this mechanisms to fully understand the potential efficacy of M4 targeting therapeutics in movement disorders. Overall, initial evidence suggest that M4 is a promising pharmaceutical target to ameliorate motor symptoms of hypo- and hyper-dopaminergic disorders.
Collapse
Affiliation(s)
- Nicole E. Chambers
- Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Michael Millett
- Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Mark S. Moehle
- Department of Pharmacology and Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| |
Collapse
|
12
|
Murakami Y, Nishijima H, Nakamura T, Furukawa T, Kinoshita I, Kon T, Suzuki C, Tomiyama M. Altered Amantadine Effects after Repetitive Treatment for l-dopa-induced Involuntary Movements in a Rat Model of Parkinson's Disease. Neurosci Lett 2023; 806:137248. [PMID: 37061023 DOI: 10.1016/j.neulet.2023.137248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND l-3,4-dihydroxyphenylalanine (l-dopa) is the most effective drug for Parkinson's disease (PD); however, most PD patients develop motor fluctuations including wearing-off and l-dopa-induced dyskinesia (LID). Amantadine is beneficial for improving the motor symptoms, reducing "off" time, and ameliorating LID, although its long-term efficacy remains unknown. OBJECTIVES To investigate the effects of amantadine on PD and LID using a rat model with repetitive drug treatment. METHOD We utilized 6-hydroxydopamine injections to develop a hemiparkinsonian rat model. The rats were assigned to four groups: five rats received l-dopa and benserazide for 31 days, six rats received l-dopa and benserazide plus amantadine for 31 days, five rats received l-dopa and benserazide for 15 days followed by l-dopa and benserazide plus amantadine for 16 days, and five rats received l-dopa and benserazide plus amantadine for 15 days followed by l-dopa and benserazide treatment for 16 days. We evaluated the l-dopa-induced abnormal involuntary movements on treatment days 1, 7, 14, 16, 22, and 29. Subsequently, immunohistochemistry for drebrin was performed. RESULTS l-dopa-induced abnormal movements were reduced on the first day of amantadine treatment, and these effects disappeared with repetitive treatment. In contrast, the extension of l-dopa "on" time was observed after repetitive amantadine treatment. All groups showed enlarged drebrin immunoreactive dots in the dopamine-denervated striatum, indicating that amantadine did not prevent priming effects of repetitive l-dopa treatment. CONCLUSION Anti-LID effect of amantadine diminished after repetitive treatment, and the effect of amantadine on wearing-off emerged after repetitive treatment in a hemiparkinsonian rat model. Fluctuations in amantadine effects should be considered when using it in clinical settings.
Collapse
Affiliation(s)
- Yoshiki Murakami
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Haruo Nishijima
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | - Takashi Nakamura
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomonori Furukawa
- Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Iku Kinoshita
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoya Kon
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Chieko Suzuki
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
13
|
Budrow C, Elder K, Coyle M, Centner A, Lipari N, Cohen S, Glinski J, Kinzonzi N, Wheelis E, McManus G, Manfredsson F, Bishop C. Broad Serotonergic Actions of Vortioxetine as a Promising Avenue for the Treatment of L-DOPA-Induced Dyskinesia. Cells 2023; 12:837. [PMID: 36980178 PMCID: PMC10047495 DOI: 10.3390/cells12060837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder characterized by motor symptoms that result from loss of nigrostriatal dopamine (DA) cells. While L-DOPA provides symptom alleviation, its chronic use often results in the development of L-DOPA-induced dyskinesia (LID). Evidence suggests that neuroplasticity within the serotonin (5-HT) system contributes to LID onset, persistence, and severity. This has been supported by research showing 5-HT compounds targeting 5-HT1A/1B receptors and/or the 5-HT transporter (SERT) can reduce LID. Recently, vortioxetine, a multimodal 5-HT compound developed for depression, demonstrated acute anti-dyskinetic effects. However, the durability and underlying pharmacology of vortioxetine's anti-dyskinetic actions have yet to be delineated. To address these gaps, we used hemiparkinsonian rats in Experiment 1, examining the effects of sub-chronic vortioxetine on established LID and motor performance. In Experiment 2, we applied the 5-HT1A antagonist WAY-100635 or 5-HT1B antagonist SB-224289 in conjunction with L-DOPA and vortioxetine to determine the contributions of each receptor to vortioxetine's effects. The results revealed that vortioxetine consistently and dose-dependently attenuated LID while independently, 5-HT1A and 5-HT1B receptors each partially reversed vortioxetine's effects. Such findings further support the promise of pharmacological strategies, such as vortioxetine, and indicate that broad 5-HT actions may provide durable responses without significant side effects.
Collapse
Affiliation(s)
- Carla Budrow
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Kayla Elder
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Michael Coyle
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Ashley Centner
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Natalie Lipari
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Sophie Cohen
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - John Glinski
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - N’Senga Kinzonzi
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Emily Wheelis
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Grace McManus
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Fredric Manfredsson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| |
Collapse
|
14
|
Kamińska K, Lenda T, Konieczny J, Lorenc-Koci E. Behavioral and neurochemical interactions of the tricyclic antidepressant drug desipramine with L-DOPA in 6-OHDA-lesioned rats. Implications for motor and psychiatric functions in Parkinson's disease. Psychopharmacology (Berl) 2022; 239:3633-3656. [PMID: 36178508 PMCID: PMC9584871 DOI: 10.1007/s00213-022-06238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/12/2022] [Indexed: 11/11/2022]
Abstract
RATIONALE The pharmacological effects of antidepressants in modulating noradrenergic transmission as compared to serotonergic transmission in a rat model of Parkinson's disease under chronic L-DOPA therapy are insufficiently explored. OBJECTIVES The aim of the present study was to investigate the effect of the tricyclic antidepressant desipramine administered chronically alone or jointly with L-DOPA, on motor behavior and monoamine metabolism in selected brain structures of rats with the unilateral 6-OHDA lesion. METHODS The antiparkinsonian activities of L-DOPA and desipramine were assessed behaviorally using a rotation test and biochemically based on changes in the tissue concentrations of noradrenaline, dopamine and serotonin and their metabolites, evaluated separately for the ipsi- and contralateral motor (striatum, substantia nigra) and limbic (prefrontal cortex, hippocampus) structures of rat brain by HPLC method. RESULTS Desipramine administered alone did not induce rotational behavior, but in combination with L-DOPA, it increased the number of contralateral rotations more strongly than L-DOPA alone. Both L-DOPA and desipramine + L-DOPA significantly increased DA levels in the ipsilateral striatum, substantia nigra, prefrontal cortex and the ipsi- and contralateral hippocampus. The combined treatment also significantly increased noradrenaline content in the ipsi- and contralateral striatum, while L-DOPA alone decreased serotonin level on both sides of the hippocampus. CONCLUSIONS The performed analysis of the level of monoamines and their metabolites in the selected brain structures suggests that co-modulation of noradrenergic and dopaminergic transmission in Parkinson's disease by the combined therapy with desipramine + L-DOPA may have some positive implications for motor and psychiatric functions but further research is needed to exclude potential negative effects.
Collapse
Affiliation(s)
- Kinga Kamińska
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland
| | - Tomasz Lenda
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland
| | - Jolanta Konieczny
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland
| | - Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland.
| |
Collapse
|
15
|
Synergistic effect of serotonin 1A and serotonin 1B/D receptor agonists in the treatment of L-DOPA-induced dyskinesia in 6-hydroxydopamine-lesioned rats. Exp Neurol 2022; 358:114209. [PMID: 35988699 DOI: 10.1016/j.expneurol.2022.114209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The gold standard for symptomatic relief of Parkinson's disease (PD) is L-DOPA. However, long-term treatment often leads to motor complications such as L-DOPA-induced dyskinesia (LID). While amantadine (Gocovri™) is the only approved therapy for dyskinesia in PD patients on the American market, it is associated with neurological side effects and limited efficacy. Thus, there remains a high unmet need for addressing LID in PD patients worldwide. OBJECTIVE The objective of this study was to evaluate the efficacy, safety and performance compared to approved treatments of the serotonin receptor 1A (5-HT1A) and 5-HT1B/D agonists buspirone and zolmitriptan in the 6-hydroxydopamine unilaterally lesioned rat model for PD. METHODS The hemiparkinsonian 6-OHDA-lesioned rats underwent chronic treatment with L-DOPA to induce dyskinesia and were subsequently used for efficacy testing of buspirone, zolmitriptan and comparison with amantadine, measured as abnormal involuntary movement (AIM) scores after L-DOPA challenge. Safety testing was performed in model and naïve animals using forelimb adjusting, rotarod and open field tests. RESULTS 5-HT1A and 5-HT1B/D agonism effectively reduced AIM scores in a synergistic manner. The drug combination of buspirone and zolmitriptan was safe and did not lead to tolerance development following sub-chronic administration. Head-to-head comparison with amantadine showed superior performance of buspirone and zolmitriptan in the model. CONCLUSIONS The strong anti-dyskinetic effect found with combined 5-HT1A and 5-HT1B/D agonism renders buspirone and zolmitriptan together a meaningful treatment for LID in PD.
Collapse
|
16
|
The effects of Vilazodone, YL-0919 and Vortioxetine in hemiparkinsonian rats. Psychopharmacology (Berl) 2022; 239:2119-2132. [PMID: 35275226 DOI: 10.1007/s00213-022-06078-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/24/2022] [Indexed: 10/18/2022]
Abstract
Parkinson's disease is a neurodegenerative disease often characterized by motor deficits and most commonly treated with dopamine replacement therapy. Despite its benefits, chronic use of L-DOPA results in abnormal involuntary movements known as L-DOPA-induced dyskinesia. Growing evidence shows that with burgeoning dopamine cell loss, neuroplasticity in the serotonin system leads to the development of L-DOPA-induced dyskinesia through the unregulated uptake, conversion, and release of L-DOPA-derived dopamine into the striatum. Previous studies have shown that coincident 5-HT1A agonism and serotonin transporter inhibition may have anti-dyskinetic potential. Despite this, few studies have explicitly focused on targeting both 5-HT1A and the serotonin transporter. The present study compares the 5-HT compounds Vilazodone, YL-0919, and Vortioxetine which purportedly work as simultaneous 5-HT1A receptor agonists and SERT blockers. To do so, adult female Sprague Dawley rats were rendered hemiparkinsonian and treated daily for two weeks with L-DOPA to produce stable dyskinesia. The abnormal involuntary movements and forehand adjusting step tests were utilized as measurements for L-DOPA-induced dyskinesia and motor performance in a within-subjects design. Lesion efficacy was determined by analysis of striatal monoamines via high-performance liquid chromatography. Compounds selective for 5-HT1A/SERT target sites including Vilazodone and Vortioxetine significantly reduced L-DOPA-induced dyskinesia without compromising L-DOPA pro-motor efficacy. In contrast, YL-0919 failed to reduce L-DOPA-induced dyskinesia, with no effects on L-DOPA-related improvements. Collectively, this work supports pharmacological targeting of 5-HT1A/SERT to reduce L-DOPA-induced dyskinesia. Additionally, this further provides evidence for Vilazodone and Vortioxetine, FDA-approved compounds, as potential adjunct therapeutics for L-DOPA-induced dyskinesia management in Parkinson's patients.
Collapse
|
17
|
Cohen SR, Terry ML, Coyle M, Wheelis E, Centner A, Smith S, Glinski J, Lipari N, Budrow C, Manfredsson FP, Bishop C. The multimodal serotonin compound Vilazodone alone, but not combined with the glutamate antagonist Amantadine, reduces l-DOPA-induced dyskinesia in hemiparkinsonian rats. Pharmacol Biochem Behav 2022; 217:173393. [DOI: 10.1016/j.pbb.2022.173393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 01/06/2023]
|
18
|
Lloyd JT, Yee AG, Kalligappa PK, Jabed A, Cheung PY, Todd KL, Karunasinghe RN, Vlajkovic SM, Freestone PS, Lipski J. Dopamine dysregulation and altered responses to drugs affecting dopaminergic transmission in a new dopamine transporter knockout (DAT-KO) rat model. Neuroscience 2022; 491:43-64. [DOI: 10.1016/j.neuroscience.2022.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/10/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022]
|
19
|
Angela Cenci M, Skovgård K, Odin P. Non-dopaminergic approaches to the treatment of motor complications in Parkinson's disease. Neuropharmacology 2022; 210:109027. [DOI: 10.1016/j.neuropharm.2022.109027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022]
|
20
|
Chagraoui A, Di Giovanni G, De Deurwaerdère P. Neurobiological and Pharmacological Perspectives of D3 Receptors in Parkinson’s Disease. Biomolecules 2022; 12:biom12020243. [PMID: 35204744 PMCID: PMC8961531 DOI: 10.3390/biom12020243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
The discovery of the D3 receptor (D3R) subtypes of dopamine (DA) has generated an understandable increase in interest in the field of neurological diseases, especially Parkinson’s disease (PD). Indeed, although DA replacement therapy with l-DOPA has provided an effective treatment for patients with PD, it is responsible for invalidating abnormal involuntary movements, known as L-DOPA-induced dyskinesia, which constitutes a serious limitation of the use of this therapy. Of particular interest is the finding that chronic l-DOPA treatment can trigger the expression of D1R–D3R heteromeric interactions in the dorsal striatum. The D3R is expressed in various tissues of the central nervous system, including the striatum. Compelling research has focused on striatal D3Rs in the context of PD and motor side effects, including dyskinesia, occurring with DA replacement therapy. Therefore, this review will briefly describe the basal ganglia (BG) and the DA transmission within these brain regions, before going into more detail with regard to the role of D3Rs in PD and their participation in the current treatments. Numerous studies have also highlighted specific interactions between D1Rs and D3Rs that could promote dyskinesia. Finally, this review will also address the possibility that D3Rs located outside of the BG may mediate some of the effects of DA replacement therapy.
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Différenciation et Communication Neuroendocrine, Endocrine et Germinale Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), University of Rouen, INSERM 1239, 76000 Rouen, France
- Department of Medical Biochemistry, Rouen University Hospital, 76000 Rouen, France
- Correspondence: ; Tel.: +33-2-35-14-83-69
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, 2080 Msida, Malta;
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Philippe De Deurwaerdère
- Unité Mixte de Recherche (UMR) 5287, Centre National de la Recherche Scientifique (CNRS), CEDEX, 33000 Bordeaux, France;
| |
Collapse
|
21
|
Bove F, Calabresi P. Plasticity, genetics, and epigenetics in l-dopa-induced dyskinesias. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:167-184. [PMID: 35034732 DOI: 10.1016/b978-0-12-819410-2.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
l-Dopa-induced dyskinesias (LIDs) are a frequent complication in l-dopa-treated patients affected by Parkinson's disease (PD). In the last years, several progresses in the knowledge of LIDs mechanisms have led to the identification of several molecular and electrophysiologic events. A complex cascade of intracellular events underlies the pathophysiology of LIDs, and, among these, aberrant plasticity in the cortico-basal ganglia system, at striatal and cortical level, plays a key role. Furthermore, several recent studies have investigated genetic susceptibility and epigenetic modifications in LIDs pathophysiology that might have future relevance in clinical practice and pharmacologic research. These progresses might lead to the development of specific strategies not only to treat, but also to prevent or delay the development of LIDs in PD.
Collapse
Affiliation(s)
- Francesco Bove
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Calabresi
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
22
|
Tohge R, Kaneko S, Morise S, Oki M, Takenouchi N, Murakami A, Nakamura M, Kusaka H, Yakushiji Y. Zonisamide attenuates the severity of levodopa-induced dyskinesia via modulation of the striatal serotonergic system in a rat model of Parkinson's disease. Neuropharmacology 2021; 198:108771. [PMID: 34474045 DOI: 10.1016/j.neuropharm.2021.108771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022]
Abstract
Glutamate, GABA, acetylcholine, dopamine, and serotonin interact with each other to regulate the flow of neural information in the striatum. Serotonin type 1A receptor (5HT1A) is primarily expressed on glutamatergic nerve terminals, and 5HT1B is expressed on GABAergic medium spiny neurons (MSNs). Zonisamide (ZNS) reportedly improves the off period without worsening levodopa-induced dyskinesia (LID) in patients with advanced Parkinson's disease. In this study, LID model rats were prepared by administrating levodopa to unilaterally 6-OHDA-lesioned rats. We analyzed changes in serotonergic neurotransmission of LID model rats to elucidate the relationship between LID and the serotonergic system and pathomechanism of the anti-dyskinetic effects of ZNS. Abnormal involuntary movements (AIMs) were most severe in intermittently levodopa-treated rats but milder in rats intermittently medicated with levodopa and ZNS. Continuously levodopa-infused rats or intermittently ZNS-injected rats did not develop AIMs, and no differences in the expression of brain-derived neurotrophic factor, 5-HT transporter, 5HT1A, and 5HT1B mRNA between the lesioned striatum and normal side were observed. Expression of 5HT1B mRNA was elevated in the lesioned striatum of intermittently levodopa-treated rats, but this elevation was normalized by concomitant use of ZNS. The severity of AIMs was correlated with the ratio of 5HT1B to 5HT1A mRNA expression in the lesioned striatum, indicating that the anti-LID effect of ZNS is based on inhibition via 5HT1B receptors to direct pathway MSNs sensitized by intermittent levodopa treatment. Selectively acting serotonergic drugs, especially those that lower the 5HT1B to 5HT1A ratio, are promising new therapeutic agents to attenuate LID development.
Collapse
Affiliation(s)
- Rie Tohge
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Satoshi Kaneko
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan.
| | - Satoshi Morise
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Mitsuaki Oki
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Norihiro Takenouchi
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Aya Murakami
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Masataka Nakamura
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Hirofumi Kusaka
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Yusuke Yakushiji
- Department of Neurology, Kansai Medical University, Hirakata city, Osaka, Japan
| |
Collapse
|
23
|
Altwal F, Padovan-Neto FE, Ritger A, Steiner H, West AR. Role of 5-HT1A Receptor in Vilazodone-Mediated Suppression of L-DOPA-Induced Dyskinesia and Increased Responsiveness to Cortical Input in Striatal Medium Spiny Neurons in an Animal Model of Parkinson's Disease. Molecules 2021; 26:molecules26195790. [PMID: 34641332 PMCID: PMC8510243 DOI: 10.3390/molecules26195790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/07/2021] [Accepted: 09/20/2021] [Indexed: 01/06/2023] Open
Abstract
L-DOPA therapy in Parkinson’s disease (PD) is limited due to emerging L-DOPA-induced dyskinesia. Research has identified abnormal dopamine release from serotonergic (5-HT) terminals contributing to this dyskinesia. Selective serotonin reuptake inhibitors (SSRIs) or 5-HT receptor (5-HTr) agonists can regulate 5-HT activity and attenuate dyskinesia, but they often also produce a loss of the antiparkinsonian efficacy of L-DOPA. We investigated vilazodone, a novel multimodal 5-HT agent with SSRI and 5-HTr1A partial agonist properties, for its potential to reduce dyskinesia without interfering with the prokinetic effects of L-DOPA, and underlying mechanisms. We assessed vilazodone effects on L-DOPA-induced dyskinesia (abnormal involuntary movements, AIMs) and aberrant responsiveness to corticostriatal drive in striatal medium spiny neurons (MSNs) measured with in vivo single-unit extracellular recordings, in the 6-OHDA rat model of PD. Vilazodone (10 mg/kg) suppressed all subtypes (axial, limb, orolingual) of AIMs induced by L-DOPA (5 mg/kg) and the increase in MSN responsiveness to cortical stimulation (shorter spike onset latency). Both the antidyskinetic effects and reversal in MSN excitability by vilazodone were inhibited by the 5-HTr1A antagonist WAY-100635, demonstrating a critical role for 5-HTr1A in these vilazodone actions. Our results indicate that vilazodone may serve as an adjunct therapeutic for reducing dyskinesia in patients with PD.
Collapse
Affiliation(s)
- Feras Altwal
- Center for Neurodegenerative Disease & Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (F.A.); (A.R.W.)
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
| | - Fernando E. Padovan-Neto
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
| | - Alexandra Ritger
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
| | - Heinz Steiner
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Correspondence:
| | - Anthony R. West
- Center for Neurodegenerative Disease & Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (F.A.); (A.R.W.)
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
| |
Collapse
|
24
|
Kulshreshtha D, Pieterman M, Gilmore G, Jog M. Optimizing the selection of Parkinson's disease patients for neuromodulation using the levodopa challenge test. J Neurol 2021; 269:846-852. [PMID: 34191078 DOI: 10.1007/s00415-021-10666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND In Parkinson's disease (PD), early stages are associated with a good long-duration response and as the disease advances, the short-duration response predominates. The transition between the long-duration and short-duration responses may be an important and measurable intermediate stage. A critical criterion in determining the candidature for neuromodulation is a beneficial response to an 'off-on' levodopa challenge test. This test is usually reserved for those that have already developed marked short-duration response and are candidates for deep brain stimulation (DBS) surgery. However, identifying those that are in transition may allow DBS to be offered earlier. OBJECTIVE The objective of the study was to determine if the transition from a long-duration to a short-duration response can be assessed on a levodopa challenge test. METHODS An 'off-on" levodopa challenge test was done in sixty-five PD patients divided into four groups based on the disease duration. RESULTS OFF motor scores increased in all groups [Mean ± STD; 22.94 ± 8.52, 31.53 ± 9.87, 34.05 ± 9.50, and 33.92 ± 10.15 in groups 1-4, respectively] while a significant response to medication was maintained on 'off-on' testing. The mean levodopa equivalency dose in groups 1 and 2 was significantly less than in groups 3 and 4. This transition occurred between years 7 and 9 of disease duration. CONCLUSION Performing a regular levodopa challenge test, when levodopa dose increases substantially, should be considered to determine the ideal time for DBS in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Dinkar Kulshreshtha
- Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, 339 Windermere road, London, ON, N6A 5A5, Canada
| | - Marcus Pieterman
- Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, 339 Windermere road, London, ON, N6A 5A5, Canada
| | - Greydon Gilmore
- School of Biomedical Engineering, Western University, London, Canada
| | - Mandar Jog
- Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, 339 Windermere road, London, ON, N6A 5A5, Canada.
| |
Collapse
|
25
|
Nishijima H, Kimura T, Mori F, Wakabayashi K, Kinoshita I, Nakamura T, Kon T, Suzuki C, Tomiyama M. Effects of Aging on Levo-Dihydroxyphenylalanine- Induced Dyskinesia in a Rat Model of Parkinson's Disease. Front Aging Neurosci 2021; 13:650350. [PMID: 34054505 PMCID: PMC8155371 DOI: 10.3389/fnagi.2021.650350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
Background It remains unclear why patients with young-onset Parkinson's disease more often develop levo-dihydroxyphenylalanine (L-dopa)-induced dyskinesia (LID) and have a more severe form than patients with old-onset Parkinson's disease. Previous studies using animal models have failed to show young-onset Parkinson's disease enhances LID. Objectives To evaluate the association of age at dopaminergic denervation (onset age) and initiation of L-dopa treatment (treatment age) with LID development in model rats. Methods We established rat models of young- and old-lesioned Parkinson's disease (6-hydroxydopamine lesions at 10 and 88 weeks of age, respectively). Dopaminergic denervation was confirmed by the rotational behavior test using apomorphine. Rats in the young-lesioned group were allocated to either L-dopa treatment at a young or old age, or saline treatment. Rats in the old-lesioned group were allocated to either L-dopa treatment or saline group. We evaluated L-dopa-induced abnormal involuntary movements during the 14-day treatment period. We also examined preprodynorphin mRNA expression in the striatum (a neurochemical hallmark of LID) and the volume of the medial globus pallidus (a pathological hallmark of LID). Results LID-like behavior was enhanced in L-dopa-treated young-lesioned rats compared with L-dopa-treated old-lesioned rats. Preprodynorphin mRNA expression was higher in L-dopa-treated young-lesioned rats than in in L-dopa-treated old-lesioned rats. The volume of the medial globus pallidus was greater in L-dopa-treated young-lesioned rats than in L-dopa-treated old-lesioned rats. Treatment age did not affect LID-like behavior or the degree of medial globus pallidus hypertrophy in the young-lesioned model. Conclusion Both dopaminergic denervation and L-dopa initiation at a young age contributed to the development of LID; however, the former may be a more important factor.
Collapse
Affiliation(s)
- Haruo Nishijima
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tamaki Kimura
- Department of Neurology, National Hospital Organization, Aomori Hospital, Aomori, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Iku Kinoshita
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takashi Nakamura
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoya Kon
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Chieko Suzuki
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
26
|
Li JY, Li W. Postmortem Studies of Fetal Grafts in Parkinson's Disease: What Lessons Have We Learned? Front Cell Dev Biol 2021; 9:666675. [PMID: 34055800 PMCID: PMC8155361 DOI: 10.3389/fcell.2021.666675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 12/28/2022] Open
Abstract
Neural transplantation is a potential therapeutic method for Parkinson’s disease (PD). Fetal dopaminergic (DA) neurons have been important transplantation cell sources in the history of replacement therapy for PD. Several decades of preclinical animal experiments and clinical trials using fetal DA neuron transplantation in PD therapy have shown not only promising results but also problems. In order to reveal possible factors influencing the clinical outcomes, we reviewed fetal DA neuron transplantation therapies from 1970s to present, with a special focus on postmortem studies. Firstly, we gave a general description of the clinical outcomes and neuroanatomy of grafted cases; secondly, we summarized the main available postmortem studies, including the cell survival, reinnervation, and pathology development. In the end, we further discussed the link between function and structure of the grafts, seeking for the possible factors contributing to a functional graft. With our review, we hope to provide references for future transplantation trials from a histological point of view.
Collapse
Affiliation(s)
- Jia-Yi Li
- Laboratory of Neurodegenerative Diseases and Repair, Institute of Health Sciences, China Medical University, Shenyang, China.,Neural Plasticity and Repair Unit, Wallenberg Neuroscience Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Wen Li
- Laboratory of Neurodegenerative Diseases and Repair, Institute of Health Sciences, China Medical University, Shenyang, China.,Neural Plasticity and Repair Unit, Wallenberg Neuroscience Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
27
|
De Deurwaerdère P, Chagraoui A, Di Giovanni G. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 261:161-264. [PMID: 33785130 DOI: 10.1016/bs.pbr.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between serotonin (5-HT) and dopamine (DA) in the central nervous system (CNS) plays an important role in the adaptive properties of living animals to their environment. These are two modulatory, divergent systems shaping and regulating in a widespread manner the activity of neurobiological networks and their interaction. The concept of one interaction linking these two systems is rather elusive when looking at the mechanisms triggered by these two systems across the CNS. The great variety of their interacting mechanisms is in part due to the diversity of their neuronal origin, the density of their fibers in a given CNS region, the distinct expression of their numerous receptors in the CNS, the heterogeneity of their intracellular signaling pathway that depend on the cellular type expressing their receptors, and the state of activity of neurobiological networks, conditioning the outcome of their mutual influences. Thus, originally conceptualized as inhibition of 5-HT on DA neuron activity and DA neurotransmission, this interaction is nowadays considered as a multifaceted, mutual influence of these two systems in the regulation of CNS functions. These new ways of understanding this interaction are of utmost importance to envision the consequences of their dysfunctions underlined in several CNS diseases. It is also essential to conceive the mechanism of action of psychotropic drugs directly acting on their function including antipsychotic, antidepressant, antiparkinsonian, and drug of abuse together with the development of therapeutic strategies of Alzheimer's diseases, epilepsy, obsessional compulsive disorders. The 5-HT/DA interaction has a long history from the serendipitous discovery of antidepressants and antipsychotics to the future, rationalized treatments of CNS disorders.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France.
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
28
|
Serotonin/dopamine interaction in the induction and maintenance of L-DOPA-induced dyskinesia: An update. PROGRESS IN BRAIN RESEARCH 2021; 261:287-302. [PMID: 33785132 DOI: 10.1016/bs.pbr.2021.01.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ample evidence suggests that the serotonergic system plays a major role in several aspects of Parkinson's disease. In this review, we focus on the interplay between dopamine and serotonin in the appearance of L-DOPA-induced dyskinesia (LID), the most troublesome side effect of L-DOPA therapy. Indeed, while this drug exerts significant amelioration of motor symptoms during the first few years of treatment, eventually, most of patients experience dyskinesias, which limit the use of L-DOPA in advanced stages of disease. Here, we present the mechanisms underlying LID and the role of serotonin neurons, review preclinical and clinical data, and discuss possible therapeutic strategies.
Collapse
|
29
|
Serotonergic control of the glutamatergic neurons of the subthalamic nucleus. PROGRESS IN BRAIN RESEARCH 2021; 261:423-462. [PMID: 33785138 DOI: 10.1016/bs.pbr.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The subthalamic nucleus (STN) houses a dense cluster of glutamatergic neurons that play a central role in the functional dynamics of the basal ganglia, a group of subcortical structures involved in the control of motor behaviors. Numerous anatomical, electrophysiological, neurochemical and behavioral studies have reported that serotonergic neurons from the midbrain raphe nuclei modulate the activity of STN neurons. Here, we describe this serotonergic innervation and the nature of the regulation exerted by serotonin (5-hydroxytryptamine, 5-HT) on STN neuron activity. This regulation can occur either directly within the STN or at distal sites, including other structures of the basal ganglia or cortex. The effect of 5-HT on STN neuronal activity involves several 5-HT receptor subtypes, including 5-HT1A, 5-HT1B, 5-HT2C and 5-HT4 receptors, which have garnered the highest attention on this topic. The multiple regulatory effects exerted by 5-HT are thought to be modified under pathological conditions, altering the activity of the STN, or due to the benefits and side effects of treatments used for Parkinson's disease, notably the dopamine precursor l-DOPA and high-frequency STN stimulation. Originally understood as a motor center, the STN is also associated with decision making and participates in mood regulation and cognitive performance, two domains of personality that are also regulated by 5-HT. The literature concerning the link between 5-HT and STN is already important, and the functional overlap is evident, but this link is still not entirely understood. The understanding of this link between 5-HT and STN should be increased due to the possible importance of this regulation in the control of fronto-STN loops and inherent motor and non-motor behaviors.
Collapse
|
30
|
Fridjonsdottir E, Shariatgorji R, Nilsson A, Vallianatou T, Odell LR, Schembri LS, Svenningsson P, Fernagut PO, Crossman AR, Bezard E, Andrén PE. Mass spectrometry imaging identifies abnormally elevated brain l-DOPA levels and extrastriatal monoaminergic dysregulation in l-DOPA-induced dyskinesia. SCIENCE ADVANCES 2021; 7:7/2/eabe5948. [PMID: 33523980 PMCID: PMC7787486 DOI: 10.1126/sciadv.abe5948] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/10/2020] [Indexed: 05/20/2023]
Abstract
l-DOPA treatment for Parkinson's disease frequently leads to dyskinesias, the pathophysiology of which is poorly understood. We used MALDI-MSI to map the distribution of l-DOPA and monoaminergic pathways in brains of dyskinetic and nondyskinetic primates. We report elevated levels of l-DOPA, and its metabolite 3-O-methyldopa, in all measured brain regions of dyskinetic animals and increases in dopamine and metabolites in all regions analyzed except the striatum. In dyskinesia, dopamine levels correlated well with l-DOPA levels in extrastriatal regions, such as hippocampus, amygdala, bed nucleus of the stria terminalis, and cortical areas, but not in the striatum. Our results demonstrate that l-DOPA-induced dyskinesia is linked to a dysregulation of l-DOPA metabolism throughout the brain. The inability of extrastriatal brain areas to regulate the formation of dopamine during l-DOPA treatment introduces the potential of dopamine or even l-DOPA itself to modulate neuronal signaling widely across the brain, resulting in unwanted side effects.
Collapse
Affiliation(s)
- Elva Fridjonsdottir
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Reza Shariatgorji
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Theodosia Vallianatou
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Luke S Schembri
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pierre-Olivier Fernagut
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
- Université de Poitiers, INSERM, U0-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | | | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
- Motac Neuroscience, Manchester M15 6WE, UK
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Stemick J, Gauer C, Wihan J, Moceri S, Xiang W, von Hörsten S, Kohl Z, Winkler J. Compensatory neuritogenesis of serotonergic afferents within the striatum of a transgenic rat model of Parkinson's disease. Brain Res 2020; 1748:147119. [PMID: 32919983 DOI: 10.1016/j.brainres.2020.147119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
The majority of patients with Parkinson's disease (PD) suffer from L-DOPA-induced dyskinesia (LID). Besides a dysfunctional dopaminergic system, changes of the serotonergic network may be linked to this severe and adverse symptom. Particularly, serotonergic neurons have the potential to synthesize dopamine, likely associated with a disproportional dopamine release within the striatum. We hypothesized that the serotonergic system is adaptively altered in the striatum due to the reduced dopaminergic input. To answer this question, we analyzed a transgenic rat PD model ubiquitously expressing human α-synuclein using a bacterial artificial chromosome. Neurite analysis showed a profound loss of dopaminergic fibers by ~30-40% within the dorsal striatum paralleled by a ~50% reduction of dopaminergic neurons in the substantia nigra pars compacta. In contrast, serotonergic fibers showed an increased fiber density in the dorsal striatum by ~100%, while the number of serotonergic neurons within the raphe nuclei (RN) and its proximal neuritic processes were unaffected. Furthermore, both the dopaminergic and serotonergic fiber density remained unchanged in the neighboring motor cortex M1/M2. Interestingly, essential enzymes required for L-DOPA turnover and dopamine release were expressed in serotonergic neurons of the RN. In parallel, the serotonergic autoreceptor levels involved in a serotonergic negative feedback loop were reduced within the striatum, suggesting a dysfunctional neurotransmitter release. Overall, the increased serotonergic fiber density with its capacity for dopamine release within the striatum suggests a compensatory, site-specific serotonergic neuritogenesis. This maladaptive serotonergic plasticity may be linked to adverse symptoms such as LIDs in PD.
Collapse
Affiliation(s)
- Judith Stemick
- Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Carina Gauer
- Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jeanette Wihan
- Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Moceri
- Department of Experimental Therapy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Wei Xiang
- Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Zacharias Kohl
- Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; present address: Department of Neurology, University Regensburg, Germany.
| | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
32
|
The Multimodal Serotonergic Agent Vilazodone Inhibits L-DOPA-Induced Gene Regulation in Striatal Projection Neurons and Associated Dyskinesia in an Animal Model of Parkinson's Disease. Cells 2020; 9:cells9102265. [PMID: 33050305 PMCID: PMC7600385 DOI: 10.3390/cells9102265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
Levodopa (L-DOPA) treatment in Parkinson's disease is limited by the emergence of L-DOPA-induced dyskinesia. Such dyskinesia is associated with aberrant gene regulation in neurons of the striatum, which is caused by abnormal dopamine release from serotonin terminals. Previous work showed that modulating the striatal serotonin innervation with selective serotonin reuptake inhibitors (SSRIs) or 5-HT1A receptor agonists could attenuate L-DOPA-induced dyskinesia. We investigated the effects of a novel serotonergic agent, vilazodone, which combines SSRI and 5-HT1A partial agonist properties, on L-DOPA-induced behavior and gene regulation in the striatum in an animal model of Parkinson's disease. After unilateral dopamine depletion by 6-hydroxydopamine (6-OHDA), rats received repeated L-DOPA treatment (5 mg/kg) alone or in combination with vilazodone (10 mg/kg) for 3 weeks. Gene regulation was then mapped throughout the striatum using in situ hybridization histochemistry. Vilazodone suppressed the development of L-DOPA-induced dyskinesia and turning behavior but did not interfere with the prokinetic effects of L-DOPA (forelimb stepping). L-DOPA treatment drastically increased the expression of dynorphin (direct pathway), 5-HT1B, and zif268 mRNA in the striatum ipsilateral to the lesion. These effects were inhibited by vilazodone. In contrast, vilazodone had no effect on enkephalin expression (indirect pathway) or on gene expression in the intact striatum. Thus, vilazodone inhibited L-DOPA-induced gene regulation selectively in the direct pathway of the dopamine-depleted striatum, molecular changes that are considered critical for L-DOPA-induced dyskinesia. These findings position vilazodone, an approved antidepressant, as a potential adjunct medication for the treatment of L-DOPA-induced motor side effects.
Collapse
|
33
|
|
34
|
Nishijima H, Mori F, Arai A, Zhu G, Wakabayashi K, Okada M, Ueno S, Ichinohe N, Suzuki C, Kon T, Tomiyama M. GABA storage and release in the medial globus pallidus in L-DOPA-induced dyskinesia priming. Neurobiol Dis 2020; 143:104979. [PMID: 32590036 DOI: 10.1016/j.nbd.2020.104979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 01/13/2023] Open
Abstract
Levo-dihydroxyphenylalanine (L-DOPA) is the most effective treatment for Parkinson's disease; however, most patients develop uncontrollable abnormal involuntary movements known as L-DOPA-induced dyskinesia. L-DOPA-induced dyskinesia can be reduced by pallidotomy of the medial globus pallidus or pallidal deep brain stimulation, suggesting that the medial globus pallidus plays a significant role in the development of L-DOPA-induced dyskinesia. In the present study, the pathological changes of the medial globus pallidus in L-DOPA-induced dyskinesia were studied in rat models of Parkinson's disease (unilateral 6-hydroxydopamine lesioning) and L-DOPA-induced dyskinesia (L-DOPA injection in Parkinson's disease-model rats twice daily for 2 weeks, confirmed by display of dyskinesia-like abnormal involuntary movements). L-DOPA-induced dyskinesia-model rats displayed medial globus pallidus hypertrophy, enlarged axon terminals surrounding the dendrites of medial globus pallidus neurons, and increased density of synaptic vesicles in enlarged axon terminals on the lesioned side. Synaptic terminal enlargement reversed after discontinuation of L-DOPA. Histological studies revealed the enlarged synaptic terminals were those of GABAergic striatal (direct pathway) neurons. A single injection of L-DOPA enhanced GABA release in the medial globus pallidus on the lesioned side in L-DOPA-induced dyskinesia-model rats compared to Parkinson's disease-model rats. In addition, microinjection of muscimol, a GABAA receptor agonist, into the medial globus pallidus on the lesioned side of Parkinson's disease-model rats induced dyskinesia-like abnormal involuntary movements. Microinjection of bicuculline, a GABAA receptor antagonist, into the medial globus pallidus on the lesioned side alleviated L-DOPA-induced dyskinesia in Parkinson's disease-model rats that had received L-DOPA prior to the microinjection. These results indicate that priming for L-DOPA-induced dyskinesia comprises excessive GABA storage in axon terminals of the direct pathway and that expression of L-DOPA-induced dyskinesia is associated with enhanced GABA release into the medial globus pallidus after L-DOPA dosing and the resultant excessive stimulation of GABAA receptors.
Collapse
Affiliation(s)
- Haruo Nishijima
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zifu-cho, Hirosaki 036-8562, Japan.
| | - Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zifu-cho, Hirosaki 036-8562, Japan
| | - Akira Arai
- Department of Neurology, Aomori Prefectural Central Hospital, 2-1-1 Higashi-Tsukurimichi, Aomori 030-8551, Japan
| | - Gang Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zifu-cho, Hirosaki 036-8562, Japan
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zifu-cho, Hirosaki 036-8562, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8502, Japan; Ichinohe Neural System Group, Laboratory for Molecular Analysis of Higher Brain Functions, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Chieko Suzuki
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zifu-cho, Hirosaki 036-8562, Japan
| | - Tomoya Kon
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zifu-cho, Hirosaki 036-8562, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
35
|
Rosenblad C, Li Q, Pioli EY, Dovero S, Antunes AS, Agúndez L, Bardelli M, Linden RM, Henckaerts E, Björklund A, Bezard E, Björklund T. Vector-mediated l-3,4-dihydroxyphenylalanine delivery reverses motor impairments in a primate model of Parkinson's disease. Brain 2020; 142:2402-2416. [PMID: 31243443 PMCID: PMC6658866 DOI: 10.1093/brain/awz176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/19/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023] Open
Abstract
Ever since its introduction 40 years ago l-3,4-dihydroxyphenylalanine (l-DOPA) therapy has retained its role as the leading standard medication for patients with Parkinson's disease. With time, however, the shortcomings of oral l-DOPA treatment have become apparent, particularly the motor fluctuations and troublesome dyskinetic side effects. These side effects, which are caused by the excessive swings in striatal dopamine caused by intermittent oral delivery, can be avoided by delivering l-DOPA in a more continuous manner. Local gene delivery of the l-DOPA synthesizing enzymes, tyrosine hydroxylase and guanosine-tri-phosphate-cyclohydrolase-1, offers a new approach to a more refined dopaminergic therapy where l-DOPA is delivered continuously at the site where it is needed i.e. the striatum. In this study we have explored the therapeutic efficacy of adeno-associated viral vector-mediated l-DOPA delivery to the putamen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys, the standard non-human primate model of Parkinson's disease. Viral vector delivery of the two enzymes, tyrosine hydroxylase and guanosine-5'-tri-phosphate-cyclohydrolase-1, bilaterally into the dopamine-depleted putamen, induced a significant, dose-dependent improvement of motor behaviour up to a level identical to that obtained with the optimal dose of peripheral l-DOPA. Importantly, this improvement in motor function was obtained without any adverse dyskinetic effects. These results provide proof-of-principle for continuous vector-mediated l-DOPA synthesis as a novel therapeutic strategy for Parkinson's disease. The constant, local supply of l-DOPA obtained with this approach holds promise as an efficient one-time treatment that can provide long-lasting clinical improvement and at the same time prevent the appearance of motor fluctuations and dyskinetic side effects associated with standard oral dopaminergic medication.
Collapse
Affiliation(s)
- Carl Rosenblad
- Division of Neurology, Department of Clinical Sciences, Lund University, Skane University Hospital, 221 84 Lund, Sweden.,Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Qin Li
- Motac Neuroscience, Manchester, UK
| | | | - Sandra Dovero
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - André Slm Antunes
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Leticia Agúndez
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Martino Bardelli
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - R Michael Linden
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Els Henckaerts
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Anders Björklund
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Erwan Bezard
- Motac Neuroscience, Manchester, UK.,Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Tomas Björklund
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden.,Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
36
|
Meloni M, Puligheddu M, Sanna F, Cannas A, Farris R, Tronci E, Figorilli M, Defazio G, Carta M. Efficacy and safety of 5-Hydroxytryptophan on levodopa-induced motor complications in Parkinson's disease: A preliminary finding. J Neurol Sci 2020; 415:116869. [PMID: 32464351 DOI: 10.1016/j.jns.2020.116869] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/02/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND PURPOSE Several studies have indicated that altered serotonergic neurotransmission may contribute to the motor features commonly associated with Parkinson's disease (PD) drug treatment such as levodopa-induced dyskinesias (LIDs). 5-Hydroxytryptophan (5-HTP) is the immediate precursor of serotonin. We have recently demonstrated that 5-HTP produces significant antidyskinetic effects in a rat model of PD. To date, there has been inconsistent research on the use of 5-HTP in PD. The purpose of this study was to compare the effects of 5-HTP versus placebo on levodopa-induced motor complications in PD patients. MATERIAL AND METHODS A single-center, randomized, double-blind placebo-controlled cross-over study was performed. A total of 12 PD patients were diagnosed with LIDs and motor fluctuactions and subsequently were randomized to intervention; 11 subjects completed the entire 16-week protocol. Patients received placebo or 50 mg of 5-HTP daily in a cross-over design over a period of 4 weeks. For the assessment of efficacy on the motor functions and motor complications, the UPDRS (parts III and IV), Unified Dyskinesia Rating Scale (UDysRS), Wearing-Off Questionnaire (WOQ-19) and the self-reported 24-h home dyskinesia diaries were obtained at baseline and weeks 4, 8, 12 and 16 (T-end). RESULTS Repeated measures analysis revealed a significant improvement of LIDs during the 50 mg 5-HTP treatment as assessed by the UDysRS and UPDRS-IV scores. CONCLUSIONS This study provides preliminary evidence of clinical benefit of 5-HTP against LIDs in PD. Larger studies with a longer treatment duration and a wider range of doses are warranted to corroborate these findings.
Collapse
Affiliation(s)
- Mario Meloni
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.
| | - Monica Puligheddu
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Antonino Cannas
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | - Rita Farris
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Michela Figorilli
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | - Manolo Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
37
|
Paredes-Rodriguez E, Vegas-Suarez S, Morera-Herreras T, De Deurwaerdere P, Miguelez C. The Noradrenergic System in Parkinson's Disease. Front Pharmacol 2020; 11:435. [PMID: 32322208 PMCID: PMC7157437 DOI: 10.3389/fphar.2020.00435] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Nowadays it is well accepted that in Parkinson’s disease (PD), the neurodegenerative process occurs in stages and that damage to other areas precedes the neuronal loss in the substantia nigra pars compacta, which is considered a pathophysiological hallmark of PD. This heterogeneous and progressive neurodegeneration may explain the diverse symptomatology of the disease, including motor and non-motor alterations. In PD, one of the first areas undergoing degeneration is the locus coeruleus (LC). This noradrenergic nucleus provides extensive innervation throughout the brain and plays a fundamental neuromodulator role, participating in stress responses, emotional memory, and control of motor, sensory, and autonomic functions. Early in the disease, LC neurons suffer modifications that can condition the effectiveness of pharmacological treatments, and importantly, can lead to the appearance of common non-motor symptomatology. The noradrenergic system also exerts anti-inflammatory and neuroprotective effect on the dopaminergic degeneration and noradrenergic damage can consequently condition the progress of the disease. From the pharmacological point of view, it is also important to understand how the noradrenergic system performs in PD, since noradrenergic medication is often used in these patients, and drug interactions can take place when combining them with the gold standard drug therapy in PD, L-3,4-dihydroxyphenylalanine (L-DOPA). This review provides an overview about the functional status of the noradrenergic system in PD and its contribution to the efficacy of pharmacological-based treatments. Based on preclinical and clinical publications, a special attention will be dedicated to the most prevalent non-motor symptoms of the disease.
Collapse
Affiliation(s)
- Elena Paredes-Rodriguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Sergio Vegas-Suarez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Philippe De Deurwaerdere
- Centre National de la Recherche scientifique, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA UMR 5287), Bordeaux, France
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
38
|
Ondansetron, a highly selective 5-HT3 receptor antagonist, reduces L-DOPA-induced dyskinesia in the 6-OHDA-lesioned rat model of Parkinson's disease. Eur J Pharmacol 2020; 871:172914. [DOI: 10.1016/j.ejphar.2020.172914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/12/2019] [Accepted: 01/07/2020] [Indexed: 01/06/2023]
|
39
|
Chagraoui A, Boulain M, Juvin L, Anouar Y, Barrière G, De Deurwaerdère P. L-DOPA in Parkinson's Disease: Looking at the "False" Neurotransmitters and Their Meaning. Int J Mol Sci 2019; 21:ijms21010294. [PMID: 31906250 PMCID: PMC6981630 DOI: 10.3390/ijms21010294] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) has been successfully used in the treatment of Parkinson’s disease (PD) for more than 50 years. It fulfilled the criteria to cross the blood–brain barrier and counteract the biochemical defect of dopamine (DA). It remarkably worked after some adjustments in line with the initial hypothesis, leaving a poor place to the plethora of mechanisms involving other neurotransmitters or mechanisms of action beyond newly synthesized DA itself. Yet, its mechanism of action is far from clear. It involves numerous distinct cell populations and does not mimic the mechanism of action of dopaminergic agonists. L-DOPA-derived DA is mainly released by serotonergic neurons as a false neurotransmitter, and serotonergic neurons are involved in L-DOPA-induced dyskinesia. The brain pattern and magnitude of DA extracellular levels together with this status of false neurotransmitters suggest that the striatal effects of DA via this mechanism would be minimal. Other metabolic products coming from newly formed DA or through the metabolism of L-DOPA itself could be involved. These compounds can be trace amines and derivatives. They could accumulate within the terminals of the remaining monoaminergic neurons. These “false neurotransmitters,” also known for some of them as inducing an “amphetamine-like” mechanism, could reduce the content of biogenic amines in terminals of monoaminergic neurons, thereby impairing the exocytotic process of monoamines including L-DOPA-induced DA extracellular outflow. The aim of this review is to present the mechanism of action of L-DOPA with a specific attention to “false neurotransmission.”
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM, U1239 CHU de Rouen, 76000 Rouen, France; (A.C.); (Y.A.)
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, 76000 Rouen, France
| | - Marie Boulain
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
| | - Laurent Juvin
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
| | - Youssef Anouar
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM, U1239 CHU de Rouen, 76000 Rouen, France; (A.C.); (Y.A.)
| | - Grégory Barrière
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
- Correspondence: ; Tel.: +33-0-557-57-12-90
| |
Collapse
|
40
|
Wei H, Zhou Y, Zhao J, Zhan L. Risk Factors and Metabolism of Different Brain Regions by Positron Emission Tomography in Parkinson Disease with Disabling Dyskinesia. Curr Neurovasc Res 2019; 16:310-320. [PMID: 31622205 DOI: 10.2174/1567202616666191009102112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/08/2019] [Accepted: 07/25/2019] [Indexed: 11/22/2022]
Abstract
Objective:Dyskinesia is the most common motor complication in advanced Parkinson’s Disease (PD) and has a severe impact on daily life. But the mechanism of dyskinesia is still poorly understood. This study aims to explore risk factors for disabling dyskinesia in PD and further analyze the Vesicular Monoamine Transporter 2 (VMAT2) distribution (labeled with 18F-AV133) in the corpus striatum and the 18F-fluorodeoxyglucose (18F-FDG) metabolism of different brain regions by PET-CT.Methods:This is a cross-sectional study involving 135 PD patients. They were divided into disabling dyskinesia group (DD group, N=22) and non-dyskinesia group (ND group, N=113). All the patients were agreed to undergo PET-CT scans. Clinical data were analyzed between two groups by using multivariate logistic regression analysis, and risk factors for disabling dyskinesia were then determined. The standard uptake value ratios (SUVr) of 18F-AV133 in the corpus striatum and the 18F-FDG metabolism of different brain regions were identified and calculated by the software.Results:6.3% patients have disabling dyskinesia. DD group were more likely to have longer Disease Duration, higher Hoehn-Yahr degree, more severe clinic symptoms, more frequent sleep behavior disorder, and higher levodopa dose equivalency than ND group (P < 0.05). After adjusting confounding factors by multivariate logistic regression, DD group had longer PD duration and high levodopa dose equivalency compared with ND group (P < 0.05). There is no significant difference between the VMAT2 distribution (labeled with 18F- AV133) in the putamen and caudate between two groups. And the 18F-FDG metabolic changes in cortical and subcortical regions did not show a significant difference between the two groups either (P > 0.05).Conclusion:Long PD duration and high levodopa dose equivalency were two independent risk factors for disabling dyskinesia in PD patients. Compared to non-dyskinesia PD patients, there was no significant dopamine decline of the nigrostriatal system in disabling dyskinesia PD patients. Activities of different brain regions were not different between the two groups by 18F-FDG PETCT.
Collapse
Affiliation(s)
- Huan Wei
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yongtao Zhou
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Junwu Zhao
- Department of Neurology, Weihai Municipal Hospital, Shandong, China
| | - Liping Zhan
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
41
|
Sellnow RC, Newman JH, Chambers N, West AR, Steece-Collier K, Sandoval IM, Benskey MJ, Bishop C, Manfredsson FP. Regulation of dopamine neurotransmission from serotonergic neurons by ectopic expression of the dopamine D2 autoreceptor blocks levodopa-induced dyskinesia. Acta Neuropathol Commun 2019; 7:8. [PMID: 30646956 PMCID: PMC6332643 DOI: 10.1186/s40478-018-0653-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/01/2022] Open
Abstract
Levodopa-induced dyskinesias (LID) are a prevalent side effect of chronic treatment with levodopa (L-DOPA) for the motor symptoms of Parkinson’s disease (PD). It has long been hypothesized that serotonergic neurons of the dorsal raphe nucleus (DRN) are capable of L-DOPA uptake and dysregulated release of dopamine (DA), and that this “false neurotransmission” phenomenon is a main contributor to LID development. Indeed, many preclinical studies have demonstrated LID management with serotonin receptor agonist treatment, but unfortunately, promising preclinical data has not been translated in large-scale clinical trials. Importantly, while there is an abundance of convincing clinical and preclinical evidence supporting a role of maladaptive serotonergic neurotransmission in LID expression, there is no direct evidence that dysregulated DA release from serotonergic neurons impacts LID formation. In this study, we ectopically expressed the DA autoreceptor D2Rs (or GFP) in the DRN of 6-hydroxydopamine (6-OHDA) lesioned rats. No negative impact on the therapeutic efficacy of L-DOPA was seen with rAAV-D2Rs therapy. However, D2Rs treated animals, when subjected to a LID-inducing dose regimen of L-DOPA, remained completely resistant to LID, even at high doses. Moreover, the same subjects remained resistant to LID formation when treated with direct DA receptor agonists, suggesting D2Rs activity in the DRN blocked dyskinesogenic L-DOPA priming of striatal neurons. In vivo microdialysis confirmed that DA efflux in the striatum was reduced with rAAV-D2Rs treatment, providing explicit evidence that abnormal DA release from DRN neurons can affect LID. This is the first direct evidence of dopaminergic neurotransmission in DRN neurons and its modulation with rAAV-D2Rs gene therapy confirms the serotonin hypothesis in LID, demonstrating that regulation of serotonergic neurons achieved with a gene therapy approach offers a novel and potent antidyskinetic therapy.
Collapse
|
42
|
McFarthing K, Prakash N, Simuni T. CLINICAL TRIAL HIGHLIGHTS - DYSKINESIA. JOURNAL OF PARKINSON'S DISEASE 2019; 9:449-465. [PMID: 31356217 PMCID: PMC6704371 DOI: 10.3233/jpd-199002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Neha Prakash
- Parkinson's Disease and Movement Disorders Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tanya Simuni
- Parkinson's Disease and Movement Disorders Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
43
|
Jeong EH, Sunwoo MK, Song YS. Serial I-123-FP-CIT SPECT Image Findings of Parkinson's Disease Patients With Levodopa-Induced Dyskinesia. Front Neurol 2018; 9:1133. [PMID: 30619078 PMCID: PMC6307417 DOI: 10.3389/fneur.2018.01133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/10/2018] [Indexed: 11/17/2022] Open
Abstract
Background: Levodopa-induced dyskinesia (LID) is a major complication of dopamine replacement drug usage in Parkinson's disease (PD) patients. Since the mechanism of LID is yet unclear, we analyzed serial [I-123] N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) nortropane (I-123 FP-CIT) single photon emission computed tomography (SPECT) images. We investigated the changes of dopaminergic innervation during the progression of PD in relation to the development of LID. Methods: Data were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. Two hundred and ninety PD dopamine replacement drug-naïve patients (age 61.0 ± 9.7, M: F = 195: 95) were enrolled. I-123 FP-CIT SPECT images from baseline, 12, 24, and 48 months were analyzed among with clinical factors. specific binding ratios (SBRs) of the striatal regions from I-123 FP-CIT SPECT images were analyzed. We used independent tests and logistic regression for analysis of LID risk association. Results: Among 290 patients, 36 patients developed LID after 48 months follow-up. Baseline MDS-UPDRS Part II and III scores were significantly higher in the PD patients with LID, compared with the PD patients without LID. Striatal SBRs were significantly lower in the PD patients with LID at baseline, 24 and 48 months (p < 0.001). Multivariate analysis revealed MDS-UPDRS Part II and putaminal SBRs at baseline and 24 months to be significantly associated with the development of LID (p < 0.001). Also, patients who developed LID at 48 months had a higher decrease rate of putaminal SBR at the 24 months (p < 0.05), and 48 months (p < 0.01) period. Conclusion: In this study, we demonstrated the serial changes of the nigrostriatal dopaminergic innervation in relationship to LID development for the first time. The deterioration rate of dopaminergic innervation was significantly higher in the PD patients who developed LID, compared with the PD patients who did not develop LID. Serial follow up I-123 FP-CIT SPECT acquisition during the course of PD could be helpful in predicting the development of LID.
Collapse
Affiliation(s)
- Eun Hye Jeong
- Department of Neurology, Bundang Jesaeng General Hospital, Daejin Medical Center, Seongnam, South Korea
| | - Mun Kyung Sunwoo
- Department of Neurology, Bundang Jesaeng General Hospital, Daejin Medical Center, Seongnam, South Korea
| | - Yoo Sung Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
44
|
Zonisamide Enhances Motor Effects of Levodopa, Not of Apomorphine, in a Rat Model of Parkinson's Disease. PARKINSONS DISEASE 2018; 2018:8626783. [PMID: 30662707 PMCID: PMC6312621 DOI: 10.1155/2018/8626783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/21/2018] [Indexed: 12/02/2022]
Abstract
Zonisamide is a relatively recent drug for Parkinson's disease. Multiple hypotheses have been proposed to explain the antiparkinsonian effects of zonisamide. However, it is still unclear whether the effect of zonisamide is mainly due to dopaminergic modification in the striatum, or if zonisamide works through nondopaminergic pathways. We conducted the present study to determine the mechanism that is mainly responsible for zonisamide's effects in Parkinson's disease. We examined the effects of zonisamide on motor symptoms in a hemiparkinsonian rat model when administered singly, coadministered with levodopa, a dopamine precursor, or apomorphine, a D1 and D2 dopamine receptor agonist. We used 6-hydroxydopamine-lesioned hemiparkinsonian rats, which were allocated to one of five groups: 14 rats received levodopa only (6 mg/kg), 12 rats received levodopa (6 mg/kg) plus zonisamide (50 mg/kg), six rats received apomorphine only (0.05 mg/kg), six rats received apomorphine (0.05 mg/kg) plus zonisamide (50 mg/kg), and six rats received zonisamide only (50 mg/kg). The drugs were administered once daily for 15 days. We evaluated abnormal involuntary movement every 20 min during a 3 h period following the injection of drugs on treatment Days 1, 8, and 15. Western blot analyses for dopamine decarboxylase and vesicular monoamine transferase-2 were performed using striatal tissues in the lesioned side of rats in the levodopa only group (n = 6) and levodopa plus zonisamide group (n = 4). Levodopa-induced abnormal involuntary movement was significantly enhanced by coadministration of zonisamide. In contrast, zonisamide had no effect on apomorphine-induced abnormal involuntary movement. Zonisamide monotherapy did not induce abnormal involuntary movement. Zonisamide did not affect striatal expression of dopamine decarboxylase or vesicular monoamine transferase-2. In conclusion, zonisamide appears to generate its antiparkinsonian effects by modulating levodopa-dopamine metabolism in the parkinsonian striatum.
Collapse
|
45
|
Espay AJ, Morgante F, Merola A, Fasano A, Marsili L, Fox SH, Bezard E, Picconi B, Calabresi P, Lang AE. Levodopa-induced dyskinesia in Parkinson disease: Current and evolving concepts. Ann Neurol 2018; 84:797-811. [DOI: 10.1002/ana.25364] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Alberto J. Espay
- UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology; University of Cincinnati; Cincinnati OH
| | - Francesca Morgante
- Institute of Molecular and Clinical Sciences; St George's University of London; London United Kingdom
| | - Aristide Merola
- UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology; University of Cincinnati; Cincinnati OH
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology; University of Toronto; Toronto Ontario Canada
- Krembil Brain Institute; Toronto Ontario Canada
| | - Luca Marsili
- UC Gardner Neuroscience Institute and Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology; University of Cincinnati; Cincinnati OH
| | - Susan H. Fox
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology; University of Toronto; Toronto Ontario Canada
- Krembil Brain Institute; Toronto Ontario Canada
| | - Erwan Bezard
- University of Bordeaux, Institute of Neurodegenerative Diseases; Bordeaux France
- National Center for Scientific Research, Institute of Neurodegenerative Diseases; Bordeaux France
| | - Barbara Picconi
- Experimental Neurophysiology Laboratory; IRCCS San Raffaele Pisana, University San Raffaele; Rome Italy
| | - Paolo Calabresi
- Neurological Clinic; University of Perugia, Santa Maria della Misericordia Hospital; Perugia Italy
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology; University of Toronto; Toronto Ontario Canada
- Krembil Brain Institute; Toronto Ontario Canada
| |
Collapse
|
46
|
Kamińska K, Lenda T, Konieczny J, Wardas J, Lorenc-Koci E. Interactions of the tricyclic antidepressant drug amitriptyline with L-DOPA in the striatum and substantia nigra of unilaterally 6-OHDA-lesioned rats. Relevance to motor dysfunction in Parkinson's disease. Neurochem Int 2018; 121:125-139. [PMID: 30290201 DOI: 10.1016/j.neuint.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/24/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
Antidepressant drugs are recommended for the treatment of Parkinson's disease (PD)-associated depression but their role in the modulation of L-DOPA-induced behavioral and neurochemical markers is poorly explored. The aim of the present study was to examine the impact of the tricyclic antidepressant amitriptyline and L-DOPA, administered chronically alone or in combination, on rotational behavior, monoamine levels and binding of radioligands to their transporters in the dopaminergic brain structures of unilaterally 6-OHDA-lesioned rats. Binding of [3H]nisoxetine to noradrenaline transporter (NET), [3H]GBR 12,935 to dopamine transporter (DAT) and [3H]citalopram to serotonin transporter (SERT) were analyzed by autoradiography. Amitriptyline administered alone did not induce rotational behavior but in combination with L-DOPA increased the number of contralateral rotations much more strongly than L-DOPA alone. The combined treatment also significantly increased the tissue dopamine (DA) content in the ipsilateral striatum and substantia nigra (SN) vs. L-DOPA alone. 6-OHDA-mediated lesion of nigrostriatal DA neurons drastically reduced DAT and NET bindings in the ipsilateral striatum. In the ipsilateral SN, DAT binding decreased while NET binding rose. SERT binding increased significantly mainly in the SN. Amitriptyline administered alone or jointly with L-DOPA had no effect on DAT binding on the lesioned side, significantly decreased SERT binding in the striatum and SN while NET binding only in the SN. Since in the DA-denervated striatum, SERT is mainly responsible for reuptake of L-DOPA-derived DA while in the SN, SERT and NET are involved, the inhibition of these transporters by antidepressant drugs may improve dopaminergic transmission and consequently motor behavior.
Collapse
Affiliation(s)
- Kinga Kamińska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Tomasz Lenda
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Jolanta Konieczny
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Jadwiga Wardas
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Elżbieta Lorenc-Koci
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland.
| |
Collapse
|
47
|
Gagnon D, Eid L, Coudé D, Whissel C, Di Paolo T, Parent A, Parent M. Evidence for Sprouting of Dopamine and Serotonin Axons in the Pallidum of Parkinsonian Monkeys. Front Neuroanat 2018; 12:38. [PMID: 29867377 PMCID: PMC5963193 DOI: 10.3389/fnana.2018.00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022] Open
Abstract
This light and electron microscopie immunohistochemical quantitative study aimed at determining the state of the dopamine (DA) and serotonin (5-HT) innervations of the internal (GPi) and external (GPe) segments of the pallidum in cynomolgus monkeys (Macaca fascicularis) rendered parkinsonian by systemic injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In contrast to the prominent DA denervation of striatum, the GPi in MPTP monkeys was found to be markedly enriched in DA (TH+) axon varicosities. The posterior sensorimotor region of this major output structure of the basal ganglia was about 8 times more intensely innervated in MPTP monkeys (0.71 ± 0.08 × 106 TH+ axon varicosities/mm3) than in controls (0.09 ± 0.01 × 106). MPTP intoxication also induced a two-fold increase in the density of 5-HT (SERT+) axon varicosities in both GPe and GPi. This augmentation was particularly pronounced anteriorly in the so-called associative and limbic pallidal territories. The total length of the labeled pallidal axons was also significantly increased in MPTP monkeys compared to controls, but the number of DA and 5-HT axon varicosities per axon length unit remained the same in the two groups, indicating that the DA and 5-HT pallidal hyperinnervations seen in MPTP monkeys result from axon sprouting rather than from the appearance of newly formed axon varicosities on non-growing axons. At the ultrastructural level, pallidal TH+ and SERT+ axons were morphologically similar in MPTP and controls, and their synaptic incidence was very low suggesting a volumic mode of transmission. Altogether, our data reveal a significant sprouting of DA and 5-HT pallidal afferents in parkinsonian monkeys, the functional significance of which remains to be determined. We suggest that the marked DA hyperinnervation of the GPi represents a neuroadaptive change designed to normalize pallidal firing patterns associated with the delayed appearance of motor symptoms, whereas the 5-HT hyperinnervation might be involved in the early expression of non-motor symptoms in Parkinson's disease.
Collapse
Affiliation(s)
- Dave Gagnon
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| | - Lara Eid
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| | - Dymka Coudé
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| | - Carl Whissel
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| | - Thérèse Di Paolo
- Faculty of Pharmacy, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada
| | - André Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
48
|
Effects of the Serotonin 5-HT1A Receptor Biased Agonists, F13714 and F15599, on Striatal Neurotransmitter Levels Following l-DOPA Administration in Hemi-Parkinsonian Rats. Neurochem Res 2018; 43:1035-1046. [DOI: 10.1007/s11064-018-2514-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 11/27/2022]
|
49
|
Sgambato V, Tremblay L. Pathophysiology of dyskinesia and behavioral disorders in non-human primates: the role of serotonergic fibers. J Neural Transm (Vienna) 2018; 125:1145-1156. [PMID: 29502255 DOI: 10.1007/s00702-018-1871-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/27/2018] [Indexed: 12/26/2022]
Abstract
The MPTP monkey model of Parkinson's disease (PD) has allowed huge advances regarding the understanding of the pathological mechanisms of PD and L-DOPA-induced adverse effects. Among the main findings were the imbalance between the efferent striatal pathways in opposite directions between the hypokinetic and hyperkinetic states of PD. In both normal and parkinsonian monkeys, the combination of behavioral and anatomical studies has allowed the deciphering of the cortico-basal ganglia circuits involved in both movement and behavioral disorders. A major breakthrough has then been made regarding the hypothesis of the involvement of serotonergic fibers in the conversion of L-DOPA to dopamine when dopaminergic neurons are dying and to release it, in an uncontrolled manner, as serotonergic neurons are deprived from the machinery required for buffering dopamine from the synaptic cleft. The crucial involvement of serotonergic fibers underlying L-DOPA-induced dyskinesia (LID) has been demonstrated in both rodent and monkey models of PD, in which dyskinesia induced by L-DOPA is abolished following lesion of the serotonergic system. Moreover, the role of serotonergic fibers goes well beyond dyskinesia, as lesioning of such serotonergic fibers by MDMA in the monkey also decreased other L-DOPA-induced adverse effects such as impulsive compulsive behaviors and visual hallucinations. The same pathological mechanism, i.e., an imbalance between serotonin and dopamine terminals may, therefore, favor L-DOPA-induced adverse effects according to the basal ganglia territory it inhabits. Further non-human primate studies will be needed to demonstrate the role of such a pathological mechanism in both movement and behavioral disorders driven by L-DOPA therapy but also to determine the causal link between serotonin lesions and the expression of non-motor symptoms like apathy, depression and anxiety, frequently observed in PD patients.
Collapse
Affiliation(s)
- Véronique Sgambato
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Univ Lyon, CNRS, 69675, Bron, France.
| | - Léon Tremblay
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Univ Lyon, CNRS, 69675, Bron, France
| |
Collapse
|
50
|
Striatal norepinephrine efflux in l-DOPA-induced dyskinesia. Neurochem Int 2018; 114:85-98. [DOI: 10.1016/j.neuint.2018.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 11/23/2022]
|