1
|
Cheng A, Wang J, Li J, Wang J, Xu M, Chen H, Zhang P. S-Nitrosylation of p39 promotes its degradation and contributes to synaptic dysfunction induced by β-amyloid peptide. Commun Biol 2024; 7:1113. [PMID: 39256547 PMCID: PMC11387606 DOI: 10.1038/s42003-024-06832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive decline, is increasingly recognized as a disorder marked by synaptic loss and dysfunction. Despite this understanding, the underlying pathophysiological mechanisms contributing to synaptic impairment remain largely unknown. In this study, we elucidate a previously undiscovered signaling pathway wherein the S-nitrosylation of the Cdk5 activator p39, a post-translational modification involving the addition of nitric oxide to protein cysteine residues, plays a crucial role in synaptic dysfunction associated with AD. Our investigation reveals heightened p39 S-nitrosylation in the brain of an amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model of AD. Additionally, soluble amyloid-β oligomers (Aβ), implicated in synaptic loss in AD, induce p39 S-nitrosylation in cultured neurons. Notably, we uncover that p39 protein level is regulated by S-nitrosylation, with nitric oxide S-nitrosylating p39 at Cys265 and subsequently promoting its degradation. Furthermore, our study demonstrates that S-nitrosylation of p39 at Cys265 significantly contributes to amyloid-β (Aβ) peptide-induced dendrite retraction and spine loss. Collectively, our findings highlight S-nitrosylation of p39 as a novel aberrant redox protein modification involved in the pathogenesis of AD, suggesting its potential as a therapeutic target for the disease.
Collapse
Affiliation(s)
- Aobing Cheng
- Department of Anesthesiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jingyi Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Li
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mufan Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhuan Chen
- Shuguang Lab for Future Health, Academy of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Peng Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Emotions and Affective Disorders(LEAD), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
p38 MAPK Endogenous Inhibition Improves Neurological Deficits in Global Cerebral Ischemia/Reperfusion Mice. Neural Plast 2022; 2022:3300327. [PMID: 35811833 PMCID: PMC9259354 DOI: 10.1155/2022/3300327] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Cerebral ischemia/reperfusion (I/R) injury is a complex pathophysiological process that can lead to neurological function damage and the formation of cerebral infarction. The p38 MAPK pathway has attracted considerable attention in cerebral I/R injury (IRI), but little research has been carried out on its direct role in vivo. In this study, to observe the effects of p38 MAPK endogenous inhibition on cerebral IRI, p38 heterozygous knockdown (p38KI/+) mice were used. We hypothesized that p38 signaling might be involved in I/R injury and neurological damage reduction and that neurological behavioral deficits improve when p38 MAPK is inhibited. First, we examined the neurological damage and neurological behavioral deficit effects of I/R injury in WT mice. Cerebral I/R injury was induced by the bilateral common carotid artery occlusion (BCCAO) method. The cerebral infarction area and volume were assessed and analyzed by 2,3,5-triphenyltetrazolium chloride (TTC) staining. p38 MAPK and caspase-3 were detected by western blotting. Neuronal apoptosis was measured using TUNEL staining. Neurological deficits were detected by behavioral testing. Furthermore, to assess whether these neuroprotective effects occurred when p38 MAPK was inhibited, p38 heterozygous knockdown (p38KI/+) mice were used. We found that p38 MAPK endogenous inhibition rescued hippocampal cell apoptosis, reduced ischemic penumbra, and improved neurological behavioral deficits. These findings showed that p38 MAPK endogenous inhibition had a neuroprotective effect on IRI and that p38 MAPK may be a potential therapeutic target for cerebral IRI.
Collapse
|
3
|
CDK5: Key Regulator of Apoptosis and Cell Survival. Biomedicines 2019; 7:biomedicines7040088. [PMID: 31698798 PMCID: PMC6966452 DOI: 10.3390/biomedicines7040088] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
The atypical cyclin-dependent kinase 5 (CDK5) is considered as a neuron-specific kinase that plays important roles in many cellular functions including cell motility and survival. The activation of CDK5 is dependent on interaction with its activator p35, p39, or p25. These activators share a CDK5-binding domain and form a tertiary structure similar to that of cyclins. Upon activation, CDK5/p35 complexes localize primarily in the plasma membrane, cytosol, and perinuclear region. Although other CDKs are activated by cyclins, binding of cyclin D and E showed no effect on CDK5 activation. However, it has been shown that CDK5 can be activated by cyclin I, which results in anti-apoptotic functions due to the increased expression of Bcl-2 family proteins. Treatment with the CDK5 inhibitor roscovitine sensitizes cells to heat-induced apoptosis and its phosphorylation, which results in prevention of the apoptotic protein functions. Here, we highlight the regulatory mechanisms of CDK5 and its roles in cellular processes such as gene regulation, cell survival, and apoptosis.
Collapse
|
4
|
Cortés N, Guzmán-Martínez L, Andrade V, González A, Maccioni RB. CDK5: A Unique CDK and Its Multiple Roles in the Nervous System. J Alzheimers Dis 2019; 68:843-855. [DOI: 10.3233/jad-180792] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nicole Cortés
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Leonardo Guzmán-Martínez
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Víctor Andrade
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Andrea González
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
- Department of Neurological Sciences, Faculty of Medicine, East Campus, University of Chile, Santiago, Chile
| |
Collapse
|
5
|
Dixit AB, Banerjee J, Tripathi M, Sarkar C, Chandra PS. Synaptic roles of cyclin-dependent kinase 5 & its implications in epilepsy. Indian J Med Res 2018. [PMID: 28639593 PMCID: PMC5501049 DOI: 10.4103/ijmr.ijmr_1249_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is an urgent need to understand the molecular mechanisms underlying epilepsy to find novel prognostic/diagnostic biomarkers to prevent epilepsy patients at risk. Cyclin-dependent kinase 5 (CDK5) is involved in multiple neuronal functions and plays a crucial role in maintaining homeostatic synaptic plasticity by regulating intracellular signalling cascades at synapses. CDK5 deregulation is shown to be associated with various neurodegenerative diseases such as Alzheimer's disease. The association between chronic loss of CDK5 and seizures has been reported in animal models of epilepsy. Genetic expression of CDK5 at transcriptome level has been shown to be abnormal in intractable epilepsy. In this review various possible mechanisms by which deregulated CDK5 may alter synaptic transmission and possibly lead to epileptogenesis have been discussed. Further, CDK5 has been proposed as a potential biomarker as well as a pharmacological target for developing treatments for epilepsy.
Collapse
Affiliation(s)
- Aparna Banerjee Dixit
- Center for Excellence in Epilepsy, A Joint National Brain Research Centre (NBRC)- All India Institute of Medical Sciences (AIIMS) Collaboration, NBRC, Gurugram, India
| | - Jyotirmoy Banerjee
- Center for Excellence in Epilepsy, A Joint National Brain Research Centre (NBRC)- All India Institute of Medical Sciences (AIIMS) Collaboration, NBRC, Gurugram, India
| | | | | | | |
Collapse
|
6
|
Hu Y, Pan S, Zhang HT. Interaction of Cdk5 and cAMP/PKA Signaling in the Mediation of Neuropsychiatric and Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2018; 17:45-61. [PMID: 28956329 DOI: 10.1007/978-3-319-58811-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Both cyclin-dependent kinase 5 (Cdk5) and cyclic AMP (cAMP)/protein kinase A (PKA) regulate fundamental central nervous system (CNS) functions including neuronal survival, neurite and axonal outgrowth, neuron development and cognition. Cdk5, a serine/threonine kinase, is activated by p35 or p39 and phosphorylates multiple signaling components of various pathways, including cAMP/PKA signaling. Here, we review the recent literature on the interaction between Cdk5 and cAMP/PKA signaling and their role in the mediation of CNS functions and neuropsychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, China.
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, China
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA.,Institute of Pharmacology, Taishan Medical University, Taian, 271016, China
| |
Collapse
|
7
|
p39 Is Responsible for Increasing Cdk5 Activity during Postnatal Neuron Differentiation and Governs Neuronal Network Formation and Epileptic Responses. J Neurosci 2017; 36:11283-11294. [PMID: 27807169 DOI: 10.1523/jneurosci.1155-16.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/14/2016] [Indexed: 11/21/2022] Open
Abstract
Two distinct protein cofactors, p35 and p39, independently activate Cyclin-dependent kinase 5 (Cdk5), which plays diverse roles in normal brain function and the pathogenesis of many neurological diseases. The initial discovery that loss of p35 impairs neuronal migration in the embryonic brain prompted intensive research exploring the function of p35-dependent Cdk5 activity. In contrast, p39 expression is restricted to the postnatal brain and its function remains poorly understood. Despite the robustly increased Cdk5 activity during neuronal differentiation, which activator is responsible for enhancing Cdk5 activation and how the two distinct activators direct Cdk5 signaling to govern neuronal network formation and function still remains elusive. Here we report that p39, but not p35, is selectively upregulated by histone acetylation-mediated transcription, which underlies the robust increase of Cdk5 activity during rat and mouse neuronal differentiation. The loss of p39 attenuates overall Cdk5 activity in neurons and preferentially affects phosphorylation of specific Cdk5 targets, leading to aberrant axonal growth and impaired dendritic spine and synapse formation. In adult mouse brains, p39 deficiency results in dysregulation of p35 and Cdk5 targets in synapses. Moreover, in contrast to the proepileptic phenotype caused by the lack of p35, p39 loss leads to deficits in maintaining seizure activity and induction of immediate early genes that control hippocampal excitability. Together, our studies demonstrate essential roles of p39 in neuronal network development and function. Furthermore, our data support a model in which Cdk5 activators play nonoverlapping and even opposing roles to govern balanced Cdk5 signaling in the postnatal brain. SIGNIFICANCE STATEMENT Neuronal network development requires tightly regulated activation of Cyclin-dependent kinase 5 (Cdk5) by two distinct cofactors, p35 and p39. Despite the well-known p35-dependent Cdk5 function, why postnatal neurons express abundant p39 in addition to p35 remained unknown for decades. In this study, we discovered that selective upregulation of p39 is the underlying mechanism that accommodates the increased functional requirement of Cdk5 activation during neuronal differentiation. In addition, we demonstrated that p39 selectively directs Cdk5 to phosphorylate protein substrates essential for axonal development, dendritic spine formation, and synaptogenesis. Moreover, our studies suggest opposing roles of p39 and p35 in synaptic Cdk5 function and epileptic responses, arguing that cooperation between Cdk5 activators maintains balanced Cdk5 signing, which is crucial for postnatal brain function.
Collapse
|
8
|
Binukumar B, Pelech SL, Sutter C, Shukla V, Amin ND, Grant P, Bhaskar M, Skuntz S, Steiner J, Pant HC. Profiling of p5, a 24 Amino Acid Inhibitory Peptide Derived from the CDK5 Activator, p35 CDKR1 Against 70 Protein Kinases. J Alzheimers Dis 2016; 54:525-33. [DOI: 10.3233/jad-160458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- B.K. Binukumar
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Steven L. Pelech
- Kinexus Bioinformatics Corporation; Division of Neurology, Department of Medicine, University of British Columbia, BC, Canada
| | - Catherine Sutter
- Kinexus Bioinformatics Corporation; Division of Neurology, Department of Medicine, University of British Columbia, BC, Canada
| | - Varsha Shukla
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana D. Amin
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Philip Grant
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Manju Bhaskar
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Suzanne Skuntz
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Steiner
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Harish C. Pant
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Ting JH, Marks DR, Schleidt SS, Wu JN, Zyskind JW, Lindl KA, Blendy JA, Pierce RC, Jordan-Sciutto KL. Targeted gene mutation of E2F1 evokes age-dependent synaptic disruption and behavioral deficits. J Neurochem 2014; 129:850-63. [PMID: 24460902 DOI: 10.1111/jnc.12655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/21/2013] [Accepted: 01/10/2014] [Indexed: 02/05/2023]
Abstract
Aberrant expression and activation of the cell cycle protein E2F1 in neurons has been implicated in many neurodegenerative diseases. As a transcription factor regulating G1 to S phase progression in proliferative cells, E2F1 is often up-regulated and activated in models of neuronal death. However, despite its well-studied functions in neuronal death, little is known regarding the role of E2F1 in the mature brain. In this study, we used a combined approach to study the effect of E2F1 gene disruption on mouse behavior and brain biochemistry. We identified significant age-dependent olfactory and memory-related deficits in E2f1 mutant mice. In addition, we found that E2F1 exhibits punctated staining and localizes closely to the synapse. Furthermore, we found a mirroring age-dependent loss of post-synaptic protein-95 in the hippocampus and olfactory bulb as well as a global loss of several other synaptic proteins. Coincidently, E2F1 expression is significantly elevated at the ages, in which behavioral and synaptic perturbations were observed. Finally, we show that deficits in adult neurogenesis persist late in aged E2f1 mutant mice which may partially contribute to the behavior phenotypes. Taken together, our data suggest that the disruption of E2F1 function leads to specific age-dependent behavioral deficits and synaptic perturbations. E2F1 is a transcription factor regulating cell cycle progression and apoptosis. Although E2F1 dysregulation under toxic conditions can lead to neuronal death, little is known about its physiologic activity in the healthy brain. Here, we report significant age-dependent olfactory and memory deficits in mice with dysfunctional E2F1. Coincident with these behavioral changes, we also found age-matched synaptic disruption and persisting reduction in adult neurogenesis. Our study demonstrates that E2F1 contributes to physiologic brain structure and function.
Collapse
Affiliation(s)
- Jenhao H Ting
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bankston AN, Li W, Zhang H, Ku L, Liu G, Papa F, Zhao L, Bibb JA, Cambi F, Tiwari-Woodruff SK, Feng Y. p39, the primary activator for cyclin-dependent kinase 5 (Cdk5) in oligodendroglia, is essential for oligodendroglia differentiation and myelin repair. J Biol Chem 2013; 288:18047-57. [PMID: 23645679 DOI: 10.1074/jbc.m113.453688] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) plays key roles in normal brain development and function. Dysregulation of Cdk5 may cause neurodegeneration and cognitive impairment. Besides the well demonstrated role of Cdk5 in neurons, emerging evidence suggests the functional requirement of Cdk5 in oligodendroglia (OL) and CNS myelin development. However, whether neurons and OLs employ similar or distinct mechanisms to regulate Cdk5 activity remains elusive. We report here that in contrast to neurons that harbor high levels of two Cdk5 activators, p35 and p39, OLs express abundant p39 but negligible p35. In addition, p39 is selectively up-regulated in OLs during differentiation along with elevated Cdk5 activity, whereas p35 expression remains unaltered. Specific knockdown of p39 by siRNA significantly attenuates Cdk5 activity and OL differentiation without affecting p35. Finally, expression of p39, but not p35, is increased during myelin repair, and remyelination is impaired in p39(-/-) mice. Together, these results reveal that neurons and OLs harbor distinct preference of Cdk5 activators and demonstrate important functions of p39-dependent Cdk5 activation in OL differentiation during de novo myelin development and myelin repair.
Collapse
Affiliation(s)
- Andrew N Bankston
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Boutajangout A, Sigurdsson EM, Krishnamurthy PK. Tau as a therapeutic target for Alzheimer's disease. Curr Alzheimer Res 2012; 8:666-77. [PMID: 21679154 DOI: 10.2174/156720511796717195] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 04/10/2011] [Accepted: 04/15/2011] [Indexed: 01/02/2023]
Abstract
Neurofibrillary tangles (NFTs) are one of the pathological hallmarks of Alzheimer's disease (AD) and are primarily composed of aggregates of hyperphosphorylated forms of the microtubule associated protein tau. It is likely that an imbalance of kinase and phosphatase activities leads to the abnormal phosphorylation of tau and subsequent aggregation. The wide ranging therapeutic approaches that are being developed include to inhibit tau kinases, to enhance phosphatase activity, to promote microtubule stability, and to reduce tau aggregate formation and/or enhance their clearance with small molecule drugs or by immunotherapeutic means. Most of these promising approaches are still in preclinical development whilst some have progressed to Phase II clinical trials. By pursuing these lines of study, a viable therapy for AD and related tauopathies may be obtained.
Collapse
Affiliation(s)
- A Boutajangout
- Departments of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
12
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a multifaceted serine/threonine kinase protein with important roles in the nervous system. Two related proteins, p35 and p39, activate Cdk5 upon direct binding. Over the past decade, Cdk5 activity has been demonstrated to regulate many events during brain development, including neuronal migration as well as axon and dendrite development. Recent evidence also suggests a pivotal role for Cdk5 in synaptic plasticity, behavior, and cognition. Dysfunction of Cdk5 has been implicated in a number of neurological disorders and neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, Niemann-Pick type C disease, and ischemia. Hyperactivation of Cdk5 due to the conversion of p35 to p25 by the calcium-dependent protease calpain during neurotoxicity also contributes to the pathological state. This review surveys recent literature surrounding Cdk5 in synaptic plasticity and homeostasis, with particular emphasis on Cdk5 kinase activity under neurodegenerative conditions.
Collapse
Affiliation(s)
- Susan C Su
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
13
|
Mungenast AE, Tsai LH. Addressing the complex etiology of Alzheimer’s disease: the role of p25/Cdk5. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterized by the progressive loss of forebrain neurons and the deterioration of learning and memory. Therapies for AD have primarily focused upon either the inhibition of amyloid synthesis or its deposition in the brain, but clinical testing to date has not yet found an effective amelioration of cognitive symptoms. Synaptic loss closely correlates with the degree of dementia in AD patients. However, mouse AD models that target the amyloid-β pathway generally do not exhibit a profound loss of synapses, despite extensive synaptic dysfunction. The increased generation of p25, an activator of the cyclin-dependent kinase 5 (Cdk5) has been found in both human patients and mouse models of neurodegeneration. The current work reviews our knowledge, to date, on the role of p25/Cdk5 in Alzheimer’s disease, with a focus upon the interaction of amyloid-β and p25/Cdk5 in synaptic dysfunction and neuronal loss.
Collapse
Affiliation(s)
- Alison E Mungenast
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Lopes JP, Agostinho P. Cdk5: multitasking between physiological and pathological conditions. Prog Neurobiol 2011; 94:49-63. [PMID: 21473899 DOI: 10.1016/j.pneurobio.2011.03.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 01/11/2023]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a peculiar proline-directed serine/threonine kinase. Unlike the other members of the Cdk family, Cdk5 is not directly involved in cell cycle regulation, being normally associated with neuronal processes such as migration, cortical layering and synaptic plasticity. This kinase is present mainly in post-mitotic neurons and its activity is tightly regulated by the interaction with the specific activators, p35 and p39. Despite its pivotal role in CNS development, Cdk5 dysregulation has been implicated in different pathologies, such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD) and, most recently, prion-related encephalopathies (PRE). In these neurodegenerative conditions, Cdk5 overactivation and relocalization occurs upon association with p25, a truncated form of the normal activator p35. This activator switching will cause a shift in the phosphorylative pattern of Cdk5, with an alteration both in targets and activity, ultimately leading to neuronal demise. In AD and PRE, two disorders that share clinical and neuropathological features, Cdk5 dysregulation is a linking event between the major neuropathological markers: amyloid plaques, tau hyperphosphorylation and synaptic and neuronal loss. Moreover, this kinase was shown to be involved in abortive cell cycle re-entry, a feature recently proposed as a possible step in the neuronal apoptosis mechanism of several neurological diseases. This review focuses on the role of Cdk5 in neurons, namely in the regulation of cytoskeletal dynamics, synaptic function and cell survival, both in physiological and in pathological conditions, highlighting the relevance of Cdk5 in the main mechanisms of neurodegeneration in Alzheimer's disease and other brain pathologies.
Collapse
Affiliation(s)
- Joao P Lopes
- Center for Neuroscience and Cell Biology, Faculty of Medicine, Biochemistry Institute, University of Coimbra, 3004 Coimbra, Portugal.
| | | |
Collapse
|
15
|
Abstract
CDK5 is an important kinase in nervous system function, controlling neural development and postsynaptic signal integration. Here we show that CDK5 plays a major role in controlling neurotransmitter release. Inhibition of CDK5 activity, by either acute or genetic means, leads to profound potentiation of presynaptic function, including unmasking of previously "silent" synapses. Removal of CDK5 activity additionally unlocks access to the resting synaptic vesicle pool, which normally remains recalcitrant to exocytosis and recycling even following prolonged action potential stimuli. Presynaptic CDK5 levels are additionally severely depleted by chronic neuronal silencing, a treatment that is functionally similar to CDK5 knockdown with regard to presynaptic potentiation. Thus CDK5 appears to be an integral element in presynaptic homeostatic scaling, and the resting vesicle pool appears to provide a potent functional presynaptic homeostatic control parameter. These studies thus pinpoint CDK5 as a major control point for modulation of neurotransmitter release in mammalian neurons.
Collapse
|
16
|
Sun KH, Lee HG, Smith MA, Shah K. Direct and indirect roles of cyclin-dependent kinase 5 as an upstream regulator in the c-Jun NH2-terminal kinase cascade: relevance to neurotoxic insults in Alzheimer's disease. Mol Biol Cell 2009; 20:4611-9. [PMID: 19776350 DOI: 10.1091/mbc.e09-05-0433] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Significant increase in JNK, c-Jun, and Cdk5 activities are reported in Alzheimer's disease (AD). Inhibition of c-Jun prevents neuronal cell death in in vivo AD models, highlighting it as a major JNK effector. Both JNK and Cdk5 promote neurodegeneration upon deregulation; however, Cdk5 has not been mechanistically linked to JNK or c-Jun. This study presents the first mechanism showing Cdk5 as a major regulator of the JNK cascade. Deregulated Cdk5 induces biphasic activation of JNK pathway. The first phase revealed c-Jun as a direct substrate of Cdk5, whose activation is independent of reactive oxygen species (ROS) and JNK. In the second phase, Cdk5 activates c-Jun via ROS-mediated activation of JNK. Rapid c-Jun activation is supported by in vivo data showing c-Jun phosphorylation in cerebral cortex upon p25 induction in transgenic mice. Cdk5-mediated biphasic activation of c-Jun highlights c-Jun, rather than JNK, as an important therapeutic target, which was confirmed in neuronal cells. Finally, Cdk5 inhibition endows superior protection against neurotoxicity, suggesting that Cdk5 is a preferable therapeutic target for AD relative to JNK and c-Jun.
Collapse
Affiliation(s)
- Kai-Hui Sun
- Department of Chemistry and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
17
|
Lai KO, Ip NY. Recent advances in understanding the roles of Cdk5 in synaptic plasticity. Biochim Biophys Acta Mol Basis Dis 2009; 1792:741-5. [DOI: 10.1016/j.bbadis.2009.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 05/03/2009] [Accepted: 05/05/2009] [Indexed: 01/05/2023]
|
18
|
Valin A, Cook JD, Ross S, Saklad CL, Gill G. Sp1 and Sp3 regulate transcription of the cyclin-dependent kinase 5 regulatory subunit 2 (p39) promoter in neuronal cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:204-11. [PMID: 19437621 DOI: 10.1016/j.bbagrm.2009.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cyclin-dependent kinase 5 (cdk5) activity is critical for development and function of the nervous system. Cdk5 activity is dependent on association with the regulators p35 and p39 whose expression is highly regulated in the developing nervous system.We have identified a small 200 bp fragment of the p39 promoter that is sufficient for cell type-specific expression in neuronal cells. Mutational analysis revealed that a cluster of predicted binding sites for Sp1, AP-1/CREB/ATF and E box-binding transcription factors is essential for full activity of the p39 promoter. Electrophoretic mobility shift assays revealed that Sp1 and Sp3 bound to sequences required for p39 promoter function and chromatin immunoprecipitation assays confirmed binding of these proteins to the endogenous p39 promoter. Furthermore, depletion of either Sp1 or Sp3 by siRNA reduced expression from the p39 promoter. Our data suggest that the ubiquitously expressed transcription factors Sp1 and Sp3 regulate transcription of the cdk5 regulator p39 in neuronal cells, possibly in cooperation with tissue-specific transcription factors.
Collapse
Affiliation(s)
- Alvaro Valin
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
19
|
Utreras E, Futatsugi A, Rudrabhatla P, Keller J, Iadarola MJ, Pant HC, Kulkarni AB. Tumor necrosis factor-alpha regulates cyclin-dependent kinase 5 activity during pain signaling through transcriptional activation of p35. J Biol Chem 2008; 284:2275-84. [PMID: 19049962 DOI: 10.1074/jbc.m805052200] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase. We have previously reported that Cdk5 participates in the regulation of nociceptive signaling, and the expression of Cdk5 and its activator, p35, are up-regulated in nociceptive neurons during peripheral inflammation. The aim of our current study was to identify the proinflammatory molecules that regulate Cdk5/p35 activity in response to inflammation. We constructed a vector that contains the mouse p35 promoter driving luciferase expression. We transiently transfected this vector in PC12 cells to test the effect of several cytokines on p35 transcriptional activity and Cdk5 activity. Our results indicate that tumor necrosis factor-alpha (TNF-alpha) activates p35 promoter activity in a dose- and time-dependent manner and concomitantly up-regulates Cdk5 activity. Because TNF-alpha is known to activate ERK1/2, p38 MAPK, JNK, and NF-kappaB signaling pathways, we examined their involvement in the activation of p35 promoter activity. MEK inhibitor, which inhibits ERK activation, decreased p35 promoter activity, whereas the inhibitors of p38 MAPK, JNK, and NF-kappaB increased p35 promoter activity, indicating that these pathways regulate p35 expression differently. The mRNA and protein levels of Egr-1, a transcription factor, were increased by TNF-alpha treatment, and this increase was dependent on ERK signaling. In a mouse model of inflammation-induced pain in which carrageenan injection into the hind paw causes hypersensitivity to heat stimuli, TNF-alpha mRNA was increased at the site of injection. These findings suggest that TNF-alpha-mediated regulation of Cdk5 activity plays an important role in inflammation-induced pain signaling.
Collapse
Affiliation(s)
- Elias Utreras
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, NIDCR, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Asada A, Yamamoto N, Gohda M, Saito T, Hayashi N, Hisanaga SI. Myristoylation of p39 and p35 is a determinant of cytoplasmic or nuclear localization of active cyclin-dependent kinase 5 complexes. J Neurochem 2008; 106:1325-36. [PMID: 18507738 DOI: 10.1111/j.1471-4159.2008.05500.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cdk5 is a member of the cyclin-dependent kinases (Cdks), activated by the neuron-specific activator p39 or p35. The activators also determine the cytoplasmic distribution of active Cdk5, but the mechanism is not yet known. In particular, little is known for p39. p39 and p35 contain localization motifs, such as a second Gly for myristoylation and Lys clusters in the N-terminal p10 region. Using mutant constructs, we investigated the cellular distribution mechanism. We observed that p39 localizes the active Cdk5 complex in the perinuclear region and at the plasma membrane as does p35. We demonstrated the myristoylation of both p39 and p35, and found that it is a major determinant of their membrane association. Plasma membrane targeting depends on the amino acid sequence containing the Lys-cluster in the N-terminal p10 region. In contrast, a non-myristoylated Ala mutant (p39G2A or p35G2A) showed nuclear localization with stronger accumulation of p39G2A than p35G2A. These results indicate that myristoylation regulates the membrane association of p39 as well as p35 and that the Lys cluster controls their trafficking to the plasma membrane. The differential nuclear accumulation of p39 and p35 suggests their segregated functions, p35-Cdk5 in the cytoplasm and p39-Cdk5 in the nucleus.
Collapse
Affiliation(s)
- Akiko Asada
- Department of Biological Sciences, Tokyo Metropolitan University, Hachiohji, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Rojo LE, Fernández JA, Maccioni AA, Jimenez JM, Maccioni RB. Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer's disease. Arch Med Res 2007; 39:1-16. [PMID: 18067990 DOI: 10.1016/j.arcmed.2007.10.001] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 05/31/2007] [Indexed: 12/27/2022]
Abstract
During the past few years, an increasing set of evidence has supported the major role of deregulation of the interaction patterns between glial cells and neurons in the pathway toward neuronal degeneration. Neurons and glial cells, together with brain vessels, constitute an integrated system for brain function. Inflammation is a process related with the onset of several neurodegenerative disorders, including Alzheimer's disease (AD). Several hypotheses have been postulated to explain the pathogenesis of AD, but none provides insight into the early events that trigger metabolic and cellular alterations in neuronal degeneration. The amyloid hypothesis was sustained on the basis that Abeta-peptide deposition into senile plaques is responsible for neurodegeneration. However, recent findings point to Abeta oligomers as responsible for synaptic impairment in neuronal degeneration. Amyloid is only one among many other major factors affecting the quality of neuronal cells. Another explanation derives from the tau hypothesis, supported by the observations that tau hyperphosphorylations constitute a common feature of most of the altered signaling pathways in degenerating neurons. Altered tau patterns have been detected in the cerebrospinal fluids of AD patients, and a close correlation was observed between the levels of hyperphosphorylated tau isoforms and the degree of cognitive impairment. On the other hand, the anomalous effects of cytokines and trophic factors share in common the activation of tau hyperphosphorylation patterns. In this context, a neuroimmunological approach to AD becomes relevant. When glial cells that normally provide neurotrophic factors essential for neurogenesis are activated by a set of stressing events, they overproduce cytokines and NGF, thus triggering altered signaling patterns in the etiopathogenesis of AD. A solid set of discoveries has strengthened the idea that altered patterns in the glia-neuron interactions constitute early molecular events within the cascade of cellular signals that lead to neurodegeneration in AD. A direct correlation has been established between the Abeta-induced neurodegeneration and cytokine production and its subsequent release. In effect, neuroinflammation is responsible for an abnormal secretion of proinflammatory cytokines that trigger signaling pathways that activate brain tau hyperphosphorylation in residues that are not modified under normal physiological conditions. Other cytokines such as IL-3 and TNF-alpha seem to display neuroprotective activities. Elucidation of the events that control the transitions from neuroprotection to neurodegeneration should be a critical point toward elucidation of AD pathogenesis.
Collapse
Affiliation(s)
- Leonel E Rojo
- Laboratory of Cellular and Molecular Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
22
|
Abstract
Since the isolation of cyclin-dependent kinase 5 (Cdk5), this proline-directed serine/threonine kinase has been demonstrated as an important regulator of neuronal migration, neuronal survival and synaptic functions. Recently, a number of players implicated in dendrite and synapse development have been identified as Cdk5 substrates. Neurite extension, synapse and spine maturation are all modulated by a myriad of extracellular guidance cues or trophic factors. Cdk5 was recently demonstrated to regulate signaling downstream of some of these extracellular factors, in addition to modulating Rho GTPase activity, which regulates cytoskeletal dynamics. In this communication, we summarize our existing knowledge on the pathways and mechanisms through which Cdk5 affects dendrite, synapse and spine development.
Collapse
Affiliation(s)
- Zelda H Cheung
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | |
Collapse
|
23
|
Seyb KI, Ansar S, Li G, Bean J, Michaelis ML, Dobrowsky RT. p35/Cyclin-dependent kinase 5 is required for protection against beta-amyloid-induced cell death but not tau phosphorylation by ceramide. J Mol Neurosci 2007; 31:23-35. [PMID: 17416967 DOI: 10.1007/bf02686115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 11/30/1999] [Accepted: 06/03/2006] [Indexed: 12/19/2022]
Abstract
Ceramide is a bioactive sphingolipid that can prevent calpain activation and beta-amyloid (A beta) neurotoxicity in cortical neurons. Recent evidence supports A beta induction of a calpain-dependent cleavage of the cyclin-dependent kinase 5 (cdk5) regulatory protein p35 that contributes to tau hyperphosphorylation and neuronal death. Using cortical neurons isolated from wild-type and p35 knockout mice, we investigated whether ceramide required p35/cdk5 to protect against A beta-induced cell death and tau phosphorylation. Ceramide inhibited A beta-induced calpain activation and cdk5 activity in wild-type neurons and protected against neuronal death and tau hyperphosphorylation. Interestingly, A beta also increased cdk5 activity in p35-/- neurons, suggesting that the alternate cdk5 regulatory protein, p39, might mediate this effect. In p35 null neurons, ceramide blocked A beta-induced calpain activation but did not inhibit cdk5 activity or cell death. However, ceramide blocked tau hyperphosphorylation potentially via inhibition of glycogen synthase kinase-3beta. These data suggest that ceramide can regulate A beta cell toxicity in a p35/cdk5-dependent manner.
Collapse
Affiliation(s)
- Kathleen I Seyb
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | |
Collapse
|
24
|
Yamada M, Saito T, Sato Y, Kawai Y, Sekigawa A, Hamazumi Y, Asada A, Wada M, Doi H, Hisanaga SI. Cdk5-p39 is a labile complex with the similar substrate specificity to Cdk5-p35. J Neurochem 2007; 102:1477-1487. [PMID: 17394551 DOI: 10.1111/j.1471-4159.2007.04505.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed Ser/Thr kinase that plays important roles in various neuronal activities, including neuronal migration, synaptic activity, and neuronal cell death. Cdk5 is activated by association with a neuron-specific activator, p35 or its isoform p39, but little is known about the kinase activity of Cdk5--p39. In fact, kinase-active Cdk5--p39 was not prepared from rat brain extracts nor from HEK293 cells expressing Cdk5 and p39 by immunoprecipitation in the presence of non-ionic detergent, under conditions with which active Cdk5--p35 could be isolated. p39 dissociated from Cdk5 in the presence of detergent, indicating that p39 has a lower binding affinity for Cdk5 than p35. We developed a method for purifying kinase-active Cdk5--p39 from Sf9 cells infected with baculovirus encoding Cdk5 and p39. The purified Cdk5--p39 complex showed similar substrate specificity to that of Cdk5--p35, but with opposite sensitivity to detergent. Cdk5--p39 was inactivated by Triton X-100, whereas Cdk5--p35 was activated. The N-terminal deletion from p35 and p39, the amino acid sequences of which are different, did not change the stability or substrate specificity of either Cdk5 complex. The different stability between Cdk5--p35 and Cdk5--p39 suggests their distinct roles under different regulation mechanisms in neurons.
Collapse
Affiliation(s)
- Mari Yamada
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa, Hachiohji, Tokyo, JapanCelestar Lexico-Sciences Inc., Nakase, Mihama-ku, Chiba, Japan
| | - Taro Saito
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa, Hachiohji, Tokyo, JapanCelestar Lexico-Sciences Inc., Nakase, Mihama-ku, Chiba, Japan
| | - Yutaka Sato
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa, Hachiohji, Tokyo, JapanCelestar Lexico-Sciences Inc., Nakase, Mihama-ku, Chiba, Japan
| | - Yusei Kawai
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa, Hachiohji, Tokyo, JapanCelestar Lexico-Sciences Inc., Nakase, Mihama-ku, Chiba, Japan
| | - Akio Sekigawa
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa, Hachiohji, Tokyo, JapanCelestar Lexico-Sciences Inc., Nakase, Mihama-ku, Chiba, Japan
| | - Yuko Hamazumi
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa, Hachiohji, Tokyo, JapanCelestar Lexico-Sciences Inc., Nakase, Mihama-ku, Chiba, Japan
| | - Akiko Asada
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa, Hachiohji, Tokyo, JapanCelestar Lexico-Sciences Inc., Nakase, Mihama-ku, Chiba, Japan
| | - Mitsuhito Wada
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa, Hachiohji, Tokyo, JapanCelestar Lexico-Sciences Inc., Nakase, Mihama-ku, Chiba, Japan
| | - Hirofumi Doi
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa, Hachiohji, Tokyo, JapanCelestar Lexico-Sciences Inc., Nakase, Mihama-ku, Chiba, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa, Hachiohji, Tokyo, JapanCelestar Lexico-Sciences Inc., Nakase, Mihama-ku, Chiba, Japan
| |
Collapse
|
25
|
Hosokawa T, Saito T, Asada A, Ohshima T, Itakura M, Takahashi M, Fukunaga K, Hisanaga SI. Enhanced activation of Ca2+/calmodulin-dependent protein kinase II upon downregulation of cyclin-dependent kinase 5-p35. J Neurosci Res 2006; 84:747-54. [PMID: 16802322 DOI: 10.1002/jnr.20975] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5)-p35 is downregulated in cultured neurons by N-methyl-D-aspartate (NMDA) via the proteasomal degradation of p35. However, it is not known where in neurons this downregulation occurs or the physiologic meaning of the reaction. We show the enrichment of Cdk5 and p35 in the postsynaptic density and the NMDA-induced degradation of postsynaptic p35 using brain slices and cultured neurons. To evaluate the role of this downregulation, we examined the relationship between Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activation and Cdk5 downregulation, as events downstream from NMDA stimulation. Glutamate or NMDA stimulation induced CaMKII autophosphorylation over a time course that mirrored the time course of p35 degradation. To simulate the downregulation of postsynaptic Cdk5 in invitro experiments, we used the Cdk5 inhibitor roscovitine. The inhibition of Cdk5 activity by roscovitine enhanced CaMKII autophosphorylation and activation in cultured neurons, and in an isolated postsynaptic-density-enriched fraction. These results suggest that Cdk5 activity suppresses CaMKII activation, and that the downregulation of Cdk5 activity after treatment withNMDA facilitates CaMKII activation, leading to the easier induction of long-term potentiation.
Collapse
Affiliation(s)
- Tomohisa Hosokawa
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachiohji, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kesavapany S, Pareek TK, Zheng YL, Amin N, Gutkind JS, Ma W, Kulkarni AB, Grant P, Pant HC. Neuronal nuclear organization is controlled by cyclin-dependent kinase 5 phosphorylation of Ras Guanine nucleotide releasing factor-1. Neurosignals 2006; 15:157-73. [PMID: 16921254 DOI: 10.1159/000095130] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/25/2006] [Indexed: 11/19/2022] Open
Abstract
RasGRF1 is a member of the Ras guanine nucleotide exchange factor (RasGEF) family of proteins which are directly responsible for the activation of Ras and Rac GTPases. Originally identified as a phosphoprotein, RasGRF1 has been shown to be phosphorylated by protein kinase A and more recently, by the non-receptor tyrosine kinases Ack1 and Src. In this report we show that RasGRF1 interacts with and is phosphorylated by Cdk5 on serine 731 to regulate its steady state levels in mammalian cells as well as in neurons. Phosphorylation on this site by Cdk5 leads to RasGRF1 degradation through a calpain-dependent mechanism. Additionally, cortical neurons from Cdk5 knockout mice have higher levels of RasGRF1 which are reduced when wild-type Cdk5 is transfected into these neurons. In mitotic cells, nuclei become disorganized when RasGRF1 is overexpressed and this is rescued when RasGRF1 is co-expressed with active Cdk5. When RasGRF1 levels are elevated in neurons through overexpression of either the wild-type RasGRF1, or the phosphorylation mutant of RasGRF1 and by the transfection of a dominant negative Cdk5 construct, nuclei appeared condensed and fragmented. On the other hand, a reduction of RasGRF1 levels through p35/Cdk5 overexpression also leads to nuclear condensation in neurons. These data show that phosphorylation of RasGRF1 by Cdk5 tightly regulates its levels, which is essential for proper cellular organization.
Collapse
Affiliation(s)
- Sashi Kesavapany
- Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Roselli F, Tirard M, Lu J, Hutzler P, Lamberti P, Livrea P, Morabito M, Almeida OFX. Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J Neurosci 2006; 25:11061-70. [PMID: 16319306 PMCID: PMC6725651 DOI: 10.1523/jneurosci.3034-05.2005] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amyloid-beta (Abeta) has been implicated in memory loss and disruption of synaptic plasticity observed in early-stage Alzheimer's disease. Recently, it has been shown that soluble Abeta oligomers target synapses in cultured rat hippocampal neurons, suggesting a direct role of Abeta in the regulation of synaptic structure and function. Postsynaptic density-95 (PSD-95) is a postsynaptic scaffolding protein that plays a critical role in synaptic plasticity and the stabilization of AMPA (AMPARs) and NMDA (NMDARs) receptors at synapses. Here, we show that exposure of cultured cortical neurons to soluble oligomers of Abeta(1-40) reduces PSD-95 protein levels in a dose- and time-dependent manner and that the Abeta1(1-40)-dependent decrease in PSD-95 requires NMDAR activity. We also show that the decrease in PSD-95 requires cyclin-dependent kinase 5 activity and involves the proteasome pathway. Immunostaining analysis of cortical cultured neurons revealed that Abeta treatment induces concomitant decreases in PSD-95 at synapses and in the surface expression of the AMPAR glutamate receptor subunit 2. Together, these data suggest a novel pathway by which Abeta triggers synaptic dysfunction, namely, by altering the molecular composition of glutamatergic synapses.
Collapse
Affiliation(s)
- F Roselli
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Strong MJ, Kesavapany S, Pant HC. The Pathobiology of Amyotrophic Lateral Sclerosis: A Proteinopathy? J Neuropathol Exp Neurol 2005; 64:649-64. [PMID: 16106213 DOI: 10.1097/01.jnen.0000173889.71434.ea] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is increasingly considered to be a disorder of multiple etiologies that have in common progressive degeneration of both upper and lower motor neurons, ultimately giving rise to a relentless loss of muscle function. This progressive degeneration is associated with heightened levels of oxidative injury, excitotoxicity, and mitochondrial dysfunction--all occurring concurrently. In this article, we review the evidence that suggests, in common with other age-dependent neurodegenerative disorders, that ALS can be considered a disorder of protein aggregation. Morphologically, this is evident as Bunina bodies, ubiquitin-immunoreactive fibrils or aggregates, neurofilamentous aggregates, mutant copper/zinc superoxide dismutase (SOD1) aggregates in familial ALS variants harboring mutations in SOD1, peripherin-immunoreactive aggregates within spinal motor neurons and as neuroaxonal spheroids, and in an increasingly greater population of patients with ALS with cognitive impairment, both intra- and extraneuronal tau aggregates. We review the evidence that somatotopically specific patterns of altered kinase and phosphatase activity are associated with alterations in the phosphorylation state of these proteins, altering either solubility or assembly characteristics. The role of nonneuronal cells in mediating motor neuronal injury is discussed in the context of alterations in tyrosine kinase activity and enhanced protein phosphorylation.
Collapse
Affiliation(s)
- Michael J Strong
- Robarts Research Institute, Department of Clinical Neurological Sciences, The University of Western Ontario, London, Canada.
| | | | | |
Collapse
|
29
|
Ohshima T, Ogura H, Tomizawa K, Hayashi K, Suzuki H, Saito T, Kamei H, Nishi A, Bibb JA, Hisanaga SI, Matsui H, Mikoshiba K. Impairment of hippocampal long-term depression and defective spatial learning and memory in p35-/- mice. J Neurochem 2005; 94:917-25. [PMID: 15992381 DOI: 10.1111/j.1471-4159.2005.03233.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cdk5 (cyclin-dependent kinase 5) activity is dependent upon association with one of two neuron-specific activators, p35 or p39. Genetic deletion of Cdk5 causes perinatal lethality with severe defects in corticogenesis and neuronal positioning. p35(-/-) mice are viable with milder histological abnormalities. Although substantial evidence implicates Cdk5 in synaptic plasticity, its role in learning and memory has not been evaluated using mutant mouse models. We report here that p35(-/-) mice have deficiencies in spatial learning and memory. Close examination of hippocampal circuitry revealed subtle histological defects in CA1 pyramidal cells. Furthermore, p35(-/-) mice exhibit impaired long-term depression and depotentiation of long-term potentiation in the Schaeffer collateral CA1 pathway. Moreover, the Cdk5-dependent phosphorylation state of protein phosphatase inhibitor-1 was increased in 4-week-old mice due to increased levels of p39, which co-localized with inhibitor-1 and Cdk5 in the cytoplasm. These results demonstrate that p35-dependent Cdk5 activity is important to learning and synaptic plasticity. Deletion of p35 may shift the substrate specificity of Cdk5 due to compensatory expression of p39.
Collapse
Affiliation(s)
- Toshio Ohshima
- Laboratory for Developmental Neurobiology, Brain Science Institute, Hirosawa, Wako-City, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jeong YG, Lee KY, Lee BC, Lee NS, Lee KY, Won MH, Fukui Y. Post-natal changes of cyclin-dependent kinase 5 activator expression in the developing rat cerebellum. Anat Histol Embryol 2005; 34:20-6. [PMID: 15649222 DOI: 10.1111/j.1439-0264.2004.00555.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
cDNA of cyclin-dependent kinase 5 (Cdk5) was cloned based on its primary sequence homology to Cdc2 and Cdk2. Cdk5 requires the neuronal Cdk5 activators such as p35 or p39(nck5ai) (p39) for its activity. In this study, we examined post-natal changes in the p39 expression pattern during the development of the rat cerebellum. p39 began to express in somata and dendrites of Purkinje cells at post-natal day 3 (PD3). In particular, at PD12, parasagittal bands (stripes) with p39 immunoreactivity were weakly observed. At PD21, p39-immunoreactive stripes were developed when compared with the PD12 group. At this age stage, p39 immunoreactivity became weak in somata of Purkinje cells, not forming stripes. At PD28, a series of parasagittal bands were more distinct than those of the PD21 group, and p39 immunoreactivity disappeared in Purkinje cells, not forming p39 immunoreactive stripes. In the adults, p39 immunoreactivity in Purkinje cells was similar to that found in the PD28 group which showed that parasagittal bands were very narrow, and became progressively more slender. Therefore, we suggest that the post-natal changes of p39 expression in Purkinje cells in the cerebellum is an autonomous characteristic of Purkinje cells with a role of Cdk5 activators.
Collapse
Affiliation(s)
- Y G Jeong
- Department of Anatomy, College of Medicine, Konyang University, Nonsan, Chungnam 320-711, South Korea.
| | | | | | | | | | | | | |
Collapse
|
31
|
Kesavapany S, Amin N, Zheng YL, Nijhara R, Jaffe H, Sihag R, Gutkind JS, Takahashi S, Kulkarni A, Grant P, Pant HC. p35/cyclin-dependent kinase 5 phosphorylation of ras guanine nucleotide releasing factor 2 (RasGRF2) mediates Rac-dependent Extracellular Signal-regulated kinase 1/2 activity, altering RasGRF2 and microtubule-associated protein 1b distribution in neurons. J Neurosci 2004; 24:4421-31. [PMID: 15128856 PMCID: PMC6729444 DOI: 10.1523/jneurosci.0690-04.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed kinase the activity of which is dependent on association with its neuron-specific activators, p35 and p39. Cdk5 activity is critical for the proper formation of cortical structures and lamination during development. In the adult nervous system, Cdk5 function is implicated in cellular adhesion, dopamine signaling, neurotransmitter release, and synaptic activity. In addition, Cdk5 is also involved in "cross-talk" with other signal transduction pathways. To further examine its involvement in cross-talk with other pathways, we identified proteins that interacted with p35 using the yeast two-hybrid system. We report here that p35 associates with Ras guanine nucleotide releasing factor 2 (RasGRF2) in coimmunoprecipitation and colocalization studies using transfected cell lines as well as primary cortical neurons. Additionally, Cdk5 phosphorylates RasGRF2 both in vitro and in vivo, leading to a decrease in Rac-guanidine exchange factor activity and a subsequent reduction in extracellular signal-regulated kinase 1/2 activity. We show that p35/Cdk5 phosphorylates RasGRF2 on serine737, which leads to an accumulation of RasGRF2 in the neuronal cell bodies coinciding with an accumulation of microtubule-associated protein 1b. The membrane association of p35 and subsequent localization of Cdk5 activity toward RasGRF2 and Rac provide insights into important cellular signaling processes that occur at the membrane, resulting in downstream effects on signal transduction cascades.
Collapse
Affiliation(s)
- Sashi Kesavapany
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lilja L, Johansson JU, Gromada J, Mandic SA, Fried G, Berggren PO, Bark C. Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 phosphorylation and Ca(2+)-dependent exocytosis. J Biol Chem 2004; 279:29534-41. [PMID: 15123626 DOI: 10.1074/jbc.m312711200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine protein kinase that requires association with a regulatory protein, p35 or p39, to form an active enzyme. Munc18-1 plays an essential role in membrane fusion, and its function is regulated by phosphorylation. We report here that both p35 and p39 were expressed in insulin-secreting beta-cells, where they exhibited individual subcellular distributions and associated with membranous organelles of different densities. Overexpression of Cdk5, p35, or p39 showed that Cdk5 and p39 augmented Ca(2+)-induced insulin exocytosis. Suppression of p39 and Cdk5, but not of p35, by antisense oligonucleotides selectively inhibited insulin exocytosis. Transient transfection of primary beta-cells with Munc18-1 templates mutated in potential Cdk5 or PKC phosphorylation sites, in combination with Cdk5 and the different Cdk5 activators, suggested that Cdk5/p39-promoted Ca(2+)-dependent insulin secretion from primary beta-cells by phosphorylating Munc18-1 at a biochemical step immediately prior to vesicle fusion.
Collapse
Affiliation(s)
- Lena Lilja
- Department of Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
33
|
Morabito MA, Sheng M, Tsai LH. Cyclin-dependent kinase 5 phosphorylates the N-terminal domain of the postsynaptic density protein PSD-95 in neurons. J Neurosci 2004; 24:865-76. [PMID: 14749431 PMCID: PMC6729809 DOI: 10.1523/jneurosci.4582-03.2004] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PSD-95 (postsynaptic density 95) is a postsynaptic scaffolding protein that links NMDA receptors to the cytoskeleton and signaling molecules. The N-terminal domain of PSD-95 is involved in the synaptic targeting and clustering of PSD-95 and in the clustering of NMDA receptors at synapses. The N-terminal domain of PSD-95 contains three consensus phosphorylation sites for cyclin-dependent kinase 5 (cdk5), a proline-directed serine-threonine kinase essential for brain development and implicated in synaptic plasticity, dopamine signaling, cocaine addiction, and neurodegenerative disorders. We report that PSD-95 is phosphorylated in the N-terminal domain by cdk5 in vitro and in vivo, and that this phosphorylation is not detectable in brain lysates of cdk5-/- mice. N-terminal phosphorylated PSD-95 is found in PSD fractions together with cdk5 and its activator, p35, suggesting a role for phosphorylated PSD-95 at synapses. In heterologous cells, coexpression of active cdk5 reduces the ability of PSD-95 to multimerize and to cluster neuronal ion channels, two functions attributed to the N-terminal domain of PSD-95. Consistent with these observations, the lack of cdk5 activity in cultured neurons results in larger clusters of PSD-95. In cdk5-/- cortical neurons, more prominent PSD-95 immunostained clusters are observed than in wild-type neurons. In hippocampal neurons, the expression of DNcdk5 (inactive form of cdk5) or of the triple alanine mutant (T19A, S25A, S35A) full-length PSD-95 results in increased PSD-95 cluster size. These results identify cdk5-dependent phosphorylation of the N-terminal domain of PSD-95 as a novel mechanism for regulating the clustering of PSD-95. Moreover, these observations support the possibility that cdk5-dependent phosphorylation of PSD-95 dynamically regulates the clustering of PSD-95/NMDA receptors at synapses, thus providing a possible mechanism for rapid changes in density and/or number of receptor at synapses.
Collapse
Affiliation(s)
- Maria A Morabito
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
34
|
Kesavapany S, Li BS, Amin N, Zheng YL, Grant P, Pant HC. Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:143-53. [PMID: 15023357 DOI: 10.1016/j.bbapap.2003.11.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 11/12/2003] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a member of the cyclin-dependent kinase family that is involved in the regulation of the cell cycle. As their name suggests, the Cdks require association with activator proteins called cyclins for their activity. Cdk5, however, is unique to this family of proline-directed serine/threonine kinases on two accounts. Firstly, Cdk5 has not been found to function in the cell cycle and, although expressed in a number of tissues, its activity is restricted to the nervous system. Secondly, unlike the other members of the Cdk family, Cdk5 is not activated by association with a cyclin, although it can bind them. Instead, Cdk5 is activated by the activator proteins p35 and p39 that are structurally distinct from cyclins and have, for the most part, a neuronal-specific expression pattern. In the past decade of research on Cdk5, it is now established that Cdk5 activity is critical for the proper formation and function of the brain. Moreover, its role as a central kinase, phosphorylating its substrates in its 'cross-talk' control of other kinase and signal transduction pathways, has also been determined. In addition to the normal physiological role of Cdk5, the kinase has been implicated in certain neurodegenerative disorders. For example, Cdk5 associates with the proteolytic, more active p25 fragment that is derived through the cleavage of p35. In turn, the p25/Cdk5 complex aberrantly phosphorylates its substrates tau and neurofilaments, which has been implicated in the pathogenesis of these disorders. Here, we attempt to review the past decade of research on Cdk5 from our laboratory and others, on the roles of Cdk5 in nervous system function. Additionally, our research has recently uncovered a possible therapeutic avenue of research, focusing on inhibition of aberrant Cdk5 hyperactivity which may well be used to treat the symptoms of a number of neurodegenerative diseases. The elucidation of a specific inhibitor of p25/Cdk5, termed CIP, also inhibits p25/Cdk5-mediated tau phosphorylation. This may well provide us with avenues of research focusing on the inhibition of pathologically damaging p25/Cdk5 species.
Collapse
Affiliation(s)
- Sashi Kesavapany
- Cytoskeletal Protein Regulation Section, Laboratory of Neurochemistry, Building 36, Room 4D-28, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Kwok-On Lai
- Department of Biochemistry, Molecular Neuroscience Center and Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | |
Collapse
|
36
|
Jeong YG, Rosales JL, Marzban H, Sillitoe RV, Park DG, Hawkes R, Lee KY. The cyclin-dependent kinase 5 activator, p39, is expressed in stripes in the mouse cerebellum. Neuroscience 2003; 118:323-34. [PMID: 12699769 DOI: 10.1016/s0306-4522(03)00002-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) activity is required for CNS development. The Cdk5 activator, p35, is well characterized but its isoform, p39, has been less studied. Previously, p39 mRNA expression in rat brain was shown to peak at 3 weeks postnatal, and the level remains high in the adult cerebellum [Neurosci Res 28 (1997) 355]. However, p39 protein expression and specific localization in the cerebellum, where p39 mRNA level significantly exceeds that of p35, have not been examined. Here, we explored the specific cerebellar localization of the p39 protein in the developing and adult mice. Adult cerebellar Purkinje cell somata and dendritic arbors were strongly positive for p39 but only rare and barely detectable p39 was observed in Purkinje cell axons. Cdk5 also localized in Purkinje cell somata and dendrites of the adult cerebellum, but p35 localized only in Purkinje cell somata, further suggesting a functional difference between p35 and p39. During development, cerebellar p39 was first noted at P10. Primary cultures of a developing cerebellum also showed strong p39 immunoreactivity in Purkinje cell somata and dendrites, but weak p39 immunoreactivity in Purkinje cell axons. Starting from P10, p39 was observed in a subset of Purkinje cells that form parasagittal bands throughout the vermis and hemispheres. These bands were bilaterally symmetrical and continuous from one lobule to another. Conversely, Cdk5 and p35 showed a uniform staining pattern. The pattern of p39 closely resembled that of zebrin II/aldolase C, suggesting that p39 may play a role in the adult cerebellum rather than in pattern development. This premise is consistent with the normal pattern of zebrin II/aldolase C zones and stripes in mutant p39-/- mice. The alternating p39 parasagittal band pattern may reflect a role for p39 or Cdk5/p39 in the functional compartmentation of the cerebellum.
Collapse
Affiliation(s)
- Y-G Jeong
- Department of Cell Biology and Anatomy, The University of Calgary, Alberta, Calgary, Canada T2N 4N1
| | | | | | | | | | | | | |
Collapse
|
37
|
Takahashi S, Saito T, Hisanaga SI, Pant HC, Kulkarni AB. Tau phosphorylation by cyclin-dependent kinase 5/p39 during brain development reduces its affinity for microtubules. J Biol Chem 2003; 278:10506-15. [PMID: 12536148 DOI: 10.1074/jbc.m211964200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The microtubule-associated protein tau is a developmentally regulated neuronal phosphoprotein. The phosphorylation of tau reduces its ability to bind and stabilize axonal microtubules during axonal growth. Although tau is phosphorylated by cyclin-dependent kinase 5 (Cdk5) in vitro, its in vivo roles remain unclear. Here, we show that tau is phosphorylated by Cdk5/p39 during brain development, resulting in a reduction of its affinity for microtubules. The activity of Cdk5 is tightly regulated by association with its neuronal activators, p35 or p39. The p35 and p39 expression levels were investigated in the developing mouse brain; the p39 expression level was higher in embryonic hind brain and spinal cord and in postnatal cerebral cortex, whereas that of p35 was most prominent in cerebral cortex at earlier stages of development. The ability of Cdk5 to phosphorylate tau was higher when in association with p39 than in association with p35. Tau phosphorylation at Ser-202 and Thr-205 was decreased in Cdk5-/- mouse brain but not in p35-/- mouse brain, suggesting that Cdk5/p39 is responsible for the in vivo phosphorylation of tau at these sites. Our data suggest that tau phosphorylation by Cdk5 may provide the neuronal microtubules with dynamic properties in a region-specific and developmentally regulated manner.
Collapse
Affiliation(s)
- Satoru Takahashi
- Functional Genomics Unit, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
38
|
The cyclin-dependent kinase 5 activators p35 and p39 interact with the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II and alpha-actinin-1 in a calcium-dependent manner. J Neurosci 2002. [PMID: 12223541 DOI: 10.1523/jneurosci.22-18-07879.2002] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a critical regulator of neuronal migration in the developing CNS, and recent studies have revealed a role for Cdk5 in synaptogenesis and regulation of synaptic transmission. Deregulation of Cdk5 has been linked to the pathology of neurodegenerative diseases such as Alzheimer's disease. Activation of Cdk5 requires its association with a regulatory subunit, and two Cdk5 activators, p35 and p39, have been identified. To gain further insight into the functions of Cdk5, we identified proteins that interact with p39 in a yeast two-hybrid screen. In this study we report that alpha-actinin-1 and the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II (CaMKIIalpha), two proteins localized at the postsynaptic density, interact with Cdk5 via their association with p35 and p39. CaMKIIalpha and alpha-actinin-1 bind to distinct regions of p35 and p39 and also can interact with each other. The association of CaMKIIalpha and alpha-actinin-1 to the Cdk5 activators, as well as to each other, is stimulated by calcium. Further, the activation of glutamate receptors increases the association of p35 and p39 with CaMKIIalpha, and the inhibition of CaMKII activation diminishes this effect. The glutamate-mediated increase in association of p35 and CaMKIIalpha is mediated in large part by NMDA receptors, suggesting that cross talk between the Cdk5 and CaMKII signal transduction pathways may be a component of the complex molecular mechanisms contributing to synaptic plasticity, memory, and learning.
Collapse
|
39
|
Fu WY, Wang JH, Ip NY. Expression of Cdk5 and its activators in NT2 cells during neuronal differentiation. J Neurochem 2002; 81:646-54. [PMID: 12065673 DOI: 10.1046/j.1471-4159.2002.00856.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have recently developed a rapid protocol involving NT2 cell aggregation and treatment with retinoic acid (RA) to produce terminally differentiated CNS neurons. As a first step to explore the functional roles of cell-cycle regulatory proteins in the process of neuronal differentiation, the expression profiles of cyclin-dependent kinases (Cdks) and their regulators were examined in NT2 cells following treatment with RA. One of the Cdks, Cdk5, has been demonstrated to affect the process of neuronal differentiation and suggested to play an important role in development of the nervous system. We found that the expression of Cdk5 was gradually increased, while its activators (p35 and p39) as well as Cdk5 kinase activity were induced in NT2 cells during the process of neuronal differentiation. Moreover, both p35 and p39 were localized along the axons and varicosity-like structures of differentiated NT2 neurons. Taken together, our results demonstrated that NT2 cells provide a good in vitro model system to examine signaling pathways involved in the regulation of Cdk5 activators and to elucidate the functional roles of Cdk5 in neuronal differentiation.
Collapse
Affiliation(s)
- Wing-Yu Fu
- Department of Biochemistry, Molecular Neuroscience Center and Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | |
Collapse
|
40
|
Patzke H, Tsai LH. Calpain-mediated cleavage of the cyclin-dependent kinase-5 activator p39 to p29. J Biol Chem 2002; 277:8054-60. [PMID: 11784720 DOI: 10.1074/jbc.m109645200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of cyclin-dependent kinase-5 (Cdk5) is tightly regulated by binding of its neuronal activators p35 and p39. Upon neurotoxic insults, p35 is cleaved to p25 by the Ca(2+)-dependent protease calpain. p25 is accumulated in ischemic brains and in brains of patients with Alzheimer's disease. p25 deregulates Cdk5 activity by causing prolonged activation and mislocalization of Cdk5. It is unknown whether p39, which is expressed throughout the adult rat brain, is cleaved by calpain, and whether this contributes to deregulation of Cdk5. Here, we show that calpain cleaved p39 in vitro, resulting in generation of a C-terminal p29 fragment. In vivo, p29 was generated in ischemic brain concomitant with increased calpain activity. In fresh brain lysates, generation of p29 was Ca(2+)-dependent, and calpain inhibitors abolished p29 production. The Ca(2+) ionophore ionomycin and the excitotoxin glutamate induced production of p29 in cultures of cortical neurons in a calpain-dependent manner. Like p25, p29 was more stable than p39 and caused redistribution of Cdk5 in cortical neurons. Our data suggest that neurotoxic insults lead to calpain-mediated conversion of p39 to p29, which might contribute to deregulation of Cdk5.
Collapse
Affiliation(s)
- Holger Patzke
- Department of Pathology, Harvard Medical School and the Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
41
|
Ross S, Tienhaara A, Lee MS, Tsai LH, Gill G. GC box-binding transcription factors control the neuronal specific transcription of the cyclin-dependent kinase 5 regulator p35. J Biol Chem 2002; 277:4455-64. [PMID: 11724806 DOI: 10.1074/jbc.m110771200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinase 5 (cdk5)/p35 kinase activity is highest in post-mitotic neurons of the central nervous system and is critical for development and function of the brain. The neuronal specific activity of the cdk5/p35 kinase is achieved through the regulated expression of p35 mRNA. We have identified a small 200-bp fragment of the p35 promoter that is sufficient for high levels of neuronal specific expression. Mutational analysis of this TATA-less promoter has identified a 17-bp GC-rich element, present twice, that is both required for promoter activity and sufficient for neuronal specific transcription. A GC box within the 17-bp element is critical for both promoter activity and protein-DNA complex formation. The related transcription factors Sp1, Sp3, and Sp4 constitute most of the GC box DNA binding activity in neurons. We have found that both the relative contribution of the Sp family proteins to GC box binding and the transcriptional activity of these proteins is regulated during neuronal differentiation. Thus, our data show that the GC box-binding Sp proteins contribute to the regulation of p35 expression in neurons, suggesting changes in the Sp transcription factors level and activity may contribute to cell type-specific expression of many genes in the central nervous system.
Collapse
Affiliation(s)
- Sarah Ross
- Department of Pathology and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Cdk5, a serine/threonine kinase in the cyclin-dependent kinase (Cdk) family, is an important regulator of neuronal positioning during brain development. Cdk5 might also play a role in synaptogenesis and neurotransmission. Loss of Cdk5 in mice is perinatal lethal, and overactive Cdk5 induces apoptosis in cultured cells, indicating that strict regulation of kinase activity is crucial. Indeed, activity depends on the stability of activating partners, subcellular localization and the phosphorylation state of the enzyme itself. Deregulated kinase activity has been linked to neurodegenerative diseases such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). This review focuses on links between Cdk5 activity and components of cytoskeletal, membrane and adhesion systems that allow us to postulate a role for Cdk5 in directing intracellular traffic in neurons.
Collapse
Affiliation(s)
- Deanna S Smith
- Dept of Biological Sciences, CLS 607, University of South Carolina, Columbia 29208, USA
| | | |
Collapse
|
43
|
Rashid T, Banerjee M, Nikolic M. Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology. J Biol Chem 2001; 276:49043-52. [PMID: 11604394 DOI: 10.1074/jbc.m105599200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTPase Rac and its effectors, the Pak1 and p35/Cdk5 kinases, have been assigned important roles in regulating cytoskeletal dynamics in neurons. Our previous work revealed that the neuronal p35/Cdk5 kinase associates with Pak1 in a RacGTP-dependent manner, causing hyperphosphorylation and down-regulation of Pak1 kinase activity. We have now demonstrated direct phosphorylation of Pak1 on threonine 212 by the p35/Cdk5 kinase. In neuronal growth cones, Pak1 phosphorylated on Thr-212 localized to actin and tubulin-rich areas, suggesting a role in regulating growth cone dynamics. The expression of a non-phosphorylatable Pak1 mutant (Pak1A212) induced dramatic neurite disorganization. We also observed a strong association between p35/Cdk5 and the Pak1 C-terminal kinase domain. Overall, our data show that in neurons, membrane-associated, active Pak1 is regulated by the p35/Cdk5 kinase both by association and phosphorylation, which is essential for the proper regulation of the cytoskeleton during neurite outgrowth and remodeling.
Collapse
Affiliation(s)
- T Rashid
- Molecular and Developmental Neurobiology Medical Research Council Centre, New Hunt's House, King's College London, London, SE1 1UL, United Kingdom
| | | | | |
Collapse
|
44
|
Abstract
Since it was identified a decade ago, cyclin-dependent kinase 5 (CDK5) has emerged as a crucial regulator of neuronal migration in the developing central nervous system. CDK5 phosphorylates a diverse list of substrates, implicating it in the regulation of a range of cellular processes - from adhesion and motility, to synaptic plasticity and drug addiction. Recent evidence indicates that deregulation of this kinase is involved in the pathology of neurodegenerative diseases.
Collapse
Affiliation(s)
- R Dhavan
- Department of Pathology, Harvard Medical School, Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
45
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) plays a pivotal role in brain development and neuronal migration. Cdk5 is abundant in postmitotic, terminally differentiated neurons. The ability of Cdk5 to phosphorylate substrates is dependent on activation by its neuronal-specific activators p35 and p39. There exist striking differences in the phenotypic severity of Cdk5-deficient mice and p35-deficient mice. Cdk5-null mutants show a more severe disruption of lamination in the cerebral cortex, hippocampus, and cerebellum. In addition, Cdk5-null mice display perinatal lethality, whereas p35-null mice are viable. These discrepancies have been attributed to the function of other Cdk5 activators, such as p39. To understand the roles of p39 and p35, we created p39-null mice and p35/p39 compound-mutant mice. Interestingly, p39-null mice show no obvious detectable abnormalities, whereas p35(-/-)p39(-/-) double-null mutants are perinatal lethal. We show here that the p35(-/-)p39(-/-) mutants exhibit phenotypes identical to those of the Cdk5-null mutant mice. Other compound-mutant mice with intermediate phenotypes allow us to determine the distinct and redundant functions between p35 and p39. Our data strongly suggest that p35 and p39 are essential for Cdk5 activity during the development of the nervous system. Thus, p35 and p39 are likely to be the principal, if not the only, activators of Cdk5.
Collapse
|