1
|
Kummer KK, Zeidler M, Kalpachidou T, Kress M. Role of IL-6 in the regulation of neuronal development, survival and function. Cytokine 2021; 144:155582. [PMID: 34058569 DOI: 10.1016/j.cyto.2021.155582] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The pleiotropic cytokine interleukin-6 (IL-6) is emerging as a molecule with both beneficial and destructive potentials. It can exert opposing actions triggering either neuron survival after injury or causing neurodegeneration and cell death in neurodegenerative or neuropathic disorders. Importantly, neurons respond differently to IL-6 and this critically depends on their environment and whether they are located in the peripheral or the central nervous system. In addition to its hub regulator role in inflammation, IL-6 is recently emerging as an important regulator of neuron function in health and disease, offering exciting possibilities for more mechanistic insight into the pathogenesis of mental, neurodegenerative and pain disorders and for developing novel therapies for diseases with neuroimmune and neurogenic pathogenic components.
Collapse
Affiliation(s)
- Kai K Kummer
- Institute of Physiology, Medical University of Innsbruck, Austria
| | | | | | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Austria.
| |
Collapse
|
2
|
Potential neuroprotective biomolecules in ophthalmology. Int Ophthalmol 2020; 41:1103-1109. [PMID: 33180279 DOI: 10.1007/s10792-020-01634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
PURPOSES Retinal neurodegenerative diseases are responsible for a huge number of ocular problems worldwide. It seems that the progression of these diseases can be managed by the application of neuroprotective molecules particularly in the early stages. This article focuses on the most common neuroprotective bioagents under investigation in ophthalmology. METHODS We searched the web of science, PubMed and Scopus databases with these keywords: "glaucoma," "diabetic retinopathy," "age-related macular degeneration," "optic neuropathy and retinal degeneration" and/or "neuroprotection." RESULTS The most commonly utilized neuroprotective drugs for ophthalmology diseases were introduced in this study. It seems that these agents can be divided into three categories according to their mechanism of action: (A) neurotrophins, (B) decreasing effect on intraocular pressure and (C) inhibition of retinal neuron apoptosis. CONCLUSION A broad range of drugs has been illustrated in the literature for treatment of neuro-ophthalmic diseases. A good classification of the most applied drugs in this field can help specialists to prescribe the best matched drug considering the stage and progression of disease. However, controlled clinical trials are needed for better evaluation of the effects of these products.
Collapse
|
3
|
Jia C, Keasey MP, Lovins C, Hagg T. Inhibition of astrocyte FAK-JNK signaling promotes subventricular zone neurogenesis through CNTF. Glia 2019; 66:2456-2469. [PMID: 30500112 DOI: 10.1002/glia.23498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022]
Abstract
Astrocyte-derived ciliary neurotrophic factor (CNTF) promotes adult subventricular zone (SVZ) neurogenesis. We found that focal adhesion kinase (FAK) and JNK, but not ERK or P38, repress CNTF in vitro. Here, we defined the FAK-JNK pathway and its regulation of CNTF in mice, and the related leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), which promote stem cell renewal at the expense of neurogenesis. Intrastriatal injection of FAK inhibitor, FAK14, in adult male C57BL/6 mice reduced pJNK and increased CNTF expression in the SVZ-containing periventricular region. Injection of a JNK inhibitor increased CNTF without affecting LIF and IL-6, and increased SVZ proliferation and neuroblast formation. The JNK inhibitor had no effect in CNTF-/- mice, suggesting that JNK inhibits SVZ neurogenesis by repressing CNTF. Inducible deletion of FAK in astrocytes increased SVZ CNTF and neurogenesis, but not LIF and IL-6. Intrastriatal injection of inhibitors suggested that P38 reduces LIF and IL-6 expression, whereas ERK induces CNTF and LIF. Intrastriatal FAK inhibition increased LIF, possibly through ERK, and IL-6 through another pathway that does not involve P38. Systemic injection of FAK14 also inhibited JNK while increasing CNTF, but did not affect P38 and ERK activation, or LIF and IL-6 expression. Importantly, systemic FAK14 increased SVZ neurogenesis in wild-type C57BL/6 and CNTF+/+ mice, but not in CNTF-/- littermates, indicating that it acts by upregulating CNTF. These data show a surprising differential regulation of related cytokines and identify the FAK-JNK-CNTF pathway as a specific target in astrocytes to promote neurogenesis and possibly neuroprotection in neurological disorders.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Matthew P Keasey
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Theo Hagg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
4
|
Jia C, Keasey MP, Malone HM, Lovins C, Sante RR, Razskazovskiy V, Hagg T. Vitronectin from brain pericytes promotes adult forebrain neurogenesis by stimulating CNTF. Exp Neurol 2018; 312:20-32. [PMID: 30408465 DOI: 10.1016/j.expneurol.2018.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/17/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022]
Abstract
Vitronectin (VTN) is a glycoprotein in the blood and affects hemostasis. VTN is also present in the extracellular matrix of various organs but little is known about its function in healthy adult tissues. We show, in adult mice, that VTN is uniquely expressed by approximately half of the pericytes of subventricular zone (SVZ) where neurogenesis continues throughout life. Intracerebral VTN antibody injection or VTN knockout reduced neurogenesis as well as expression of pro-neurogenic CNTF, and anti-neurogenic LIF and IL-6. Conversely, injections of VTN, or plasma from VTN+/+, but not VTN-/- mice, increased these cytokines. VTN promoted SVZ neurogenesis when LIF and IL-6 were suppressed by co-administration of a gp130 inhibitor. Unexpectedly, VTN inhibited FAK signaling and VTN-/- mice had increased FAK signaling in the SVZ. Further, an FAK inhibitor or VTN increased CNTF expression, but not in conditional astrocytic FAK knockout mice, suggesting that VTN increases CNTF through FAK inhibition in astrocytes. These results identify a novel role of pericyte-derived VTN in the brain, where it regulates SVZ neurogenesis through co-expression of CNTF, LIF and IL-6. VTN-integrin-FAK and gp130 signaling may provide novel targets to induce neurogenesis for cell replacement therapies.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Matthew P Keasey
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Hannah M Malone
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Richard R Sante
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Vlad Razskazovskiy
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Theo Hagg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
5
|
Heo JH, Yoon JA, Ahn EK, Kim H, Urm SH, Oak CO, Yu BC, Lee SJ. Intraperitoneal administration of adipose tissue-derived stem cells for the rescue of retinal degeneration in a mouse model via indigenous CNTF up-regulation by IL-6. J Tissue Eng Regen Med 2017; 12:e1370-e1382. [PMID: 28715614 DOI: 10.1002/term.2522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/05/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
Abstract
As the world's population begins to age, retinal degeneration is an increasing problem, and various treatment modalities are being developed. However, there have been no therapies for degenerative retinal conditions that are not characterized by neovascularization. We investigated whether transplantation of mouse adipose tissue-derived stem cells (mADSC) into the intraperitoneal space has a rescue effect on NaIO3 -induced retinal degeneration in mice. In this study, mADSC transplantation recovered visual function and preserved the retinal outer layer structure compared to the control group without any integration of mADSC into the retina. Moreover, endogenous ciliary neurotrophic factor (CNTF) was elevated in the retinas of mADSC-treated mice. We found that lipopolysaccharide (LPS) or LPS-stimulated monocyte supernatant induced the secretion of granulocyte colony stimulating factor (GCSF), CD54, CXCL10, interleukin-6 (IL-6), and CCL5 from the mADSC by cytokine array. Network inference was conducted to investigate signaling networks related to CNTF regulation. Based on bioinformatics data, the expression of IL-6 was related to the expression of CNTF. Additionally, intravitreal injection of IL-6 in rats produced up-regulation of endogenous CNTF in the retina. mADSC had a rescue effect on retinal degeneration through the up-regulation of endogenous CNTF by IL-6. Thus, transplantation of mADSC could be a potential treatment option for retinal degeneration.
Collapse
Affiliation(s)
- Jeong Hoon Heo
- Department of Molecular Biology and Immunology, College of Medicine, Kosin University, Pusan, Korea.,Institute for Medicine, College of Medicine, Kosin University, Pusan, Korea
| | - Jung Ae Yoon
- Department of Dental Hygiene, Dong Ju College, Pusan, Korea
| | - Eun Kyung Ahn
- Department of Biological Science, College of Natural Science, Dong-A University, Pusan, Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Kosin University, Pusan, Korea
| | - Sang Hwa Urm
- Department of Preventive Medicine, Inje University College of Medicine, Pusan, Korea
| | - Chul Oh Oak
- Department of Internal Medicine, College of Medicine, Kosin University, Pusan, Korea
| | - Byeng Chul Yu
- Department of Preventive Medicine, College of Medicine, Kosin University, Pusan, Korea
| | - Sang Joon Lee
- Institute for Medicine, College of Medicine, Kosin University, Pusan, Korea.,Department of Ophthalmology, College of Medicine, Kosin University, Pusan, Korea
| |
Collapse
|
6
|
Cox AA, Sagot Y, Hedou G, Grek C, Wilkes T, Vinik AI, Ghatnekar G. Low-Dose Pulsatile Interleukin-6 As a Treatment Option for Diabetic Peripheral Neuropathy. Front Endocrinol (Lausanne) 2017; 8:89. [PMID: 28512447 PMCID: PMC5411416 DOI: 10.3389/fendo.2017.00089] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/06/2017] [Indexed: 01/27/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) remains one of the most common and serious complications of diabetes. Currently, pharmacological agents are limited to treating the pain associated with DPN, and do not address the underlying pathological mechanisms driving nerve damage, thus leaving a significant unmet medical need. Interestingly, research conducted using exercise as a treatment for DPN has revealed interleukin-6 (IL-6) signaling to be associated with many positive benefits such as enhanced blood flow and lipid metabolism, decreased chronic inflammation, and peripheral nerve fiber regeneration. IL-6, once known solely as a pro-inflammatory cytokine, is now understood to signal as a multifunctional cytokine, capable of eliciting both pro- and anti-inflammatory responses in a context-dependent fashion. IL-6 released from muscle in response to exercise signals as a myokine and as such has a unique kinetic profile, whereby levels are transiently elevated up to 100-fold and return to baseline levels within 4 h. Importantly, this kinetic profile is in stark contrast to long-term IL-6 elevation that is associated with pro-inflammatory states. Given exercise induces IL-6 myokine signaling, and exercise has been shown to elicit numerous beneficial effects for the treatment of DPN, a causal link has been suggested. Here, we discuss both the clinical and preclinical literature related to the application of IL-6 as a treatment strategy for DPN. In addition, we discuss how IL-6 may directly modulate Schwann and nerve cells to explore a mechanistic understanding of how this treatment elicits a neuroprotective and/or regenerative response. Collectively, studies suggest that IL-6, when administered in a low-dose pulsatile strategy to mimic the body's natural response to exercise, may prove to be an effective treatment for the protection and/or restoration of peripheral nerve function in DPN. This review highlights the studies supporting this assertion and provides rationale for continued investigation of IL-6 for the treatment of DPN.
Collapse
Affiliation(s)
| | - Yves Sagot
- Relief Therapeutics SA, Zurich, Switzerland
| | - Gael Hedou
- Relief Therapeutics SA, Zurich, Switzerland
| | | | | | | | - Gautam Ghatnekar
- FirstString Research, Mt. Pleasant, SC, USA
- *Correspondence: Gautam Ghatnekar,
| |
Collapse
|
7
|
Peripheral nerve regeneration and NGF-dependent neurite outgrowth of adult sensory neurons converge on STAT3 phosphorylation downstream of neuropoietic cytokine receptor gp130. J Neurosci 2014; 34:13222-33. [PMID: 25253866 DOI: 10.1523/jneurosci.1209-13.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
After nerve injury, adult sensory neurons can regenerate peripheral axons and reconnect with their target tissue. Initiation of outgrowth, as well as elongation of neurites over long distances, depends on the signaling of receptors for neurotrophic growth factors. Here, we investigated the importance of gp130, the signaling subunit of neuropoietic cytokine receptors in peripheral nerve regeneration. After sciatic nerve crush, functional recovery in vivo was retarded in SNS-gp130(-/-) mice, which specifically lack gp130 in sensory neurons. Correspondingly, a significantly reduced number of free nerve endings was detected in glabrous skin from SNS-gp130(-/-) compared with control mice after nerve crush. Neurite outgrowth and STAT3 activation in vitro were severely reduced in cultures in gp130-deficient cultured neurons. Surprisingly, in neurons obtained from SNS-gp130(-/-) mice the increase in neurite length was reduced not only in response to neuropoietic cytokine ligands of gp130 but also to nerve growth factor (NGF), which does not bind to gp130-containing receptors. Neurite outgrowth in the absence of neurotrophic factors was partially rescued in gp130-deficient neurons by leptin, which activates STAT3 downstream of leptic receptor and independent of gp130. The neurite outgrowth response of gp130-deficient neurons to NGF was fully restored in the presence of leptin. Based on these findings, gp130 signaling via STAT3 activation is suggested not only to be an important regulator of peripheral nerve regeneration in vitro and in vivo, but as determining factor for the growth promoting action of NGF in adult sensory neurons.
Collapse
|
8
|
Depressed neurofilament expression associates with apolipoprotein E3/E4 genotype in maturing human fetal neurons exposed to HIV-1. J Neurovirol 2013; 18:323-30. [PMID: 22302611 DOI: 10.1007/s13365-012-0079-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/05/2012] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
Exposure of differentiating human neural progenitor cells (NEP) to HIV-1 results in a neuronal“failure to thrive” phenotype characterized by a relative decrease in neurofilament-light (NF-L) expression. However,when NEP were segregated by their apolipoproteinE genotype, differentiating apolipoprotein E3/E4 cells showed reduced NF-L expression upon HIV-1 exposure,but differentiating apolipoprotein E3/E3 or apolipoproteinE4/E4 cells did not. These data suggest that apolipoproteinE genotype is a host factor that could affect the development of neurocognitive dysfunction in HIV-1 infected individuals.
Collapse
|
9
|
Ng JMJ, Chen MJ, Leung JYK, Peng ZF, Manikandan J, Qi RZ, Chuah MI, West AK, Vickers JC, Lu J, Cheung NS, Chung RS. Transcriptional insights on the regenerative mechanics of axotomized neurons in vitro. J Cell Mol Med 2012; 16:789-811. [PMID: 21711447 PMCID: PMC3822849 DOI: 10.1111/j.1582-4934.2011.01361.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Axotomized neurons have the innate ability to undergo regenerative sprouting but this is often impeded by the inhibitory central nervous system environment. To gain mechanistic insights into the key molecular determinates that specifically underlie neuronal regeneration at a transcriptomic level, we have undertaken a DNA microarray study on mature cortical neuronal clusters maintained in vitro at 8, 15, 24 and 48 hrs following complete axonal severance. A total of 305 genes, each with a minimum fold change of ±1.5 for at least one out of the four time points and which achieved statistical significance (one-way ANOVA, P < 0.05), were identified by DAVID and classified into 14 different functional clusters according to Gene Ontology. From our data, we conclude that post-injury regenerative sprouting is an intricate process that requires two distinct pathways. Firstly, it involves restructuring of the neurite cytoskeleton, determined by compound actin and microtubule dynamics, protein trafficking and concomitant modulation of both guidance cues and neurotrophic factors. Secondly, it elicits a cell survival response whereby genes are regulated to protect against oxidative stress, inflammation and cellular ion imbalance. Our data reveal that neurons have the capability to fight insults by elevating biological antioxidants, regulating secondary messengers, suppressing apoptotic genes, controlling ion-associated processes and by expressing cell cycle proteins that, in the context of neuronal injury, could potentially have functions outside their normal role in cell division. Overall, vigilant control of cell survival responses against pernicious secondary processes is vital to avoid cell death and ensure successful neurite regeneration.
Collapse
Affiliation(s)
- Jian Ming Jeremy Ng
- Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Loss of neuron-astroglial interaction rapidly induces protective CNTF expression after stroke in mice. J Neurosci 2012; 32:9277-87. [PMID: 22764235 DOI: 10.1523/jneurosci.1746-12.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) is a potent neural cytokine with very low expression in the CNS, predominantly by astrocytes. CNTF increases rapidly and greatly following traumatic or ischemic injury. Understanding the underlying mechanisms would help to design pharmacological treatments to increase endogenous CNTF levels for neuroprotection. Here, we show that astroglial CNTF expression in the adult mouse striatum is increased twofold within 1 h and increases up to >30-fold over 2 weeks following a focal stroke caused by a transient middle cerebral artery occlusion (MCAO). Selective neuronal loss caused by intrastriatal injection of quinolinic acid resulted in a comparable increase. Cocultured neurons reduced CNTF expression in astrocytes, which was prevented by light trypsinization. RGD (arginine-glycine-aspartic acid) blocking peptides induced CNTF expression, which was dependent on transcription. Astroglial CNTF expression was not affected by diffusible neuronal molecules or by neurotransmitters. The transient ischemia does not seem to directly increase CNTF, as intrastriatal injection of an ischemic solution or exposure of naive mice or cultured cells to severe hypoxia had minimal effects. Inflammatory mechanisms were probably also not involved, as intrastriatal injection of proinflammatory cytokines (IFNγ, IL6) in naive mice had no or small effects, and anti-inflammatory treatments did not diminish the increase in CNTF after MCAO. CNTF-/- mice had more extensive tissue loss and similar astrocyte activation after MCAO than their wild-type littermates. These data suggest that contact-mediated integrin signaling between neurons and astrocytes normally represses CNTF expression and that neuronal dysfunction causes a rapid protective response by the CNS.
Collapse
|
11
|
Kang SS, Keasey MP, Arnold SA, Reid R, Geralds J, Hagg T. Endogenous CNTF mediates stroke-induced adult CNS neurogenesis in mice. Neurobiol Dis 2012; 49:68-78. [PMID: 22960105 DOI: 10.1016/j.nbd.2012.08.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/16/2012] [Accepted: 08/22/2012] [Indexed: 11/24/2022] Open
Abstract
Focal brain ischemia in adult rats rapidly and robustly induces neurogenesis in the subventricular zone (SVZ) but there are few and inconsistent reports in mice, presenting a hurdle to genetically investigate the endogenous neurogenic regulators such as ciliary neurotrophic factor (CNTF). Here, we first provide a platform for further studies by showing that middle cerebral artery occlusion in adult male C57BL/6 mice robustly enhances neurogenesis in the SVZ only under very specific conditions, i.e., 14days after a 30min occlusion. CNTF expression paralleled changes in the number of proliferated, BrdU-positive, SVZ cells. Stroke-induced proliferation was absent in CNTF-/- mice, suggesting that it is mediated by CNTF. MCAO-increased CNTF appears to act on C cell proliferation and by inducing FGF2 expression but not via EGF expression or Notch1 signaling of neural stem cells in the SVZ. CNTF is unique, as expression of other gp130 ligands, IL-6 and LIF, did not predict SVZ proliferation or showed no or only small compensatory increases in CNTF-/- mice. Expression of tumor necrosis factor-α, which can inhibit neurogenesis, and the presence of leukocytes in the SVZ were inversely correlated with neurogenesis, but pro-inflammatory cytokines did not affect CNTF expression in cultured astrocytes. These results suggest that slowly up-regulated CNTF in the SVZ mediates stroke-induced neurogenesis and is counteracted by inflammation. Further pharmacological stimulation of endogenous CNTF might be a good therapeutic strategy for cell replacement after stroke as CNTF regulates normal patterns of neurogenesis and is expressed almost exclusively in the nervous system.
Collapse
Affiliation(s)
- Seong Su Kang
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY 40292, USA; Department of Neurological Surgery, University of Louisville, KY 40292, USA
| | - Matthew P Keasey
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY 40292, USA; Department of Neurological Surgery, University of Louisville, KY 40292, USA
| | - Sheila A Arnold
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY 40292, USA; Department of Neurological Surgery, University of Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville, KY 40292, USA
| | - Rollie Reid
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY 40292, USA; Department of Neurological Surgery, University of Louisville, KY 40292, USA
| | - Justin Geralds
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY 40292, USA; Department of Neurological Surgery, University of Louisville, KY 40292, USA
| | - Theo Hagg
- Kentucky Spinal Cord Injury Research Center, University of Louisville, KY 40292, USA; Department of Neurological Surgery, University of Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville, KY 40292, USA.
| |
Collapse
|
12
|
Chinese medicine in diabetic peripheral neuropathy: experimental research on nerve repair and regeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:191632. [PMID: 22927874 PMCID: PMC3426291 DOI: 10.1155/2012/191632] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/08/2012] [Accepted: 04/26/2012] [Indexed: 11/24/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications of chronic diabetes mellitus. Pathological characteristics of DPN include axonal atrophy, nerve demyelination, and delayed regeneration of peripheral sensory nerve fibers. The goal of treatment in DPN is not only to ameliorate neurological symptoms but also to slow or reverse the underlying neurodegenerative process. Schwann cells and neurotrophic factors play important roles in the repair and regeneration of peripheral nerves. The present paper reviews current studies and evidence regarding the neurological effects of traditional Chinese medicine, with an emphasis on recent developments in the area of nerve repair and regeneration in DPN.
Collapse
|
13
|
Zigmond RE. gp130 cytokines are positive signals triggering changes in gene expression and axon outgrowth in peripheral neurons following injury. Front Mol Neurosci 2012; 4:62. [PMID: 22319466 PMCID: PMC3262188 DOI: 10.3389/fnmol.2011.00062] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/28/2011] [Indexed: 01/24/2023] Open
Abstract
Adult peripheral neurons, in contrast to adult central neurons, are capable of regeneration after axonal damage. Much attention has focused on the changes that accompany this regeneration in two places, the distal nerve segment (where phagocytosis of axonal debris, changes in the surface properties of Schwann cells, and induction of growth factors and cytokines occur) and the neuronal cell body (where dramatic changes in cell morphology and gene expression occur). The changes in the axotomized cell body are often referred to as the "cell body response." The focus of the current review is a family of cytokines, the glycoprotein 130 (gp130) cytokines, which produce their actions through a common gp130 signaling receptor and which function as injury signals for axotomized peripheral neurons, triggering changes in gene expression and in neurite outgrowth. These cytokines play important roles in the responses of sympathetic, sensory, and motor neurons to injury. The best studied of these cytokines in this context are leukemia inhibitory factor (LIF) and interleukin (IL)-6, but experiments with conditional gp130 knockout animals suggest that other members of this family, not yet determined, are also involved. The primary gp130 signaling pathway shown to be involved is the activation of Janus kinase (JAK) and the transcription factors Signal Transducers and Activators of Transcription (STAT), though other downstream pathways such as mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) may also play a role. gp130 signaling may involve paracrine, retrograde, and autocrine actions of these cytokines. Recent studies suggest that manipulation of this cytokine system can also stimulate regeneration by injured central neurons.
Collapse
Affiliation(s)
- Richard E. Zigmond
- Department of Neurosciences, Case Western Reserve University, ClevelandOH, USA
| |
Collapse
|
14
|
Quarta S, Vogl C, Constantin CE, Üçeyler N, Sommer C, Kress M. Genetic evidence for an essential role of neuronally expressed IL-6 signal transducer gp130 in the induction and maintenance of experimentally induced mechanical hypersensitivity in vivo and in vitro. Mol Pain 2011; 7:73. [PMID: 21951917 PMCID: PMC3197546 DOI: 10.1186/1744-8069-7-73] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/27/2011] [Indexed: 11/29/2022] Open
Abstract
Tenderness and mechanical allodynia are key symptoms of malignant tumor, inflammation and neuropathy. The proinflammatory cytokine interleukin-6 (IL-6) is causally involved in all three pathologies. IL-6 not only regulates innate immunity and inflammation but also causes nociceptor sensitization and hyperalgesia. In general and in most cell types including immune cells and sensory neurons, IL-6 binds soluble μ receptor subunits which heteromerizes with membrane bound IL-6 signal transducer gp130. In the present study, we used a conditional knock-out strategy to investigate the importance of signal transducer gp130 expressed in C nociceptors for the generation and maintenance of mechanical hypersensitivity. Nociceptors were sensitized to mechanical stimuli by experimental tumor and this nociceptor sensitization was preserved at later stages of the pathology in control mice. However, in mice with a conditional deletion of gp130 in Nav1.8 expressing nociceptors mechanical hypersensitivity by experimental tumor, nerve injury or inflammation recovery was not preserved in the maintenance phase and nociceptors exhibited normal mechanical thresholds comparable to untreated mice. Together, the results argue for IL-6 signal transducer gp130 as an essential prerequisite in nociceptors for long-term mechanical hypersensitivity associated with cancer, inflammation and nerve injury.
Collapse
Affiliation(s)
- Serena Quarta
- Div. Physiology, DPMP, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
15
|
Spooren A, Kolmus K, Laureys G, Clinckers R, De Keyser J, Haegeman G, Gerlo S. Interleukin-6, a mental cytokine. ACTA ACUST UNITED AC 2011; 67:157-83. [PMID: 21238488 DOI: 10.1016/j.brainresrev.2011.01.002] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/21/2010] [Accepted: 01/08/2011] [Indexed: 12/18/2022]
Abstract
Almost a quarter of a century ago, interleukin-6 (IL-6) was discovered as an inflammatory cytokine involved in B cell differentiation. Today, IL-6 is recognized to be a highly versatile cytokine, with pleiotropic actions not only in immune cells, but also in other cell types, such as cells of the central nervous system (CNS). The first evidence implicating IL-6 in brain-related processes originated from its dysregulated expression in several neurological disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. In addition, IL-6 was shown to be involved in multiple physiological CNS processes such as neuron homeostasis, astrogliogenesis and neuronal differentiation. The molecular mechanisms underlying IL-6 functions in the brain have only recently started to emerge. In this review, an overview of the latest discoveries concerning the actions of IL-6 in the nervous system is provided. The central position of IL-6 in the neuroinflammatory reaction pattern, and more specifically, the role of IL-6 in specific neurodegenerative processes, which accompany Alzheimer's disease, multiple sclerosis and excitotoxicity, are discussed. It is evident that IL-6 has a dichotomic action in the CNS, displaying neurotrophic properties on the one hand, and detrimental actions on the other. This is in agreement with its central role in neuroinflammation, which evolved as a beneficial process, aimed at maintaining tissue homeostasis, but which can become malignant when exaggerated. In this perspective, it is not surprising that 'well-meant' actions of IL-6 are often causing harm instead of leading to recovery.
Collapse
Affiliation(s)
- Anneleen Spooren
- Laboratory of Eukaryotic Signal Transduction and Gene Expression, University of Ghent, K.L. Ledeganckstraat 35, 9000 Gent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
We tested whether bone marrow stromal cells (BMSCs) could enhance the survival and neurite growth of dorsal root ganglia (DRG) through substrate effects or secreted factors. Our results showed that in DRG with BMSCs and BMSC-conditioned media cultures compared with DRG-fibroblast cultures, there was a significant increase in the number and length of, area covered by, and number of cells with definite neurites. In cytokine assays with conditioned media, vascular endothelial growth factor, granulocyte macrophage colony-stimulating factor, and IL-6 secreted by BMSCs may contribute to observed neurotrophic effects. These findings indicate that BMSCs of adult Macaca fascicularis increased neuronal survival and promoted neurite outgrowth of DRG by means of secretory factors.
Collapse
|
17
|
Siebert JR, Middleton FA, Stelzner DJ. Long descending cervical propriospinal neurons differ from thoracic propriospinal neurons in response to low thoracic spinal injury. BMC Neurosci 2010; 11:148. [PMID: 21092315 PMCID: PMC3001741 DOI: 10.1186/1471-2202-11-148] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 11/23/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Propriospinal neurons, with axonal projections intrinsic to the spinal cord, have shown a greater regenerative response than supraspinal neurons after axotomy due to spinal cord injury (SCI). Our previous work focused on the response of axotomized short thoracic propriospinal (TPS) neurons following a low thoracic SCI (T9 spinal transection or moderate spinal contusion injury) in the rat. The present investigation analyzes the intrinsic response of cervical propriospinal neurons having long descending axons which project into the lumbosacral enlargement, long descending propriospinal tract (LDPT) axons. These neurons also were axotomized by T9 spinal injury in the same animals used in our previous study. RESULTS Utilizing laser microdissection (LMD), qRT-PCR, and immunohistochemistry, we studied LDPT neurons (located in the C5-C6 spinal segments) between 3-days, and 1-month following a low thoracic (T9) spinal cord injury. We examined the response of 89 genes related to growth factors, cell surface receptors, apoptosis, axonal regeneration, and neuroprotection/cell survival. We found a strong and significant down-regulation of ~25% of the genes analyzed early after injury (3-days post-injury) with a sustained down-regulation in most instances. In the few genes that were up-regulated (Actb, Atf3, Frs2, Hspb1, Nrap, Stat1) post-axotomy, the expression for all but one was down-regulated by 2-weeks post-injury. We also compared the uninjured TPS control neurons to the uninjured LDPT neurons used in this experiment for phenotypic differences between these two subpopulations of propriospinal neurons. We found significant differences in expression in 37 of the 84 genes examined between these two subpopulations of propriospinal neurons with LDPT neurons exhibiting a significantly higher base line expression for all but 3 of these genes compared to TPS neurons. CONCLUSIONS Taken collectively these data indicate a broad overall down-regulation in the genes examined, including genes for neurotrophic/growth factor receptors as well as for several growth factors. There was a lack of a significant regenerative response, with the exception of an up-regulation of Atf3 and early up-regulation of Hspb1 (Hsp27), both involved in cell stress/neuroprotection as well as axonal regeneration. There was no indication of a cell death response over the first month post-injury. In addition, there appear to be significant phenotypic differences between uninjured TPS and LDPT neurons, which may partly account for the differences observed in their post-axotomy responses. The findings in this current study stand in stark contrast to the findings from our previous work on TPS neurons. This suggests that different approaches will be needed to enhance the capacity for each population of propriospinal neuron to survive and undergo successful axonal regeneration after SCI.
Collapse
Affiliation(s)
- Justin R Siebert
- Department of Cell and Developmental Biology, SUNY Upstate Medical University 750 East Adams Street Syracuse, New York 13210, USA
| | - Frank A Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University 750 East Adams Street Syracuse, New York 13210, USA
| | - Dennis J Stelzner
- Department of Cell and Developmental Biology, SUNY Upstate Medical University 750 East Adams Street Syracuse, New York 13210, USA
| |
Collapse
|
18
|
Cotter MA, Gibson TM, Nangle MR, Cameron NE. Effects of interleukin-6 treatment on neurovascular function, nerve perfusion and vascular endothelium in diabetic rats. Diabetes Obes Metab 2010; 12:689-99. [PMID: 20590746 DOI: 10.1111/j.1463-1326.2010.01221.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AIM Interleukin-6 (IL-6), a member of the neuropoietic cytokine family, participates in neural development and has neurotrophic activity. Recent research has also indicated actions to improve vasa nervorum function in diabetes. Both these facets are potentially relevant for treatment of diabetic neuropathy. The aim of this study was to determine whether IL-6 treatment corrected changes in neurovascular function in streptozotocin-induced diabetic rats. METHODS After 1 month of diabetes, rats were given IL-6 for 1 month. The rats were subjected to sensory testing and measurements of nerve conduction velocities and nerve blood flow by hydrogen clearance microelectrode polarography. Further groups were used to study responses of the isolated gastric fundus and renal artery. Results were statistically analysed using ANOVA and post hoc tests. RESULTS Diabetic rats showed mechanical hyperalgesia, thermal hyperalgesia, and tactile allodynia. The former was unaffected by IL-6 treatment, whereas the latter two measures were corrected. Immunohistochemical staining of dorsal root ganglia for IL-6 did not reveal any changes with diabetes or treatment. The results showed that 22 and 17.4% slowing of sciatic motor and saphenous sensory nerve conduction velocities, respectively, with diabetes were improved by IL-6. Sciatic endoneurial perfusion was halved by diabetes and corrected by IL-6. A 40.6% diabetic deficit in maximal non-adrenergic, non-cholinergic relaxation of gastric fundus to nerve stimulation was unaffected by IL-6. Renal artery endothelium-dependent relaxation was halved by diabetes, the endothelium-derived hyperpolarizing factor (EDHF) component being severely attenuated. IL-6 did not affect nitric oxide-mediated vasorelaxation, but markedly improved EDHF responses. CONCLUSIONS IL-6 improved aspects of small and large nerve fibre and vascular endothelium dysfunction in diabetic rats. The functional benefits related to increased nerve blood flow via an EDHF mechanism, and IL-6 could have therapeutic potential in diabetic neuropathy and vasculopathy, which should be further evaluated.
Collapse
Affiliation(s)
- M A Cotter
- School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | |
Collapse
|
19
|
Siebert JR, Middelton FA, Stelzner DJ. Intrinsic response of thoracic propriospinal neurons to axotomy. BMC Neurosci 2010; 11:69. [PMID: 20525361 PMCID: PMC2894843 DOI: 10.1186/1471-2202-11-69] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 06/04/2010] [Indexed: 11/25/2022] Open
Abstract
Background Central nervous system axons lack a robust regenerative response following spinal cord injury (SCI) and regeneration is usually abortive. Supraspinal pathways, which are the most commonly studied for their regenerative potential, demonstrate a limited regenerative ability. On the other hand, propriospinal (PS) neurons, with axons intrinsic to the spinal cord, have shown a greater regenerative response than their supraspinal counterparts, but remain relatively understudied in regards to spinal cord injury. Results Utilizing laser microdissection, gene-microarray, qRT-PCR, and immunohistochemistry, we focused on the intrinsic post-axotomy response of specifically labelled thoracic propriospinal neurons at periods from 3-days to 1-month following T9 spinal cord injury. We found a strong and early (3-days post injury, p.i) upregulation in the expression of genes involved in the immune/inflammatory response that returned towards normal by 1-week p.i. In addition, several regeneration associated and cell survival/neuroprotective genes were significantly up-regulated at the earliest p.i. period studied. Significant upregulation of several growth factor receptor genes (GFRa1, Ret, Lifr) also occurred only during the initial period examined. The expression of a number of pro-apoptotic genes up-regulated at 3-days p.i. suggest that changes in gene expression after this period may have resulted from analyzing surviving TPS neurons after the cell death of the remainder of the axotomized TPS neuronal population. Conclusions Taken collectively these data demonstrate that thoracic propriospinal (TPS) neurons mount a very dynamic response following low thoracic axotomy that includes a strong regenerative response, but also results in the cell death of many axotomized TPS neurons in the first week after spinal cord injury. These data also suggest that the immune/inflammatory response may have an important role in mediating the early strong regenerative response, as well as the apoptotic response, since expression of all of three classes of gene are up-regulated only during the initial period examined, 3-days post-SCI. The up-regulation in the expression of genes for several growth factor receptors during the first week post-SCI also suggest that administration of these factors may protect TPS neurons from cell death and maintain a regenerative response, but only if given during the early period after injury.
Collapse
Affiliation(s)
- Justin R Siebert
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse New York, USA.
| | | | | |
Collapse
|
20
|
Rose JJ, Bealmear B, Nedelkoska L, Studzinski D, Lisak RP, Benjamins JA. Cytokines decrease expression of interleukin-6 signal transducer and leptin receptor in central nervous system glia. J Neurosci Res 2009; 87:3098-106. [DOI: 10.1002/jnr.22135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Neuroprotective properties of ciliary neurotrophic factor for cultured adult rat dorsal root ganglion neurons. Histochem Cell Biol 2008; 130:669-79. [PMID: 18679704 DOI: 10.1007/s00418-008-0484-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2008] [Indexed: 12/15/2022]
Abstract
We observed that recombinant ciliary neurotrophic factor (CNTF) enhanced survival and neurite outgrowth of cultured adult rat dorsal root ganglion (DRG) neurons. Among other neurotrophic factors (NGF and GDNF) and interleukin (IL)-6 cytokine members [IL-6, LIF, cardiotrophin-1, and oncostatin M (OSM)] at the same concentration (50 ng/ml), CNTF, as well as LIF and OSM, displayed high efficacy for the promotion of the number of viable neurons and neurite-bearing cells. CNTF enhanced the number of neurite-bearing cells in both small neurons (soma diameter <30 microm) and large neurons (soma diameter > or =30 microm), whereas NGF and GDNF promoted that in only small neurons. Western blot analysis revealed that CNTF induced phosphorylation of STAT3, Akt, and ERK1/2 in the neurons. Furthermore, the neurite outgrowth-promoting activity of CNTF was diminished by co-treatment with Janus kinase (JAK) 2 inhibitor, AG490; STAT3 inhibitor, STA-21; phosphatidyl inositol-3'-phosphate-kinase (PI3K) inhibitor, LY294002; and mitogen-activated protein kinase kinase (MEK) inhibitor, PD98059, in a concentration-dependent manner. Its survival-promoting activity was also affected by AG490, STA-21, and LY294002 at higher concentrations, but not by PD98059. These findings suggest the involvement of JAK2/STAT3, PI3K/Akt, and MEK/ERK signaling pathways in CNTF-induced neurite outgrowth, where the former two pathways are thought to play major roles in mediating the survival response of neurons to CNTF.
Collapse
|
22
|
Averill S, Inglis JJ, King VR, Thompson SWN, Cafferty WBJ, Shortland PJ, Hunt SP, Kidd BL, Priestley JV. Reg-2 expression in dorsal root ganglion neurons after adjuvant-induced monoarthritis. Neuroscience 2008; 155:1227-36. [PMID: 18652880 DOI: 10.1016/j.neuroscience.2008.06.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 12/27/2022]
Abstract
Reg-2 is a secreted protein that is expressed de novo in motoneurons, sympathetic neurons, and dorsal root ganglion (DRG) neurons after nerve injury and which can act as a Schwann cell mitogen. We now show that Reg-2 is also upregulated by DRG neurons in inflammation with a very unusual expression pattern. In a rat model of monoarthritis, Reg-2 immunoreactivity was detected in DRG neurons at 1 day, peaked at 3 days (in 11.6% of DRG neurons), and was still present at 10 days (in 5%). Expression was almost exclusively in the population of DRG neurons that expresses the purinoceptor P2X(3) and binding sites for the lectin Griffonia simplicifolia IB4, and which is known to respond to glial cell line-derived neurotrophic factor (GDNF). Immunoreactivity was present in DRG cell bodies and central terminals in the dorsal horn of the spinal cord. In contrast, very little expression was seen in the nerve growth factor (NGF) responsive and substance P expressing population. However intrathecal delivery of GDNF did not induce Reg-2 expression, but leukemia inhibitory factor (LIF) had a dramatic effect, inducing Reg-2 immunoreactivity in 39% of DRG neurons and 62% of P2X(3) cells. Changes in inflammation have previously been observed predominantly in the neuropeptide expressing, NGF responsive, DRG neurons. Our results show that changes also take place in the IB4 population, possibly driven by members of the LIF family of neuropoietic cytokines. In addition, the presence of Reg-2 in central axon terminals implicates Reg-2 as a possible modulator of second order dorsal horn cells.
Collapse
Affiliation(s)
- S Averill
- Neuroscience Centre, Institute of Cell and Molecular Science, Bart's & The London School of Medicine & Dentistry, Whitechapel, London E1 2AT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ozog MA, Modha G, Church J, Reilly R, Naus CC. Co-administration of Ciliary Neurotrophic Factor with Its Soluble Receptor Protects against Neuronal Death and Enhances Neurite Outgrowth. J Biol Chem 2008; 283:6546-60. [DOI: 10.1074/jbc.m709065200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Gardiner J, Barton D, Vanslambrouck JM, Braet F, Hall D, Marc J, Overall R. Defects in tongue papillae and taste sensation indicate a problem with neurotrophic support in various neurological diseases. Neuroscientist 2008; 14:240-50. [PMID: 18270312 DOI: 10.1177/1073858407312382] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neurotrophic support of developing neurons by neurotrophins is of critical importance in the development of fungiform papillae and taste buds. A number of neurological disorders show a decrease or increase in fungiform papillae or taste sensation. These can be grouped into disorders with reduced papillae (Machado-Joseph disease, Stüve-Wiedemann syndrome, familial dysautonomia, dystonia musculorum, and Behçet's disease) and those with taste defects only (Alzheimer's disease, Huntington's disease, hereditary sensory and autonomic neuropathy type IV, and diabetes mellitus). In addition, Parkinson's disease results in increased taste sensation. Here, we hypothesize that the main problem in these disorders is either not enough or too much neurotrophic support. Proneurotrophic drugs such as some antidepressants and aldose reductase inhibitors may prove useful in the treatment of these sensory and central nervous system disorders. Similarly, antineurotrophic drugs may also be useful in Parkinson's disease. Here we show that the protein involved in familial dysautonomia, IKAP, localizes to keratin filaments in HeLa cells, suggesting a role for the keratin cytoskeleton in neurotrophic support.
Collapse
Affiliation(s)
- John Gardiner
- School of Biological Sciences, University of Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Multifaceted aspects of inflammation in multiple sclerosis: The role of microglia. J Neuroimmunol 2007; 191:39-44. [DOI: 10.1016/j.jneuroim.2007.09.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 09/07/2007] [Indexed: 11/18/2022]
|
26
|
Sango K, Yanagisawa H, Takaku S. Expression and histochemical localization of ciliary neurotrophic factor in cultured adult rat dorsal root ganglion neurons. Histochem Cell Biol 2007; 128:35-43. [PMID: 17520269 DOI: 10.1007/s00418-007-0290-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is abundantly expressed in Schwann cells in adult mammalian peripheral nerves, but not in neurons. After peripheral nerve injury, CNTF released from disrupted Schwann cells is likely to promote neuronal survival and axonal regeneration. In the present study, we examined the expression and histochemical localization of CNTF in adult rat DRG in vivo and in vitro. In contrast to the restricted expression in Schwann cells in vivo, we observed abundant CNTF mRNA and protein expression in DRG neurons after 3 h, 2, 7, and 15 days in dissociated cell culture. At later stages (7 and 15 days) of culture, CNTF immunoreactivity was detected in both neuronal cell bodies and regenerating neurites. These results suggest that CNTF is synthesized and transported to neurites in cultured DRG neurons. Since we failed to observe CNTF immunoreactivity in DRG neurons in explant culture, disruption of cell-cell interactions, rather than the culture itself, may be an inducible factor for localization of CNTF in the neurons.
Collapse
Affiliation(s)
- Kazunori Sango
- Division of Neural Development and Regeneration, Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan.
| | | | | |
Collapse
|
27
|
Lisak RP, Benjamins JA, Bealmear B, Yao B, Land S, Nedelkoska L, Skundric D. Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for immune-related molecules by central nervous system mixed glial cell cultures. Mult Scler 2006; 12:149-68. [PMID: 16629418 DOI: 10.1191/135248506ms1251oa] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytokines secreted within the central nervous system (CNS) are important in the development of multiple sclerosis (MS) lesions. The balance between Th1, monocyte/macrophage (M/M) and Th2 cytokines in the CNS may be pivotal in determining the outcome of lesion development. We examined the effects of mixtures of cytokines on gene expression by CNS glial cells, as mixtures of cytokines are present in MS lesions, which in turn contain mixtures of glial cells. In this initial analysis by gene array, we examined changes at 6 hours to identify early changes in gene expression that represent primary responses to the cytokines. Rat glial cells were incubated with mixtures of Th1, M/M and Th2 cytokines for 6 hours and examined for changes in early gene expression employing microarray gene chip technology. A minimum of 814 genes were differentially regulated by one or more of the cytokine mixtures in comparison to controls, including changes in expression in a large number of genes for immune system-related proteins. Expression of the proteins for these genes likely influences development and inhibition of MS lesions as well as protective and regenerative processes. Analysing gene expression for the effects of various combinations of exogenous cytokines on glial cells in the absence of the confounding effects of inflammatory cells themselves should increase our understanding of cytokine-induced pathways in the CNS.
Collapse
Affiliation(s)
- R P Lisak
- Department of Neurology, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Andriambeloson E, Baillet C, Vitte PA, Garotta G, Dreano M, Callizot N. Interleukin-6 attenuates the development of experimental diabetes-related neuropathy. Neuropathology 2006; 26:32-42. [PMID: 16521477 DOI: 10.1111/j.1440-1789.2006.00651.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuropathy is the most severe and the least understood complication of diabetes. We investigated the potential neuroprotective effect of IL-6 therapy in an experimental model of diabetic neuropathy. A single i.v. injection of streptozotocin (STZ, 55 mg/kg) was used to induce experimental diabetes in adult males. IL-6 (1, 10 or 30 microg/kg) was administrated either intraperitoneally on a daily basis or subcutaneously (s.c.) on a daily, on a three times or one time per week basis, starting at day 10 post-STZ. A decrease in sensory nerve conduction velocity (SNCV), indicative of neuropathy, is seen in STZ rats as early as day 10 post-STZ, a time at which blood glycaemia is already maximal. At later time points, this electrophysiological impairment became severe and clinically apparent by affecting tail flick latency. Motor dysfunction defined by a significant increase in compound muscle action potential (CMAP) latency was also recorded. At the completion of the study (day 40 post-STZ), histological examination revealed significant axonopathy and myelin loss, along with an increase in the proportion of fibers with abnormal appearance in sciatic nerves of STZ rats. These changes were not observed in non-diabetic rats and were significantly prevented by IL-6 treatment. The optimal dose appeared to be 10 microg/kg s.c. three injections per week, which showed a better effect in most of the parameters studied than 4-methylcatechol, a NGF-like neuroprotective compound. Once weekly and three times weekly administrations of IL-6 were as effective as daily treatment. Taken together, these results support the potential neuroprotective actions of IL-6. The fact that the half-life of IL-6 is only approximately 5 h while weekly dosing was neuroprotective strongly suggests activation by IL-6 of effector molecule(s) with longer duration of action.
Collapse
|
29
|
Ji JF, Dheen ST, Kumar SD, He BP, Tay SSW. Expressions of cytokines and chemokines in the dorsal motor nucleus of the vagus nerve after right vagotomy. ACTA ACUST UNITED AC 2005; 142:47-57. [PMID: 16260063 DOI: 10.1016/j.molbrainres.2005.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 09/07/2005] [Accepted: 09/16/2005] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate the expression of cytokines, tumor necrosis factor alpha (TNF-alpha), interleukin-1 beta (IL-1beta), interleukin-6 (IL-6) and transforming growth factor-beta 1 (TGF-beta1) and chemokines, fractalkine, monocyte chemoattractant protein 1 (MCP-1) and stromal cell-derived factor 1 (SDF-1) in the dorsal motor nucleus of the vagus nerve (DMV) after right vagotomy. Results showed that the immunoreactivities of IL-1beta, IL-6, TGF-beta1, fractalkine and MCP-1 were upregulated in the DMV at 14 days and the upregulation persisted at least until 28 days following right vagotomy. Quantification analysis revealed significant increases in the number of their immunopositive cells in the right DMV at 14 and 28 days after right vagotomy. Moreover, the upregulation of TNF-alpha immunoreactivity and significantly increased number of TNF-alpha-immunopositive cells were observed in the injured DMV at 7 and 14 days, and the increase in SDF-1-immunopositive cells at 14 days, after right vagotomy. Real time RT-PCR analysis showed the significant increase in the mRNA expression of IL-1beta, fractalkine and MCP-1 at 7 days, and the upregulation of TNF-alpha mRNA expression at 1 day after vagotomy. However, the peak increase in TGF-beta1 mRNA expression was observed at 1 day and the significant increase persisted at least until 14 days following right vagotomy. Double immunofluorescence analysis showed co-localization of lectin, a marker for microglia with CX3CR1 but not with IL-1beta at 14 days following right vagotomy. This study suggests that cytokines and chemokines involved in neuroprotection and neurodestruction could be activated in the axotomized DMV. However, it warrants further investigation to understand the neurodestructive and neuroprotective mechanisms that determine the fate of the vagal motoneurons after vagotomy.
Collapse
Affiliation(s)
- Jun Feng Ji
- Department of Anatomy, Faculty of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Blk. MD10, 4 Medical Drive, Singapore 117597, Singapore
| | | | | | | | | |
Collapse
|
30
|
Suzuki T, Sekido H, Kato N, Nakayama Y, Yabe-Nishimura C. Neurotrophin-3-induced production of nerve growth factor is suppressed in Schwann cells exposed to high glucose: involvement of the polyol pathway. J Neurochem 2005; 91:1430-8. [PMID: 15584919 DOI: 10.1111/j.1471-4159.2004.02824.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Development of hypesthesia, a loss of sensitivity to stimulation, is associated with impaired regeneration of peripheral sensory fibers, in which Schwann cells play a key role by secreting nerve growth factor (NGF). Recent clinical trials indicated that an inhibitor of aldose reductase (AR), the rate-limiting enzyme in the polyol pathway, significantly improved hypesthesia in diabetic patients. The fact that AR is localized in Schwann cells led us to investigate the role of the polyol pathway in NGF production of isolated Schwann cells. Among various endogenous factors examined, increased production of NGF was demonstrated in the cells treated with neurotrophin-3 (NT-3) for 24 h. NT-3-induced NGF production was significantly suppressed when cells were cultured in the medium containing high glucose. In these cells, the levels of glutathione (GSH) and cAMP-response element binding protein (CREB) were reduced, whereas the level of activated nuclear factor-kappaB (NF-kappaB) was elevated. These changes were abolished when an AR inhibitor fidarestat was included in the medium. NT-3-induced NGF production was further attenuated in the cells treated with an inhibitor of GSH synthesis. Together, the enhanced polyol pathway activity under high-glucose conditions seems to elicit reduced NT-3-induced NGF production in Schwann cells. Enhanced oxidative stress linked to the polyol pathway activity may mediate this process.
Collapse
Affiliation(s)
- Takeshi Suzuki
- Drug Development Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd, Mie, Japan.
| | | | | | | | | |
Collapse
|
31
|
Horie H, Kadoya T, Hikawa N, Sango K, Inoue H, Takeshita K, Asawa R, Hiroi T, Sato M, Yoshioka T, Ishikawa Y. Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. J Neurosci 2004; 24:1873-80. [PMID: 14985427 PMCID: PMC6730408 DOI: 10.1523/jneurosci.4483-03.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Various neurotrophic factors that promote axonal regeneration have been investigated in vivo, but the signals that prompt neurons to send out processes in peripheral nerves after axotomy are not well understood. Previously, we have shown oxidized galectin-1 (GAL-1/Ox) promotes initial axonal growth after axotomy in peripheral nerves. However, the mechanism by which GAL-1/Ox promotes axonal regeneration remains unclear and is the subject of the present study. To identify possible target cells of GAL-1/Ox, a fluorescently labeled recombinant human GAL-1/Ox (rhGAL-1/Ox) was incubated with DRG neurons, Schwann cells, and intraperitoneal macrophages from adult rats. Only the cell surfaces of intraperitoneal macrophages bound the rhGAL-1/Ox, suggesting that these cells possess a receptor for GAL-1/Ox. Experiments examining tyrosine phosphorylation revealed that rhGAL-1/Ox stimulated changes in signal transduction pathways in these macrophages. These changes caused macrophages to secrete an axonal growth-promoting factor. This was demonstrated when conditioned media of macrophages stimulated with rhGAL-1/Ox in 48 hr culture strongly enhanced axonal regeneration from transected-nerve sites of DRG explants. Furthermore, activated macrophage-conditioned media also improved Schwann cell migration from the transected-nerve sites. From these results, we propose that axonal regeneration occurs in axotomized peripheral nerves as a result of cytosolic reduced galectin-1 being released from Schwann cells and injured axons, which then becomes oxidized in the extracellular space. Oxidized galectin-1 then stimulates macrophages to secrete a factor that promotes axonal growth and Schwann cell migration, thus enhancing peripheral nerve regeneration.
Collapse
Affiliation(s)
- Hidenori Horie
- Advanced Research Center for Biological Scienc, Waseda University, Nishitokyo City, Tokyo 202-0021, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Inomata Y, Hirata A, Yonemura N, Koga T, Kido N, Tanihara H. Neuroprotective effects of interleukin-6 on NMDA-induced rat retinal damage. Biochem Biophys Res Commun 2003; 302:226-32. [PMID: 12604335 DOI: 10.1016/s0006-291x(03)00127-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study shows that interleukin-6 (IL-6) combined with soluble interleukin-6 receptors (sIL-6R) modulates N-methyl-D-aspartate (NMDA)-induced retinal damage. Eyes pretreated with a combined injection of IL-6 and sIL-6R had NMDA administered into the vitreous cavity. Morphometric analysis and retrograde labeling analysis found that pretreatment with either IL-6 or sIL-6R alone did not bring about any neuroprotective effect. However, pretreatment with a combined administration of IL-6 and sIL-6R induced a significant neuroprotective effect against NMDA-induced retinal damage. Apoptotic changes in the retina were assessed by the TUNEL method. The results indicated that pretreatment with IL-6 combined with sIL-6R prevents NMDA-induced apoptosis. Western blotting studies demonstrated upregulation of gp130 expression in the NMDA-injected retina. Present studies suggest that IL-6 combined with sIL-6R provides a neuroprotective effect on NMDA-induced retinal damage.
Collapse
Affiliation(s)
- Yasuya Inomata
- Department of Ophthalmology, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Damage-induced neuronal endopeptidase (DINE/ECEL) expression is regulated by leukemia inhibitory factor and deprivation of nerve growth factor in rat sensory ganglia after nerve injury. J Neurosci 2002. [PMID: 12417666 DOI: 10.1523/jneurosci.22-21-09410.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Damage-induced neuronal endopeptidase (DINE) is a novel metallopeptidase and is expressed in response to various neuronal injuries. The expression regulation of DINE mRNA in the dorsal root ganglia (DRGs) after sciatic nerve injury is examined. A substantial increase of DINE mRNA expression was observed in relatively small-sized DRG neurons after nerve injury. The expression was observed in isolectin B4-negative and partly TrkA-positive neurons, and the expression profile was fairly similar to that of the neuropeptide galanin. More than 80% of DINE mRNA-positive neurons simultaneously demonstrated galanin immunoreactivity after nerve injury. In cultured DRG, DINE mRNA expression was enhanced by leukemia inhibitory factor (LIF) but not by other growth factors and cytokines. LIF treatment to rat sciatic nerve induced DINE mRNA expression in DRG without nerve injury, and, conversely, the intranerve injection of anti-gp130 antibody after sciatic nerve injury significantly inhibited the upregulation of DINE mRNA in DRG. Furthermore, nerve growth factor (NGF) deprivation, which can induce galanin expression, also enhanced DINE mRNA expression in vitro and in vivo. Both LIF application and NGF deprivation additively enhanced DINE expression in vitro. These results suggest that DINE gene expression is regulated separately by both LIF and NGF deprivation, and this regulation pattern is similar to that of galanin gene expression. Because both DINE and galanin have a neuroprotective function, their simultaneous induction may provide more successful protection for injured sensory neurons.
Collapse
|
34
|
Sango K, Horie H, Saito H, Ajiki K, Tokashiki A, Takeshita K, Ishigatsubo Y, Kawano H, Ishikawa Y. Diabetes is not a potent inducer of neuronal cell death in mouse sensory ganglia, but it enhances neurite regeneration in vitro. Life Sci 2002; 71:2351-68. [PMID: 12231397 DOI: 10.1016/s0024-3205(02)02040-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We examined the effects of diabetes on the morphological features and regenerative capabilities of adult mouse nodose ganglia (NG) and dorsal root ganglia (DRG). By light and electron microscopy, no apoptotic cell death was detected in the ganglia obtained from either streptozotocin (STZ)-induced diabetic or normal C57BL/6J mice in vivo. Neurite regeneration from transected nerve terminals of NG and DRG explants in culture at normal (10 mM) and high (30 mM) glucose concentrations was significantly enhanced in the diabetic mice. Chromatolytic changes (i.e. swelling and migration of the nucleus to an eccentric position in the neurons, and a loss of Nissl substance in the neuronal perikarya) and apoptotic cell death (less than one-fifth of the neurons) in the cultured ganglia were present, but neither hyperglycemia in vivo nor high glucose conditions in vitro altered the morphological features of the ganglia or the ratios of apoptotic cells at 3 days in culture. By semiquantitative RT-PCR analysis, the mRNA expressions of ciliary neurotrophic factor (CNTF) in DRG from both mice were down-regulated at 1 day in culture. The expression in diabetic DRG, but not in control DRG, was significantly up-regulated at later stages (3 and 7 days) in culture. In summary, hyperglycemia is unlikely to induce cell death in the sensory ganglia, but enhances the regenerative capability of vagal and spinal sensory nerves in vitro. The up-regulation of CNTF mRNA expression during the culture of diabetic DRG may play a role in the enhanced neurite regeneration.
Collapse
Affiliation(s)
- Kazunori Sango
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, 183-8526, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The "primitive" neurons of the peripheral nervous system (PNS) have the remarkable ability to regenerate new fibers. This regenerative process requires a sequence of gene activation and repression that is poorly understood. One gene that is almost exclusively expressed in neurons of the PNS and is activated after nerve injury is the peripherin intermediate filament gene, but little is known about the genomic elements that control either its restricted expression or its response to nerve injury in adult mice. Previous studies suggested that both 5' flanking sequence and intragenic regions were required for cell type-specific and injury-specific expression. To determine which intragenic regions were critical, mice were generated that expressed peripherin transgenes lacking different introns. Analyses of these mice revealed that deletion of introns 2-8 had no effect on either the cell type-specific or injury-specific expression of the peripherin gene; however, the remaining intron, intron 1, differentially bound Sp1 transcription-related proteins/protein complexes in extracts from peripherin-expressing and nonexpressing tissues. Furthermore, a transgene that lacked intron 1 was not expressed in many neurons that contain endogenous peripherin but was activated after injury. Thus, accurate cell type-specific peripherin gene expression in the PNS depends on elements within intron 1, but other sequences, most likely in the 5'flanking region, are required for activating the peripherin gene in response to nerve injury.
Collapse
|
36
|
Singhal A, Baker AJ, Hare GMT, Reinders FX, Schlichter LC, Moulton RJ. Association between cerebrospinal fluid interleukin-6 concentrations and outcome after severe human traumatic brain injury. J Neurotrauma 2002; 19:929-37. [PMID: 12225653 DOI: 10.1089/089771502320317087] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acute inflammation plays a significant role in the pathophysiology of traumatic brain injury (TBI). However, the specific relationships between inflammatory mediators and patient outcome following TBI have not been fully established. In this study, we measured plasma and cerebrospinal fluid interleukin-1 (IL-1) and interleukin-6 (IL-6) concentrations in 36 patients, following severe TBI. Patients were monitored with continuous measurements of somatosensory-evoked potentials (SSEP) to derive an established surrogate outcome measurement, the 96-h evoked potential (SSEP96). Clinical outcomes were assessed at 3 months using the Glasgow Outcome Scale (GOS). Peak cerebrospinal fluid (CSF) IL-1 and IL-6 concentrations were significantly higher than those observed in the plasma [median 6.5 pg/mL (range 1.4-25.0) vs. 3.0 (0.8-7.6) for IL-1, and 650 (130-7,214) vs. 253 (52-1,506) for IL-6, p < 0.001 for both]. Peak CSF IL-6 levels correlated with SSEP96 (r = 0.42; p = 0.0133), and peak CSF IL-6 levels were higher with improved GOS (p = 0.024). Multiple regression analysis identified that age (p = 0.0072), pupillary abnormality (p = 0.021), the presence of mass lesion (p = 0.023), and peak CSF IL-6 concentrations (p = 0.026) were all statistically significant predictors of clinical outcome following TBI. These results suggest that peak CSF IL-6 concentrations correlate with improved outcome following TBI. This finding helps to characterize the inflammatory reaction associated with TBI and may help to develop improved treatment strategies for patients with TBI.
Collapse
Affiliation(s)
- A Singhal
- Department of Anaesthesia, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Dezawa M. Central and peripheral nerve regeneration by transplantation of Schwann cells and transdifferentiated bone marrow stromal cells. Anat Sci Int 2002; 77:12-25. [PMID: 12418080 DOI: 10.1046/j.0022-7722.2002.00012.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In contrast to the peripheral nervous system (PNS), little structural and functional regeneration of the central nervous system (CNS) occurs spontaneously following injury in adult mammals. The inability of the CNS to regenerate is mainly attributed to its own inhibitorial environment such as glial scar formation and the myelin sheath of oligodendrocytes. Therefore, one of the strategies to promote axonal regeneration of the CNS is to experimentally modify the environment to be similar to that of the PNS. Schwann cells are the myelinating glial cells in the PNS, and are known to play a key role in Wallerian degeneration and subsequent regeneration. Central nervous system regeneration can be elicited by Schwann cell transplantation, which provides a suitable environment for regeneration. The underlying cellular mechanism of regeneration is based upon the cooperative interactions between axons and Schwann cells involving the production of neurotrophic factors and other related molecules. Furthermore, tight and gap junctional contact between the axon and Schwann cell also mediates the molecular interaction and linking. In this review, the role of the Schwann cell during the regeneration of the sciatic (representing the PNS) and optic (representing the CNS) nerves is explained. In addition, the possibility of optic nerve reconstruction by an artificial graft of Schwann cells is also described. Finally, the application of cells not of neuronal lineage, such as bone marrow stromal cells (MSCs), in nerve regeneration is proposed. Marrow stromal cells are known as multipotential stem cells that, under specific conditions, differentiate into several kinds of cells. The strategy to transdifferentiate MSCs into the cells with a Schwann cell phenotype and the induction of sciatic and optic nerve regeneration are described.
Collapse
Affiliation(s)
- Mari Dezawa
- Department of Anatomy, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| |
Collapse
|
38
|
Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H. Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci 2001; 14:1771-6. [PMID: 11860471 DOI: 10.1046/j.0953-816x.2001.01814.x] [Citation(s) in RCA: 422] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone marrow stromal cells (MSCs) are multipotent stem cells that have the potential to differentiate into bone, cartilage, fat and muscle. We now demonstrate that MSCs can be induced to differentiate into cells with Schwann cell characteristics, capable of eliciting peripheral nervous system regeneration in adult rats. MSCs treated with beta-mercaptoethanol followed by retinoic acid and cultured in the presence of forskolin, basic-FGF, PDGF and heregulin, changed morphologically into cells resembling primary cultured Schwann cells and expressing p75, S-100, GFAP and O4. The MSCs were genetically engineered by transduction with retrovirus encoding green fluorescent protein (GFP), and then differentiated by treatment with factors described above. They were transplanted into the cut ends of sciatic nerves, which then responded with vigorous nerve fibre regeneration within 3 weeks of the operation. Myelination of regenerated fibers by GFP-expressing MSCs was recognized using confocal and immunoelectron microscopy. The results suggest that MSCs are able to differentiate into myelinating cells, capable of supporting nerve fibre re-growth, and they can therefore be applied to induce nerve regeneration.
Collapse
Affiliation(s)
- M Dezawa
- Department of Anatomy, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan.
| | | | | | | | | |
Collapse
|