1
|
Cha O, Blake R. Procedure for extracting temporal structure embedded within psychophysical data. Behav Res Methods 2024; 56:5482-5500. [PMID: 37993671 DOI: 10.3758/s13428-023-02282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/24/2023]
Abstract
The idea that mental events unfold over time with an intrinsically paced regularity has a long history within experimental psychology, and it has gained traction from the actual measurement of brain rhythms evident in EEG signals recorded from the human brain and from direct recordings of action potentials and local field potentials within the nervous systems of nonhumans. The weak link in this idea, however, is the challenge of extracting signatures of this temporal structure from behavioral measures. Because there is nothing in the seamless stream of conscious awareness that belies rhythmic modulations in sensitivity or mental acuity, one must deploy inferential strategies for extracting evidence for the existence of temporal regularities in neural activity. We have devised a parametric procedure for analysis of temporal structure embedded in behaviorally measured data comprising durations. We confirm that this procedure, dubbed PATS, achieves comparable results to those obtained using spectral analysis, and that it outperforms conventional spectral analysis when analyzing human response time data containing just a few hundred data points per condition. PATS offers an efficient, sensitive means for bridging the gap between oscillations identified neurophysiologically and estimates of rhythmicity embedded within durations measured behaviorally.
Collapse
Affiliation(s)
- Oakyoon Cha
- Department of Psychology, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Psychology, Sungshin Women's University, Seoul, 02844, Republic of Korea.
| | - Randolph Blake
- Department of Psychology, Vanderbilt University, Nashville, TN, 37240, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240, USA
| |
Collapse
|
2
|
Goto H, Urakawa T, Maeda Y, Kurita Y, Araki O. Cortical theta phase synchronization involved in mismatch-driven perceptual alternation in binocular rivalry. Neurosci Lett 2024; 834:137847. [PMID: 38821200 DOI: 10.1016/j.neulet.2024.137847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
When two conflicting images are presented to each eye, a phenomenon called binocular rivalry occurs in which we initially perceive one image, and then our perception switches to the other over time. An enhancement of θ-band phase coherence in visual mismatch oscillatory response (vMOR) is reported to be involved in the facilitation of perceptual alternation when the deviant stimulus is presented unconsciously. In this study, we investigated the modulation effect of θ-band transcranial alternating current stimulation (tACS) on perceptual alternation in binocular rivalry, with a focus on its relationship with the θ-band vMOR. The results showed that tACS had no significant effect on the mean proportion of perceptual alternation. Analyzing the differential effects of the modulation, however, we found a positive correlation between the increase in inter-trial phase coherence of the vMOR and the promotion of perceptual alternation under the unconscious deviant condition. Additionally, our findings indicate that the θ-band phase synchrony between frontal and occipital electrode sides, as measured by the phase lag index, is implicated in perceptual alternation, with an increase (decrease) in connection density observed in participants whose perceptual alternation was increased (decreased) by tACS. These results support the hypothesis that deviant visual stimuli evoke θ-band phase synchrony between the frontal and occipital cortices, thereby enhancing perceptual alternation in binocular rivalry.
Collapse
Affiliation(s)
- Hirotsugu Goto
- Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Tomokazu Urakawa
- Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yuna Maeda
- Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yuki Kurita
- Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Osamu Araki
- Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
3
|
Nie S, Katyal S, Engel SA. An Accumulating Neural Signal Underlying Binocular Rivalry Dynamics. J Neurosci 2023; 43:8777-8784. [PMID: 37907256 PMCID: PMC10727184 DOI: 10.1523/jneurosci.1325-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
During binocular rivalry, conflicting images are presented one to each eye and perception alternates stochastically between them. Despite stable percepts between alternations, modeling suggests that neural signals representing the two images change gradually, and that the duration of stable percepts are determined by the time required for these signals to reach a threshold that triggers an alternation. However, direct physiological evidence for such signals has been lacking. Here, we identify a neural signal in the human visual cortex that shows these predicted properties. We measured steady-state visual evoked potentials (SSVEPs) in 84 human participants (62 females, 22 males) who were presented with orthogonal gratings, one to each eye, flickering at different frequencies. Participants indicated their percept while EEG data were collected. The time courses of the SSVEP amplitudes at the two frequencies were then compared across different percept durations, within participants. For all durations, the amplitude of signals corresponding to the suppressed stimulus increased and the amplitude corresponding to the dominant stimulus decreased throughout the percept. Critically, longer percepts were characterized by more gradual increases in the suppressed signal and more gradual decreases of the dominant signal. Changes in signals were similar and rapid at the end of all percepts, presumably reflecting perceptual transitions. These features of the SSVEP time courses are well predicted by a model in which perceptual transitions are produced by the accumulation of noisy signals. Identification of this signal underlying binocular rivalry should allow strong tests of neural models of rivalry, bistable perception, and neural suppression.SIGNIFICANCE STATEMENT During binocular rivalry, two conflicting images are presented to the two eyes and perception alternates between them, with switches occurring at seemingly random times. Rivalry is an important and longstanding model system in neuroscience, used for understanding neural suppression, intrinsic neural dynamics, and even the neural correlates of consciousness. All models of rivalry propose that it depends on gradually changing neural activity that on reaching some threshold triggers the perceptual switches. This manuscript reports the first physiological measurement of neural signals with that set of properties in human participants. The signals, measured with EEG in human observers, closely match the predictions of recent models of rivalry, and should pave the way for much future work.
Collapse
Affiliation(s)
- Shaozhi Nie
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455
| | - Sucharit Katyal
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, WC1B 5EH, United Kingdom
| | - Stephen A Engel
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455
| |
Collapse
|
4
|
Quettier T, Di Lello N, Tsuchiya N, Sessa P. INs and OUTs of faces in consciousness: a study of the temporal evolution of consciousness of faces during binocular rivalry. Front Hum Neurosci 2023; 17:1145653. [PMID: 37284480 PMCID: PMC10241245 DOI: 10.3389/fnhum.2023.1145653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Contents of consciousness change over time. However, the study of dynamics in consciousness has been largely neglected. Aru and Bachmann have recently brought to the attention of scientists dealing with consciousness the relevance of making inquiries about its temporal evolution. Importantly, they also pointed out several experimental questions as guidelines for researchers interested in studying the temporal evolution of consciousness, including the phases of formation and dissolution of content. They also suggested that these two phases could be characterized by asymmetric inertia. The main objective of the present investigation was to approximate the dynamics of these two phases in the context of conscious face perception. To this aim, we tested the time course of content transitions during a binocular rivalry task using face stimuli and asked participants to map their subjective experience of transitions from one content to the other through a joystick. We then computed metrics of joystick velocity linked to content transitions as proxies of the formation and dissolution phases. We found a general phase effect such that the formation phase was slower than the dissolution phase. Furthermore, we observed an effect specific to happy facial expressions, such that their contents were slower to form and dissolve than that of neutral expressions. We further propose to include a third phase of stabilization of conscious content between formation and dissolution.
Collapse
Affiliation(s)
- Thomas Quettier
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| | - Nicolò Di Lello
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Naotsugu Tsuchiya
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, VIC, Australia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan
- Advanced Telecommunications Research Computational Neuroscience Laboratories, Kyoto, Japan
| | - Paola Sessa
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| |
Collapse
|
5
|
Sun S, Yang P, Chen H, Shao X, Ji S, Li X, Li G, Hu B. Electroconvulsive Therapy-Induced Changes in Functional Brain Network of Major Depressive Disorder Patients: A Longitudinal Resting-State Electroencephalography Study. Front Hum Neurosci 2022; 16:852657. [PMID: 35664348 PMCID: PMC9158117 DOI: 10.3389/fnhum.2022.852657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesSeveral studies have shown abnormal network topology in patients with major depressive disorder (MDD). However, changes in functional brain networks associated with electroconvulsive therapy (ECT) remission based on electroencephalography (EEG) signals have yet to be investigated.MethodsNineteen-channel resting-state eyes-closed EEG signals were collected from 24 MDD patients pre- and post-ECT treatment. Functional brain networks were constructed by using various coupling methods and binarization techniques. Changes in functional connectivity and network metrics after ECT treatment and relationships between network metrics and clinical symptoms were explored.ResultsECT significantly increased global efficiency, edge betweenness centrality, local efficiency, and mean degree of alpha band after ECT treatment, and an increase in these network metrics had significant correlations with decreased depressive symptoms in repeated measures correlation. In addition, ECT regulated the distribution of hubs in frontal and occipital lobes.ConclusionECT modulated the brain’s global and local information-processing patterns. In addition, an ECT-induced increase in network metrics was associated with clinical remission.SignificanceThese findings might present the evidence for us to understand how ECT regulated the topology organization in functional brain networks of clinically remitted depressive patients.
Collapse
Affiliation(s)
- Shuting Sun
- Brain Health Engineering Laboratory, School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Peng Yang
- Shandong Daizhuang Hospital, Jining, China
| | - Huayu Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Xuexiao Shao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Shanling Ji
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Xiaowei Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
- Shandong Academy of Intelligent Computing Technology, Jinan, China
- *Correspondence: Xiaowei Li,
| | - Gongying Li
- Department of Psychiatry, Huai’an Third People’s Hospital, Huai’an, China
- Gongying Li,
| | - Bin Hu
- Brain Health Engineering Laboratory, School of Medical Technology, Beijing Institute of Technology, Beijing, China
- Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University and Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, China
- Open Source Software and Real-Time System, Lanzhou University, Ministry of Education, Lanzhou, China
- Bin Hu,
| |
Collapse
|
6
|
Duman I, Ehmann IS, Gonsalves AR, Gültekin Z, Van den Berckt J, van Leeuwen C. The No-Report Paradigm: A Revolution in Consciousness Research? Front Hum Neurosci 2022; 16:861517. [PMID: 35634201 PMCID: PMC9130851 DOI: 10.3389/fnhum.2022.861517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the cognitive neuroscience of consciousness, participants have commonly been instructed to report their conscious content. This, it was claimed, risks confounding the neural correlates of consciousness (NCC) with their preconditions, i.e., allocation of attention, and consequences, i.e., metacognitive reflection. Recently, the field has therefore been shifting towards no-report paradigms. No-report paradigms draw their validity from a direct comparison with no-report conditions. We analyze several examples of such comparisons and identify alternative interpretations of their results and/or methodological issues in all cases. These go beyond the previous criticism that just removing the report is insufficient, because it does not prevent metacognitive reflection. The conscious mind is fickle. Without having much to do, it will turn inward and switch, or timeshare, between the stimuli on display and daydreaming or mind-wandering. Thus, rather than the NCC, no-report paradigms might be addressing the neural correlates of conscious disengagement. This observation reaffirms the conclusion that no-report paradigms are no less problematic than report paradigms.
Collapse
Affiliation(s)
- Irem Duman
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Isabell Sophia Ehmann
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Alicia Ronnie Gonsalves
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Zeynep Gültekin
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Jonathan Van den Berckt
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Cees van Leeuwen
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Cognitive and Developmental Psychology, Faculty of Social Sciences, TU Kaiserslautern, Kaiserslautern, Germany
- *Correspondence: Cees van Leeuwen
| |
Collapse
|
7
|
Torralba Cuello M, Drew A, Sabaté San José A, Morís Fernández L, Soto-Faraco S. Alpha fluctuations regulate the accrual of visual information to awareness. Cortex 2021; 147:58-71. [PMID: 35021126 DOI: 10.1016/j.cortex.2021.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 11/23/2021] [Indexed: 01/26/2023]
Abstract
Endogenous brain processes play a paramount role in shaping up perceptual phenomenology. This is illustrated by the alternations experienced by humans (and other animals) when watching perceptually ambiguous, static images. We hypothesised that endogenous alpha fluctuations in the visual cortex pace the accumulation of sensory information leading to perceptual outcomes. Here, we addressed this hypothesis using binocular rivalry combined with visual entrainment and electroencephalography in humans (64 female, 53 male). The results revealed a correlation between the individual frequency of alpha oscillations in the occipital cortex and perceptual alternation rates experienced during binocular rivalry. In subsequent experiments we show that regulating endogenous brain activity via rhythmic entrainment produced corresponding changes in perceptual alternation rate. These changes were observed only in the alpha range but not at lower entrainment frequencies, and were much reduced when using arrhythmic stimulation. Additionally, entraining at frequencies above the alpha range did not result in speeding up perceptual alternation rates. Overall, these findings support the notion that visual information is accumulated via alpha cycles to promote the emergence of conscious perceptual representations. We suggest that models of binocular rivalry incorporating posterior alpha as a pacemaker can provide an important advance in the comprehension of the dynamics of visual awareness.
Collapse
Affiliation(s)
- Mireia Torralba Cuello
- Multisensory Research Group, Center for Brain and Cognition, University of Pompeu Fabra, Barcelona, Spain.
| | - Alice Drew
- Multisensory Research Group, Center for Brain and Cognition, University of Pompeu Fabra, Barcelona, Spain
| | | | - Luis Morís Fernández
- Multisensory Research Group, Center for Brain and Cognition, University of Pompeu Fabra, Barcelona, Spain
| | - Salvador Soto-Faraco
- Multisensory Research Group, Center for Brain and Cognition, University of Pompeu Fabra, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
8
|
Effects of long-term unilateral cochlear implant use on large-scale network synchronization in adolescents. Hear Res 2021; 409:108308. [PMID: 34343851 DOI: 10.1016/j.heares.2021.108308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022]
Abstract
Unilateral cochlear implantation (CI) limits deafness-related changes in the auditory pathways but promotes abnormal cortical preference for the stimulated ear and leaves the opposite ear with little protection from auditory deprivation. In the present study, time-frequency analyses of event-related potentials elicited from stimuli presented to each ear were used to determine effects of unilateral CI use on cortical synchrony. CI-elicited activity in 34 adolescents (15.4±1.9 years of age) who had listened with unilateral CIs for most of their lives prior to bilateral implantation were compared to responses elicited by a 500Hz tone-burst in normal hearing peers. Phase-locking values between 4 and 60Hz were calculated for 171 pairs of 19-cephalic recording electrodes. Ear specific results were found in the normal hearing group: higher synchronization in low frequency bands (theta and alpha) from left ear stimulation in the right hemisphere and more high frequency activity (gamma band) from right ear stimulation in the left hemisphere. In the CI group, increased phase synchronization in the theta and beta frequencies with bursts of gamma activity were elicited by the experienced-right CI between frontal, temporal and parietal cortical regions in both hemispheres, consistent with increased recruitment of cortical areas involved in attention and higher-order processes, potentially to support unilateral listening. By contrast, activity was globally desynchronized in response to initial stimulation of the naïve-left ear, suggesting decoupling of these pathways from the cortical hearing network. These data reveal asymmetric auditory development promoted by unilateral CI use, resulting in an abnormally mature neural network.
Collapse
|
9
|
Katyal S, Goldin P. Neural correlates of nonjudgmental perception induced through meditation. Ann N Y Acad Sci 2021; 1499:70-81. [PMID: 33893655 DOI: 10.1111/nyas.14603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022]
Abstract
Ambiguous sensory stimuli provide insight into the dynamics of the human mind. When viewing substantially different images in the two eyes (i.e., binocular rivalry (BR)), perception spontaneously fluctuates between the two images along with patch-like mixtures of the two, with limited ability to control such fluctuations. Previous studies have shown that long-term meditation training can enable a more stable perception by reducing such fluctuations. Using electroencephalography, we investigated the neural bases of perceptual stabilization in long-term meditators (LTMs) and age-matched meditation-naive control participants. We measured BR alternations before and after participants practiced meditation. We expected that perceptual stabilization through meditation could occur via one of two neurocognitive mechanisms: (1) a more engaged/effortful attention reflected by increased long-range phase synchronization between early visual sensory and higher-level brain regions, or (2) a disengaged/nonevaluative form of attention reflected by decreased phase synchronization. We found that compared with control participants, LTMs were in a significantly longer mixed perceptual state following concentrative meditation practice. The increase in mixed percepts across individuals was strongly correlated with reduced parietal-occipital gamma-band (30-50 Hz) phase synchrony. These findings suggest that concentrative meditation enables a nonevaluative perceptual stance supported by reduced communication between hierarchical visual brain regions.
Collapse
Affiliation(s)
- Sucharit Katyal
- University of California Davis Medical Center, Sacramento, California
| | - Philippe Goldin
- University of California Davis Medical Center, Sacramento, California
| |
Collapse
|
10
|
Ghiani A, Maniglia M, Battaglini L, Melcher D, Ronconi L. Binding Mechanisms in Visual Perception and Their Link With Neural Oscillations: A Review of Evidence From tACS. Front Psychol 2021; 12:643677. [PMID: 33828509 PMCID: PMC8019716 DOI: 10.3389/fpsyg.2021.643677] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Neurophysiological studies in humans employing magneto- (MEG) and electro- (EEG) encephalography increasingly suggest that oscillatory rhythmic activity of the brain may be a core mechanism for binding sensory information across space, time, and object features to generate a unified perceptual representation. To distinguish whether oscillatory activity is causally related to binding processes or whether, on the contrary, it is a mere epiphenomenon, one possibility is to employ neuromodulatory techniques such as transcranial alternating current stimulation (tACS). tACS has seen a rising interest due to its ability to modulate brain oscillations in a frequency-dependent manner. In the present review, we critically summarize current tACS evidence for a causal role of oscillatory activity in spatial, temporal, and feature binding in the context of visual perception. For temporal binding, the emerging picture supports a causal link with the power and the frequency of occipital alpha rhythms (8-12 Hz); however, there is no consistent evidence on the causal role of the phase of occipital tACS. For feature binding, the only study available showed a modulation by occipital alpha tACS. The majority of studies that successfully modulated oscillatory activity and behavioral performance in spatial binding targeted parietal areas, with the main rhythms causally linked being the theta (~7 Hz) and beta (~18 Hz) frequency bands. On the other hand, spatio-temporal binding has been directly modulated by parieto-occipital gamma (~40-60 Hz) and alpha (10 Hz) tACS, suggesting a potential role of cross-frequency coupling when binding across space and time. Nonetheless, negative or partial results have also been observed, suggesting methodological limitations that should be addressed in future research. Overall, the emerging picture seems to support a causal role of brain oscillations in binding processes and, consequently, a certain degree of plasticity for shaping binding mechanisms in visual perception, which, if proved to have long lasting effects, can find applications in different clinical populations.
Collapse
Affiliation(s)
- Andrea Ghiani
- Department of General Psychology, University of Padua, Padua, Italy
| | - Marcello Maniglia
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Luca Battaglini
- Department of General Psychology, University of Padua, Padua, Italy
- Neuro Vis.U.S. Laboratory, University of Padua, Padua, Italy
- Department of Physics and Astronomy “Galileo Galilei”, University of Padua, Padua, Italy
| | - David Melcher
- Center for Mind/Brain Sciences and Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Hospital, Milan, Italy
| |
Collapse
|
11
|
Canales-Johnson A, Lanfranco RC, Morales JP, Martínez-Pernía D, Valdés J, Ezquerro-Nassar A, Rivera-Rei Á, Ibanez A, Chennu S, Bekinschtein TA, Huepe D, Noreika V. In your phase: neural phase synchronisation underlies visual imagery of faces. Sci Rep 2021; 11:2401. [PMID: 33504828 PMCID: PMC7840739 DOI: 10.1038/s41598-021-81336-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/05/2021] [Indexed: 01/15/2023] Open
Abstract
Mental imagery is the process through which we retrieve and recombine information from our memory to elicit the subjective impression of “seeing with the mind’s eye”. In the social domain, we imagine other individuals while recalling our encounters with them or modelling alternative social interactions in future. Many studies using imaging and neurophysiological techniques have shown several similarities in brain activity between visual imagery and visual perception, and have identified frontoparietal, occipital and temporal neural components of visual imagery. However, the neural connectivity between these regions during visual imagery of socially relevant stimuli has not been studied. Here we used electroencephalography to investigate neural connectivity and its dynamics between frontal, parietal, occipital and temporal electrodes during visual imagery of faces. We found that voluntary visual imagery of faces is associated with long-range phase synchronisation in the gamma frequency range between frontoparietal electrode pairs and between occipitoparietal electrode pairs. In contrast, no effect of imagery was observed in the connectivity between occipitotemporal electrode pairs. Gamma range synchronisation between occipitoparietal electrode pairs predicted subjective ratings of the contour definition of imagined faces. Furthermore, we found that visual imagery of faces is associated with an increase of short-range frontal synchronisation in the theta frequency range, which temporally preceded the long-range increase in the gamma synchronisation. We speculate that the local frontal synchrony in the theta frequency range might be associated with an effortful top-down mnemonic reactivation of faces. In contrast, the long-range connectivity in the gamma frequency range along the fronto-parieto-occipital axis might be related to the endogenous binding and subjective clarity of facial visual features.
Collapse
Affiliation(s)
- Andrés Canales-Johnson
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK. .,Vicerrectoría de Investigación y Posgrado, Universidad Católica del Maule, Talca, Chile.
| | - Renzo C Lanfranco
- Department of Psychology, University of Edinburgh, Edinburgh, UK.,Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Juan Pablo Morales
- Facultad de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Joaquín Valdés
- Escuela de Psicología, Universidad Adolfo Ibáñez, Santiago, Chile
| | | | | | - Agustín Ibanez
- Escuela de Psicología, Universidad Adolfo Ibáñez, Santiago, Chile.,Center for Social and Cognitive Neuroscience (CSCN), Latin American Institute of Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Universidad Autónoma del Caribe, Barranquilla, Colombia.,Cognitive Neurosience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina.,Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, USA
| | - Srivas Chennu
- School of Computing, University of Kent, Chatham Maritime, UK.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - David Huepe
- Escuela de Psicología, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Valdas Noreika
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK.,Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
12
|
McFadden J. Integrating information in the brain's EM field: the cemi field theory of consciousness. Neurosci Conscious 2020; 2020:niaa016. [PMID: 32995043 PMCID: PMC7507405 DOI: 10.1093/nc/niaa016] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 01/19/2023] Open
Abstract
A key aspect of consciousness is that it represents bound or integrated information, prompting an increasing conviction that the physical substrate of consciousness must be capable of encoding integrated information in the brain. However, as Ralph Landauer insisted, ‘information is physical’ so integrated information must be physically integrated. I argue here that nearly all examples of so-called ‘integrated information’, including neuronal information processing and conventional computing, are only temporally integrated in the sense that outputs are correlated with multiple inputs: the information integration is implemented in time, rather than space, and thereby cannot correspond to physically integrated information. I point out that only energy fields are capable of integrating information in space. I describe the conscious electromagnetic information (cemi) field theory which has proposed that consciousness is physically integrated, and causally active, information encoded in the brain’s global electromagnetic (EM) field. I here extend the theory to argue that consciousness implements algorithms in space, rather than time, within the brain’s EM field. I describe how the cemi field theory accounts for most observed features of consciousness and describe recent experimental support for the theory. I also describe several untested predictions of the theory and discuss its implications for the design of artificial consciousness. The cemi field theory proposes a scientific dualism that is rooted in the difference between matter and energy, rather than matter and spirit.
Collapse
Affiliation(s)
- Johnjoe McFadden
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 5XH, UK
| |
Collapse
|
13
|
Canales-Johnson A, Billig AJ, Olivares F, Gonzalez A, Garcia MDC, Silva W, Vaucheret E, Ciraolo C, Mikulan E, Ibanez A, Huepe D, Noreika V, Chennu S, Bekinschtein TA. Dissociable Neural Information Dynamics of Perceptual Integration and Differentiation during Bistable Perception. Cereb Cortex 2020; 30:4563-4580. [PMID: 32219312 PMCID: PMC7325715 DOI: 10.1093/cercor/bhaa058] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
At any given moment, we experience a perceptual scene as a single whole and yet we may distinguish a variety of objects within it. This phenomenon instantiates two properties of conscious perception: integration and differentiation. Integration is the property of experiencing a collection of objects as a unitary percept and differentiation is the property of experiencing these objects as distinct from each other. Here, we evaluated the neural information dynamics underlying integration and differentiation of perceptual contents during bistable perception. Participants listened to a sequence of tones (auditory bistable stimuli) experienced either as a single stream (perceptual integration) or as two parallel streams (perceptual differentiation) of sounds. We computed neurophysiological indices of information integration and information differentiation with electroencephalographic and intracranial recordings. When perceptual alternations were endogenously driven, the integrated percept was associated with an increase in neural information integration and a decrease in neural differentiation across frontoparietal regions, whereas the opposite pattern was observed for the differentiated percept. However, when perception was exogenously driven by a change in the sound stream (no bistability), neural oscillatory power distinguished between percepts but information measures did not. We demonstrate that perceptual integration and differentiation can be mapped to theoretically motivated neural information signatures, suggesting a direct relationship between phenomenology and neurophysiology.
Collapse
Affiliation(s)
- Andrés Canales-Johnson
- Department of Psychology, University of Cambridge, CB2 3EB Cambridge, UK
- Vicerectoria de Investigacion y Posgrado, Universidad Catolica del Maule, Talca 3480112, Chile
| | - Alexander J Billig
- Brain and Mind Institute, University of Western Ontario, London, N6A 3K7, Canada
- UCL Ear Institute, University College London, London, UK
| | - Francisco Olivares
- Facultad de Psicologia, Universidad Diego Portales, Santiago 8370076, Chile
| | - Andrés Gonzalez
- Facultad de Psicologia, Universidad Diego Portales, Santiago 8370076, Chile
| | - María del Carmen Garcia
- Programa de Cirugía de Epilepsia, Hospital Italiano de Buenos Aires, Buenos Aires C1199ABB, Argentina
| | - Walter Silva
- Programa de Cirugía de Epilepsia, Hospital Italiano de Buenos Aires, Buenos Aires C1199ABB, Argentina
| | - Esteban Vaucheret
- Programa de Cirugía de Epilepsia, Hospital Italiano de Buenos Aires, Buenos Aires C1199ABB, Argentina
| | - Carlos Ciraolo
- Programa de Cirugía de Epilepsia, Hospital Italiano de Buenos Aires, Buenos Aires C1199ABB, Argentina
| | - Ezequiel Mikulan
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires 1126, Argentina
| | - Agustín Ibanez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires 1126, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- School of Psychology, Center for Social and Cognitive Neuroscience (CSCN), Universidad Adolfo Ibáñez, Santiago 2485, Chile
| | - David Huepe
- School of Psychology, Center for Social and Cognitive Neuroscience (CSCN), Universidad Adolfo Ibáñez, Santiago 2485, Chile
| | - Valdas Noreika
- Department of Psychology, University of Cambridge, CB2 3EB Cambridge, UK
| | - Srivas Chennu
- School of Computing, University of Kent, ME4 4AG Chatham, UK
- Department of Clinical Neurosciences, University of Cambridge, CB2 3EB Cambridge, UK
| | | |
Collapse
|
14
|
Towards a Pragmatic Approach to a Psychophysiological Unit of Analysis for Mental and Brain Disorders: An EEG-Copeia for Neurofeedback. Appl Psychophysiol Biofeedback 2020; 44:151-172. [PMID: 31098793 DOI: 10.1007/s10484-019-09440-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article proposes what we call an "EEG-Copeia" for neurofeedback, like the "Pharmacopeia" for psychopharmacology. This paper proposes to define an "EEG-Copeia" as an organized list of scientifically validated EEG markers, characterized by a specific association with an identified cognitive process, that define a psychophysiological unit of analysis useful for mental or brain disorder evaluation and treatment. A characteristic of EEG neurofeedback for mental and brain disorders is that it targets a EEG markers related to a supposed cognitive process, whereas conventional treatments target clinical manifestations. This could explain why EEG neurofeedback studies encounter difficulty in achieving reproducibility and validation. The present paper suggests that a first step to optimize EEG neurofeedback protocols and future research is to target a valid EEG marker. The specificity of the cognitive skills trained and learned during real time feedback of the EEG marker could be enhanced and both the reliability of neurofeedback training and the therapeutic impact optimized. However, several of the most well-known EEG markers have seldom been applied for neurofeedback. Moreover, we lack a reliable and valid EEG targets library for further RCT to evaluate the efficacy of neurofeedback in mental and brain disorders. With the present manuscript, our aim is to foster dialogues between cognitive neuroscience and EEG neurofeedback according to a psychophysiological perspective. The primary objective of this review was to identify the most robust EEG target. EEG markers linked with one or several clearly identified cognitive-related processes will be identified. The secondary objective was to organize these EEG markers and related cognitive process in a psychophysiological unit of analysis matrix inspired by the Research Domain Criteria (RDoC) project.
Collapse
|
15
|
Mamashli F, Huang S, Khan S, Hämäläinen MS, Ahlfors SP, Ahveninen J. Distinct Regional Oscillatory Connectivity Patterns During Auditory Target and Novelty Processing. Brain Topogr 2020; 33:477-488. [PMID: 32441009 DOI: 10.1007/s10548-020-00776-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/12/2020] [Indexed: 11/26/2022]
Abstract
Auditory attention allows us to focus on relevant target sounds in the acoustic environment while maintaining the capability to orient to unpredictable (novel) sound changes. An open question is whether orienting to expected vs. unexpected auditory events are governed by anatomically distinct attention pathways, respectively, or by differing communication patterns within a common system. To address this question, we applied a recently developed PeSCAR analysis method to evaluate spectrotemporal functional connectivity patterns across subregions of broader cortical regions of interest (ROIs) to analyze magnetoencephalography data obtained during a cued auditory attention task. Subjects were instructed to detect a predictable harmonic target sound embedded among standard tones in one ear and to ignore the standard tones and occasional unpredictable novel sounds presented in the opposite ear. Phase coherence of estimated source activity was calculated between subregions of superior temporal, frontal, inferior parietal, and superior parietal cortex ROIs. Functional connectivity was stronger in response to target than novel stimuli between left superior temporal and left parietal ROIs and between left frontal and right parietal ROIs, with the largest effects observed in the beta band (15-35 Hz). In contrast, functional connectivity was stronger in response to novel than target stimuli in inter-hemispheric connections between left and right frontal ROIs, observed in early time windows in the alpha band (8-12 Hz). Our findings suggest that auditory processing of expected target vs. unexpected novel sounds involves different spatially, temporally, and spectrally distributed oscillatory connectivity patterns across temporal, parietal, and frontal areas.
Collapse
Affiliation(s)
- Fahimeh Mamashli
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Samantha Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Sheraz Khan
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Matti S Hämäläinen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Seppo P Ahlfors
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jyrki Ahveninen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| |
Collapse
|
16
|
Center EG, Knight R, Fabiani M, Gratton G, Beck DM. Examining the role of feedback in TMS-induced visual suppression: A cautionary tale. Conscious Cogn 2019; 75:102805. [DOI: 10.1016/j.concog.2019.102805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 08/10/2019] [Indexed: 11/25/2022]
|
17
|
Mamashli F, Khan S, Obleser J, Friederici AD, Maess B. Oscillatory dynamics of cortical functional connections in semantic prediction. Hum Brain Mapp 2019; 40:1856-1866. [PMID: 30537025 PMCID: PMC6865711 DOI: 10.1002/hbm.24495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 01/22/2023] Open
Abstract
An event related potential, known as the N400, has been particularly useful in investigating language processing as it serves as a neural index for semantic prediction. There are numerous studies on the functional segregation of N400 neural sources; however, the oscillatory dynamics of functional connections among the relevant sources has remained elusive. In this study we acquired magnetoencephalography data during a classic N400 paradigm, where the semantic predictability of a fixed target noun was manipulated in simple German sentences. We conducted inter-regional functional connectivity (FC) and time-frequency analysis on known regions of the semantic network, encompassing bilateral temporal, and prefrontal cortices. Increased FC was found in less predicted (LP) nouns compared with highly predicted (HP) nouns in three connections: (a) right inferior frontal gyrus (IFG) and right middle temporal gyrus (MTG) from 0 to 300 ms mainly within the alpha band, (b) left lateral orbitofrontal (LOF) and right IFG around 400 ms within the beta band, and (c) left superior temporal gyrus (STG) and left LOF from 300 to 700 ms in the beta and low gamma bands. Furthermore, gamma spectral power (31-70 Hz) was stronger in HP nouns than in LP nouns in left anterior temporal cortices in earlier time windows (0-200 ms). Our findings support recent theories in language comprehension, suggesting fronto-temporal top-down connections are mainly mediated through beta oscillations while gamma band frequencies are involved in matching between prediction and input.
Collapse
Affiliation(s)
- Fahimeh Mamashli
- Department of RadiologyMassachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical SchoolBostonMassachusetts
| | - Sheraz Khan
- Department of RadiologyMassachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical SchoolBostonMassachusetts
| | - Jonas Obleser
- Department of PsychologyUniversity of LübeckLübeckGermany
| | - Angela D. Friederici
- Department of NeuropsychologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Burkhard Maess
- MEG and Cortical Networks Group, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
18
|
Delshams A, Guillamon A, Huguet G. Quasiperiodic perturbations of heteroclinic attractor networks. CHAOS (WOODBURY, N.Y.) 2018; 28:103111. [PMID: 30384643 DOI: 10.1063/1.5050081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
We consider heteroclinic attractor networks motivated by models of competition between neural populations during binocular rivalry. We show that gamma distributions of dominance times observed experimentally in binocular rivalry and other forms of bistable perception, commonly explained by means of noise in the models, can be achieved with quasiperiodic perturbations. For this purpose, we present a methodology based on the separatrix map to model the dynamics close to heteroclinic networks with quasiperiodic perturbations. Our methodology unifies two different approaches, one based on Melnikov integrals and the other one based on variational equations. We apply it to two models: first, to the Duffing equation, which comes from the perturbation of a Hamiltonian system and, second, to a heteroclinic attractor network for binocular rivalry, for which we develop a suitable method based on Melnikov integrals for non-Hamiltonian systems. In both models, the perturbed system shows chaotic behavior, while dominance times achieve good agreement with gamma distributions. Moreover, the separatrix map provides a new (discrete) model for bistable perception which, in addition, replaces the numerical integration of time-continuous models and, consequently, reduces the computational cost and avoids numerical instabilities.
Collapse
Affiliation(s)
- Amadeu Delshams
- Departament de Matemàtiques, Universitat Politècnica de Catalunya, Avda. Dr. Marañon 44-50, 08028 Barcelona, Spain
| | - Antoni Guillamon
- Departament de Matemàtiques, Universitat Politècnica de Catalunya, Avda. Dr. Marañon 44-50, 08028 Barcelona, Spain
| | - Gemma Huguet
- Departament de Matemàtiques, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Intracranial Recordings of Occipital Cortex Responses to Illusory Visual Events. J Neurosci 2017; 36:6297-311. [PMID: 27277806 DOI: 10.1523/jneurosci.0242-15.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/05/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Ambiguous visual stimuli elicit different perceptual interpretations over time, creating the illusion that a constant stimulus is changing. We investigate whether such spontaneous changes in visual perception involve occipital brain regions specialized for processing visual information, despite the absence of concomitant changes in stimulation. Spontaneous perceptual changes observed while viewing a binocular rivalry stimulus or an ambiguous structure-from-motion stimulus were compared with stimulus-induced perceptual changes that occurred in response to an actual stimulus change. Intracranial recordings from human occipital cortex revealed that spontaneous and stimulus-induced perceptual changes were both associated with an early transient increase in high-frequency power that was more spatially confined than a later transient decrease in low-frequency power. We suggest that the observed high-frequency and low-frequency modulations relate to initiation and maintenance of a percept, respectively. Our results are compatible with the idea that spontaneous changes in perception originate from competitive interactions within visual neural networks. SIGNIFICANCE STATEMENT Ambiguous visual stimuli elicit different perceptual interpretations over time, creating the illusion that a constant stimulus is changing. The literature on the neural correlates of conscious visual perception remains inconclusive regarding the extent to which such spontaneous changes in perception involve sensory brain regions. In an attempt to bridge the gap between existing animal and human studies, we recorded from intracranial electrodes placed on the human occipital lobe. We compared two different kinds of ambiguous stimuli, binocular rivalry and the phenomenon of ambiguous structure-from-motion, enabling generalization of our findings across different stimuli. Our results indicate that spontaneous and stimulus-induced changes in perception (i.e., "illusory" and "real" changes in the stimulus, respectively) may involve sensory regions to a similar extent.
Collapse
|
20
|
Gallotto S, Sack AT, Schuhmann T, de Graaf TA. Oscillatory Correlates of Visual Consciousness. Front Psychol 2017; 8:1147. [PMID: 28736543 PMCID: PMC5500655 DOI: 10.3389/fpsyg.2017.01147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/23/2017] [Indexed: 11/21/2022] Open
Abstract
Conscious experiences are linked to activity in our brain: the neural correlates of consciousness (NCC). Empirical research on these NCCs covers a wide range of brain activity signals, measures, and methodologies. In this paper, we focus on spontaneous brain oscillations; rhythmic fluctuations of neuronal (population) activity which can be characterized by a range of parameters, such as frequency, amplitude (power), and phase. We provide an overview of oscillatory measures that appear to correlate with conscious perception. We also discuss how increasingly sophisticated techniques allow us to study the causal role of oscillatory activity in conscious perception (i.e., ‘entrainment’). This review of oscillatory correlates of consciousness suggests that, for example, activity in the alpha-band (7–13 Hz) may index, or even causally support, conscious perception. But such results also showcase an increasingly acknowledged difficulty in NCC research; the challenge of separating neural activity necessary for conscious experience to arise (prerequisites) from neural activity underlying the conscious experience itself (substrates) or its results (consequences).
Collapse
Affiliation(s)
- Stefano Gallotto
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands.,Maastricht Brain Imaging CentreMaastricht, Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands.,Maastricht Brain Imaging CentreMaastricht, Netherlands
| | - Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands.,Maastricht Brain Imaging CentreMaastricht, Netherlands
| | - Tom A de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands.,Maastricht Brain Imaging CentreMaastricht, Netherlands
| |
Collapse
|
21
|
Mancini M, Brignani D, Conforto S, Mauri P, Miniussi C, Pellicciari MC. Assessing cortical synchronization during transcranial direct current stimulation: A graph-theoretical analysis. Neuroimage 2016; 140:57-65. [DOI: 10.1016/j.neuroimage.2016.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 01/22/2023] Open
|
22
|
Towards a method to differentiate chronic disorder of consciousness patients' awareness: The Low-Resolution Brain Electromagnetic Tomography Analysis. J Neurol Sci 2016; 368:178-83. [PMID: 27538628 DOI: 10.1016/j.jns.2016.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 01/18/2023]
Abstract
Assessing residual signs of awareness in patients suffering from chronic disorders of consciousness (DOC) is a challenging issue. DOC patient behavioral assessment is often doubtful since some individuals may retain covert traces of awareness; thus, some Unresponsive Wakefulness Syndrome (UWS) patients may be misdiagnosed. The aim of our study was to explore possible differences between the source powers within poly-modal cortices to differentiate Minimally Conscious State (MCS) from UWS. To this end, we recorded an electroencephalogram (EEG) during awake resting state and performed a Low-Resolution Brain Electromagnetic Tomography (LORETA), which is a 3D source localization method allowing the visualization of the most probable neuroanatomical generators of EEG differences. MCS and UWS patients showed significant variations concerning the frontal source power of delta-band, frontal and parietal of theta, parietal and occipital of alpha, central of beta, and parietal of gamma, in correlation with the Coma Recovery Scale-Revised (CRS-R) score. The alpha-band was the most significant LORETA data correlating with the consciousness level. In addition, we observed a significant correlation between central beta-peaks and the motor abilities and a dissociation between theta and gamma bands within parietal regions. Our findings suggest that LORETA analysis may be useful in DOC differential diagnosis since distinct neurophysiological correlates in some UWS patients could be used to assess deeper the residual cerebral activity of brain areas responsible for covert awareness.
Collapse
|
23
|
Abstract
Passive frame theory attempts to illuminate what consciousness is, in mechanistic and functional terms; it does not address the "implementation" level of analysis (how neurons instantiate conscious states), an enigma for various disciplines. However, in response to the commentaries, we discuss how our framework provides clues regarding this enigma. In the framework, consciousness is passive albeit essential. Without consciousness, there would not be adaptive skeletomotor action.
Collapse
|
24
|
Herrera-Díaz A, Mendoza-Quiñones R, Melie-Garcia L, Martínez-Montes E, Sanabria-Diaz G, Romero-Quintana Y, Salazar-Guerra I, Carballoso-Acosta M, Caballero-Moreno A. Functional Connectivity and Quantitative EEG in Women with Alcohol Use Disorders: A Resting-State Study. Brain Topogr 2015; 29:368-81. [PMID: 26660886 DOI: 10.1007/s10548-015-0467-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 11/24/2015] [Indexed: 12/13/2022]
Abstract
This study was aimed at exploring the electroencephalographic features associated with alcohol use disorders (AUD) during a resting-state condition, by using quantitative EEG and Functional Connectivity analyses. In addition, we explored whether EEG functional connectivity is associated with trait impulsivity. Absolute and relative powers and Synchronization Likelihood (SL) as a measure of functional connectivity were analyzed in 15 AUD women and fifteen controls matched in age, gender and education. Correlation analysis between self-report impulsivity as measured by the Barratt impulsiveness Scale (BIS-11) and SL values of AUD patients were performed. Our results showed increased absolute and relative beta power in AUD patients compared to matched controls, and reduced functional connectivity in AUD patients predominantly in the beta and alpha bands. Impaired connectivity was distributed at fronto-central and occipito-parietal regions in the alpha band, and over the entire scalp in the beta band. We also found that impaired functional connectivity particularly in alpha band at fronto-central areas was negative correlated with non-planning dimension of impulsivity. These findings suggest that functional brain abnormalities are present in AUD patients and a disruption of resting-state EEG functional connectivity is associated with psychopathological traits of addictive behavior.
Collapse
Affiliation(s)
| | | | - Lester Melie-Garcia
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Eduardo Martínez-Montes
- Department of Neuroinformatics, Cuban Neuroscience Center, Havana, Cuba.,Politecnico di Torino, Turin, Italy
| | - Gretel Sanabria-Diaz
- LREN, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Dunkley BT, Doesburg SM, Jetly R, Sedge PA, Pang EW, Taylor MJ. Characterising intra- and inter-intrinsic network synchrony in combat-related post-traumatic stress disorder. Psychiatry Res 2015; 234:172-81. [PMID: 26422117 DOI: 10.1016/j.pscychresns.2015.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/21/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022]
Abstract
Soldiers with post-traumatic stress disorder (PTSD) exhibit elevated gamma-band synchrony in left fronto-temporal cortex, and connectivity measures in these regions correlate with comorbidities and PTSD severity, which suggests increased gamma synchrony is related to symptomology. However, little is known about the role of intrinsic, phase-synchronised networks in the disorder. Using magnetoencephalography (MEG), we characterised spectral connectivity in the default-mode, salience, visual, and attention networks during resting-state in a PTSD population and a trauma-exposed control group. Intrinsic network connectivity was examined in canonical frequency bands. We observed increased inter-network synchronisation in the PTSD group compared with controls in the gamma (30-80 Hz) and high-gamma range (80-150 Hz). Analyses of connectivity and symptomology revealed that PTSD severity was positively associated with beta synchrony in the ventral-attention-to-salience networks, and gamma synchrony within the salience network, but also negatively correlated with beta synchrony within the visual network. These novel results show that frequency-specific, network-level atypicalities may reflect trauma-related alterations of ongoing functional connectivity, and correlations of beta synchrony in attentional-to-salience and visual networks with PTSD severity suggest complicated network interactions mediate symptoms. These results contribute to accumulating evidence that PTSD is a complicated network-based disorder expressed as altered neural interactions.
Collapse
Affiliation(s)
- Benjamin T Dunkley
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada.
| | - Sam M Doesburg
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada
| | - Rakesh Jetly
- Directorate of Mental Health, Canadian Forces Health Services, Ottawa, Canada
| | - Paul A Sedge
- Directorate of Mental Health, Canadian Forces Health Services, Ottawa, Canada
| | - Elizabeth W Pang
- Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada; Division of Neurology, The Hospital for Sick Children, Toronto, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
26
|
Touskova T, Bob P. Consciousness, awareness of insight and neural mechanisms of schizophrenia. Rev Neurosci 2015; 26:295-304. [PMID: 25741942 DOI: 10.1515/revneuro-2014-0063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/26/2014] [Indexed: 11/15/2022]
Abstract
According to recent research, disturbances of self-awareness and conscious experience have a critical role in the pathophysiology of schizophrenia, and in this context, schizophrenia is currently understood as a disorder characterized by distortions of acts of awareness, self-consciousness, and self-monitoring. Together, these studies suggest that the processes of disrupted awareness and conscious disintegration in schizophrenia might be related and represented by similar disruptions on the brain level, which, in principle, could be explained by various levels of disturbed connectivity and information disintegration that may negatively affect usual patterns of synchronous activity constituting adaptive integrative functions of consciousness. On the other hand, mental integration based on self-awareness and insight may significantly increase information integration and directly influence neural mechanisms underlying basic pathophysiological processes in schizophrenia.
Collapse
|
27
|
Abstract
What is the primary function of consciousness in the nervous system? The answer to this question remains enigmatic, not so much because of a lack of relevant data, but because of the lack of a conceptual framework with which to interpret the data. To this end, we have developed Passive Frame Theory, an internally coherent framework that, from an action-based perspective, synthesizes empirically supported hypotheses from diverse fields of investigation. The theory proposes that the primary function of consciousness is well-circumscribed, serving the somatic nervous system. For this system, consciousness serves as a frame that constrains and directs skeletal muscle output, thereby yielding adaptive behavior. The mechanism by which consciousness achieves this is more counterintuitive, passive, and "low level" than the kinds of functions that theorists have previously attributed to consciousness. Passive frame theory begins to illuminate (a) what consciousness contributes to nervous function, (b) how consciousness achieves this function, and (c) the neuroanatomical substrates of conscious processes. Our untraditional, action-based perspective focuses on olfaction instead of on vision and is descriptive (describing the products of nature as they evolved to be) rather than normative (construing processes in terms of how they should function). Passive frame theory begins to isolate the neuroanatomical, cognitive-mechanistic, and representational (e.g., conscious contents) processes associated with consciousness.
Collapse
|
28
|
Zaretskaya N, Bartels A. Gestalt perception is associated with reduced parietal beta oscillations. Neuroimage 2015; 112:61-69. [DOI: 10.1016/j.neuroimage.2015.02.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/30/2015] [Accepted: 02/23/2015] [Indexed: 12/19/2022] Open
|
29
|
Abstract
Long-range synchrony between distant brain regions accompanies multiple forms of behavior. This review compares and contrasts the methods by which long-range synchrony is evaluated in both humans and model animals. Three examples of behaviorally relevant long-range synchrony are discussed in detail: gamma-frequency synchrony during visual perception, hippocampal-prefrontal synchrony during working memory, and prefrontal-amygdala synchrony during anxiety. Implications for circuit mechanism, translation, and clinical relevance are discussed.
Collapse
Affiliation(s)
- Alexander Z Harris
- Department of Psychiatry, Columbia University, New York, New York 10032; ,
| | | |
Collapse
|
30
|
Fesi JD, Mendola JD. Individual peak gamma frequency predicts switch rate in perceptual rivalry. Hum Brain Mapp 2015; 36:566-76. [PMID: 25271195 PMCID: PMC6869462 DOI: 10.1002/hbm.22647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/11/2022] Open
Abstract
Perceptual rivalry-the experience of alternation between two mutually exclusive interpretations of an ambiguous image-provides powerful opportunities to study conscious awareness. It is known that individual subjects experience perceptual alternations for various types of bistable stimuli at distinct rates, and this a stable, heritable trait. Also stable and heritable is the peak frequency of induced gamma-band (30-100 Hz) oscillation of a population-level response in occipital cortex to simple visual patterns, which has been established as a neural correlate of conscious processing. Interestingly, models for rivalry alternation rate and for the frequency of population-level oscillation have both cited inhibitory connections in cortex as crucial determinants of individual differences, and yet the relationship between these two variables has not yet been investigated. Here, we used magnetoencephalography to compare differences in alternation rate for binocular and monocular types of perceptual rivalry to differences in evoked and induced gamma-band frequency of neuromagnetic brain responses to simple nonrivalrous grating stimuli. For both types of bistable images, alternation rate was inversely correlated with the peak frequency of late evoked gamma activity in primary visual cortex (200-400 ms latency). Our results advance models of inhibition that account for subtle variation in normal visual cortex, and shed light on how small differences in anatomy and physiology relate to individual cognition and performance.
Collapse
Affiliation(s)
- Jeremy D. Fesi
- Department of OphthalmologyMcGill UniversityMontrealCanada
- Department of PsychologyThe City University of New YorkNew YorkNY
| | - Janine D. Mendola
- Department of OphthalmologyMcGill UniversityMontrealCanada
- Department of PsychologyThe City University of New YorkNew YorkNY
| |
Collapse
|
31
|
Cabral-Calderin Y, Schmidt-Samoa C, Wilke M. Rhythmic gamma stimulation affects bistable perception. J Cogn Neurosci 2015; 27:1298-307. [PMID: 25603029 DOI: 10.1162/jocn_a_00781] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
When our brain is confronted with ambiguous visual stimuli, perception spontaneously alternates between different possible interpretations although the physical stimulus remains the same. Both alpha (8-12 Hz) and gamma (>30 Hz) oscillations have been reported to correlate with such spontaneous perceptual reversals. However, whether these oscillations play a causal role in triggering perceptual switches remains unknown. To address this question, we applied transcranial alternating current stimulation (tACS) over the posterior cortex of healthy human participants to boost alpha and gamma oscillations. At the same time, participants were reporting their percepts of an ambiguous structure-from-motion stimulus. We found that tACS in the gamma band (60 Hz) increased the number of spontaneous perceptual reversals, whereas no significant effect was found for tACS in alpha (10 Hz) and higher gamma (80 Hz) frequencies. Our results suggest a mechanistic role of gamma but not alpha oscillations in the resolution of perceptual ambiguity.
Collapse
Affiliation(s)
| | | | - Melanie Wilke
- 1University of Goettingen.,2Leibniz Institute for Primate Research, Goettingen, Germany.,3DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMBP)
| |
Collapse
|
32
|
Steinmann S, Leicht G, Ertl M, Andreou C, Polomac N, Westerhausen R, Friederici AD, Mulert C. Conscious auditory perception related to long-range synchrony of gamma oscillations. Neuroimage 2014; 100:435-43. [PMID: 24945670 DOI: 10.1016/j.neuroimage.2014.06.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/08/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022] Open
Abstract
While the role of synchronized oscillatory activity in the gamma-band frequency range for conscious perception is well established in the visual domain, there is limited evidence concerning neurophysiological mechanisms in conscious auditory perception. In the current study, we addressed this issue with 64-channel EEG and a dichotic listening (DL) task in twenty-five healthy participants. The typical finding of DL is a more frequent conscious perception of the speech syllable presented to the right ear (RE), which is attributed to the supremacy of the contralateral pathways running from the RE to the speech-dominant left hemisphere. In contrast, the left ear (LE) input initially accesses the right hemisphere and needs additional transfer via interhemispheric pathways before it is processed in the left hemisphere. Using lagged phase synchronization (LPS) analysis and eLORETA source estimation we examined the functional connectivity between right and left primary and secondary auditory cortices in the main frequency bands (delta, theta, alpha, beta, gamma) during RE/LE-reports. Interhemispheric LPS between right and left primary and secondary auditory cortices was specifically increased in the gamma-band range, when participants consciously perceived the syllable presented to the LE. Our results suggest that synchronous gamma oscillations are involved in interhemispheric transfer of auditory information.
Collapse
Affiliation(s)
- Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg - Eppendorf, Hamburg, Germany
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg - Eppendorf, Hamburg, Germany
| | - Matthias Ertl
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg - Eppendorf, Hamburg, Germany
| | - Christina Andreou
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg - Eppendorf, Hamburg, Germany
| | - Nenad Polomac
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg - Eppendorf, Hamburg, Germany
| | - René Westerhausen
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland Hospital, Bergen, Norway
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg - Eppendorf, Hamburg, Germany.
| |
Collapse
|
33
|
Britz J, Díaz Hernàndez L, Ro T, Michel CM. EEG-microstate dependent emergence of perceptual awareness. Front Behav Neurosci 2014; 8:163. [PMID: 24860450 PMCID: PMC4030136 DOI: 10.3389/fnbeh.2014.00163] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/17/2014] [Indexed: 01/26/2023] Open
Abstract
We investigated whether the differences in perceptual awareness for stimuli at the threshold of awareness can arise from different global brain states before stimulus onset indexed by the EEG microstate. We used a metacontrast backward masking paradigm in which subjects had to discriminate between two weak stimuli and obtained measures of accuracy and awareness while their EEG was recorded from 256 channels. Comparing targets that were correctly identified with and without awareness allowed us to contrast differences in awareness while keeping performance constant for identical physical stimuli. Two distinct pre-stimulus scalp potential fields (microstate maps) dissociated correct identification with and without awareness, and their estimated intracranial generators were stronger in primary visual cortex before correct identification without awareness. This difference in activity cannot be explained by differences in alpha power or phase which were less reliably linked with differential pre-stimulus activation of primary visual cortex. Our results shed a new light on the function of pre-stimulus activity in early visual cortex in visual awareness and emphasize the importance of trial-by-trials analysis of the spatial configuration of the scalp potential field identified with multichannel EEG.
Collapse
Affiliation(s)
- Juliane Britz
- Department of Fundamental Neuroscience, Centre Médical Universitaire, University of Geneva Geneva, Switzerland ; EEG Brain Mapping Core, Center for Biomedical Imaging (CIBM), University of Geneva Geneva, Switzerland
| | - Laura Díaz Hernàndez
- Department of Fundamental Neuroscience, Centre Médical Universitaire, University of Geneva Geneva, Switzerland ; Department of Psychiatric Neurophysiology, University Hospital of Psychiatry Bern, Switzerland
| | - Tony Ro
- Department of Psychology, The City College and Graduate Center, City University of New York New York, NY, USA
| | - Christoph M Michel
- Department of Fundamental Neuroscience, Centre Médical Universitaire, University of Geneva Geneva, Switzerland
| |
Collapse
|
34
|
EEG changes caused by spontaneous facial self-touch may represent emotion regulating processes and working memory maintenance. Brain Res 2014; 1557:111-26. [PMID: 24530432 DOI: 10.1016/j.brainres.2014.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/17/2014] [Accepted: 02/01/2014] [Indexed: 11/21/2022]
Abstract
Spontaneous facial self-touch gestures (sFSTG) are performed manifold every day by every human being, primarily in stressful situations. These movements are not usually designed to communicate and are frequently accomplished with little or no awareness. The aim of the present study was to investigate whether sFSTG are associated with specific changes in the electrical brain activity that might indicate an involvement of regulatory emotional processes and working memory. Fourteen subjects performed a delayed memory task of complex haptic stimuli. The stimuli had to be explored and then remembered for a retention interval of 5min. The retention interval was interrupted by unpleasant sounds from The International Affective Digitized Sounds and short sound-free periods. During the experiment a video stream of behavior, 19-channel EEG, and EMG (of forearm muscles) were recorded. Comparisons of the behavioral data and spectral power of different EEG frequency bands (theta, alpha, beta, and gamma) were conducted. An increase of sFSTG during the application of unpleasant sounds was observed. A significant increase of spectral theta and beta power was observed after exploration of the stimuli as well as after sFSTG in centro-parietal electrodes. The spectral theta power extremely decreased just before sFSTG during the retention interval. Contrary to this, no significant changes were detected in any of the frequencies when the spectral power before and after instructed facial self-touch movements (b-iFSTG and a-iFSTG) were compared. The changes of spectral theta power in the intervals before and after sFSTG in centro-parietal electrodes imply that sFSTG are associated with cortical regulatory processes in the domains of working memory and emotions.
Collapse
|
35
|
Merrick C, Godwin CA, Geisler MW, Morsella E. The olfactory system as the gateway to the neural correlates of consciousness. Front Psychol 2014; 4:1011. [PMID: 24454300 PMCID: PMC3887364 DOI: 10.3389/fpsyg.2013.01011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/18/2013] [Indexed: 11/30/2022] Open
Abstract
How consciousness is generated by the nervous system remains one of the greatest mysteries in science. Investigators from diverse fields have begun to unravel this puzzle by contrasting conscious and unconscious processes. In this way, it has been revealed that the two kinds of processes differ in terms of the underlying neural events and associated cognitive mechanisms. We propose that, for several reasons, the olfactory system provides a unique portal through which to examine this contrast. For this purpose, the olfactory system is beneficial in terms of its (a) neuroanatomical aspects, (b) phenomenological and cognitive/mechanistic properties, and (c) neurodynamic (e.g., brain oscillations) properties. In this review, we discuss how each of these properties and aspects of the olfactory system can illuminate the contrast between conscious and unconscious processing in the brain. We conclude by delineating the most fruitful avenues of research and by entertaining hypotheses that, in order for an olfactory content to be conscious, that content must participate in a network that is large-scale, both in terms of the neural systems involved and the scope of information integration.
Collapse
Affiliation(s)
- Christina Merrick
- Department of Psychology, San Francisco State UniversitySan Francisco, CA, USA
| | | | - Mark W. Geisler
- Department of Psychology, San Francisco State UniversitySan Francisco, CA, USA
| | - Ezequiel Morsella
- Department of Psychology, San Francisco State UniversitySan Francisco, CA, USA
- Department of Neurology, University of California San FranciscoSan Francisco, CA, USA
| |
Collapse
|
36
|
McMullan AR, Hambrook DA, Tata MS. Brain dynamics encode the spectrotemporal boundaries of auditory objects. Hear Res 2013; 304:77-90. [DOI: 10.1016/j.heares.2013.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
|
37
|
Strüber D, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS. Antiphasic 40 Hz Oscillatory Current Stimulation Affects Bistable Motion Perception. Brain Topogr 2013; 27:158-71. [DOI: 10.1007/s10548-013-0294-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/14/2013] [Indexed: 11/28/2022]
|
38
|
Kim DJ, Bolbecker AR, Howell J, Rass O, Sporns O, Hetrick WP, Breier A, O'Donnell BF. Disturbed resting state EEG synchronization in bipolar disorder: A graph-theoretic analysis. NEUROIMAGE-CLINICAL 2013; 2:414-23. [PMID: 24179795 PMCID: PMC3777715 DOI: 10.1016/j.nicl.2013.03.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 01/24/2023]
Abstract
Disruption of functional connectivity may be a key feature of bipolar disorder (BD) which reflects disturbances of synchronization and oscillations within brain networks. We investigated whether the resting electroencephalogram (EEG) in patients with BD showed altered synchronization or network properties. Resting-state EEG was recorded in 57 BD type-I patients and 87 healthy control subjects. Functional connectivity between pairs of EEG channels was measured using synchronization likelihood (SL) for 5 frequency bands (δ, θ, α, β, and γ). Graph-theoretic analysis was applied to SL over the electrode array to assess network properties. BD patients showed a decrease of mean synchronization in the alpha band, and the decreases were greatest in fronto-central and centro-parietal connections. In addition, the clustering coefficient and global efficiency were decreased in BD patients, whereas the characteristic path length increased. We also found that the normalized characteristic path length and small-worldness were significantly correlated with depression scores in BD patients. These results suggest that BD patients show impaired neural synchronization at rest and a disruption of resting-state functional connectivity. Global synchronization of BD patients was reduced in the alpha-band at resting. De-synchronized connectivity was localized in fronto-centro-parietal connections. Global topology of BD had decreased network clustering and increased path length. BD showed the less efficient network processing. Network characteristics of BD patients were associated with depression severity.
Collapse
Key Words
- BD, bipolar disorder
- Bipolar disorder
- C, clustering coefficients
- DSM-IV, diagnostic and statistical manual of mental disorders, the 4th-edition
- DTI, diffusion tensor imaging (image)
- EEG, electroencephalogram
- EOG, electrooculogram
- Eg, global efficiency
- El, local efficiency
- Electroencephalogram
- FA, fractional anisotropy
- FDR, false discovery rate
- Functional connectivity
- GABA, gamma-amino butyric acid
- Graph theory
- L, characteristic path length
- MADRS, Montgomery–Asberg Depression Rating Scale
- MEG, magnetoencephalogram
- MRI, magnetic resonance imaging
- NBS, network-based statistics
- NC, normal healthy control
- PLI, phase lag index
- Resting state
- SCID, Structured Clinical Interview for DSM Disorders
- SL, synchronization likelihood
- Synchronization likelihood
- WASI, Wechsler Abbreviated Scale of Intelligence
- WM, white matter
- YMRS, Young Mania Rating Scale
- b, node betweenness centrality
- fMRI, functional magnetic resonance imaging
- s, node strength
- γ, normalized clustering coefficients
- λ, normalized characteristic path length
- σ, small-worldness
Collapse
Affiliation(s)
- Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
We investigated how the structure of the brain network relates to the stability of perceptual alternation in binocular rivalry. Historically, binocular rivalry has provided important new insights to our understandings in neuroscience. Although various relationships between the local regions of the human brain structure and perceptual switching phenomena have been shown in previous researches, the global organization of the human brain structural network relating to this phenomenon has not yet been addressed. To approach this issue, we reconstructed fiber-tract bundles using diffusion tensor imaging and then evaluated the correlations between the speeds of perceptual alternation and fractional anisotropy (FA) values in each fiber-tract bundle integrating among 84 brain regions. The resulting comparison revealed that the distribution of the global organization of the structural brain network showed positive or negative correlations between the speeds of perceptual alternation and the FA values. First, the connections between the subcortical regions stably were negatively correlated. Second, the connections between the cortical regions mainly showed positive correlations. Third, almost all other cortical connections that showed negative correlations were located in one central cluster of the subcortical connections. This contrast between the contribution of the cortical regions to destabilization and the contribution of the subcortical regions to stabilization of perceptual alternation provides important information as to how the global architecture of the brain structural network supports the phenomenon of binocular rivalry.
Collapse
Affiliation(s)
- Masanori Shimono
- Department of Physics, Indiana University, Bloomington, Indiana 47405-7105, USA.
| | | |
Collapse
|
40
|
Brown SR. Emergence in the central nervous system. Cogn Neurodyn 2012; 7:173-95. [PMID: 24427200 DOI: 10.1007/s11571-012-9229-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 10/04/2012] [Accepted: 11/20/2012] [Indexed: 11/30/2022] Open
Abstract
"Emergence" is an idea that has received much attention in consciousness literature, but it is difficult to find characterizations of that concept which are both specific and useful. I will precisely define and characterize a type of epistemic ("weak") emergence and show that it is a property of some neural circuits throughout the CNS, on micro-, meso- and macroscopic levels. I will argue that possession of this property can result in profoundly altered neural dynamics on multiple levels in cortex and other systems. I will first describe emergent neural entities (ENEs) abstractly. I will then show how ENEs function specifically and concretely, and demonstrate some implications of this type of emergence for the CNS.
Collapse
Affiliation(s)
- Steven Ravett Brown
- Department of Neuroscience, Mt. Sinai School of Medicine, Icahn Medical Institute, 1425 Madison Ave, Rm 10-70E, New York, NY 10029 USA ; 158 W 23rd St, Fl 3, New York, NY 10011 USA
| |
Collapse
|
41
|
Doesburg SM, Vinette SA, Cheung MJ, Pang EW. Theta-modulated gamma-band synchronization among activated regions during a verb generation task. Front Psychol 2012; 3:195. [PMID: 22707946 PMCID: PMC3374414 DOI: 10.3389/fpsyg.2012.00195] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 05/25/2012] [Indexed: 11/16/2022] Open
Abstract
Expressive language is complex and involves processing within a distributed network of cortical regions. Functional MRI and magnetoencephalography (MEG) have identified brain areas critical for expressive language, but how these regions communicate across the network remains poorly understood. It is thought that synchronization of oscillations between neural populations, particularly at a gamma rate (>30 Hz), underlies functional integration within cortical networks. Modulation of gamma rhythms by theta-band oscillations (4–8 Hz) has been proposed as a mechanism for the integration of local cell coalitions into large-scale networks underlying cognition and perception. The present study tested the hypothesis that these oscillatory mechanisms of functional integration were present within the expressive language network. We recorded MEG while subjects performed a covert verb generation task. We localized activated cortical regions using beamformer analysis, calculated inter-regional phase locking between activated areas, and measured modulation of inter-regional gamma synchronization by theta phase. The results show task-dependent gamma-band synchronization among regions activated during the performance of the verb generation task, and we provide evidence that these transient and periodic instances of high-frequency connectivity were modulated by the phase of cortical theta oscillations. These findings suggest that oscillatory synchronization and cross-frequency interactions are mechanisms for functional integration among distributed brain areas supporting expressive language processing.
Collapse
Affiliation(s)
- Sam M Doesburg
- Department of Diagnostic Imaging, Hospital for Sick Children Toronto, ON, Canada
| | | | | | | |
Collapse
|
42
|
Tallon-Baudry C. On the neural mechanisms subserving consciousness and attention. Front Psychol 2012; 2:397. [PMID: 22291674 PMCID: PMC3253412 DOI: 10.3389/fpsyg.2011.00397] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/22/2011] [Indexed: 11/20/2022] Open
Abstract
Consciousness, as described in the experimental literature, is a multi-faceted phenomenon, that impinges on other well-studied concepts such as attention and control. Do consciousness and attention refer to different aspects of the same core phenomenon, or do they correspond to distinct functions? One possibility to address this question is to examine the neural mechanisms underlying consciousness and attention. If consciousness and attention pertain to the same concept, they should rely on shared neural mechanisms. Conversely, if their underlying mechanisms are distinct, then consciousness and attention should be considered as distinct entities. This paper therefore reviews neurophysiological facts arguing in favor or against a tight relationship between consciousness and attention. Three neural mechanisms that have been associated with both attention and consciousness are examined (neural amplification, involvement of the fronto-parietal network, and oscillatory synchrony), to conclude that the commonalities between attention and consciousness at the neural level may have been overestimated. Last but not least, experiments in which both attention and consciousness were probed at the neural level point toward a dissociation between the two concepts. It therefore appears from this review that consciousness and attention rely on distinct neural properties, although they can interact at the behavioral level. It is proposed that a “cumulative influence model,” in which attention and consciousness correspond to distinct neural mechanisms feeding a single decisional process leading to behavior, fits best with available neural and behavioral data. In this view, consciousness should not be considered as a top-level executive function but should rather be defined by its experiential properties.
Collapse
Affiliation(s)
- Catherine Tallon-Baudry
- INSERM U975, CNRS UMR7225, Centre de Recherche de l'Institut du Cerveau et de la Moëlle épinière, Université Pierre et Marie Curie-Paris 6 UMR-S975 Paris, France
| |
Collapse
|
43
|
Spiegler A, Knösche TR, Schwab K, Haueisen J, Atay FM. Modeling brain resonance phenomena using a neural mass model. PLoS Comput Biol 2011; 7:e1002298. [PMID: 22215992 PMCID: PMC3245303 DOI: 10.1371/journal.pcbi.1002298] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 10/25/2011] [Indexed: 11/22/2022] Open
Abstract
Stimulation with rhythmic light flicker (photic driving) plays an important role in the diagnosis of schizophrenia, mood disorder, migraine, and epilepsy. In particular, the adjustment of spontaneous brain rhythms to the stimulus frequency (entrainment) is used to assess the functional flexibility of the brain. We aim to gain deeper understanding of the mechanisms underlying this technique and to predict the effects of stimulus frequency and intensity. For this purpose, a modified Jansen and Rit neural mass model (NMM) of a cortical circuit is used. This mean field model has been designed to strike a balance between mathematical simplicity and biological plausibility. We reproduced the entrainment phenomenon observed in EEG during a photic driving experiment. More generally, we demonstrate that such a single area model can already yield very complex dynamics, including chaos, for biologically plausible parameter ranges. We chart the entire parameter space by means of characteristic Lyapunov spectra and Kaplan-Yorke dimension as well as time series and power spectra. Rhythmic and chaotic brain states were found virtually next to each other, such that small parameter changes can give rise to switching from one to another. Strikingly, this characteristic pattern of unpredictability generated by the model was matched to the experimental data with reasonable accuracy. These findings confirm that the NMM is a useful model of brain dynamics during photic driving. In this context, it can be used to study the mechanisms of, for example, perception and epileptic seizure generation. In particular, it enabled us to make predictions regarding the stimulus amplitude in further experiments for improving the entrainment effect. Neuroscience aims to understand the enormously complex function of the normal and diseased brain. This, in turn, is the key to explaining human behavior and to developing novel diagnostic and therapeutic procedures. We develop and use models of mean activity in a single brain area, which provide a balance between tractability and plausibility. We use such a model to explain the resonance phenomenon in a photic driving experiment, which is routinely applied in the diagnosis of various diseases including epilepsy, migraine, schizophrenia and depression. Based on the model, we make predictions on the outcome of similar resonance experiments with periodic stimulation of the patients or participants. Our results are important for researchers and clinicians analyzing brain or behavioral data following periodic input.
Collapse
Affiliation(s)
- Andreas Spiegler
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
44
|
Abstract
The temporal dynamics and anatomical correlates underlying human visual cognition are traditionally assessed as a function of stimulus properties and task demands. Any non-stimulus related activity is commonly dismissed as noise and eliminated to extract an evoked signal that is only a small fraction of the magnitude of the measured signal. We review studies that challenge this view by showing that non-stimulus related activity is not mere noise but that it has a well-structured organization which can largely determine the processing of upcoming stimuli. We review recent evidence from human electrophysiology that shows how different aspects of pre-stimulus activity such as pre-stimulus EEG frequency power and phase and pre-stimulus EEG microstates can determine qualitative and quantitative properties of both lower and higher-level visual processing. These studies show that low-level sensory processes depend on the momentary excitability of sensory cortices whereas perceptual processes leading to stimulus awareness depend on momentary pre-stimulus activity in higher-level non-visual brain areas. Also speed and accuracy of stimulus identification have likewise been shown to be modulated by pre-stimulus brain states.
Collapse
Affiliation(s)
- Juliane Britz
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience and Clinic of Neurology, University Medical School and University Hospital of Geneva Geneva, Switzerland
| | | |
Collapse
|
45
|
Naber M, Frässle S, Einhäuser W. Perceptual rivalry: reflexes reveal the gradual nature of visual awareness. PLoS One 2011; 6:e20910. [PMID: 21677786 PMCID: PMC3109001 DOI: 10.1371/journal.pone.0020910] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 05/16/2011] [Indexed: 11/19/2022] Open
Abstract
Rivalry is a common tool to probe visual awareness: a constant physical stimulus evokes multiple, distinct perceptual interpretations ("percepts") that alternate over time. Percepts are typically described as mutually exclusive, suggesting that a discrete (all-or-none) process underlies changes in visual awareness. Here we follow two strategies to address whether rivalry is an all-or-none process: first, we introduce two reflexes as objective measures of rivalry, pupil dilation and optokinetic nystagmus (OKN); second, we use a continuous input device (analog joystick) to allow observers a gradual subjective report. We find that the "reflexes" reflect the percept rather than the physical stimulus. Both reflexes show a gradual dependence on the time relative to perceptual transitions. Similarly, observers' joystick deflections, which are highly correlated with the reflex measures, indicate gradual transitions. Physically simulating wave-like transitions between percepts suggest piece-meal rivalry (i.e., different regions of space belonging to distinct percepts) as one possible explanation for the gradual transitions. Furthermore, the reflexes show that dominance durations depend on whether or not the percept is actively reported. In addition, reflexes respond to transitions with shorter latencies than the subjective report and show an abundance of short dominance durations. This failure to report fast changes in dominance may result from limited access of introspection to rivalry dynamics. In sum, reflexes reveal that rivalry is a gradual process, rivalry's dynamics is modulated by the required action (response mode), and that rapid transitions in perceptual dominance can slip away from awareness.
Collapse
Affiliation(s)
- Marnix Naber
- Department of Neurophysics, Philipps-University Marburg, Marburg, Germany.
| | | | | |
Collapse
|
46
|
Ward LM. The thalamic dynamic core theory of conscious experience. Conscious Cogn 2011; 20:464-86. [PMID: 21349742 DOI: 10.1016/j.concog.2011.01.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/19/2011] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
Abstract
I propose that primary conscious awareness arises from synchronized activity in dendrites of neurons in dorsal thalamic nuclei, mediated particularly by inhibitory interactions with thalamic reticular neurons. In support, I offer four evidential pillars: (1) consciousness is restricted to the results of cortical computations; (2) thalamus is the common locus of action of brain injury in vegetative state and of general anesthetics; (3) the anatomy and physiology of the thalamus imply a central role in consciousness; (4) neural synchronization is a neural correlate of consciousness.
Collapse
Affiliation(s)
- Lawrence M Ward
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada V6T 1Z4.
| |
Collapse
|
47
|
|
48
|
Ehm W, Bach M, Kornmeier J. Ambiguous figures and binding: EEG frequency modulations during multistable perception. Psychophysiology 2010; 48:547-58. [PMID: 20796247 DOI: 10.1111/j.1469-8986.2010.01087.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ambiguous figures induce sudden transitions between rivaling percepts. We investigated electroencephalogram frequency modulations of accompanying change-related de- and rebinding processes. Presenting the stimuli discontinously, we synchronized perceptual reversals with stimulus onset, which served as a time reference for averaging. The resultant gain in temporal resolution revealed a sequence of time-frequency correlates of the reversal process. Most conspicuous was a transient right-hemispheric gamma modulation preceding endogenous reversals by at least 200 ms. No such modulation occurred with exogenously induced reversals of unambiguous stimulus variants. Post-onset components were delayed for ambiguous compared to unambiguous stimuli. The time course of oscillatory activity differed in several respects from predictions based on binding-related hypotheses. The gamma modulation preceding endogenous reversals may indicate an unstable brain state, ready to switch.
Collapse
Affiliation(s)
- Werner Ehm
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany Universitäts-Augenklinik, Freiburg, Germany
| | | | | |
Collapse
|
49
|
|
50
|
Shimaoka D, Kitajo K, Kaneko K, Yamaguchi Y. Transient process of cortical activity during Necker cube perception: from local clusters to global synchrony. NONLINEAR BIOMEDICAL PHYSICS 2010; 4 Suppl 1:S7. [PMID: 20522268 PMCID: PMC2880804 DOI: 10.1186/1753-4631-4-s1-s7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND It has been discussed that neural phase-synchrony across distant cortical areas (or global phase-synchrony) was correlated with various aspects of consciousness. The generating process of the synchrony, however, remains largely unknown. As a first step, we investigate transient process of global phase-synchrony, focusing on phase-synchronized clusters. We hypothesize that the phase-synchronized clusters are dynamically organized before global synchrony and clustering patterns depend on perceptual conditions. METHODS In an EEG study, Kitajo reported that phase-synchrony across distant cortical areas was selectively enhanced by top-down attention around 4 Hz in Necker cube perception. Here, we further analyzed the phase-synchronized clusters using hierarchical clustering which sequentially binds up the nearest electrodes based on similarity of phase locking between the cortical signals. First, we classified dominant components of the phase-synchronized clusters over time. We then investigated how the phase-synchronized clusters change with time, focusing on their size and spatial structure. RESULTS Phase-locked clusters organized a stable spatial pattern common to the perceptual conditions. In addition, the phase-locked clusters were modulated transiently depending on the perceptual conditions and the time from the perceptual switch. When top-down attention succeeded in switching perception as subjects intended, independent clusters at frontal and occipital areas grew to connect with each other around the time of the perceptual switch. However, the clusters in the occipital and left parietal areas remained divided when top-down attention failed in switching perception. When no primary biases exist, the cluster in the occipital area grew to its maximum at the time of the perceptual switch within the occipital area. CONCLUSIONS Our study confirmed the existence of stable phase-synchronized clusters. Furthermore, these clusters were transiently connected with each other. The connecting pattern depended on subjects' internal states. These results suggest that subjects' attentional states are associated with distinct spatio-temporal patterns of the phase-locked clusters.
Collapse
Affiliation(s)
- Daisuke Shimaoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Keiichi Kitajo
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kunihiko Kaneko
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- ERATO Complex Systems Biology Project, Japan Science and Technology Agency, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yoko Yamaguchi
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| |
Collapse
|