1
|
Kessler L, Koo C, Richter CP, Tan X. Hearing loss during chemotherapy: prevalence, mechanisms, and protection. Am J Cancer Res 2024; 14:4597-4632. [PMID: 39417180 PMCID: PMC11477841 DOI: 10.62347/okgq4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Ototoxicity is an often-underestimated sequela for cancer patients undergoing chemotherapy, with an incidence rate exceeding 50%, affecting approximately 4 million individuals worldwide each year. Despite the nearly 2,000 publications on chemotherapy-related ototoxicity in the past decade, the understanding of its prevalence, mechanisms, and preventative or therapeutic measures remains ambiguous and subject to debate. To date, only one drug, sodium thiosulfate, has gained FDA approval for treating ototoxicity in chemotherapy. However, its utilization is restricted. This review aims to offer clinicians and researchers a comprehensive perspective by thoroughly and carefully reviewing available data and current evidence. Chemotherapy-induced ototoxicity is characterized by four primary symptoms: hearing loss, tinnitus, vertigo, and dizziness, originating from both auditory and vestibular systems. Hearing loss is the predominant symptom. Amongst over 700 chemotherapeutic agents documented in various databases, only seven are reported to induce hearing loss. While the molecular mechanisms of the hearing loss caused by the two platinum-based drugs are extensively explored, the pathways behind the action of the other five drugs are primarily speculative, rooted in their therapeutic properties and side effects. Cisplatin attracts the majority of attention among these drugs, encompassing around two-thirds of the literature regarding ototoxicity in chemotherapy. Cisplatin ototoxicity chiefly manifests through the loss of outer hair cells, possibly resulting from damages directly by cisplatin uptake or secondary effects on the stria vascularis. Both direct and indirect influences contribute to cisplatin ototoxicity, while it is still debated which path is dominant or where the primary target of cisplatin is located. Candidates for hearing protection against cisplatin ototoxicity are also discussed, with novel strategies and methods showing promise on the horizon.
Collapse
Affiliation(s)
- Lexie Kessler
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Chail Koo
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| | - Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| |
Collapse
|
2
|
Xie LW, Lu HY, Tang LF, Tang FL, Zhu RQ, Wang DF, Cai S, Tian Y, Li M. Probiotic Consortia Protect the Intestine Against Radiation Injury by Improving Intestinal Epithelial Homeostasis. Int J Radiat Oncol Biol Phys 2024; 120:189-204. [PMID: 38485099 DOI: 10.1016/j.ijrobp.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/25/2024] [Accepted: 03/02/2024] [Indexed: 04/14/2024]
Abstract
PURPOSE Radiation-induced intestinal injury (RIII) commonly occur during abdominal-pelvic cancer radiation therapy; however, no effective prophylactic or therapeutic agents are available to manage RIII currently. This study aimed to clarify the potential of probiotic consortium supplementation in alleviating RIII. METHODS AND MATERIALS Male C57BL/6J mice were orally administered a probiotic mixture comprising Bifidobacterium longum BL21, Lactobacillus paracasei LC86, and Lactobacillus plantarum Lp90 for 30 days before exposure to 13 Gy of whole abdominal irradiation. The survival rates, clinical scores, and histologic changes in the intestines of mice were assessed. The impacts of probiotic consortium treatment on intestinal stem cell proliferation, differentiation, and epithelial barrier function; oxidative stress; and inflammatory cytokines were evaluated. A comprehensive examination of the gut microbiota composition was conducted through 16S rRNA sequencing, while changes in metabolites were identified using liquid chromatography-mass spectrometry. RESULTS The probiotic consortium alleviated RIII, as reflected by increased survival rates, improved clinical scores, and mitigated mucosal injury. The probiotic consortium treatment exhibited enhanced therapeutic effects at the histologic level compared with individual probiotic strains, although there was no corresponding improvement in survival rates and colon length. Moreover, the probiotic consortium stimulated intestinal stem cell proliferation and differentiation, enhanced the integrity of the intestinal epithelial barrier, and regulated redox imbalance and inflammatory responses in irradiated mice. Notably, the treatment induced a restructuring of the gut microbiota composition, particularly enriching short-chain fatty acid-producing bacteria. Metabolomic analysis revealed distinctive metabolic changes associated with the probiotic consortium, including elevated levels of anti-inflammatory and antiradiation metabolites. CONCLUSIONS The probiotic consortium attenuated RIII by modulating the gut microbiota and metabolites, improving inflammatory symptoms, and regulating oxidative stress. These findings provide new insights into the maintenance of intestinal health with probiotic consortium supplementation and will facilitate the development of probiotic-based therapeutic strategies for RIII in clinical practice.
Collapse
Affiliation(s)
- Li-Wei Xie
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Hai-Yan Lu
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Lin-Feng Tang
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Feng-Ling Tang
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Rui-Qiu Zhu
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Di-Fan Wang
- Medical College of Soochow University, Suzhou, China
| | - Shang Cai
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Ye Tian
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China.
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Lyrio RMDC, Rocha BRA, Corrêa ALRM, Mascarenhas MGS, Santos FL, Maia RDH, Segundo LB, de Almeida PAA, Moreira CMO, Sassi RH. Chemotherapy-induced acute kidney injury: epidemiology, pathophysiology, and therapeutic approaches. FRONTIERS IN NEPHROLOGY 2024; 4:1436896. [PMID: 39185276 PMCID: PMC11341478 DOI: 10.3389/fneph.2024.1436896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
Despite significant advancements in oncology, conventional chemotherapy remains the primary treatment for diverse malignancies. Acute kidney injury (AKI) stands out as one of the most prevalent and severe adverse effects associated with these cytotoxic agents. While platinum compounds are well-known for their nephrotoxic potential, other drugs including antimetabolites, alkylating agents, and antitumor antibiotics are also associated. The onset of AKI poses substantial risks, including heightened morbidity and mortality rates, prolonged hospital stays, treatment interruptions, and the need for renal replacement therapy, all of which impede optimal patient care. Various proactive measures, such as aggressive hydration and diuresis, have been identified as potential strategies to mitigate AKI; however, preventing its occurrence during chemotherapy remains challenging. Additionally, several factors, including intravascular volume depletion, sepsis, exposure to other nephrotoxic agents, tumor lysis syndrome, and direct damage from cancer's pathophysiology, frequently contribute to or exacerbate kidney injury. This article aims to comprehensively review the epidemiology, mechanisms of injury, diagnosis, treatment options, and prevention strategies for AKI induced by conventional chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Felipe Luz Santos
- Department of Medicine, Universidade Salvador (UNIFACS), Salvador, Brazil
| | | | | | | | | | - Rafael Hennemann Sassi
- Hematology Department, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
4
|
Chen YS, Jin E, Day PJ. Use of Drug Sensitisers to Improve Therapeutic Index in Cancer. Pharmaceutics 2024; 16:928. [PMID: 39065625 PMCID: PMC11279903 DOI: 10.3390/pharmaceutics16070928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The clinical management of malignant tumours is challenging, often leading to severe adverse effects and death. Drug resistance (DR) antagonises the effectiveness of treatments, and increasing drug dosage can worsen the therapeutic index (TI). Current efforts to overcome DR predominantly involve the use of drug combinations, including applying multiple anti-cancerous drugs, employing drug sensitisers, which are chemical agents that enhance pharmacokinetics (PK), including the targeting of cellular pathways and regulating pertinent membrane transporters. While combining multiple compounds may lead to drug-drug interactions (DDI) or polypharmacy effect, the use of drug sensitisers permits rapid attainment of effective treatment dosages at the disease site to prevent early DR and minimise side effects and will reduce the chance of DDI as lower drug doses are required. This review highlights the essential use of TI in evaluating drug dosage for cancer treatment and discusses the lack of a unified standard for TI within the field. Commonly used benefit-risk assessment criteria are summarised, and the critical exploration of the current use of TI in the pharmaceutical industrial sector is included. Specifically, this review leads to the discussion of drug sensitisers to facilitate improved ratios of effective dose to toxic dose directly in humans. The combination of drug and sensitiser molecules might see additional benefits to rekindle those drugs that failed late-stage clinical trials by the removal of detrimental off-target activities through the use of lower drug doses. Drug combinations and employing drug sensitisers are potential means to combat DR. The evolution of drug combinations and polypharmacy on TI are reviewed. Notably, the novel binary weapon approach is introduced as a new opportunity to improve TI. This review emphasises the urgent need for a criterion to systematically evaluate drug safety and efficiency for practical implementation in the field.
Collapse
Affiliation(s)
- Yu-Shan Chen
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (Y.-S.C.); (E.J.)
| | - Enhui Jin
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (Y.-S.C.); (E.J.)
| | - Philip J. Day
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (Y.-S.C.); (E.J.)
- Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
5
|
Walker DM, Lazarova TI, Riesinger SW, Poirier MC, Messier T, Cunniff B, Walker VE. WR1065 conjugated to thiol-PEG polymers as novel anticancer prodrugs: broad spectrum efficacy, synergism, and drug resistance reversal. Front Oncol 2023; 13:1212604. [PMID: 37576902 PMCID: PMC10419174 DOI: 10.3389/fonc.2023.1212604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
The lack of anticancer agents that overcome innate/acquired drug resistance is the single biggest barrier to achieving a durable complete response to cancer therapy. To address this issue, a new drug family was developed for intracellular delivery of the bioactive aminothiol WR1065 by conjugating it to discrete thiol-PEG polymers: 4-star-PEG-S-S-WR1065 (4SP65) delivers four WR1065s/molecule and m-PEG6-S-S-WR1065 (1LP65) delivers one. Infrequently, WR1065 has exhibited anticancer effects when delivered via the FDA-approved cytoprotectant amifostine, which provides one WR1065/molecule extracellularly. The relative anticancer effectiveness of 4SP65, 1LP65, and amifostine was evaluated in a panel of 15 human cancer cell lines derived from seven tissues. Additional experiments assessed the capacity of 4SP65 co-treatments to potentiate the anticancer effectiveness and overcome drug resistance to cisplatin, a chemotherapeutic, or gefitinib, a tyrosine kinase inhibitor (TKI) targeting oncogenic EGFR mutations. The CyQUANT®-NF proliferation assay was used to assess cell viability after 48-h drug treatments, with the National Cancer Institute COMPARE methodology employed to characterize dose-response metrics. In normal human epithelial cells, 4SP65 or 1LP65 enhanced or inhibited cell growth but was not cytotoxic. In cancer cell lines, 4SP65 and 1LP65 induced dose-dependent cytostasis and cytolysis achieving 99% cell death at drug concentrations of 11.2 ± 1.2 µM and 126 ± 15.8 µM, respectively. Amifostine had limited cytostatic effects in 11/14 cancer cell lines and no cytolytic effects. Binary pairs of 4SP65 plus cisplatin or gefitinib increased the efficacy of each partner drug and surmounted resistance to cytolysis by cisplatin and gefitinib in relevant cancer cell lines. 4SP65 and 1LP65 were significantly more effective against TP53-mutant than TP53-wild-type cell lines, consistent with WR1065-mediated reactivation of mutant p53. Thus, 4SP65 and 1LP65 represent a unique prodrug family for innovative applications as broad-spectrum anticancer agents that target p53 and synergize with a chemotherapeutic and an EGFR-TKI to prevent or overcome drug resistance.
Collapse
Affiliation(s)
- Dale M. Walker
- The Burlington HC Research Group, Inc., Jericho, VT, United States
| | | | | | - Miriam C. Poirier
- Carcinogen–DNA Interactions Section, Laboratory of Cellular Carcinogenesis and Tumor Promotion, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Terri Messier
- Department of Pathology and Laboratory Medicine, Redox Biology and Pathology Program, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, Redox Biology and Pathology Program, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Vernon E. Walker
- Department of Pathology and Laboratory Medicine, Redox Biology and Pathology Program, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| |
Collapse
|
6
|
Dysgeusia in Patients with Breast Cancer Treated with Chemotherapy-A Narrative Review. Nutrients 2023; 15:nu15010226. [PMID: 36615883 PMCID: PMC9823517 DOI: 10.3390/nu15010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Breast cancer (BC) is the most common cancer worldwide. Chemotherapy (CT) is essential for the treatment of BC, but is often accompanied by several side effects, including taste alterations, due to different mechanisms. Although dysgeusia is usually underestimated by clinicians, it is considered very worrying and disturbing by cancer patients undergoing CT, because it induces changes in dietary choices and social habits, affecting their physical and psychological health, with a profound impact on their quality of life. Several strategies and therapies have been proposed to prevent or alleviate CT-induced dysgeusia. This review aimed to evaluate the available evidence on prevalence, pathophysiological mechanisms, clinical consequences, and strategies for managing dysgeusia in BC patients receiving CT. We queried the National Library of Medicine, the Cochrane Library, Excerpta Medica dataBASE, and the Cumulative Index to Nursing and Allied Health Literature database, performing a search strategy using database-specific keywords. We found that the literature on this topic is scarce, methodologically limited, and highly heterogeneous in terms of study design and criteria for patient inclusion, making it difficult to obtain definitive results and make recommendations for clinical practice.
Collapse
|
7
|
Alcaraz M, Olivares A, Achel DG, García-Gamuz JA, Castillo J, Alcaraz-Saura M. Genoprotective Effect of Some Flavonoids against Genotoxic Damage Induced by X-rays In Vivo: Relationship between Structure and Activity. Antioxidants (Basel) 2021; 11:antiox11010094. [PMID: 35052599 PMCID: PMC8773379 DOI: 10.3390/antiox11010094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Flavonoids constitute a group of polyphenolic compounds characterized by a common gamma-benzo- pyrone structure considered in numerous biological systems to possess antioxidant capacity. Among the different applications of flavonoids, its genoprotective capacity against damage induced by ionizing radiation stands out, which has been related to antioxidant activity and its chemical structure. In this study, we determined the frequency of appearance of micronucleus in vivo by means of the micronucleus assay. This was conducted in mice treated with different flavonoids before and after exposure to 470 mGy X-rays; thereafter, their bone marrow polychromatophilic erythrocytes were evaluated to establish the structural factors enhancing the observed genoprotective effect. Our results in vivo show that the presence of a monomeric flavan-3-ol type structure, with absence of carbonyl group in position C4 of ring C, absence of conjugation between the carbons bearing the C2 = C3 double bond and the said ring, presence of a catechol group in ring B and characteristic hydroxylation in positions 5 and 7 of ring A are the structural characteristics that determine the highest degree of genoprotection. Additionally, a certain degree of polymerization of this flavonoid monomer, but maintaining significant levels of monomers and dimers, contributes to increasing the degree of genoprotection in the animals studied at both times of their administration (before and after exposure to X-rays).
Collapse
Affiliation(s)
- Miguel Alcaraz
- Radiology and Physical Medicine Department, School of Medicine, University of Murcia, 30100 Murcia, Spain; (A.O.); (J.A.G.-G.); (M.A.-S.)
- Correspondence: ; Tel.: +34-868-883-601
| | - Amparo Olivares
- Radiology and Physical Medicine Department, School of Medicine, University of Murcia, 30100 Murcia, Spain; (A.O.); (J.A.G.-G.); (M.A.-S.)
| | - Daniel Gyingiri Achel
- Applied Radiation Biology Centre, Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, Legon, Accra GE-257-0465, Ghana;
| | - José Antonio García-Gamuz
- Radiology and Physical Medicine Department, School of Medicine, University of Murcia, 30100 Murcia, Spain; (A.O.); (J.A.G.-G.); (M.A.-S.)
| | - Julián Castillo
- R&D Department, Iff Murcia Natural Ingredients, Site Plant: Nutrafur, Camino Viejo de Pliego, Km. 2, Box 182, 30820 Alcantarilla, Spain;
| | - Miguel Alcaraz-Saura
- Radiology and Physical Medicine Department, School of Medicine, University of Murcia, 30100 Murcia, Spain; (A.O.); (J.A.G.-G.); (M.A.-S.)
| |
Collapse
|
8
|
Jurgensen KJ, Skinner WKJ, Oronsky B, Abrouk ND, Graff AE, Landes RD, Culp WE, Summers TA, Cary LH. RRx-001 Radioprotection: Enhancement of Survival and Hematopoietic Recovery in Gamma-Irradiated Mice. Front Pharmacol 2021; 12:676396. [PMID: 33967816 PMCID: PMC8100686 DOI: 10.3389/fphar.2021.676396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/06/2021] [Indexed: 01/03/2023] Open
Abstract
The present studies evaluate the in vivo prophylactic radioprotective effects of 1-bromoacetyl-3, 3-dinitroazetidine (RRx-001), a phase III anticancer agent that inhibits c-myc and downregulates CD-47, after total body irradiation (TBI), in lethally and sublethally irradiated CD2F1 male mice. A single dose of RRx-001 was administered by intraperitoneal (IP) injection 24 h prior to a lethal or sublethal radiation dose. When irradiated with 9.35 Gy, the dose lethal to 70% of untreated mice at 30 days (LD70/30), only 33% of mice receiving RRx-001 (10 mg/kg) 24 h prior to total body irradiation (TBI) died by day 30, compared to 67% in vehicle-treated mice. The same pretreatment dose of RRx-001 resulted in a significant dose reduction factor of 1.07. In sublethally TBI mice, bone marrow cellularity was increased at day 14 in the RRx-001-treated mice compared to irradiated vehicle-treated animals. In addition, significantly higher numbers of lymphocytes, platelets, percent hematocrit and percent reticulocytes were observed on days 7 and/or 14 in RRx-001-treated mice. These experiments provide proof of principle that systemic administration of RRx-001 prior to TBI significantly improves overall survival and bone marrow regeneration.
Collapse
Affiliation(s)
- Kimberly J Jurgensen
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, United States
| | - William K J Skinner
- Department of Radiation Oncology, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | | | | | - Andrew E Graff
- Department of Radiation Oncology, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - William E Culp
- Director, Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Thomas A Summers
- Department of Pathology, Uniformed Services University, Bethesda, MD, United States
| | - Lynnette H Cary
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
9
|
Liu Y, Miao L, Guo Y, Yuan R, Li X, Wang X, Lin X, Tian H. Oral Codelivery of WR-1065 Using Curcumin-Linked ROS-Sensitive Nanoparticles for Synergistic Radioprotection. ACS Biomater Sci Eng 2021; 7:2496-2507. [PMID: 33825438 DOI: 10.1021/acsbiomaterials.0c01780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protecting the body from radiation damage is a huge medical challenge. Amifostine and curcumin are both effective radioprotectants, but their use has been greatly restricted due to various reasons including low bioavailability. Nanoscale drug delivery systems of poly(ethylene glycol)-poly(ε-caprolactone) copolymers can improve the bioavailability of drugs due to excellent biocompatibility, biodegradability, and long circulation characteristics. In this study, a new reactive oxygen species-sensitive nanocarrier fabricated by linking curcumin and thioketal to poly(ethylene glycol)-poly(ε-caprolactone) polymer was used for delivery of WR-1065 (the active ingredient of amifostine). The content of curcumin in this polymer was about 7.6%, and the drug loading of WR-1065 was 44%. The WR-1065-loaded nanoparticles (NPs) had an average size of 128.6 nm and uniform spherical morphology. These WR-1065-loaded NPs reduced the metabolism of curcumin and WR-1065 in the gastrointestinal tract and could be well absorbed by cells and distributed to multiple organs. Compared with a single drug, oral administration of WR-1065-loaded NPs demonstrated obvious radioprotective effects on the hematopoietic system and prevented intestinal injury. The 30-day survival rate after half-lethal dose (7.2 Gy) of total body irradiation was 100%. In general, WR-1065-loaded NPs improved the oral bioavailability of WR-1065 and curcumin. This multifunctional nanocarrier provides a possibility for combination therapy in treating ionizing radiation damage.
Collapse
Affiliation(s)
- Yahong Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Longfei Miao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Yuying Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Renbin Yuan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xuejiao Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xinxin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xiaona Lin
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
10
|
Koukourakis MI, Giatromanolaki A. Lymphopenia and intratumoral lymphocytic balance in the era of cancer immuno-radiotherapy. Crit Rev Oncol Hematol 2021; 159:103226. [PMID: 33482348 DOI: 10.1016/j.critrevonc.2021.103226] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 01/16/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION The immune response has been recognized as a major tumor-eradication component of radiotherapy. OBJECTIVE This review studies, under a clinical perspective, two contrasting effects of radiotherapy, namely immunosuppression and radiovaccination. MATERIALS AND METHODS We critically reviewed the available clinical and experimental experience on radiotherapy-induced lymphopenia. RESULTS Radiation-induced tumor damage promotes radio-vaccination, enhances cytotoxic immune responses, and potentiates immunotherapy. Nevertheless, radiotherapy induces systemic and intratumoral lymphopenia. The above effects are directly related to radiotherapy fractionation and field size/location, and tumor characteristics. DISCUSSION Hypofractionated stereotactic and accelerated irradiation better promotes radio-vaccination and produces less severe lymphopenia. Adopting cytoprotective policies and combining lympho-stimulatory agents or agents blocking regulatory lymphocyte activity are awaited to unmask the radio-vaccination effect, enhancing the efficacy immuno-radiotherapy. CONCLUSION Radiation-induced lymphopenia and immunosuppression are important issues that should be considered in the design of immuno-radiotherapy clinical trials.
Collapse
Affiliation(s)
- Michael I Koukourakis
- Department of Radiotherapy/Oncology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| | - Alexandra Giatromanolaki
- Department of Pathology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece
| |
Collapse
|
11
|
Xie LW, Cai S, Zhao TS, Li M, Tian Y. Green tea derivative (-)-epigallocatechin-3-gallate (EGCG) confers protection against ionizing radiation-induced intestinal epithelial cell death both in vitro and in vivo. Free Radic Biol Med 2020; 161:175-186. [PMID: 33069855 DOI: 10.1016/j.freeradbiomed.2020.10.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 12/20/2022]
Abstract
Radiation-induced intestinal injury (RIII) occurs during instances of intentional or accidental radiation exposure. However, there are few effective treatments available for the prevention or mitigation of RIII currently. (-)-Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, possesses potent antioxidant activity and has been shown to be effective in ameliorating many oxidative stress-related diseases. The therapeutic effects and mechanism of EGCG on RIII have not yet been determined. In the present study, we investigated whether EGCG confers radioprotection against RIII. Our data demonstrated that administration of EGCG not only prolonged the survival time of lethally irradiated mice, but also reduced radiation-induced intestinal mucosal injury. Treatment with EGCG significantly increased the number of Lgr5+ intestinal stem cells (ISCs) and their progeny Ki67+ cells, and reduced radiation-induced DNA damage and apoptosis. Besides, EGCG displayed the same radioprotective effects in human intestinal epithelial HIEC cells as in mice, characterized by a decrease in the number of γH2AX foci and ferroptosis. Moreover, EGCG decreased the level of reactive oxygen species (ROS) and activated the transcription factor Nrf2 and its downstream targets comprising antioxidant proteins Slc7A11, HO-1 and GPX4. Treatment with the Nrf2 inhibitor ML385 abolished the protective effects of EGCG, indicating that Nrf2 activation is essential for EGCG activity. Taken together, our findings demonstrated that EGCG protects against RIII by scavenging ROS and inhibiting apoptosis and ferroptosis through the Nrf2 signal pathway, which could be a promising medical countermeasure for the alleviation of RIII.
Collapse
Affiliation(s)
- Li-Wei Xie
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, 215004, China
| | - Shang Cai
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, 215004, China
| | - Tian-Shu Zhao
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, 215004, China
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Ye Tian
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, 215004, China.
| |
Collapse
|
12
|
Esmaeeli A, Keshavarz Z, Dehdar F, Assadi M, Seyedabadi M. The effects of carvedilol, metoprolol and propranolol on cisplatin-induced kidney injury. Drug Chem Toxicol 2020; 45:1558-1564. [PMID: 33198524 DOI: 10.1080/01480545.2020.1846551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The β-adrenoceptor blockers may have anti-oxidant properties or induce β-arrestin recruitment beyond classical desensitization of receptor/G protein coupling, offering potential therapeutic benefits. Here, we investigated the effects of carvedilol, metoprolol and propranolol in an animal model of cisplatin-induced nephrotoxicity. Rats received the β-blockers (3 or 12 mg/kg/day) with or without cisplatin, and kidney function was investigated using renal scintigraphy, histopathology, and serum variables. Metoprolol and propranolol as well as low-dose carvedilol did not alter kidney function, per se. Meanwhile, high-dose carvedilol reduced renal accumulation of Technetium-99m (99mTc)-labeled dimercaptosuccinic acid (99mTc-DMSA) without significant effect on other variables. Furthermore, low-dose carvedilol prevented cisplatin-induced reduction of tracer uptake, but high-dose of this drug aggravated the situation. In this regard, both low and high -doses of carvedilol significantly inhibited cisplatin effects on kidney histology, BUN and creatinine levels. Also, high-dose propranolol inhibited cisplatin adverse effects on radiotracer uptake, histological manifestations, BUN and creatinine levels, while metoprolol failed to cause a notable effect. Taken together, carvedilol and high-dose propranolol may offer potential benefits in cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Abdolhamid Esmaeeli
- Department of Pathology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra Keshavarz
- Department of Pathology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Firoozeh Dehdar
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Majid Assadi
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
13
|
Comparative proteomic analysis of serum from nonhuman primates administered BIO 300: a promising radiation countermeasure. Sci Rep 2020; 10:19343. [PMID: 33168863 PMCID: PMC7653926 DOI: 10.1038/s41598-020-76494-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/28/2020] [Indexed: 11/12/2022] Open
Abstract
Hematopoietic acute radiation syndrome (H-ARS) and delayed effects of acute radiation exposure (DEARE) are detrimental health effects that occur after exposure to high doses of ionizing radiation. BIO 300, a synthetic genistein nanosuspension, was previously proven safe and effective against H-ARS when administered (via the oral (po) or intramuscular (im) route) prior to exposure to lethal doses of total-body radiation. In this study, we evaluated the proteomic changes in serum of nonhuman primates (NHP) after administering BIO 300 by different routes (po and im). We utilized nanoflow-ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (NanoUPLC-MS/MS) methods for comprehensive global profiling and quantification of serum proteins. The results corroborate previous findings that suggest a very similar metabolic profile following both routes of drug administration. Furthermore, we observed minor alterations in protein levels, 2 hours after drug administration, which relates to the Cmax of BIO 300 for both routes of administration. Taken together, this assessment may provide an insight into the mechanism of radioprotection of BIO 300 and a reasonable illustration of the pharmacodynamics of this radiation countermeasure.
Collapse
|
14
|
Obrador E, Salvador R, Villaescusa JI, Soriano JM, Estrela JM, Montoro A. Radioprotection and Radiomitigation: From the Bench to Clinical Practice. Biomedicines 2020; 8:E461. [PMID: 33142986 PMCID: PMC7692399 DOI: 10.3390/biomedicines8110461] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The development of protective agents against harmful radiations has been a subject of investigation for decades. However, effective (ideal) radioprotectors and radiomitigators remain an unsolved problem. Because ionizing radiation-induced cellular damage is primarily attributed to free radicals, radical scavengers are promising as potential radioprotectors. Early development of such agents focused on thiol synthetic compounds, e.g., amifostine (2-(3-aminopropylamino) ethylsulfanylphosphonic acid), approved as a radioprotector by the Food and Drug Administration (FDA, USA) but for limited clinical indications and not for nonclinical uses. To date, no new chemical entity has been approved by the FDA as a radiation countermeasure for acute radiation syndrome (ARS). All FDA-approved radiation countermeasures (filgrastim, a recombinant DNA form of the naturally occurring granulocyte colony-stimulating factor, G-CSF; pegfilgrastim, a PEGylated form of the recombinant human G-CSF; sargramostim, a recombinant granulocyte macrophage colony-stimulating factor, GM-CSF) are classified as radiomitigators. No radioprotector that can be administered prior to exposure has been approved for ARS. This differentiates radioprotectors (reduce direct damage caused by radiation) and radiomitigators (minimize toxicity even after radiation has been delivered). Molecules under development with the aim of reaching clinical practice and other nonclinical applications are discussed. Assays to evaluate the biological effects of ionizing radiations are also analyzed.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Rosario Salvador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain;
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - José M. Soriano
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Valencia, Spain;
- Joint Research Unit in Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute IISLaFe, 46026 Valencia, Spain
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain;
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
15
|
Pulito C, Cristaudo A, Porta CL, Zapperi S, Blandino G, Morrone A, Strano S. Oral mucositis: the hidden side of cancer therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:210. [PMID: 33028357 PMCID: PMC7542970 DOI: 10.1186/s13046-020-01715-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Inflammation response of epithelial mucosa to chemo- radiotherapy cytotoxic effects leads to mucositis, a painful side effect of antineoplastic treatments. About 40% of the patients treated with chemotherapy develop mucositis; this percentage rises to about 90% for head and neck cancer patients (HNC) treated with both chemo- and radiotherapy. 19% of the latter will be hospitalized and will experience a delay in antineoplastic treatment for high-grade mucositis management, resulting in a reduction of the quality of life, a worse prognosis and an increase in patient management costs. Currently, several interventions and prevention guidelines are available, but their effectiveness is uncertain. This review comprehensively describes mucositis, debating the impact of standard chemo-radiotherapy and targeted therapy on mucositis development and pointing out the limits and the benefits of current mucositis treatment strategies and assessment guidelines. Moreover, the review critically examines the feasibility of the existing biomarkers to predict patient risk of developing oral mucositis and their role in early diagnosis. Despite the expression levels of some proteins involved in the inflammation response, such as TNF-α or IL-1β, partially correlate with mucositis process, their presence does not exclude others mucositis-independent inflammation events. This strongly suggests the need to discover biomarkers that specifically feature mucositis process development. Non-coding RNAs might hold this potential.
Collapse
Affiliation(s)
- Claudio Pulito
- Oncogenomic and Epigenetic Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Cristaudo
- STI/HIV Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Caterina La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milano, Italy.,CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, via Celoria 26, 20133, Milano, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133, Milano, Italy.,CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, Via R. Cozzi 53, 20125, Milano, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Aldo Morrone
- Scientific Director Office, San Gallicano Institute, Rome, Italy
| | - Sabrina Strano
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS, Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy.
| |
Collapse
|
16
|
Pereira AF, Lino JA, Alves BWF, Lisboa MRP, Pontes RB, Leite CAVG, Nogueira RB, Lima-Júnior RCP, Vale ML. Amifostine protects from the peripheral sensory neuropathy induced by oxaliplatin in mice. Braz J Med Biol Res 2020; 53:e10263. [PMID: 32965323 PMCID: PMC7510240 DOI: 10.1590/1414-431x202010263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/08/2020] [Indexed: 12/18/2022] Open
Abstract
Sensory neuropathy is a dose-limiting side effect of oxaliplatin-based cancer treatment. This study investigated the antinociceptive effect of amifostine and its potential neuroprotective mechanisms on the oxaliplatin-related peripheral sensory neuropathy in mice. Oxaliplatin (1 mg/kg) was injected intravenously in Swiss albino male mice twice a week (total of nine injections), while amifostine (1, 5, 25, 50, and 100 mg/kg) was administered subcutaneously 30 min before oxaliplatin. Mechanical and thermal nociceptive tests were performed once a week for 49 days. Additionally, c-Fos, nitrotyrosine, and activating transcription factor 3 (ATF3) immunoexpressions were assessed in the dorsal root ganglia. In all doses, amifostine prevented the development of mechanical hyperalgesia and thermal allodynia induced by oxaliplatin (P<0.05). Amifostine at the dose of 25 mg/kg provided the best protection (P<0.05). Moreover, amifostine protected against neuronal hyperactivation, nitrosative stress, and neuronal damage in the dorsal root ganglia, detected by the reduced expression of c-Fos, nitrotyrosine, and ATF3 (P<0.05 vs the oxaliplatin-treated group). In conclusion, amifostine reduced the nociception induced by oxaliplatin in mice, suggesting the possible use of amifostine for the management of oxaliplatin-induced peripheral sensory neuropathy.
Collapse
Affiliation(s)
- A F Pereira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - J A Lino
- Departamento de Medicina Clínica, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - B W F Alves
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M R P Lisboa
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R B Pontes
- Departamento de Fisioterapia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - C A V G Leite
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R B Nogueira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R C P Lima-Júnior
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M L Vale
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil.,Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
17
|
Jones DJ, O'Leary EM, O'Sullivan TP. A Robust Methodology for the Synthesis of Phosphorothioates, Phosphinothioates and Phosphonothioates. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David J. Jones
- School of ChemistryUniversity College Cork Cork
- Analytical and Biological Chemistry Research FacilityUniversity College Cork Cork Ireland
| | - Eileen M. O'Leary
- Department of Physical SciencesCork Institute of Technology Cork Ireland
| | - Timothy P. O'Sullivan
- School of ChemistryUniversity College Cork Cork
- Analytical and Biological Chemistry Research FacilityUniversity College Cork Cork Ireland
- School of PharmacyUniversity College Cork Cork Ireland
| |
Collapse
|
18
|
Rohilla S, Dureja H, Chawla V. Cytoprotective Agents to Avoid Chemotherapy Induced Sideeffects on Normal Cells: A Review. Curr Cancer Drug Targets 2019; 19:765-781. [PMID: 30914026 DOI: 10.2174/1568009619666190326120457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 01/16/2023]
Abstract
Anticancer agents play a vital role in the cure of patients suffering from malignancy. Though, the chemotherapeutic agents are associated with various adverse effects which produce significant toxic symptoms in the patients. But this therapy affects both the malignant and normal cells and leads to constricted therapeutic index of antimalignant drugs which adversely impacts the quality of patients’ life. Due to these adversities, sufficient dose of drug is not delivered to patients leading to delay in treatment or improper treatment. Chemoprotective agents have been developed either to minimize or to mitigate the toxicity allied with chemotherapeutic agents. Without any concession in the therapeutic efficacy of anticancer drugs, they provide organ specific guard to normal tissues.
Collapse
Affiliation(s)
- Seema Rohilla
- Department of Pharmaceutics, Hindu College of Pharmacy, Sonepat- 131001, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | - Vinay Chawla
- Institute of Pharmaceutical Sciences, Baba Farid University of Health Sciences, Faridkot-151203, India
| |
Collapse
|
19
|
Singh VK, Seed TM. The efficacy and safety of amifostine for the acute radiation syndrome. Expert Opin Drug Saf 2019; 18:1077-1090. [PMID: 31526195 DOI: 10.1080/14740338.2019.1666104] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: A radiation countermeasure that can be used prior to radiation exposure to protect the population from the harmful effects of radiation exposure remains a major unmet medical need and is recognized as an important area for research. Despite substantial advances in the research and development for finding nontoxic, safe, and effective prophylactic countermeasures for the acute radiation syndrome (ARS), no such agent has been approved by the United States Food and Drug Administration (FDA). Area covered: Despite the progress made to improve the effectiveness of amifostine as a radioprotector for ARS, none of the strategies have resolved the issue of its toxicity/side effects. Thus, the FDA has approved amifostine for limited clinical indications, but not for non-clinical uses. This article reviews recent strategies and progress that have been made to move forward this potentially useful countermeasure for ARS. Expert opinion: Although the recent investigations have been promising for fielding safe and effective radiation countermeasures, additional work is needed to improve and advance drug design and delivery strategies to get FDA approval for broadened, non-clinical use of amifostine during a radiological/nuclear scenario.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | | |
Collapse
|
20
|
Ybarra N, Seuntjens J. Radio-selective effects of a natural occurring muscle-derived dipeptide in A549 and normal cell lines. Sci Rep 2019; 9:11513. [PMID: 31395939 PMCID: PMC6687720 DOI: 10.1038/s41598-019-47944-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/25/2019] [Indexed: 01/08/2023] Open
Abstract
Radiotherapy (RT) causes morbidity and long-term side effects. A challenge in RT is to maximize cancer cells killing while minimizing damage to normal tissue. The ideal radio-protector selectively improves survival and limits damage to normal tissues while reducing survival of cancer cells. Muscle-derived dipeptide, L-carnosine (CAR) is a potent antioxidant, with radio-protective, but also anticancer properties, affecting the cell cycle of cancer cells. We tested CAR effects in lung cancer cells, differentiated and undifferentiated normal cells. We hypothesized that CAR antioxidant properties will confer protection to the two normal cell lines against RT, while preventing lung cancer cell proliferation, and that CAR may act as a radiosensitizer of lung cancer cells due to its effects on cell-cycle progression of cancer cells. Under the experimental conditions reported here, we found that CAR increased radio-sensitivity of lung (A549) cancer cells by increasing the percentage of cells in G2/M (radiosensitive) phase of cell cycle, it negatively affected their bioenergetics, therefore reduced their viability, and DNA-double strand break repair capacity. CAR had either no effect or reduced RT-induced damage in normal cells, depending on the cell type. CAR is a versatile natural occurring compound, that could improve RT-induced lung cancer cells killing, while reducing the damage to normal differentiated and undifferentiated cells.
Collapse
Affiliation(s)
- Norma Ybarra
- Cancer Research Program, Research Institute McGill University Health Center, Medical Physics Unit, Gerald Bronfman Department of Oncology, Montreal, H4A 3J1, Canada.
| | - Jan Seuntjens
- Cancer Research Program, Research Institute McGill University Health Center, Medical Physics Unit, Gerald Bronfman Department of Oncology, Montreal, H4A 3J1, Canada
| |
Collapse
|
21
|
Clémenson C, Liu W, Bricout D, Soyez-Herkert L, Chargari C, Mondini M, Haddad R, Wang-Zhang X, Benel L, Bloy C, Deutsch E. Preventing Radiation-Induced Injury by Topical Application of an Amifostine Metabolite-Loaded Thermogel. Int J Radiat Oncol Biol Phys 2019; 104:1141-1152. [DOI: 10.1016/j.ijrobp.2019.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/01/2019] [Accepted: 04/21/2019] [Indexed: 10/26/2022]
|
22
|
Cakmak Arslan G, Severcan F. The effects of radioprotectant and potential antioxidant agent amifostine on the structure and dynamics of DPPC and DPPG liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1240-1251. [PMID: 31028720 DOI: 10.1016/j.bbamem.2019.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022]
|
23
|
Lee MG, Freeman AR, Roos DE, Milner AD, Borg MF. Randomized double-blind trial of amifostine versus placebo for radiation-induced xerostomia in patients with head and neck cancer. J Med Imaging Radiat Oncol 2018; 63:142-150. [PMID: 30461207 DOI: 10.1111/1754-9485.12833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/17/2018] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The role of the radioprotector amifostine in ameliorating radiotherapy side effects in head and neck squamous cell carcinoma (HNSCC) is controversial. This trial aimed to determine whether pretreatment with amifostine reduced the incidence of Radiation Therapy Oncology Group grade ≥2 acute and late xerostomia in patients receiving definitive or adjuvant radiotherapy for HNSCC, without reducing tumour control or survival. METHODS Between 14 September 2001 and 8 November 2004, 44 Royal Adelaide Hospital patients were randomized double-blind to receive amifostine (200 mg/m2 IV) or placebo (normal saline IV) 5 days/week, prior to standard radiotherapy (60-70 Gy), each having ≥75% of the parotids treated to ≥40 Gy. Side effects were assessed weekly during treatment, at 3 and 5 months after radiotherapy, then every 6 months until disease progression or death. RESULTS The accrual target was 200 patients over 4-5 years, but the trial closed prematurely when only 44 patients had been randomized after 3 years. Of 41 evaluable patients, 80% (16/20) in the amifostine arm had grade ≥2 acute radiation salivary toxicity versus 76% (16/21) in the placebo arm (P = 1.00). The rate of grade ≥2 late radiation salivary toxicity at 12 months was 66% in the amifostine arm and 82% in the placebo arm (estimated hazard ratio 1.61, 95% confidence interval 0.74-3.49, P = 0.22). Other toxicities tended to be worse in the amifostine arm: acute grade 3-4 skin 35% vs 5% and mucous membrane 40% vs 5%; grade ≥2 vomiting 35% vs 5%, hypocalcaemia 25% vs 5% and fatigue 85% vs 33%, with only the latter retaining statistical significance after adjusting for multiple comparisons. There were no significant differences in failure-free (P = 0.70) or overall survival (P = 0.86), with estimated 4-year rates of 48% vs 54% and 49% vs 59% for the amifostine vs placebo arms respectively. CONCLUSION There was no clear evidence that pretreatment with amifostine made any difference to the incidence of grade ≥2 acute or late xerostomia. Other toxicity tended to be more severe with amifostine. There was no effect on failure-free or overall survival. Acknowledging the low statistical power, these results do not support the use of IV amifostine pre-radiotherapy in HNSCC.
Collapse
Affiliation(s)
- Maverick Gl Lee
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | - Daniel E Roos
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | | | - Martin F Borg
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Formerly of GenesisCare, Adelaide, South Australia, Australia
| |
Collapse
|
24
|
Koukourakis MI, Giatromanolaki A, Fylaktakidou K, Sivridis E, Zois CE, Kalamida D, Mitrakas A, Pouliliou S, Karagounis IV, Simopoulos K, Ferguson DJP, Harris AL. SMER28 is a mTOR-independent small molecule enhancer of autophagy that protects mouse bone marrow and liver against radiotherapy. Invest New Drugs 2018; 36:773-781. [PMID: 29387992 DOI: 10.1007/s10637-018-0566-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/16/2018] [Indexed: 01/03/2023]
Abstract
Effective cytoprotectors that are selective for normal tissues could decrease radiotherapy and chemotherapy sequelae and facilitate the safe administration of higher radiation doses. This could improve the cure rates of radiotherapy for cancer patients. Autophagy is a cytoplasmic cellular process that is necessary for the clearance of damaged or aged proteins and organelles. It is a strong determinant of post-irradiation cell fate. In this study, we investigated the effect of the mTOR-independent small molecule enhancer of autophagy (SMER28) on mouse liver autophagy and post-irradiation recovery of mouse bone marrow and liver. SMER28 enhanced the autophagy flux and improved the survival of normal hepatocytes. This effect was specific for normal cells because SMER28 had no protective effect on hepatoma or other cancer cell line survival in vitro. In vivo subcutaneous administration of SMER28 protected mouse liver and bone marrow against radiation damage and facilitated survival of mice after lethal whole body or abdominal irradiation. These findings open a new field of research on autophagy-targeting radioprotectors with clinical applications in oncology, occupational, and space medicine.
Collapse
Affiliation(s)
- Michael I Koukourakis
- Department of Radiotherapy/Oncology, Democritus University of Thrace / University General Hospital of Alexandroupolis, 68100, Alexandroupolis, Greece.
| | - Alexandra Giatromanolaki
- Department of Pathology, Democritus University of Thrace / University General Hospital of Alexandroupolis, 68100, Alexandroupolis, Greece
| | - Konstantina Fylaktakidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace / University General Hospital of Alexandroupolis, 68100, Alexandroupolis, Greece
| | - Efthimios Sivridis
- Department of Pathology, Democritus University of Thrace / University General Hospital of Alexandroupolis, 68100, Alexandroupolis, Greece
| | - Christos E Zois
- CR UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, UK
| | - Dimitra Kalamida
- Department of Radiotherapy/Oncology, Democritus University of Thrace / University General Hospital of Alexandroupolis, 68100, Alexandroupolis, Greece
| | - Achilleas Mitrakas
- Department of Radiotherapy/Oncology, Democritus University of Thrace / University General Hospital of Alexandroupolis, 68100, Alexandroupolis, Greece
| | - Stamatia Pouliliou
- Department of Radiotherapy/Oncology, Democritus University of Thrace / University General Hospital of Alexandroupolis, 68100, Alexandroupolis, Greece
| | - Ilias V Karagounis
- Department of Radiotherapy/Oncology, Democritus University of Thrace / University General Hospital of Alexandroupolis, 68100, Alexandroupolis, Greece
| | - Konstantinos Simopoulos
- Department of Experimental Surgery, Democritus University of Thrace / University General Hospital of Alexandroupolis, 68100, Alexandroupolis, Greece
| | - David J P Ferguson
- CR UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, UK
| | - Adrian L Harris
- CR UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, UK
| |
Collapse
|
25
|
Oronsky B, Goyal S, Kim MM, Cabrales P, Lybeck M, Caroen S, Oronsky N, Burbano E, Carter C, Oronsky A. A Review of Clinical Radioprotection and Chemoprotection for Oral Mucositis. Transl Oncol 2018; 11:771-778. [PMID: 29698934 PMCID: PMC5918142 DOI: 10.1016/j.tranon.2018.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/20/2022] Open
Abstract
The first tenet of medicine, "primum non nocere" or "first, do no harm", is not always compatible with oncological interventions e.g., chemotherapy, targeted therapy and radiation, since they commonly result in significant toxicities. One of the more frequent and serious treatment-induced toxicities is mucositis and particularly oral mucositis (OM) described as inflammation, atrophy and breakdown of the mucosa or lining of the oral cavity. The sequelae of oral mucositis (OM), which include pain, odynodysphagia, dysgeusia, decreased oral intake and systemic infection, frequently require treatment delays, interruptions and discontinuations that not only negatively impact quality of life but also tumor control and survivorship. One potential strategy to reduce or prevent the development of mucositis, for which no effective therapies exist only best supportive empirical care measures, is the administration of agents referred to as radioprotectors and/or chemoprotectors, which are intended to differentially protect normal but not malignant tissue from cytotoxicity. This limited-scope review briefly summarizes the incidence, pathogenesis, symptoms and impact on patients of OM as well as the background and mechanisms of four clinical stage radioprotectors/chemoprotectors, amifostine, palifermin, GC4419 and RRx-001, with the proven or theoretical potential to minimize the development of mucositis particularly in the treatment of head and neck cancers.
Collapse
Affiliation(s)
- Bryan Oronsky
- EpicentRx Inc, 4445 Eastgate Mall, Suite 200, San Diego, CA 92121, USA.
| | - Sharad Goyal
- The George Washington University, Department of Radiation Oncology, 22nd & I Street, NW DC Level, Washington, DC 20037
| | - Michelle M Kim
- University of Michigan Health System, Radiation Oncology, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Pedro Cabrales
- University of California San Diego, Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA 92093, USA
| | - Michelle Lybeck
- EpicentRx Inc, 4445 Eastgate Mall, Suite 200, San Diego, CA 92121, USA
| | - Scott Caroen
- EpicentRx Inc, 4445 Eastgate Mall, Suite 200, San Diego, CA 92121, USA
| | - Neil Oronsky
- CFLS Data, 800 West El Camino Real, Suite 180, Mountain View, CA 94040
| | - Erica Burbano
- EpicentRx Inc, 4445 Eastgate Mall, Suite 200, San Diego, CA 92121, USA
| | - Corey Carter
- Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD 20889, USA
| | - Arnold Oronsky
- InterWest Partners, 2710 Sand Hill Road #200, Menlo Park, CA 94025, USA
| |
Collapse
|
26
|
Duan Y, Yao X, Zhu J, Li Y, Zhang J, Zhou X, Qiao Y, Yang M, Li X. Effects of yak-activated protein on hematopoiesis and related cytokines in radiation-induced injury in mice. Exp Ther Med 2017; 14:5297-5304. [PMID: 29285056 PMCID: PMC5740812 DOI: 10.3892/etm.2017.5256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 03/24/2017] [Indexed: 11/08/2022] Open
Abstract
The aim of the present study was to investigate the protective effects of yak-activated protein on hematopoiesis and cytokine function in radiation-induced injury in mice. A total of 180 Kunming mice were randomly divided into three groups (A, B and C). Of these, 60 were randomly divided into a normal control group, a radiation model group, a positive control group and 3 yak-activated protein groups (high, medium and low dose groups; 10, 5 and 2.5 mg/kg, respectively). The other 120 mice were used for the subsequent experiments on days 7 and 14 following radiation. Yak-activated protein was administered orally to mice in the treatment groups and an equal volume of saline was administered orally to mice in the normal control and radiation model groups for 14 days. The positive control group received amifostine (150 mg/kg) via intraperitoneal injection. With the exception of the control group, the groups of mice received a 5 Gy quantity of X-radiation evenly over their whole body once. Changes in the peripheral hemogram, thymus and spleen indices, DNA content in the bone marrow, interleukin (IL)-2 and IL-6 levels, and the expression levels of B cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) following irradiation were assessed. The low dose of yak-activated protein significantly increased Spleen indices in mice 14 days after irradiation and the high and middle dose of yak-activated protein significantly increased Thymus indices in mice 14 days after irradiation (P<0.05) compared with the control group. In addition, hemogram results increased gradually in the low-yak-activated protein dose group and were significantly higher 7 days after irradiation compared with the radiation model group (P<0.05). The DNA content in the bone marrow was markedly increased in the yak-activated protein groups, and increased significantly in the low dose group at 7 days post-irradiation compared with the radiation model group (P<0.05). The IL-2 content was significantly increased in the yak-activated protein groups (P<0.05). Furthermore, Bcl-2 expression was increased and Bax expression was decreased (P<0.05). These results suggest that yak-activated protein exerts protective effects against radiation-induced injury in mice. The optimal effects of yak-activated protein were observed in the medium dose group 14 days after irradiation.
Collapse
Affiliation(s)
- Yabin Duan
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, Qinghai 810001, P.R. China
| | - Xingchen Yao
- Department of Radiotherapy Oncology, Qinghai People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Junbo Zhu
- Department of Pharmacy, Medical College, Quinghai University, Xining, Qinghai 810001, P.R. China
| | - Yongping Li
- Department of Traditional Chinese Medicine, Medical College, Quinghai University, Xining, Qinghai 810001, P.R. China
| | - Juanling Zhang
- Department of Biology Resources, College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai 810016, P.R. China
| | - Xuejiao Zhou
- Department of Biology Resources, College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai 810016, P.R. China
| | - Yijie Qiao
- Department of Pharmacy, Medical College, Quinghai University, Xining, Qinghai 810001, P.R. China
| | - Meng Yang
- Department of Biology Resources, College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai 810016, P.R. China
| | - Xiangyang Li
- Medical College, Qinghai University, Xining, Qinghai 810016, P.R. China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, P.R. China
| |
Collapse
|
27
|
Seshacharyulu P, Baine MJ, Souchek JJ, Menning M, Kaur S, Yan Y, Ouellette MM, Jain M, Lin C, Batra SK. Biological determinants of radioresistance and their remediation in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:69-92. [PMID: 28249796 PMCID: PMC5548591 DOI: 10.1016/j.bbcan.2017.02.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/17/2022]
Abstract
Despite recent advances in radiotherapy, a majority of patients diagnosed with pancreatic cancer (PC) do not achieve objective responses due to the existence of intrinsic and acquired radioresistance. Identification of molecular mechanisms that compromise the efficacy of radiation therapy and targeting these pathways is paramount for improving radiation response in PC patients. In this review, we have summarized molecular mechanisms associated with the radio-resistant phenotype of PC. Briefly, we discuss the reversible and irreversible biological consequences of radiotherapy, such as DNA damage and DNA repair, mechanisms of cancer cell survival and radiation-induced apoptosis following radiotherapy. We further describe various small molecule inhibitors and molecular targeting agents currently being tested in preclinical and clinical studies as potential radiosensitizers for PC. Notably, we draw attention towards the confounding effects of cancer stem cells, immune system, and the tumor microenvironment in the context of PC radioresistance and radiosensitization. Finally, we discuss the need for examining selective radioprotectors in light of the emerging evidence on radiation toxicity to non-target tissue associated with PC radiotherapy.
Collapse
Affiliation(s)
- Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michael J Baine
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Joshua J Souchek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Melanie Menning
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michel M. Ouellette
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Chi Lin
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
28
|
Ameliorative efficacy of bioencapsulated Chironomous larvae with Shilajit on Zebrafish (Danio rerio) exposed to Ionizing radiation. Appl Radiat Isot 2017; 128:108-113. [PMID: 28697403 DOI: 10.1016/j.apradiso.2017.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 04/24/2017] [Accepted: 07/04/2017] [Indexed: 01/28/2023]
Abstract
Using Zebrafish (Danio rerio) as a model organism, we evaluated the radioprotective and antioxidant effects of the Indian traditional medicine Shilajit exposed to X-Ray. The Zebrafish were divided into three experimental groups and control group, each group containing ten fish. The three experimental fish groups, group I, group II and group III were fed with 3, 5 and 7ppm shilajit encapsulated Chironomous larvae and group IV served as a control fed with non- encapsulated larvae. After 60 days of feeding trial, fish were irradiated with X-Ray at a single acute dose of 1Gy. 72h of post-irradiation, each experimental fish were observed for its morphological, behavioral, clinical symptoms, antioxidant levels and DNA damage were evaluated. Among the experimental groups 5ppm shilajit encapsulated Chironomous larvae fed fish group shows the most significant radioprotective effects compared with control and other experimental fish groups. The present study indicates that shilajit have significant radioprotective and antioxidant enhancing capability. The humus substance of shilajit may be the factor responsible to react with radiation-derived or radiation related reactive species on zebrafish.
Collapse
|
29
|
Ghassemi-Barghi N, Etebari M, Jafarian-Dehkordi A. Protective effect of amifostine on busulfan induced DNA damage in human hepatoma cells. Toxicol Mech Methods 2016; 27:52-57. [DOI: 10.1080/15376516.2016.1243601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nasrin Ghassemi-Barghi
- Department of Pharmacology and Toxicology Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran (the Islamic Republic of)
| | - Mahmoud Etebari
- Department of Pharmacology and Toxicology Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran (the Islamic Republic of)
| | - Abbas Jafarian-Dehkordi
- Department of Pharmacology and Toxicology Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran (the Islamic Republic of)
| |
Collapse
|
30
|
Cakmak G, Severcan M, Zorlu F, Severcan F. Structural and functional damages of whole body ionizing radiation on rat brain homogenate membranes and protective effect of amifostine. Int J Radiat Biol 2016; 92:837-848. [PMID: 27585945 DOI: 10.1080/09553002.2016.1230237] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To investigate the effects of whole body ionizing radiation at a sublethal dose on rat brain homogenate membranes and the protective effects of amifostine on these systems at molecular level. MATERIALS AND METHODS Sprague-Dawley rats, in the absence and presence of amifostine, were whole-body irradiated at a single dose of 8 Gy and decapitated after 24 h. The brain homogenate membranes of these rats were analyzed using Fourier Transform Infrared (FTIR) spectroscopy. RESULTS Ionizing radiation caused a significant increase in the lipid to protein ratio and significant decreases in the ratios of olefinic = CH/lipid, CH2/lipid, carbonyl ester/lipid and CH3/lipid suggesting, respectively, a more excessive decrease in the protein content and the degradation of lipids as a result of lipid peroxidation. In addition, radiation changed the secondary structure of proteins and the status of packing of membrane lipid head groups. Furthermore, it caused a decrease in lipid order and an increase in membrane fluidity. The administration of amifostine before ionizing radiation inhibited all the radiation-induced alterations in brain homogenate membranes. CONCLUSIONS The results revealed that whole body ionizing radiation at a sublethal dose causes significant alterations in the structure, composition and dynamics of brain homogenate membranes and amifostine has a protective effect on these membranes.
Collapse
Affiliation(s)
- Gulgun Cakmak
- a Department of Biology, Faculty of Arts and Sciences , Duzce University , Duzce , Turkey
| | - Mete Severcan
- b Department of Electrical and Electronic Engineering , Middle East Technical University , Ankara , Turkey
| | - Faruk Zorlu
- c Department of Radiation Oncology, Faculty of Medicine , Hacettepe University , Ankara , Turkey
| | - Feride Severcan
- d Department of Biological Sciences , Middle East Technical University , Ankara , Turkey
| |
Collapse
|
31
|
Koukourakis MI, Giatromanolaki A, Zois CE, Kalamida D, Pouliliou S, Karagounis IV, Yeh TL, Abboud MI, Claridge TDW, Schofield CJ, Sivridis E, Simopoulos C, Tokmakidis SP, Harris AL. Normal tissue radioprotection by amifostine via Warburg-type effects. Sci Rep 2016; 6:30986. [PMID: 27507219 PMCID: PMC4978965 DOI: 10.1038/srep30986] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/07/2016] [Indexed: 12/12/2022] Open
Abstract
The mechanism of Amifostine (WR-2721) mediated radioprotection is poorly understood. The effects of amifostine on human basal metabolism, mouse liver metabolism and on normal and tumor hepatic cells were studied. Indirect calorimetric canopy tests showed significant reductions in oxygen consumption and of carbon dioxide emission in cancer patients receiving amifostine. Glucose levels significantly decreased and lactate levels increased in patient venous blood. Although amifostine in vitro did not inhibit the activity of the prolyl-hydroxylase PHD2, experiments with mouse liver showed that on a short timescale WR-1065 induced expression of the Hypoxia Inducible Factor HIF1α, lactate dehydrogenase LDH5, glucose transporter GLUT2, phosphorylated pyruvate dehydrogenase pPDH and PDH-kinase. This effect was confirmed on normal mouse NCTC hepatocytes, but not on hepatoma cells. A sharp reduction of acetyl-CoA and ATP levels in NCTC cells indicated reduced mitochondrial usage of pyruvate. Transient changes of mitochondrial membrane potential and reactive oxygen species ROS production were evident. Amifostine selectively protects NCTC cells against radiation, whilst HepG2 neoplastic cells are sensitized. The radiation protection was correlates with HIF levels. These findings shed new light on the mechanism of amifostine cytoprotection and encourage clinical research with this agent for the treatment of primary and metastatic liver cancer.
Collapse
Affiliation(s)
- Michael I. Koukourakis
- Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | | | - Christos E. Zois
- Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis 68100, Greece
- Cancer Research UK, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Dimitra Kalamida
- Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Stamatia Pouliliou
- Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Ilias V. Karagounis
- Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Tzu-Lan Yeh
- The Chemistry Research laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Martine I. Abboud
- The Chemistry Research laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | - Efthimios Sivridis
- Department of Pathology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Costantinos Simopoulos
- Laboratory of Experimental Surgery, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Savvas P. Tokmakidis
- Department of Physical Education and Sports Science. Democritus University of Thrace, Komotini, Greece
| | - Adrian L. Harris
- Cancer Research UK, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Yang X, Ding Y, Ji T, Zhao X, Wang H, Zhao X, Zhao R, Wei J, Qi S, Nie G. Improvement of the in vitro safety profile and cytoprotective efficacy of amifostine against chemotherapy by PEGylation strategy. Biochem Pharmacol 2016; 108:11-21. [DOI: 10.1016/j.bcp.2016.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022]
|
33
|
Hofer M, Falk M, Komůrková D, Falková I, Bačíková A, Klejdus B, Pagáčová E, Štefančíková L, Weiterová L, Angelis KJ, Kozubek S, Dušek L, Galbavý Š. Two New Faces of Amifostine: Protector from DNA Damage in Normal Cells and Inhibitor of DNA Repair in Cancer Cells. J Med Chem 2016; 59:3003-17. [PMID: 26978566 DOI: 10.1021/acs.jmedchem.5b01628] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amifostine protects normal cells from DNA damage induction by ionizing radiation or chemotherapeutics, whereas cancer cells typically remain uninfluenced. While confirming this phenomenon, we have revealed by comet assay and currently the most sensitive method of DNA double strand break (DSB) quantification (based on γH2AX/53BP1 high-resolution immunofluorescence microscopy) that amifostine treatment supports DSB repair in γ-irradiated normal NHDF fibroblasts but alters it in MCF7 carcinoma cells. These effects follow from the significantly lower activity of alkaline phosphatase measured in MCF7 cells and their supernatants as compared with NHDF fibroblasts. Liquid chromatography-mass spectrometry confirmed that the amifostine conversion to WR-1065 was significantly more intensive in normal NHDF cells than in tumor MCF cells. In conclusion, due to common differences between normal and cancer cells in their abilities to convert amifostine to its active metabolite WR-1065, amifostine may not only protect in multiple ways normal cells from radiation-induced DNA damage but also make cancer cells suffer from DSB repair alteration.
Collapse
Affiliation(s)
- Michal Hofer
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Martin Falk
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Denisa Komůrková
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Iva Falková
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic.,Department of Medical Technology, St. Elisabeth University of Health and Social Sciences , Palackého 1, SK-810 00 Bratislava, Slovak Republic
| | - Alena Bačíková
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | | | - Eva Pagáčová
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Lenka Štefančíková
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Lenka Weiterová
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Karel J Angelis
- Institute of Experimental Botany, v.v.i., Czech Academy of Sciences , Na Karlovce 1, CZ-160 00 Prague 6, Czech Republic
| | - Stanislav Kozubek
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Ladislav Dušek
- Institute of Biostatistics and Analyses, Masaryk University , Kamenice 126/3, CZ-625 00 Brno, Czech Republic
| | - Štefan Galbavý
- Department of Medical Technology, St. Elisabeth University of Health and Social Sciences , Palackého 1, SK-810 00 Bratislava, Slovak Republic
| |
Collapse
|
34
|
Duan Y, Chen F, Yao X, Zhu J, Wang C, Zhang J, Li X. Protective Effect of Lycium ruthenicum Murr. Against Radiation Injury in Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:8332-47. [PMID: 26193298 PMCID: PMC4515725 DOI: 10.3390/ijerph120708332] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 01/09/2023]
Abstract
The protective effect of Lycium ruthenicum Murr. against radiation injury was examined in mice. Kunming mice were randomly divided into a control group, model group, positive drug group and L. ruthenicum high dose (8 g/kg), L. ruthenicum middle dose (4 g/kg), L. ruthenicum low dose (2 g/kg) treatment groups, for which doses were administered the third day, seventh day and 14th day after irradiation. L. ruthenicum extract was administered orally to the mice in the three treatment groups and normal saline was administered orally to the mice in the control group and model group for 14 days. The positive group was treated with amifostine (WR-2721) at 30 min before irradiation. Except for the control group, the groups of mice received a 5 Gy quantity of X-radiation evenly over their whole body at one time. Body weight, hemogram, thymus and spleen index, DNA, caspase-3, caspase-6, and P53 contents were observed at the third day, seventh day, and 14th day after irradiation. L. ruthenicum could significantly increase the total red blood cell count, hemoglobin count and DNA contents (p < 0.05). The spleen index recovered significantly by the third day and 14th day after irradiation (p < 0.05). L. ruthenicum low dose group showed a significant reduction in caspase-3 and caspase-6 of serum in mice at the third day, seventh day, and 14th day after irradiation and L. ruthenicum middle dose group experienced a reduction in caspase-6 of serum in mice by the seventh day after irradiation. L. ruthenicum could decrease the expression of P53. The results showed that L. ruthenicum had protective effects against radiation injury in mice.
Collapse
Affiliation(s)
- Yabin Duan
- Department of Pharmacy, Qinghai University Medical College, Xining 810001, China.
| | - Fan Chen
- Department of Radiotherapy Oncology, Qinghai University Affiliated Hospital, Xining 810001, China.
| | - Xingchen Yao
- Department of Pharmacy, Qinghai University Medical College, Xining 810001, China.
| | - Junbo Zhu
- Department of Pharmacy, Qinghai University Medical College, Xining 810001, China.
| | - Cai Wang
- Department of Radiotherapy Oncology, Qinghai University Affiliated Hospital, Xining 810001, China.
| | - Juanling Zhang
- Department of Pharmacy, Qinghai University Medical College, Xining 810001, China.
| | - Xiangyang Li
- Department of Pharmacy, Qinghai University Medical College, Xining 810001, China.
| |
Collapse
|
35
|
Takano H, Momota Y, Kani K, Aota K, Yamamura Y, Yamanoi T, Azuma M. γ-Tocotrienol prevents 5-FU-induced reactive oxygen species production in human oral keratinocytes through the stabilization of 5-FU-induced activation of Nrf2. Int J Oncol 2015; 46:1453-60. [PMID: 25625649 PMCID: PMC4356501 DOI: 10.3892/ijo.2015.2849] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/17/2014] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced oral mucositis is a common adverse event in patients with oral squamous cell carcinoma, and is initiated through a variety of mechanisms, including the generation of reactive oxygen species (ROS). In this study, we examined the preventive effect of γ-tocotrienol on the 5-FU-induced ROS production in human oral keratinocytes (RT7). We treated RT7 cells with 5-FU and γ-tocotrienol at concentrations of 10 μg/ml and 10 nM, respectively. When cells were treated with 5-FU alone, significant growth inhibition was observed as compared to untreated cells. This inhibition was, in part, due to the ROS generated by 5-FU treatment, because N-acetyl cysteine (NAC), a ROS scavenger, significantly ameliorated the growth of RT7 cells. γ-tocotrienol showed no cytotoxic effect on the growth of RT7 cells. Simultaneous treatment of cells with these agents resulted in the significant recovery of cell growth, owing to the suppression of ROS generation by γ-tocotrienol. Whereas 5-FU stimulated the expression of NF-E2-related factor 2 (Nrf2) protein in the nucleus up to 12 h after treatment of RT7 cells, γ-tocotrienol had no obvious effect on the expression of nuclear Nrf2 protein. Of note, the combined treatment with both agents stabilized the 5-FU-induced nuclear Nrf2 protein expression until 24 h after treatment. In addition, expression of Nrf2-dependent antioxidant genes, such as heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase-1 (NQO-1), was significantly augmented by treatment of cells with both agents. These findings suggest that γ-tocotrienol could prevent 5-FU-induced ROS generation by stabilizing Nrf2 activation, thereby leading to ROS detoxification and cell survival in human oral keratinocytes.
Collapse
Affiliation(s)
- Hideyuki Takano
- Department of Oral Medicine, Institute of Health Biosciences, The University of Tokushima Graduate Faculty of Dentistry, Tokushima, Japan
| | - Yukihiro Momota
- Department of Oral Medicine, Institute of Health Biosciences, The University of Tokushima Graduate Faculty of Dentistry, Tokushima, Japan
| | - Kouichi Kani
- Department of Oral Medicine, Institute of Health Biosciences, The University of Tokushima Graduate Faculty of Dentistry, Tokushima, Japan
| | - Keiko Aota
- Department of Oral Medicine, Institute of Health Biosciences, The University of Tokushima Graduate Faculty of Dentistry, Tokushima, Japan
| | - Yoshiko Yamamura
- Department of Oral Medicine, Institute of Health Biosciences, The University of Tokushima Graduate Faculty of Dentistry, Tokushima, Japan
| | - Tomoko Yamanoi
- Department of Oral Medicine, Institute of Health Biosciences, The University of Tokushima Graduate Faculty of Dentistry, Tokushima, Japan
| | - Masayuki Azuma
- Department of Oral Medicine, Institute of Health Biosciences, The University of Tokushima Graduate Faculty of Dentistry, Tokushima, Japan
| |
Collapse
|
36
|
Wu F, Weng S, Li C, Sun J, Li L, Gao Q. Submandibular Gland Transfer for the Prevention of Postradiation Xerostomia in Patients with Head and Neck Cancer: A Systematic Review and Meta-Analysis. ORL J Otorhinolaryngol Relat Spec 2015; 77:70-86. [DOI: 10.1159/000371854] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
<b><i>Background:</i></b> Submandibular gland transfer has been widely used to prevent postradiation xerostomia in head-and-neck cancers. However, there are still some controversies. <b><i>Methods:</i></b> Six databases were searched, data extraction was performed and the risk of bias was assessed by 2 reviewers independently. The meta-analysis was performed using Review Manager, version 5.2. <b><i>Results:</i></b> A total of 7 trials (12 articles) and 369 participants were included. <b><i>Conclusions:</i></b> The present clinical evidence suggests that submandibular gland transfer might be highly effective to prevent postradiation xerostomia in head-and-neck cancers without serious adverse events. However, more randomized controlled trials are still needed to confirm this conclusion.
Collapse
|
37
|
Akbulut S, Sevmis S, Karakayali H, Bayraktar N, Unlukaplan M, Oksuz E, Dagdeviren A. Amifostine enhances the antioxidant and hepatoprotective effects of UW and HTK preservation solutions. World J Gastroenterol 2014; 20:12292-12300. [PMID: 25232264 PMCID: PMC4161815 DOI: 10.3748/wjg.v20.i34.12292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/07/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether amifostine contributes to the antioxidant and cytoprotective effects of histidine-tryptophan-ketoglutarate (HTK) and University of Wisconsin (UW) preservation solutions.
METHODS: Forty-eight Sprague Dawley male rats were equally divided into six groups: (1) ringer Lactate (RL) group; (2) RL + amifostine (RL + A) group; (3) HTK group; (4) HTK + A group; (5) UW group; and (6) UW + A group. Rats in the RL + A, HTK + A and UW + A groups were administered amifostine intraperitoneally at a dose of 200 mg/kg prior to laparotomy. The RL group was perfused with RL into the portal vein. The RL + A group were perfused with RL into the portal vein after amifostine administration. The HTK group received an HTK perfusion while the HTK + A group received an HTK perfusion after administration of amifostine. The UW group received a perfusion of UW, while the UW + A group received a UW perfusion after amifostine administration. Liver biopsy was performed to investigate histopathological, immunochemical [transferase mediated dUTP nick end labeling (TUNEL), inducible nitric oxide syntetase (iNOS)] and ultrastructural alterations. Biochemical alterations were determined by examining levels of alanine aminotransferase, alkaline phosphatase and nitric oxide in the perfusion fluid.
RESULTS: Pathological sinusoidal dilatation and centrilobular hydropic alteration were significantly lower in the groups that received amifostine prior to preservation solution perfusion. Although the best results were obtained in the UW + A group, we did not observe a statistically significant difference between the UW + A and HTK + A groups. iNOS grades were significantly lower in the amifostine groups 12 h after treatment. When the amifostine groups were compared against each other, the iNOS grades obtained from the UW + A and HTK + A groups were similar while the RL + A group had a much poorer score. TUNEL assays demonstrated a lower apoptosis ratio in the amifostine groups than in the non-amifostine groups 12 h after treatment. No statistically significant difference was observed between the UW + A and HTK + A groups for apoptosis. Cellular ultrastructure was best preserved in the UW + A and HTK + A groups.
CONCLUSION: Here, we show that preoperative administration of a single dose of amifostine is sufficient to minimize the preservation damage in hepatic cells.
Collapse
|
38
|
Barutca S, Meydan N, Akar H, Yavasoglu I, Kadikoylu G, Bolaman Z. Efficacy and tolerability of amifostine in elderly cancer patients. CURRENT THERAPEUTIC RESEARCH 2014; 65:113-24. [PMID: 24936110 DOI: 10.1016/s0011-393x(04)90011-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2003] [Indexed: 11/19/2022]
Abstract
BACKGROUND Amifostine is a cytoprotective agent used to prevent cisplatin nephrotoxicity. It is associated with dose-limiting acute toxicities of emetic symptoms (nausea and vomiting) and transient hypotension. OBJECTIVE The aim of this study was to analyze the efficacy and tolerability of amifostine in elderly cancer patients. METHODS This 18-month, prospective, comparative study was conducted at the Department of Internal Medicine, Adnan Menderes University Hospital (Aydin, Turkey). Adult (aged 40-<85 years) hospitalized patients with advanced-stage cancer without comorbid diseases were enrolled. Patients were divided into 2 groups: age <70 years (group 1) and ≥70 years (group 2). All patients were treated with amifostine + cisplatin-based chemotherapy (CT). Amifostine 910 mg/m(2) (maximum, 1500 mg) was administered as a 15-minute IV infusion. Clinical systolic and diastolic blood pressures (SBP and DBP, respectively) were measured at 0 minute (baseline), at 8 and 15 minutes of amifostine infusion, and at 30 minutes after the start of amifostine infusion. In addition to physical examination, chest radiography, electrocardiography, blood chemistry (including serum electrolytes and renal function tests), complete blood count, and complete urinalyses were performed before each CT administration and at the post-CT day of toxicity assessment. RESULTS Thirty-five consecutive patients were enrolled (22 men, 13 women; mean [SD] age, 61 [12] years; group 1, n = 22; group 2, n = 13). Patients received a total of 153 CT cycles (median, 4 cycles/patient; group 1, 96 cycles; group 2, 57 cycles). Amifostine caused significant SBP and DBP reductions at 8 minutes of infusion compared with baseline in groups 1 (both P < 0.001) and 2 (P = 0.002 and P = 0.006, respectively). Overall, 20 patients (57.1%) experienced ≥ 1 symptomatic hypotensive episode; these rates were not significantly different between groups 1 (11 cases, 50.0%) and 2 (9 cases, 69.2%). Amifostine infusion was interrupted a similar number of times (6 times in group 1 and 4 times in group 2 [6.3% and 7.0% of administrations, respectively]) due to hypotension, but could be restarted in all. At 15 minutes, mean SBP and DBP values were not significantly different from baseline in either group. The mean baseline SBP values were similar between groups at baseline, and, overall, the differences in mean SBP and DBP values were not significant between groups at any time point. All other toxicities were comparable, and serum creatinine concentrations did not change significantly from baseline with CT in either group. CONCLUSIONS In this study of the efficacy and tolerability of amifostine in elderly patients with advanced-stage cancer without comorbid diseases, amifostine was effective in reducing cisplatin-induced nephrotoxicity, with transient systolic and diastolic hypotension being the most prominent adverse effect. All other toxicities were either low grade or preventable. No significant differences in amifostine tolerability or toxicities were observed between the study groups.
Collapse
Affiliation(s)
- Sabri Barutca
- Department of Internal Medicine, Division of Medical Oncology, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Nezih Meydan
- Department of Internal Medicine, Division of Medical Oncology, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Harun Akar
- Department of Internal Medicine, Division of Nephrology, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Irfan Yavasoglu
- Department of Internal Medicine, Division of Hematology, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Gurhan Kadikoylu
- Department of Internal Medicine, Division of Hematology, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Zahit Bolaman
- Department of Internal Medicine, Division of Hematology, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| |
Collapse
|
39
|
Gu J, Zhu S, Li X, Wu H, Li Y, Hua F. Effect of amifostine in head and neck cancer patients treated with radiotherapy: a systematic review and meta-analysis based on randomized controlled trials. PLoS One 2014; 9:e95968. [PMID: 24788761 PMCID: PMC4008569 DOI: 10.1371/journal.pone.0095968] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/01/2014] [Indexed: 01/10/2023] Open
Abstract
Background Amifostine is the most clinical used chemical radioprotector, but its effect in patients treated with radiation is not consistent. Methods By searching Medline, CENTRAL, EMBASE, ASCO, ESMO, and CNKI databases, the published randomized controlled trials (RCTs) about the efficacy of amifostine in HNSCC patients treated with radiotherapy were collected. The pooled efficacy and side effects of this drug were calculated by RevMan software. Results Seventeen trials including a total of 1167 patients (604 and 563 each arm) were analyzed in the meta-analysis. The pooled data showed that the use of amifostine significantly reduce the risk of developing Grade3–4 mucositis (relative risk [RR],0.72; 95% confidence interval [CI],0.54–0.95; p<0.00001), Grade 2–4 acute xerostomia (RR,0.70; 95%CI,0.52–0.96; p = 0.02), or late xerostomia (RR,0.60; 95%CI,0.49–0.74; p<0.00001) and Grade 3–4 dysphagia (RR,0.39; 95%CI,0.17–0.92; p = 0.03). However, subgroup analysis demonstrated that no statistically significant reduction of Grade3–4 mucositis (RR,0.97; 95% CI,0.74–1.26; p = 0.80), Grade 2–4 acute xerostomia (RR,0.35; 95%CI,0.02–5.44; p = 0.45), or late xerostomia (RR,0.40; 95%CI,0.13–1.24; p = 0.11) and Grade 3–4 dysphagia (RR,0.23; 95%CI,0.01–4.78; p = 0.35) was observed in patients treated with concomitant chemoradiotherapy. Compared with placebo or observation, amifostine does not show tumor protective effect in complete response (RR,1.02; 95%CI,0.89–1.17; p = 0.76) and partial response (RR,0.90; 95%CI, 0.56–1.44; p = 0.66). For the hematologic side effect, no statistical difference of Grade 3–4 leucopenia (RR,0.60; 95%CI,0.35–1.05; p = 0.07), anemia (RR,0.80; 95%CI, 0.42–1.53; p = 0.50) and thrombocytopenia (RR,0.43; 95%CI,0.16–1.15; p = 0.09) were found between amifostine and control groups. The most common amifostine related side effects were nausea, emesis, hypotension and allergic with an average incidence rate (Grade 3–4) of 5%, 6%, 4% and 4% respectively. Conclusion This systematic review showed that amifostine significantly reduce the serious mucositis, acute/late xerastomia and dysphagia without protection of the tumor in HNSCC patients treated with radiotherapy. And the toxicities of amifostine were generally acceptable.
Collapse
Affiliation(s)
- Jundong Gu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Siwei Zhu
- Department of Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Wu
- Department of Human resources, Tianjin Union Medical Center, Tianjin, China
| | - Yang Li
- Department of obstetrics and gynecology, Tianjin Hospital of Tianjin City, Tianjin, China
| | - Feng Hua
- Department of surgery oncology, Shandong cancer hospital, Jinan, China
- * E-mail:
| |
Collapse
|
40
|
Okić-Djordjević I, Trivanović D, Jovanović M, Ignjatović M, Šećerov B, Mojović M, Bugarski D, Bačić G, Andjus PR. Increased survival after irradiation followed by regeneration of bone marrow stromal cells with a novel thiol-based radioprotector. Croat Med J 2014; 55:45-9. [PMID: 24577826 PMCID: PMC3944417 DOI: 10.3325/cmj.2014.55.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim To investigate the survival of laboratory rats after irradiation and to study the cellularity of their bone marrow and the multipotential mesenchymal stem cells (BM-MSCs) in groups treated with or without a new thiol-based radioprotector (GM2011) Methods Animals were irradiated by a Cobalt gamma source at 6.7 Gy. Treated animals were given i.p. GM2011 30 minutes before and 3 and 7 hours after irradiation. Controls consisted of sham irradiated animals without treatment and animals treated without irradiation. After 30 days post-irradiation, animals were sacrificed and bone marrow cells were prepared from isolated femurs. A colony forming unit-fibroblast (CFU-F) assay was performed to obtain the number of BM-MSCs. Results In the treated group, 87% of animals survived, compared to only 30% in the non-treated irradiated group. Irradiation induced significant changes in the bone marrow of the treated rats (total bone marrow cellularity was reduced by ~ 60% – from 63 to 28 cells ×106/femur and the frequency of the CFU-F per femur by ~ 70% – from 357 to 97), however GL2011 almost completely prevented the suppressive effect observed on day 30 post-irradiation (71 cells ×106/femur and 230 CFU-F/femur). Conclusion Although the irradiation dosage was relatively high, GL2011 acted as a very effective new radioprotector. The recovery of the BN-MSCs and their counts support the effectiveness of the studied radioprotector.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pavle R Andjus
- Pavle R. Andjus, Faculty of Biology University of Belgrade, Studentski trg 12, 11000 Belgrade, Serbia,
| |
Collapse
|
41
|
Dose escalation of amifostine for radioprotection during pelvic accelerated radiotherapy. Am J Clin Oncol 2013; 36:338-43. [PMID: 22643562 DOI: 10.1097/coc.0b013e318248d882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Experimental data suggest a dose-dependent efficacy of amifostine so that the low overall doses used in clinical trials may have masked the full potential of the drug. In this study, we report our experience with the role of escalated doses of amifostine in the protection of pelvic tissues. METHODS A total of 354 patients with pelvic carcinomas recruited in prospective protocols applying hypofractionated and accelerated radiotherapy (HypoARC) supported with escalated daily doses of amifostine (0, 500, 750, 1000 mg subcutaneously) were analyzed. Conformal pelvic radiation delivered 14 daily fractions of 2.7 Gy within 18 days, whereas booster techniques increased the daily fraction to the target area to 3.4 Gy. RESULTS Using a dose-individualization algorithm, 55.4% tolerated a daily amifostine dose of 1000 mg (level 3), 15.9% of 750 mg (level 2), and 17.5% of 500 mg (level 1), whereas intolerance induced amifostine interruption in 11.3% of the patients. Early grade 2/3 urinary frequency and dysuria grades 1 to 2 were significantly higher in level 0 patients (P = 0.04 and 0.01, respectively). The dose level (1 to 3) of amifostine did not influence the incidence of frequency/dysurea. Acute diarrhea and proctitis grade 2/3 were significantly lower only in level 3 (P < 0.0001 and 0.03, respectively). Dose level 3 was also linked to reduced incidence of late bladder and intestinal toxicities (P<0.05). Local control analysis showed no tumor protection effect of amifostine. CONCLUSIONS Higher amifostine doses are tolerable by patients with pelvic malignancies and can better protect pelvic tissues against early and short-term late effects of radiotherapy.
Collapse
|
42
|
Golkar-Narenji A, Barekati Z, Eimani H, Shabani F, Gourabi H. The influence of amifostine administration prior to cyclophosphamide on in vitro maturation of mouse oocytes. J Assist Reprod Genet 2013; 30:939-44. [PMID: 23828370 DOI: 10.1007/s10815-013-0035-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022] Open
Abstract
PURPOSE The protective effect of amifostine against cyclophosphamide (CP) was evaluated on mouse oocytes. MATERIALS AND METHODS Female mice were divided into four groups as follows: group1: cyclophosphamide (CP) (75 mg/kg, i.p) injection, group2: amifostine (250 mg/kg, i.p) injection, group3: amifostine (250 mg/kg, i.p) administered prior to CP (75 mg/kg, i.p) injection, Control group with injection of saline. About 21 days after injection, in vitro maturation (IVM) of oocytes was recorded. Furthermore the percentage of aneuploid oocytes was determined. RESULTS In the CP group IVM rate was significantly decreased and aneploidy rate was significantly increased when compared to other groups (p < 0.05). With the administration of Amifostine prior to CP injection IVM rate was increased and aneploidy rate was decreased. DISCUSSION Depletion in IVM rate with administration of CP is due its adverse effects on oocyte quality. Amifostine administration prior to CP injection appears to modulate deleterious effects of CP on oocytes.
Collapse
Affiliation(s)
- Afsaneh Golkar-Narenji
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, No 12, Hafez, Banihashem St. Resalat Ave, Tehran 19295-4644, Iran
| | | | | | | | | |
Collapse
|
43
|
A G, Ren L, Zhou Z, Lu D, Wang S. Design and evaluation of biodegradable enteric microcapsules of amifostine for oral delivery. Int J Pharm 2013; 453:441-7. [PMID: 23796837 DOI: 10.1016/j.ijpharm.2013.06.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/30/2013] [Accepted: 06/12/2013] [Indexed: 11/26/2022]
Abstract
Amifostine is the first FDA approved cytoprotective and chemoprotective agent in the treatment of cancer. However, it is not used widely because of its ineffectiveness when administered orally. The objective of this study was to prepare and evaluate the radioprotective efficacy of orally active amifostine enteric microcapsules (amifostine mc). The microcapsules were prepared by spray drying technique using Eudragit L100-55, and the yield was more than 80%. The particle size and surface morphology were determined by particle analyzer and scanning electron microscopy. Thermal characterization and infrared spectroscopy were evaluated as well. In vitro release assay found that more than 60% amifostine was released during the first 4h and the cumulative release ratio was up to approximately 90% in 24h at 37°C. The radioprotective efficacy was determined by 30-day survival study in mice acutely exposed to 6 Gy γ-ray irradiation. The results showed that all dose groups of amifostine microcapsules could significantly improve survival animal numbers and time. Furthermore, tissue distribution studies indicated the concentrations of the active metabolite WR-1065 in mice tissues of microcapsule group were higher than that of oral amifostine group at 180 min (p<0.01). These results demonstrated that oral administration of amifostine microcapsules provided effective radioprotection compared to the bulk drug.
Collapse
Affiliation(s)
- Gula A
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | | | | | | | | |
Collapse
|
44
|
Liu H, Xue JX, Li X, Ao R, Lu Y. Quercetin liposomes protect against radiation-induced pulmonary injury in a murine model. Oncol Lett 2013; 6:453-459. [PMID: 24137346 PMCID: PMC3789113 DOI: 10.3892/ol.2013.1365] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 05/17/2013] [Indexed: 02/05/2023] Open
Abstract
In the present study, the hypothesis that quercetin liposomes are able to effectively protect against radiation-induced pulmonary injury in a murine model was tested. C57BL/6J mice receiving whole-thorax radiotherapy (16 Gy) were randomly divided into three groups: control, radiation therapy plus saline (RT+NS) and RT plus quercetin (RT+QU). At 1, 4, 8 and 24 weeks post-irradiation, lung injury was assessed by measuring oxidative damage and the extent of acute pneumonitis and late fibrosis. In the lung tissues from the RT+NS group, the malondialdehyde (MDA) levels were significantly elevated and superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities were significantly reduced; the total cell counts and inflammatory cell proportions in the bronchoalveolar lavage fluid (BALF), plasma tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β1 concentrations and the hydroxyproline (HP) content were significantly increased. Quercetin liposome administration significantly reduced the MDA content and increased SOD and GSH-PX activities in the lung tissues, and reduced the total cell counts and inflammatory cell proportions in the BALF, plasma TNF-α and TGF-β1 concentrations and the HP content in the lung tissues. A histological examination revealed suppression of the inflammatory response and reduced TGF-β1 expression and fibrosis scores. Radiation-induced oxidative damage ranged from pneumonitis to lung fibrosis. Quercetin liposomes were shown to protect against radiation-induced acute pneumonitis and late fibrosis, potentially by reducing oxidative damage.
Collapse
Affiliation(s)
- Hao Liu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, P.R. China ; ; Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, Sichuan 610041, P.R. China
| | | | | | | | | |
Collapse
|
45
|
Gómez HL. WITHDRAWN: Addition of amifostine to CHOP regimen significantly reduced toxicity in patients with aggressive non-Hodgkin's lymphoma without affecting the long term survival: Results of a phase II trial. Hematol Oncol Stem Cell Ther 2013:S1658-3876(13)00002-2. [PMID: 23680356 DOI: 10.1016/j.hemonc.2012.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/30/2012] [Accepted: 10/06/2012] [Indexed: 11/21/2022] Open
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.5144/1658-3876.2012.152. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Henry L Gómez
- Instituto Nacional de Enfermedades Neoplásicas, Department of Medical Oncology, Av. Angamos Este 2520, Surquillo, Lima 34, Peru
| |
Collapse
|
46
|
Wang S, Zhang Y, Zhang S, Ma S. [Effect of amifostine on locally advanced non-small cell lung cancer patients treated with radiotherapy: a meta-analysis of randomized controlled trials]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2012; 15:539-44. [PMID: 22989457 PMCID: PMC5999858 DOI: 10.3779/j.issn.1009-3419.2012.09.06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
背景与目的 阿米福汀(Amifostine)是否影响非小细胞肺癌(non-small cell lung cancer NSCLC)放疗疗效并降低放疗相关副反应一直存在较大争议,本研究旨在探讨阿米福汀在局部晚期NSCLC放疗近期疗效及预防放疗副反应中的作用。 方法 检索Medline、CENTRAL(the Cochrane central register of controlled trials)、EMBASE、中国生物医学文献数据库系统(CBM)、中国期刊全文数据库(CNKI)、万方数据库、美国临床肿瘤学会(ASCO)、欧洲肿瘤协会(EMSO)官方网等,检索公开发表的有关局部晚期NSCLC放疗期间应用阿米福汀的随机临床对照研究。应用Stata 11.0统计软件分析阿米福汀对放疗近期疗效及副反应发生率的影响。 结果 最终纳入9项研究,阿米福汀组患者381例,对照组388例。涉及近期疗效的研究8项,阿米福汀组患者328例,对照组333例。结果显示放疗期间接受阿米福汀治疗的患者完全缓解(complete response, CR)、部分缓解(partial response, PR)和客观缓解(objective response, OR)的相对危险度(relative risk, RR)分别为1.16(95%CI: 0.90-1.50, Z=1.07, P=0.29)、1.02(95%CI: 0.87-1.19, Z=0.21, P=0.83)和1.06(95%CI: 0.97-1.17, Z=1.31, P=0.20)。涉及放疗副反应研究7项,阿米福汀组患者367例,对照组371例,放疗期间接受阿米福汀治疗的患者3级-4级放射性食管炎和放射性肺炎发生的RR分别为0.51(95%CI: 0.37-0.72, Z=3.88, P < 0.001)和0.51(95%CI: 0.26-0.99, Z=1.98, P=0.04)。 结论 阿米福汀可以降低NSCLC放疗中放射性食管炎和放射性肺炎的发生率,但不降低放疗的近期疗效。
Collapse
Affiliation(s)
- Shengye Wang
- Department of Oncology, Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| | | | | | | |
Collapse
|
47
|
Gómez HL, Samanéz C, Campana F, Neciosup SP, Vera L, Casanova L, Leon J, Flores C, Hurtado de Mendoza F, Casteñeda CA, Pinto JA, Vallejos CS. Addition of amifostine to the CHOP regimen in elderly patients with aggressive non-Hodgkin lymphoma: a phase II trial showing reduction in toxicity without altering long-term survival. Hematol Oncol Stem Cell Ther 2012; 5:152-7. [DOI: 10.5144/1658-3876.2012.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
48
|
Vendramini V, Robaire B, Miraglia SM. Amifostine-doxorubicin association causes long-term prepubertal spermatogonia DNA damage and early developmental arrest. Hum Reprod 2012; 27:2457-66. [DOI: 10.1093/humrep/des159] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
49
|
Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: an FTIR microspectroscopic imaging study. Arch Biochem Biophys 2012; 520:67-73. [PMID: 22402174 DOI: 10.1016/j.abb.2012.02.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/02/2012] [Accepted: 02/17/2012] [Indexed: 02/06/2023]
Abstract
Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH(2) groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH(3) groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.
Collapse
|
50
|
Koukourakis MI. Radiation damage and radioprotectants: new concepts in the era of molecular medicine. Br J Radiol 2012; 85:313-30. [PMID: 22294702 DOI: 10.1259/bjr/16386034] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exposure to ionising radiation results in mutagenesis and cell death, and the clinical manifestations depend on the dose and the involved body area. Reducing carcinogenesis in patients treated with radiotherapy, exposed to diagnostic radiation or who are in certain professional groups is mandatory. The prevention or treatment of early and late radiotherapy effects would improve quality of life and increase cancer curability by intensifying therapies. Experimental and clinical data have given rise to new concepts and a large pool of chemical and molecular agents that could be effective in the protection and treatment of radiation damage. To date, amifostine is the only drug recommended as an effective radioprotectant. This review identifies five distinct types of radiation damage (I, cellular depletion; II, reactive gene activation; III, tissue disorganisation; IV, stochastic effects; V, bystander effects) and classifies the radioprotective agents into five relevant categories (A, protectants against all types of radiation effects; B, death pathway modulators; C, blockers of inflammation, chemotaxis and autocrine/paracrine pathways; D, antimutagenic keepers of genomic integrity; E, agents that block bystander effects). The necessity of establishing and funding central committees that guide systematic clinical research into evaluating the novel agents revealed in the era of molecular medicine is stressed.
Collapse
Affiliation(s)
- M I Koukourakis
- Department of Radiotherapy and Oncology, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|