1
|
Luo Z, Zhang T, Wang P, Yuan D, Jin S, Di J, Ma R, Yang L, Wang X, Liu J. Activation of V-Domain Immunoglobulin Suppressor of T-Cell Activation by Baloxavir Marboxil Ameliorates Systemic Lupus Erythematosus through Inhibiting Lysophosphatidylcholine/CD40 Ligand. Chem Res Toxicol 2025; 38:193-205. [PMID: 39772456 DOI: 10.1021/acs.chemrestox.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Deficiency of the V-domain immunoglobulin suppressor of T-cell activation (VISTA) accelerates disease progression in lupus-prone mice, and activation of VISTA shows therapeutic effects in mouse models of a lupus-like disease. Metabolic reprogramming of T cells in systemic lupus erythematosus (SLE) patients is important in regulating T-cell function and disease progression. However, the mechanism by which VISTA affects the immunometabolism in SLE remains unclear. Here, we demonstrated that the deficiency of VISTA promoted the synthesis of the metabolite lysophosphatidylcholine (LPC) using untargeted metabolomics and increased the protein expression of the CD40 ligand (CD40L). Furthermore, baloxavir marboxil (BXM), a small molecule agonist of VISTA, significantly ameliorated autoantibody production, renal damage, and imbalance of immune cell subpopulations in the models of a lupus-like disease in mice (chronic graft-versus-host disease and MRL/MpJ-Faslpr/J mice) possibly by inhibiting LPC synthesis to downregulate CD40L protein expression and inhibiting aberrant activation of noncanonical nuclear factor-κB pathway. Our results indicated that BXM targeting VISTA ameliorated lupus-like symptoms by altering lipid metabolism and CD40L expression, which offers novel mechanisms and a promising therapy for SLE.
Collapse
Affiliation(s)
- Zhijie Luo
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Tingting Zhang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Penglu Wang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Dingyi Yuan
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Shasha Jin
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Jianwen Di
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Ruixue Ma
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Yang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Xinzhi Wang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Liu
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Takada Y, Fujita M, Takada YK. Virtual Screening of Protein Data Bank via Docking Simulation Identified the Role of Integrins in Growth Factor Signaling, the Allosteric Activation of Integrins, and P-Selectin as a New Integrin Ligand. Cells 2023; 12:2265. [PMID: 37759488 PMCID: PMC10527219 DOI: 10.3390/cells12182265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Integrins were originally identified as receptors for extracellular matrix (ECM) and cell-surface molecules (e.g., VCAM-1 and ICAM-1). Later, we discovered that many soluble growth factors/cytokines bind to integrins and play a critical role in growth factor/cytokine signaling (growth factor-integrin crosstalk). We performed a virtual screening of protein data bank (PDB) using docking simulations with the integrin headpiece as a target. We showed that several growth factors (e.g., FGF1 and IGF1) induce a integrin-growth factor-cognate receptor ternary complex on the surface. Growth factor/cytokine mutants defective in integrin binding were defective in signaling functions and act as antagonists of growth factor signaling. Unexpectedly, several growth factor/cytokines activated integrins by binding to the allosteric site (site 2) in the integrin headpiece, which is distinct from the classical ligand (RGD)-binding site (site 1). Since 25-hydroxycholesterol, a major inflammatory mediator, binds to site 2, activates integrins, and induces inflammatory signaling (e.g., IL-6 and TNFα secretion), it has been proposed that site 2 is involved in inflammatory signaling. We showed that several inflammatory factors (CX3CL1, CXCL12, CCL5, sPLA2-IIA, and P-selectin) bind to site 2 and activate integrins. We propose that site 2 is involved in the pro-inflammatory action of these proteins and a potential therapeutic target. It has been well-established that platelet integrin αIIbβ3 is activated by signals from the inside of platelets induced by platelet agonists (inside-out signaling). In addition to the canonical inside-out signaling, we showed that αIIbβ3 can be allosterically activated by inflammatory cytokines/chemokines that are stored in platelet granules (e.g., CCL5, CXCL12) in the absence of inside-out signaling (e.g., soluble integrins in cell-free conditions). Thus, the allosteric activation may be involved in αIIbβ3 activation, platelet aggregation, and thrombosis. Inhibitory chemokine PF4 (CXCL4) binds to site 2 but did not activate integrins, Unexpectedly, we found that PF4/anti-PF4 complex was able to activate integrins, indicating that the anti-PF4 antibody changed the phenotype of PF4 from inhibitory to inflammatory. Since autoantibodies to PF4 are detected in vaccine-induced thrombocytopenic thrombosis (VIPP) and autoimmune diseases (e.g., SLE, and rheumatoid arthritis), we propose that this phenomenon is related to the pathogenesis of these diseases. P-selectin is known to bind exclusively to glycans (e.g., sLex) and involved in cell-cell interaction by binding to PSGL-1 (CD62P glycoprotein ligand-1). Unexpectedly, through docking simulation, we discovered that the P-selectin C-type lectin domain functions as an integrin ligand. It is interesting that no one has studied whether P-selectin binds to integrins in the last few decades. The integrin-binding site and glycan-binding site were close but distinct. Also, P-selectin lectin domain bound to site 2 and allosterically activated integrins.
Collapse
Affiliation(s)
- Yoshikazu Takada
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.F.); (Y.K.T.)
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Masaaki Fujita
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.F.); (Y.K.T.)
| | - Yoko K. Takada
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.F.); (Y.K.T.)
| |
Collapse
|
3
|
Samer S, Chowdhury A, Wiche Salinas TR, Estrada PMDR, Reuter M, Tharp G, Bosinger S, Cervasi B, Auger J, Gill K, Ablanedo-Terrazas Y, Reyes-Teran G, Estes JD, Betts MR, Silvestri G, Paiardini M. Lymph-Node-Based CD3 + CD20 + Cells Emerge from Membrane Exchange between T Follicular Helper Cells and B Cells and Increase Their Frequency following Simian Immunodeficiency Virus Infection. J Virol 2023; 97:e0176022. [PMID: 37223960 PMCID: PMC10308947 DOI: 10.1128/jvi.01760-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/06/2023] [Indexed: 05/25/2023] Open
Abstract
CD4+ T follicular helper (TFH) cells are key targets for human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) replication and contribute to the virus reservoir under antiretroviral therapy (ART). Here, we describe a novel CD3+ CD20+ double-positive (DP) lymphocyte subset, resident in secondary lymphoid organs of humans and rhesus macaques (RMs), that appear predominantly after membrane exchange between TFH and B cells. DP lymphocytes are enriched in cells displaying a TFH phenotype (CD4+ PD1hi CXCR5hi), function (interleukin 21 positive [IL-21+]), and gene expression profile. Importantly, expression of CD40L upon brief in vitro mitogen stimulation identifies, by specific gene-expression signatures, DP cells of TFH-cell origin versus those of B-cell origin. Analysis of 56 RMs showed that DP cells (i) significantly increase following SIV infection, (ii) are reduced after 12 months of ART in comparison to pre-ART levels, and (iii) expand to a significantly higher frequency following ART interruption. Quantification of total SIV-gag DNA on sorted DP cells from chronically infected RMs showed that these cells are susceptible to SIV infection. These data reinforce earlier observations that CD20+ T cells are infected and expanded by HIV infection, while suggesting that these cells phenotypically overlap activated CD4+ TFH cells that acquire CD20 expression via trogocytosis and can be targeted as part of therapeutic strategies aimed at HIV remission. IMPORTANCE The HIV reservoir is largely composed of latently infected memory CD4+ T cells that persist during antiretroviral therapy and constitute a major barrier toward HIV eradication. In particular, CD4+ T follicular helper cells have been demonstrated as key targets for viral replication and persistence under ART. In lymph nodes from HIV-infected humans and SIV-infected rhesus macaques, we show that CD3+ CD20+ lymphocytes emerge after membrane exchange between T cells and B cells and are enriched in phenotypic, functional, and gene expression profiles found in T follicular helper cells. Furthermore, in SIV-infected rhesus macaques, these cells expand following experimental infection and after interruption of ART and harbor SIV DNA at levels similar to those found in CD4+ T cells; thus, CD3+ CD20+ lymphocytes are susceptible to SIV infection and can contribute to SIV persistence.
Collapse
Grants
- P30 AI050409 NIAID NIH HHS
- 75N91019D00024 NCI NIH HHS
- P51 OD011132 NIH HHS
- HHSN261200800001C NCI NIH HHS
- U24 OD011023 NIH HHS
- U42 OD011023 NIH HHS
- P01 AI131338 NIAID NIH HHS
- HHSN261200800001E NCI NIH HHS
- UM1 AI164562 NIAID NIH HHS
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (DIR, NIAID)
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute on Drug Abuse, National Institute of Diabetes and Digestive and Kidney Diseases, National Heart Lung and Blood Institute, National Institute of Neurological Disorders and Stroke (DIR, NIAID, NIDA, NIDDK, NHLBI, NINDS)
- HHS | NIH | National Cancer Institute (NCI)
- HHS | NIH | Office of Research Infrastructure Programs, National Institutes of Health (ORIP)
Collapse
Affiliation(s)
- Sadia Samer
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Ankita Chowdhury
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | | | | | - Morgan Reuter
- Department of Microbiology and Center for AIDS Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory Tharp
- Emory NHP Genomics Core Laboratory, Emory University, Atlanta, Georgia, USA
| | - Steven Bosinger
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Emory NHP Genomics Core Laboratory, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Barbara Cervasi
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - James Auger
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Kiran Gill
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Yuria Ablanedo-Terrazas
- Práctica Médica Grupal en Otorrinolaringología, Centro Médico ABC Santa Fe, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Comisión Coordinadora de los Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Mexico City, Mexico
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Michael R. Betts
- Department of Microbiology and Center for AIDS Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guido Silvestri
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Cognasse F, Duchez AC, Audoux E, Ebermeyer T, Arthaud CA, Prier A, Eyraud MA, Mismetti P, Garraud O, Bertoletti L, Hamzeh-Cognasse H. Platelets as Key Factors in Inflammation: Focus on CD40L/CD40. Front Immunol 2022; 13:825892. [PMID: 35185916 PMCID: PMC8850464 DOI: 10.3389/fimmu.2022.825892] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 12/16/2022] Open
Abstract
Platelets are anucleate cytoplasmic fragments derived from the fragmentation of medullary megakaryocytes. Activated platelets adhere to the damaged endothelium by means of glycoproteins on their surface, forming the platelet plug. Activated platelets can also secrete the contents of their granules, notably the growth factors contained in the α-granules, which are involved in platelet aggregation and maintain endothelial activation, but also contribute to vascular repair and angiogenesis. Platelets also have a major inflammatory and immune function in antibacterial defence, essentially through their Toll-like Receptors (TLRs) and Sialic acid-binding immunoglobulin-type lectin (SIGLEC). Platelet activation also contributes to the extensive release of anti- or pro-inflammatory mediators such as IL-1β, RANTES (Regulated on Activation, Normal T Expressed and Secreted) or CD154, also known as the CD40-ligand. Platelets are involved in the direct activation of immune cells, polynuclear neutrophils (PNNs) and dendritic cells via the CD40L/CD40 complex. As a general rule, all of the studies presented in this review show that platelets are capable of covering most of the stages of inflammation, primarily through the CD40L/CD40 interaction, thus confirming their own role in this pathophysiological condition.
Collapse
Affiliation(s)
- Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Anne Claire Duchez
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Estelle Audoux
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Theo Ebermeyer
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Charles Antoine Arthaud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Amelie Prier
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Marie Ange Eyraud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Patrick Mismetti
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France.,Vascular and Therapeutic Medicine Department, Saint-Etienne University Hospital Center, Saint-Etienne, France
| | - Olivier Garraud
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Laurent Bertoletti
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France.,Vascular and Therapeutic Medicine Department, Saint-Etienne University Hospital Center, Saint-Etienne, France
| | | |
Collapse
|
5
|
Soluble CD40L activates soluble and cell-surface integrin αvβ3, α5β1, and α4β1 by binding to the allosteric ligand-binding site (site 2). J Biol Chem 2021; 296:100399. [PMID: 33571526 PMCID: PMC7960543 DOI: 10.1016/j.jbc.2021.100399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 11/20/2022] Open
Abstract
CD40L is a member of the TNF superfamily that participates in immune cell activation. It binds to and signals through several integrins, including αvβ3 and α5β1, which bind to the trimeric interface of CD40L. We previously showed that several integrin ligands can bind to the allosteric site (site 2), which is distinct from the classical ligand-binding site (site 1), raising the question of if CD40L activates integrins. In our explorations of this question, we determined that integrin α4β1, which is prevalently expressed on the same CD4+ T cells as CD40L, is another receptor for CD40L. Soluble (s)CD40L activated soluble integrins αvβ3, α5β1, and α4β1 in cell-free conditions, indicating that this activation does not require inside-out signaling. Moreover, sCD40L activated cell-surface integrins in CHO cells that do not express CD40. To learn more about the mechanism of binding, we determined that sCD40L bound to a cyclic peptide from site 2. Docking simulations predicted that the residues of CD40L that bind to site 2 are located outside of the CD40L trimer interface, at a site where four HIGM1 (hyper-IgM syndrome type 1) mutations are clustered. We tested the effect of these mutations, finding that the K143T and G144E mutants were the most defective in integrin activation, providing support that this region interacts with site 2. We propose that allosteric integrin activation by CD40L also plays a role in CD40L signaling, and defective site 2 binding may be related to the impaired CD40L signaling functions of these HIGM1 mutants.
Collapse
|
6
|
Syrett CM, Anguera MC. When the balance is broken: X-linked gene dosage from two X chromosomes and female-biased autoimmunity. J Leukoc Biol 2019; 106:919-932. [PMID: 31125996 PMCID: PMC7206452 DOI: 10.1002/jlb.6ri0319-094r] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 12/21/2022] Open
Abstract
Women and men exhibit differences in innate and adaptive immunity, and women are more susceptible to numerous autoimmune disorders. Two or more X chromosomes increases the risk for some autoimmune diseases, and increased expression of some X-linked immune genes is frequently observed in female lymphocytes from autoimmune patients. Evidence from mouse models of autoimmunity also supports the idea that increased expression of X-linked genes is a feature of female-biased autoimmunity. Recent studies have begun to elucidate the correlation between abnormal X-chromosome inactivation (XCI), an essential mechanism female somatic cells use to equalize X-linked gene dosage between the sexes, and autoimmunity in lymphocytes. In this review, we highlight research describing overexpression of X-linked immunity-related genes and female-biased autoimmunity in both humans and mouse models, and make connections with our recent work elucidating lymphocyte-specific mechanisms of XCI maintenance that become altered in lupus patients.
Collapse
Affiliation(s)
- Camille M Syrett
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Takada YK, Yu J, Shimoda M, Takada Y. Integrin Binding to the Trimeric Interface of CD40L Plays a Critical Role in CD40/CD40L Signaling. THE JOURNAL OF IMMUNOLOGY 2019; 203:1383-1391. [PMID: 31331973 DOI: 10.4049/jimmunol.1801630] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/24/2019] [Indexed: 01/07/2023]
Abstract
CD40L plays a major role in immune response and is a major therapeutic target for inflammation. Integrin α5β1 and CD40 simultaneously bind to CD40L. It is unclear if α5β1 and CD40 work together in CD40/CD40L signaling or how α5β1 binds to CD40L. In this article, we describe that the integrin-binding site of human CD40L is predicted to be located in the trimeric interface by docking simulation. Mutations in the predicted integrin-binding site markedly reduced the binding of α5β1 to CD40L. Several CD40L mutants defective in integrin binding were defective in NF-κB activation and B cell activation and suppressed CD40L signaling induced by wild-type CD40L; however, they still bound to CD40. These findings suggest that integrin α5β1 binds to monomeric CD40L through the binding site in the trimeric interface of CD40L, and this plays a critical role in CD40/CD40L signaling. Integrin αvβ3, a widely distributed vascular integrin, bound to CD40L in a KGD-independent manner, suggesting that αvβ3 is a new CD40L receptor. Several missense mutations in CD40L that induce immunodeficiency with hyper-IgM syndrome type 1 (HIGM1) are clustered in the integrin-binding site of the trimeric interface. These HIGM1 CD40L mutants were defective in binding to α5β1 and αvβ3 (but not to CD40), suggesting that the defect in integrin binding may be a causal factor of HIGM1. These findings suggest that α5β1 and αvβ3 bind to the overlapping binding site in the trimeric interface of monomeric CD40L and generate integrin-CD40L-CD40 ternary complex. CD40L mutants defective in integrins have potential as antagonists of CD40/CD40L signaling.
Collapse
Affiliation(s)
- Yoko K Takada
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817; and.,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Jessica Yu
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817; and
| | - Michiko Shimoda
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817; and
| | - Yoshikazu Takada
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817; and .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817
| |
Collapse
|
8
|
Abstract
Purpose of Review: The standard treatment options for systemic lupus erythematosus (SLE) are focused on non-specific immunosuppression. Over the past few years, scientific studies and ongoing clinical trials have shifted the paradigm with rapid advances in developing biologics and small molecules. A number of monoclonal antibodies and small molecule inhibitors have been developed to target specific pathways involved in SLE. Many of these novel therapeutic agents are already being tested in clinical trials and they may 1 day reshape the landscape of SLE treatment. Herein we review potential future therapeutic options for SLE.
Collapse
Affiliation(s)
- Milena Vukelic
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yi Li
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Vasileios C Kyttaris
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Soendergaard C, Seidelin JB, Steenholdt C, Nielsen OH. Putative biomarkers of vedolizumab resistance and underlying inflammatory pathways involved in IBD. BMJ Open Gastroenterol 2018; 5:e000208. [PMID: 29915667 PMCID: PMC6001911 DOI: 10.1136/bmjgast-2018-000208] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
Abstract
Objectives Characterise the circulating inflammatory cytokine pattern among patients failing consecutive anti-tumour necrosis factor (anti-TNF) and anti-integrin treatments to identify predictors of response. Methods A retrospective single-centre cohort study of 28 patients with inflammatory bowel disease (IBD) receiving anti-integrin therapy (vedolizumab) subsequent to the failure of anti-TNF treatment was conducted. Blood samples were obtained immediately prior to initiation of vedolizumab therapy, and the response to treatment was evaluated after completion of the 14-week induction regimen. Multiplex ELISA was applied to quantify 47 preselected plasma proteins based on their putative involvement in the inflammatory process in IBD. Results Anti-TNF and vedolizumab non-responders (n=20) had significantly higher levels of circulating interleukin (IL)-6 than anti-TNF non-responders with subsequent response to vedolizumab (n=8): median 9.5 pg/mL versus 5.9 pg/mL, p<0.05. Following stratification by diagnosis, patients with Crohn's disease who failed vedolizumab therapy (n=7) had higher soluble CD40 ligand (sCD40L) than responders (n=4): 153.0 pg/mL versus 45.5 pg/mL, p<0.01; sensitivity 100% (95% CI 59% to 100%), specificity 100% (95% CI 40% to 100%). Osteocalcin was higher among patients with ulcerative colitis responding to vedolizumab (n=4) compared with those not responding (n=13): 4219 pg/mL versus 2823 pg/mL, p=0.01; sensitivity 85% (95% CI 55% to 98%), specificity 100% (95% CI 40% to 100%). Conclusions Patients with IBD failing vedolizumab induction and anti-TNF therapy have persistent IL-6 pathway activity, which could be a potential alternative treatment target. sCD40L, osteocalcin and the IL-6 pathway activity might be predictors for response to vedolizumab.
Collapse
Affiliation(s)
- Christoffer Soendergaard
- Department of Gasteroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Jakob Benedict Seidelin
- Department of Gasteroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Casper Steenholdt
- Department of Gasteroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Ole Haagen Nielsen
- Department of Gasteroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
10
|
Cassia M, Alberici F, Gallieni M, Jayne D. Lupus nephritis and B-cell targeting therapy. Expert Rev Clin Immunol 2017; 13:951-962. [PMID: 28800401 DOI: 10.1080/1744666x.2017.1366855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Lupus Nephritis (LN) is a severe manifestation of Systemic Lupus Erythematosus (SLE) with a significant prognostic impact. Over a prolonged course, an exhaustion of treatment alternatives may occur and further therapeutic options are needed. B cells play a pivotal role in disease pathogenesis and represent an attractive therapeutic target. Areas covered: This review provides an update regarding targeting B cells in LN. The rational for this approach, as well as currently available and future targets are discussed. Expert commentary: Despite its wide clinical use and the encouraging results from retrospective studies, a role of rituximab in LN has not been prospectively confirmed. Trial design methodologies as well as intrinsic limitations of this approach may be responsible and rituximab use is currently limited as a rescue treatment or in settings where a strong steroid sparing effect is warranted. Despite belimumab now being licensed for use in SLE, the evidence in LN is weak although prospective trials are on-going. The combination of different targeted approaches as well as a focus on new clinical end-points may be strategies to identify new therapeutic options.
Collapse
Affiliation(s)
- Matthias Cassia
- a Nephrology and Immunology Unit, ASST Santi Paolo e Carlo , San Carlo Borromeo Hospital , Milano , Italy.,b Department of Biomedical and Clinical Sciences "L.Sacco" , University of Milan , Milano , Italy
| | - Federico Alberici
- a Nephrology and Immunology Unit, ASST Santi Paolo e Carlo , San Carlo Borromeo Hospital , Milano , Italy
| | - Maurizio Gallieni
- a Nephrology and Immunology Unit, ASST Santi Paolo e Carlo , San Carlo Borromeo Hospital , Milano , Italy.,b Department of Biomedical and Clinical Sciences "L.Sacco" , University of Milan , Milano , Italy
| | - David Jayne
- c Department of Medicine , University of Cambridge , Cambridge , UK
| |
Collapse
|
11
|
Wu SF, Chang CB, Hsu JM, Lu MC, Lai NS, Li C, Tung CH. Hydroxychloroquine inhibits CD154 expression in CD4 + T lymphocytes of systemic lupus erythematosus through NFAT, but not STAT5, signaling. Arthritis Res Ther 2017; 19:183. [PMID: 28793932 PMCID: PMC5550984 DOI: 10.1186/s13075-017-1393-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/18/2017] [Indexed: 12/28/2022] Open
Abstract
Background Overexpression of membranous CD154 in T lymphocytes has been found previously in systemic lupus erythematosus (SLE). Because hydroxychloroquine (HCQ) has been used frequently in the treatment of lupus, we sought to identify the effects of HCQ on CD154 and a possibly regulatory mechanism. Methods CD4+ T cells were isolated from the blood of lupus patients. After stimulation with ionomycin or IL-15 and various concentrations of HCQ, expression of membranous CD154 and NFAT and STAT5 signaling were assessed. Results HCQ treatment had significant dose-dependent suppressive effects on membranous CD154 expression in ionomycin-activated T cells from lupus patients. Furthermore, HCQ inhibited intracellular sustained calcium storage release, and attenuated the nuclear translocation of NFATc2 and the expression of NFATc1. However, CD154 expressed through IL-15-mediated STAT5 signaling was not inhibited by HCQ treatment. Conclusions HCQ inhibited NFAT signaling in activated T cells and blocked the expression of membranous CD154, but not STAT5 signaling. These findings provide a mechanistic insight into SLE in HCQ treatment.
Collapse
Affiliation(s)
- Shu-Fen Wu
- Department of Life Science, Institute of Molecular Biology, National Chung-Cheng University, No.168, University Rd, Min-Hsiung, Chia-Yi, 62247, Taiwan
| | - Chia-Bin Chang
- Department of Life Science, Institute of Molecular Biology, National Chung-Cheng University, No.168, University Rd, Min-Hsiung, Chia-Yi, 62247, Taiwan
| | - Jui-Mei Hsu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan.,Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan.,College of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi, Taiwan
| | - Ning-Sheng Lai
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan.,College of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi, Taiwan
| | - Chin Li
- Department of Life Science, Institute of Molecular Biology, National Chung-Cheng University, No.168, University Rd, Min-Hsiung, Chia-Yi, 62247, Taiwan
| | - Chien-Hsueh Tung
- Department of Life Science, Institute of Molecular Biology, National Chung-Cheng University, No.168, University Rd, Min-Hsiung, Chia-Yi, 62247, Taiwan. .,Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan.
| |
Collapse
|
12
|
Ahmadi M, Gharibi T, Dolati S, Rostamzadeh D, Aslani S, Baradaran B, Younesi V, Yousefi M. Epigenetic modifications and epigenetic based medication implementations of autoimmune diseases. Biomed Pharmacother 2017; 87:596-608. [DOI: 10.1016/j.biopha.2016.12.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
|
13
|
Liu WH, Kang SG, Huang Z, Wu CJ, Jin HY, Maine CJ, Liu Y, Shepherd J, Sabouri-Ghomi M, Gonzalez-Martin A, Xu S, Hoffmann A, Zheng Y, Lu LF, Xiao N, Fu G, Xiao C. A miR-155-Peli1-c-Rel pathway controls the generation and function of T follicular helper cells. J Exp Med 2016; 213:1901-19. [PMID: 27481129 PMCID: PMC4995083 DOI: 10.1084/jem.20160204] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/01/2016] [Indexed: 01/05/2023] Open
Abstract
MicroRNA (miRNA) deficiency impairs the generation of T follicular helper (Tfh) cells, but the contribution of individual miRNAs to this phenotype remains poorly understood. In this study, we performed deep sequencing analysis of miRNAs expressed in Tfh cells and identified a five-miRNA signature. Analyses of mutant mice deficient of these miRNAs revealed that miR-22 and miR-183/96/182 are dispensable, but miR-155 is essential for the generation and function of Tfh cells. miR-155 deficiency led to decreased proliferation specifically at the late stage of Tfh cell differentiation and reduced CD40 ligand (CD40L) expression on antigen-specific CD4(+) T cells. Mechanistically, miR-155 repressed the expression of Peli1, a ubiquitin ligase that promotes the degradation of the NF-κB family transcription factor c-Rel, which controls cellular proliferation and CD40L expression. Therefore, our study identifies a novel miR-155-Peli1-c-Rel pathway that specifically regulates Tfh cell generation and function.
Collapse
Affiliation(s)
- Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Seung Goo Kang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037 Division of Biomedical Convergence/Institute of Bioscience and Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Zhe Huang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Cheng-Jang Wu
- Division of Biological Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Hyun Yong Jin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Christian J Maine
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Yi Liu
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jovan Shepherd
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Mohsen Sabouri-Ghomi
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Alicia Gonzalez-Martin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Shunbin Xu
- Department of Ophthalmology/Kresge Eye Institute, School of Medicine, Wayne State University, Detroit, MI 48202 Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, Detroit, MI 48202
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ye Zheng
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Li-Fan Lu
- Division of Biological Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361005, China Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
14
|
Crist SA, Elzey BD, Ahmann MT, Ratliff TL. Early growth response-1 (EGR-1) and nuclear factor of activated T cells (NFAT) cooperate to mediate CD40L expression in megakaryocytes and platelets. J Biol Chem 2013; 288:33985-33996. [PMID: 24106272 DOI: 10.1074/jbc.m113.511881] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence implicates circulating platelets as mediators of chronic inflammatory and autoimmune diseases via the expression and release of CD40L, an important modulator of inflammation and adaptive immune responses traditionally associated with activated T cells. Emerging evidence suggests that platelet CD40L is dynamically regulated in several chronic inflammatory and autoimmune diseases and may mediate progression and secondary pathology associated with those disease states. The present study identifies NFATc2 as a key transcriptional modulator of CD40L expression in megakaryocytes and inflammatory activity of platelets. Furthermore, the current data show that EGR-1, a member of the early growth response family of zinc finger transcription factors, modulates NFATc2-dependent regulation of CD40L expression in megakaryocytes. Our novel demonstration that in vivo biochemical or genetic inhibition of NFATc2 activity in megakaryocyte diminishes platelet CD40L implicates the NFATc2/EGR-1 axis as a key regulatory pathway of inflammatory and immunomodulatory activity in platelets and represents a target for the development of therapeutics for the potential treatment of chronic inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Scott A Crist
- Department of Comparative Pathobiology, Purdue University School of Veterinary Medicine, West Lafayette, Indiana 47907; Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Bennett D Elzey
- Department of Comparative Pathobiology, Purdue University School of Veterinary Medicine, West Lafayette, Indiana 47907; Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Michelle T Ahmann
- Department of Comparative Pathobiology, Purdue University School of Veterinary Medicine, West Lafayette, Indiana 47907
| | - Timothy L Ratliff
- Department of Comparative Pathobiology, Purdue University School of Veterinary Medicine, West Lafayette, Indiana 47907; Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907.
| |
Collapse
|
15
|
Abstract
Systemic lupus erythematosus is a chronic relapsing autoimmune disease that primarily
afflicts women, and both a genetic predisposition and appropriate environmental
exposures are required for lupus to develop and flare. The genetic requirement is
evidenced by an increased concordance in identical twins and by the validation of at
least 35 single-nucleotide polymorphisms predisposing patients to lupus. Genes alone,
though, are not enough. The concordance of lupus in identical twins is often
incomplete, and when concordant, the age of onset is usually different. Lupus is also
not present at birth, but once the disease develops, it typically follows a chronic
relapsing course. Thus, genes alone are insufficient to cause human lupus, and
additional factors encountered in the environment and over time are required to
initiate the disease and subsequent flares. The nature of the environmental
contribution, though, and the mechanisms by which environmental agents modify the
immune response to cause lupus onset and flares in genetically predisposed people
have been controversial. Reports that the lupus-inducing drugs procainamide and
hydralazine are epigenetic modifiers, that epigenetically modified T cells are
sufficient to cause lupus-like autoimmunity in animal models, and that patients with
active lupus have epigenetic changes similar to those caused by procainamide and
hydralazine have prompted a growing interest in how epigenetic alterations contribute
to this disease. Understanding how epigenetic mechanisms modify T cells to contribute
to lupus requires an understanding of how epigenetic mechanisms regulate gene
expression. The roles of DNA methylation, histone modifications, and microRNAs in
lupus pathogenesis will be reviewed here.
Collapse
|
16
|
Joo YB, Park BL, Shin HD, Park SY, Kim I, Bae SC. Association of genetic polymorphisms in CD40 with susceptibility to SLE in the Korean population. Rheumatology (Oxford) 2012; 52:623-30. [PMID: 23256180 DOI: 10.1093/rheumatology/kes339] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE The aim of this study was to examine the association of CD40 polymorphisms with the risk of SLE in the Korean population. METHODS A total of 601 Korean SLE patients and 984 healthy controls were enrolled. We selected seven CD40 gene SNPs based on previous results of CD40 gene sequencing in the Korean population. Statistical analysis was carried out by logistic regression, controlling for age and sex as covariates. Odds ratios (ORs) and P-values in co-dominant, dominant and recessive models were also calculated. RESULTS SNP rs3765456 showed significant association with risk of SLE (OR = 1.34, P = 0.007, Pcorr = 0.03) in the dominant model. SNPs rs1883832 and rs4810485, and haplotype 2 (GTTCTAA) were also associated with the risk of SLE in the dominant model, but statistical significance disappeared after correction for multiple testing. Haplotype 2 had a protective effect on LN (OR = 0.47, P = 0.01, Pcorr = 0.05) in the recessive model while rs73115010, rs6074028 and haplotype 3 (ACGTCGG) resulted in increased risk of arthritis in the recessive model (OR = 2.87, 2.76 and 2.46, P = 0.002, 0.004 and 0.01, Pcorr = 0.009, 0.02 and 0.05, respectively). CONCLUSION CD40 gene polymorphisms are possible risk factors for SLE development, especially rs3765456 in the dominant model. CD40 polymorphisms are also associated with SLE clinical manifestation, mainly nephritis and arthritis. Further replication with larger numbers, and populations of different ethnicities, are needed to confirm our findings.
Collapse
Affiliation(s)
- Young Bin Joo
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seongdong-Gu, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
17
|
Zhang W, Shi Q, Xu X, Chen H, Lin W, Zhang F, Zeng X, Zhang X, Ba D, He W. Aberrant CD40-induced NF-κB activation in human lupus B lymphocytes. PLoS One 2012; 7:e41644. [PMID: 22952582 PMCID: PMC3428310 DOI: 10.1371/journal.pone.0041644] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
Auto-reactive B lymphocytes and its abnormal CD40 signaling play important roles in the pathogenesis of systemic lupus erythematosus (SLE). In this study, we analyzed CD40 expression and CD40/CD154 induced activation of NF-κB signaling pathway in B cells from SLE patients. B cells from healthy volunteers and tonsilar B cells from chronic tonsillitis were used as negative and positive controls. Results showed CD40-induced NF-κB signaling was constitutively activated in B cells from active lupus patients, including decreased CD40 in raft portion, increased phosphorylation and degradation of IκBα, phosphorylation of P65, as well as increased nuclear translocation of P65, P50, c-Rel, which could be blocked by anti-CD154. CD154 stimulation could induce further phosphorylation and degradation of IκBα, as well as phosphorylation of P65 and nuclear translocation of P65. In addition, CD40-induced kinase activities in B cells from lupus patients mimicked that of tonsil B cells, in that IKKα/β were more activated compared to normal B cells. CD40-induced NF-κB activity was blocked by both IκB phosphorylation and proteosome degradation inhibitors in both lupus and normal B cells. All together, our findings revealed that canonical NF-κB signaling is constitutively activated in active lupus and is mediated by CD154/CD40. CD40 induced NF-κB activation is different in human lupus B lymphocytes compared with normal B cells.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Qun Shi
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Xiaotian Xu
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Hua Chen
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Wei Lin
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- * E-mail:
| | - Denian Ba
- Department of Immunology, School of Basic Medicine, Peking Union Medical College and Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, No. 5, Dong Dan San Tiao, Beijing, China
| | - Wei He
- Department of Immunology, School of Basic Medicine, Peking Union Medical College and Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, No. 5, Dong Dan San Tiao, Beijing, China
| |
Collapse
|
18
|
Pinto-Medel MJ, García-León JA, Oliver-Martos B, López-Gómez C, Luque G, Arnáiz-Urrutia C, Orpez T, Marín-Bañasco C, Fernández O, Leyva L. The CD4+ T-cell subset lacking expression of the CD28 costimulatory molecule is expanded and shows a higher activation state in multiple sclerosis. J Neuroimmunol 2012; 243:1-11. [PMID: 22261542 DOI: 10.1016/j.jneuroim.2011.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is a chronic debilitating disease, in which T-cells are considered to play a pivotal role. CD28 is the quintessential costimulatory molecule on T-cells and its expression declines progressively with repeated stimulations, leading to the generation of CD28(-) T-cells. Our aim was to examine whether CD4(+)CD28(-) T-cells were enriched in MS patients, and characterize the phenotype of this subset in MS patients and healthy controls (HC). All these changes could provide these CD4(+)CD28(-) T-cell characteristics that might be involved in the pathogenesis of MS, turning this T-cell subset into a potential target for future therapeutic strategies.
Collapse
Affiliation(s)
- María Jesús Pinto-Medel
- Research Laboratory, Hospital Regional Universitario Carlos Haya and Fundación IMABIS, Málaga, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The etiology of autoimmune diseases remains largely unknown. Concordance rates in monozygotic twins are lower than 50% while genome-wide association studies propose numerous significant associations representing only a minority of patients. These lines of evidence strongly support other complementary mechanisms involved in the regulation of genes expression ultimately causing overt autoimmunity. Alterations in the post-translational modification of histones and DNA methylation are the two major epigenetic mechanisms that may potentially cause a breakdown of immune tolerance and the perpetuation of autoimmune diseases. In recent years, several studies both in clinical settings and experimental models proposed that the epigenome may hold the key to a better understanding of autoimmunity initiation and perpetuation. More specifically, data support the impact of epigenetic changes in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and other autoimmune diseases, in some cases based on mechanistical observations. We herein discuss what we currently know and what we expect will come in the next future. Ultimately, epigenetic treatments already being used in oncology may soon prove beneficial also in autoimmune diseases.
Collapse
Affiliation(s)
- Francesca Meda
- Department of Medicine and Hepatobiliary Immunopathology Unit, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | | | | | | |
Collapse
|
20
|
Conzelmann M, Wagner AH, Hildebrandt A, Rodionova E, Hess M, Zota A, Giese T, Falk CS, Ho AD, Dreger P, Hecker M, Luft T. IFN-γ activated JAK1 shifts CD40-induced cytokine profiles in human antigen-presenting cells toward high IL-12p70 and low IL-10 production. Biochem Pharmacol 2010; 80:2074-86. [DOI: 10.1016/j.bcp.2010.07.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 12/24/2022]
|
21
|
Estrogen receptor signaling and its relationship to cytokines in systemic lupus erythematosus. J Biomed Biotechnol 2010; 2010:317452. [PMID: 20617147 PMCID: PMC2896666 DOI: 10.1155/2010/317452] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/18/2010] [Accepted: 03/31/2010] [Indexed: 01/19/2023] Open
Abstract
Dysregulation of cytokines is among the main abnormalities in Systemic Lupus Erythematosus (SLE). However, although, estrogens, which are known to be involved in lupus disease,
influence cytokine production, the underlying molecular mechanisms remain poorly defined.
Recent evidence demonstrates the presence of estrogen receptor in various cell types of the
immune system, while divergent effects of estrogens on the cytokine regulation are thought to be
implicated. In this paper, we provide an overview of the current knowledge as to how estrogen-induced
modulation of cytokine production in SLE is mediated by the estrogen receptor while
simultaneously clarifying various aspects of estrogen receptor signaling in this disease. The
estrogen receptor subtypes, their structure, and the mode of action of estrogens by gene activation
and via extranuclear effects are briefly presented. Results regarding the possible correlation
between estrogen receptor gene polymorphisms and quantitative changes in the receptor protein
to SLE pathology and cytokine production are reviewed.
Collapse
|
22
|
Allen SJ, Mott KR, Ljubimov AV, Ghiasi H. Exacerbation of corneal scarring in HSV-1 gK-immunized mice correlates with elevation of CD8+CD25+ T cells in corneas of ocularly infected mice. Virology 2010; 399:11-22. [PMID: 20079918 DOI: 10.1016/j.virol.2009.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 01/08/2023]
Abstract
We have shown previously that exacerbation of corneal scarring (CS) in HSV-1 glycoprotein K (gK) immunized mice was associated with CD8+ T cells. In this study, we investigated the type and the nature of the immune responses that are involved in the exacerbation of CS in gK-immunized animals. BALB/c mice were vaccinated with baculovirus expressed gK, gD, or mock-immunized. Twenty-one days after the third immunization, mice were ocularly infected with 2 x 10(5) PFU/eye of virulent HSV-1 strain McKrae. Infiltration of the cornea by CD4+, CD8+, CD25+, CD4+CD25+, CD8+CD25+, CD19+, CD40+, CD40L+, CD62L+, CD95+, B7-1+, B7-2+, MHC-I+, and MHC-II+ cells was monitored by immunohistochemistry, qRT-PCR and FACS at various times post-infection (PI). This study demonstrated for the first time that the presence of CD8+CD25+ T cells in the cornea is correlated with exacerbation of CS in the gK-immunized group.
Collapse
Affiliation(s)
- Sariah J Allen
- Center for Neurobiology and Vaccine Development, CSMC Burns and Allen Research Institute, Los Angeles, CA 90048, USA; Ophthalmology Research Laboratories, Department of Surgery, CSMC Burns and Allen Research Institute, Los Angeles, CA 90048, USA
| | - Kevin R Mott
- Center for Neurobiology and Vaccine Development, CSMC Burns and Allen Research Institute, Los Angeles, CA 90048, USA; Ophthalmology Research Laboratories, Department of Surgery, CSMC Burns and Allen Research Institute, Los Angeles, CA 90048, USA
| | - Alexander V Ljubimov
- Ophthalmology Research Laboratories, Department of Surgery, CSMC Burns and Allen Research Institute, Los Angeles, CA 90048, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, CSMC Burns and Allen Research Institute, Los Angeles, CA 90048, USA; Ophthalmology Research Laboratories, Department of Surgery, CSMC Burns and Allen Research Institute, Los Angeles, CA 90048, USA.
| |
Collapse
|
23
|
Vavassori S, Covey LR. Post-transcriptional regulation in lymphocytes: the case of CD154. RNA Biol 2009; 6:259-65. [PMID: 19395873 DOI: 10.4161/rna.6.3.8581] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The control of mRNA decay is emerging as an important control point and a major contributor to gene expression in both immune and non-immune cells. The identification of protein factors and cis-acting elements responsible for transcript degradation has illuminated a comprehensive picture of precisely orchestrated events required to both regulate and establish the decay process. One gene that is highly regulated at the post-transcriptional level is CD40 ligand (CD154 or CD40L). CD154 on CD4(+) T cells is tightly controlled by an interacting network of transcriptional and post-transcriptional processes that result in precise surface levels of protein throughout an extended time course of antigen stimulation. The activation-induced stabilization of the CD154 transcript by a polypyrimidine tract-binding protein (PTB)-complex is a key event that corresponds to the temporal expression of CD154. In this review, we discuss known and potential roles of major mRNA decay pathways in lymphocytes and focus on the unique post-transcriptional mechanisms leading to CD154 expression by activated CD4(+) T cells.
Collapse
Affiliation(s)
- Stefano Vavassori
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
24
|
The genetics and epigenetics of autoimmune diseases. J Autoimmun 2009; 33:3-11. [PMID: 19349147 DOI: 10.1016/j.jaut.2009.03.007] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/03/2009] [Indexed: 12/14/2022]
Abstract
Self tolerance loss is fundamental to autoimmunity. While understanding of immune regulation is expanding rapidly, the mechanisms causing loss of tolerance in most autoimmune diseases remain elusive. Autoimmunity is believed to develop when genetically predisposed individuals encounter environmental agents that trigger the disease. Recent advances in the genetic and environmental contributions to autoimmunity suggest that interactions between genetic elements and epigenetic changes caused by environmental agents may be responsible for inducing autoimmune disease. Genetic loci predisposing to autoimmunity are being identified through multi-center consortiums, and the number of validated genes is growing rapidly. Recent reports also indicate that the environment can contribute to autoimmunity by modifying gene expression through epigenetic mechanisms. This article will review current understanding of the genetics and epigenetics of lupus, rheumatoid arthritis, multiple sclerosis and type 1 diabetes, using systemic lupus erythematosus as the primary example. Other autoimmune diseases may have a similar foundation.
Collapse
|
25
|
A T-cell-specific CD154 transcriptional enhancer located just upstream of the promoter. Genes Immun 2008; 9:640-9. [PMID: 18719603 DOI: 10.1038/gene.2008.67] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CD154 (CD40-ligand) is a critical immune regulator. CD154 expression is tightly regulated and largely restricted to activated CD4 T cells. Using DNase I hypersensitivity site (HSS) mapping, we identified two novel HSS mapping to the human CD154 promoter element and just upstream. Both HSS were activation independent and CD4 T-cell specific. Approximately 350 bp of DNA sequence flanking the upstream HSS site was highly conserved between mouse and man, and was rich in binding sites for GATA and NFAT proteins. Gel shift and chromatin immunoprecipitation assays demonstrated both NFAT1 and the Th2 factor, GATA-3, bound this enhancer element in vitro and in vivo, respectively. A PstI/XbaI 345 bp fragment of this region acted as a transcriptional enhancer of the CD154 promoter in primary human CD4 T cells. Overexpression of repressor of GATA and a dominant negative GATA-3 protein independently inhibited transcription, whereas overexpression of wild-type GATA-3 enhanced transcriptional activity, by this element in primary CD4 T cells. Moreover, more interleukin-4-producing CD4 T cells expressed CD154 following activation than interferon-gamma-producing CD4 T cells. Thus, we identified a novel T-cell-specific, GATA-3 responsive, CD154 transcriptional enhancer, which may contribute to increased propensity of Th2 cells to express CD154.
Collapse
|
26
|
Strickland FM, Richardson BC. Epigenetics in human autoimmunity. Epigenetics in autoimmunity - DNA methylation in systemic lupus erythematosus and beyond. Autoimmunity 2008; 41:278-86. [PMID: 18432408 DOI: 10.1080/08916930802024616] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epigenetic mechanisms are essential for normal development and function of the immune system. Similarly, a failure to maintain epigenetic homeostasis in the immune response due to factors including environmental influences, leads to aberrant gene expression, contributing to immune dysfunction and in some cases the development of autoimmunity in genetically predisposed individuals. This is exemplified by systemic lupus erythematosus, where environmentally induced epigenetic changes contribute to disease pathogenesis in those genetically predisposed. Similar interactions between genetically determined susceptibility and environmental factors are implicated in other systemic autoimmune diseases such as rheumatoid arthritis and scleroderma, as well as in organ specific autoimmunity. The skin is exposed to a wide variety of environmental agents, including UV radiation, and is prone to the development of autoimmune conditions such as atopic dermatitis, psoriasis and some forms of vitiligo, depending on environmental and genetic influences. Herein we review how disruption of epigenetic mechanisms can alter immune function using lupus as an example, and summarize how similar mechanisms may contribute to other human autoimmune rheumatic and skin diseases.
Collapse
Affiliation(s)
- Faith M Strickland
- The Department of Medicine, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| | | |
Collapse
|
27
|
Abstract
Platelets are an abundant source of CD40 ligand (CD154), an immunomodulatory and proinflammatory molecule implicated in the onset and progression of several inflammatory diseases, including systemic lupus erythematosus (SLE), diabetes, and cardiovascular disease. Heretofore considered largely restricted to activated T cells, we initiated studies to investigate the source and regulation of platelet-associated CD154. We found that CD154 is abundantly expressed in platelet precursor cells, megakaryocytes. We show that CD154 is expressed in primary human CD34+ and murine hematopoietic precursor cells only after cytokine-driven megakaryocyte differentiation. Furthermore, using several established megakaryocyte-like cells lines, we performed promoter analysis of the CD154 gene and found that NFAT, a calcium-dependent transcriptional regulator associated with activated T cells, mediated both differentiation-dependent and inducible megakaryocyte-specific CD154 expression. Overall, these data represent the first investigation of the regulation of a novel source of CD154 and suggests that platelet-associated CD154 can be biochemically modulated.
Collapse
|
28
|
Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B. Demethylation of CD40LG on the inactive X in T cells from women with lupus. THE JOURNAL OF IMMUNOLOGY 2007; 179:6352-8. [PMID: 17947713 DOI: 10.4049/jimmunol.179.9.6352] [Citation(s) in RCA: 339] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Why systemic lupus erythematosus primarily affects women is unknown. Recent evidence indicates that human lupus is an epigenetic disease characterized by impaired T cell DNA methylation. Women have two X chromosomes; one is inactivated by mechanisms including DNA methylation. We hypothesized that demethylation of sequences on the inactive X may cause gene overexpression uniquely in women, predisposing them to lupus. We therefore compared expression and methylation of CD40LG, a B cell costimulatory molecule encoded on the X chromosome, in experimentally demethylated T cells from men and women and in men and women with lupus. Controls included TNFSF7, a methylation-sensitive autosomal B cell costimulatory molecule known to be demethylated and overexpressed in lupus. Bisulfite sequencing revealed that CD40LG is unmethylated in men, while women have one methylated and one unmethylated gene. 5-Azacytidine, a DNA methyltransferase inhibitor, demethylated CD40LG and doubled its expression on CD4(+) T cells from women but not men, while increasing TNFSF7 expression equally between sexes. Similar studies demonstrated that CD40LG demethylates in CD4(+) T cells from women with lupus, and that women but not men with lupus overexpress CD40LG on CD4(+) T cells, while both overexpress TNFSF7. These studies demonstrate that regulatory sequences on the inactive X chromosome demethylate in T cells from women with lupus, contributing to CD40LG overexpression uniquely in women. Demethylation of CD40LG and perhaps other genes on the inactive X may contribute to the striking female predilection of this disease.
Collapse
Affiliation(s)
- Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 41011 Hunan, China
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Many autoimmune rheumatic autoimmune disorders predominantly affect women. Sex hormones, in particular estrogen, can influence CD4 T-helper development and function. We highlight recent studies that begin to provide insights into the mechanisms by which estrogen modulates CD4 T-cell development and function, and thus potentially contribute to disease pathogenesis. RECENT FINDINGS High levels of estrogen can lead to thymic atrophy. Recent studies showed that this phenomenon results from effects of estrogen at multiple stages in early T-cell development. Estrogen is also known to affect mature CD4 T-cell function, and, in particular, their ability to produce selected cytokine profiles. The mechanisms by which estrogen can exert these effects were also recently explored and shown to include effects on expression of critical molecules known to be involved in these processes. SUMMARY Dissecting the molecular pathways employed by estrogen to modulate CD4 T cells will be critical in elucidating the manner by which estrogen exerts its effects on this compartment. Given that cell type specific differences underlie the ability of many hormonal therapies to exert tissue-specific estrogenic or antiestrogenic activities, this knowledge will be crucial to further exploitation of hormonal therapies in rheumatic autoimmune diseases.
Collapse
|
30
|
Subauste CS, Subauste A, Wessendarp M. Role of CD40-Dependent Down-Regulation of CD154 in Impaired Induction of CD154 in CD4+ T Cells from HIV-1-Infected Patients. THE JOURNAL OF IMMUNOLOGY 2007; 178:1645-53. [PMID: 17237414 DOI: 10.4049/jimmunol.178.3.1645] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD40-CD154 interaction is pivotal for cell-mediated immunity. There are contradictory reports on whether HIV-1 infection impairs CD154 induction. The interaction between CD40 and CD154 is important not only because it results in activation of APCs but also because it controls CD154 by diminishing expression of this molecule. Compared with healthy controls, CD4(+) T cells from HIV-1(+) patients had impaired induction of CD154 when T cell activation was mediated by CD40(+) APCs. In contrast, T cell activation in the absence of these cells resulted in normal CD154 expression. CD154 induction in HIV-1(+) patients and controls were similar upon blockade of CD40-CD154 binding. Defective regulation of CD154 appeared to occur downstream of the control of mRNA levels because up-regulation of CD154 mRNA was not impaired by HIV-1 infection. This work identifies CD40 as a mediator of impaired CD154 induction in HIV-1 infection and explains why this defect was not detected by studies where T cell activation was triggered independently of CD40(+) APCs. In addition, dysregulation of CD154 in HIV-1 infection likely contributes to immunodeficiency because diminished expression of CD154 induced by CD40 is of functional relevance, resulting in decreased dendritic cell maturation.
Collapse
Affiliation(s)
- Carlos S Subauste
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | | | | |
Collapse
|
31
|
Huan C, Kelly ML, Steele R, Shapira I, Gottesman SRS, Roman CAJ. Transcription factors TFE3 and TFEB are critical for CD40 ligand expression and thymus-dependent humoral immunity. Nat Immunol 2006; 7:1082-91. [PMID: 16936731 PMCID: PMC2386253 DOI: 10.1038/ni1378] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 07/18/2006] [Indexed: 01/27/2023]
Abstract
TFE3 and TFEB are broadly expressed transcription factors related to the transcription factor Mitf. Although they have been linked to cytokine signaling pathways in nonlymphoid cells, their function in T cells is unknown. TFE3-deficient mice are phenotypically normal, whereas TFEB deficiency causes early embryonic death. We now show that combined inactivation of TFE3 and TFEB in T cells resulted in a hyper-immunoglobulin M syndrome due to impaired expression of CD40 ligand by CD4(+) T cells. Native TFE3 and TFEB bound to multiple cognate sites in the promoter of the gene encoding CD40 ligand (Cd40lg), and maximum Cd40lg promoter activity and gene expression required TFE3 or TFEB. Thus, TFE3 and TFEB are direct, physiological and mutually redundant activators of Cd40lg expression in activated CD4(+) T cells critical for T cell-dependent antibody responses.
Collapse
Affiliation(s)
- Chongmin Huan
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York, Downstate Medical Center at Brooklyn, New York, New York 11203, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Large increases in mortality related to premature atherosclerosis with coronary artery disease have been reported in patients with systemic lupus erythematosus (SLE). The current pathogenic hypothesis for atherosclerosis involves not only the classic factors identified in the Framingham study, but also includes chronic inflammation, corticosteroid therapy, excess of traditional risk factors, autoantibodies, immune complexes (containing antibodies to phospholipids, to oxidized low-density lipoproteins, and to endothelial cells), and cytokine-producing activated T cells. Early risk factor intervention and effective control of inflammation should be incorporated into the management of SLE to protect against atherosclerosis.
Collapse
|
33
|
Szegedi A, Irinyi B, Gál M, Hunyadi J, Dankó K, Kiss E, Sipka S, Szegedi G, Gyimesi E. Significant correlation between the CD63 assay and the histamine release assay in chronic urticaria. Br J Dermatol 2006; 155:67-75. [PMID: 16792754 DOI: 10.1111/j.1365-2133.2006.07205.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Antibodies directed to the alpha subunit of the high affinity IgE receptor and the IgE molecule are proposed to be of pathogenetic relevance in a group of patients with chronic urticaria (CU). The diagnosis of autoimmune chronic urticaria (ACU) is difficult; the autologous serum skin test (ASST) seems to be a useful screening test, but reliable, additional confirmatory methods are needed. OBJECTIVES To assess the diagnostic value of a modified serum-induced basophil activation test, the CD63 expression assay, in the diagnosis of ACU by comparing the results of the CD63 assay with the results of the histamine release (HR) test, the ASST and serum levels of soluble CD40 ligand (sCD40L). METHODS Using basophils from an atopic (DA) and a nonatopic (DNA) donor the activity of sera of 72 patients with CU were measured in HR assay by enzyme-linked immunosorbent assay and in CD63 expression assay by flow cytometry. An ASST was carried out in all patients; in 30 of the 72 patients sCD40L was detected and correlations were derived between the different assays. Sera of 20 normal controls and 26 patients with systemic autoimmune diseases were also tested in the HR assay and in the CD63 expression assay. RESULTS Histamine-releasing activity was detected in the sera of 51% (DA) and 32% (DNA) of CU patients and 57% (DA) and 28% (DNA) of sera upregulated CD63 expression on the surface of basophils from the different donors. There was a significant correlation between the HR and the CD63 assays carried out on both donors, but the ASST showed a strong correlation with the HR assay only for basophils from the DA. The serum level of sCD40L was significantly higher in patients with CU compared with controls, but the difference between the autoimmune and the nonautoimmune groups was not significant. CONCLUSIONS The CD63 expression assay seems to be a reliable functional test in the diagnosis of ACU, particularly if highly sensitive donor basophils are used, but the determination of the sCD40L serum level was not sufficient to differentiate between the autoimmune and the nonautoimmune patient groups.
Collapse
Affiliation(s)
- A Szegedi
- Department of Dermatology, Medical and Health Science Centre, University of Debrecen, 98 Nagyerdei str., Debrecen 4012, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cron RQ, Bandyopadhyay R, Genin A, Brunner M, Kersh GJ, Yin J, Finkel TH, Crow MK. Early growth response-1 is required for CD154 transcription. THE JOURNAL OF IMMUNOLOGY 2006; 176:811-8. [PMID: 16393964 PMCID: PMC1424665 DOI: 10.4049/jimmunol.176.2.811] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD154 (CD40 ligand) expression on CD4 T cells is normally tightly controlled, but abnormal or dysregulated expression of CD154 has been well documented in autoimmune diseases, such as systemic lupus erythematosus. Beyond regulation by NFAT proteins, little is known about the transcriptional activation of the CD154 promoter. We identified a species-conserved purine-rich sequence located adjacent to the CD154 transcriptional promoter proximal NFAT site, which binds early growth response (Egr) transcription factors. Gel shift assays and chromatin immunoprecipitation assays reveal that Egr-1, Egr-3, and NFAT1 present in primary human CD4 T cells are capable of binding this combinatorial site in vitro and in vivo, respectively. Multimerization of this NFAT/Egr sequence in the context of a reporter gene demonstrates this sequence is transcriptionally active upon T cell activation in primary human CD4 T cells. Overexpression of Egr-1, but not Egr-3, is capable of augmenting transcription of this reporter gene as well as that of an intact CD154 promoter. Conversely, overexpression of small interfering RNA specific for Egr-1 in primary human CD4 T cells inhibits CD154 expression. Similarly, upon activation, CD154 message is notably decreased in splenic CD4 T cells from Egr-1-deficient mice compared with wild-type controls. Our data demonstrate that Egr-1 is required for CD154 transcription in primary CD4 T cells. This has implications for selective targeting of Egr family members to control abnormal expression of CD154 in autoimmune diseases such as systemic lupus erythematosus.
Collapse
Affiliation(s)
- Randy Q Cron
- Division of Rheumatology, Children's Hospital of Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Nakamura M, Tanaka Y, Satoh T, Kawai M, Hirakata M, Kaburaki J, Kawakami Y, Ikeda Y, Kuwana M. Autoantibody to CD40 ligand in systemic lupus erythematosus: association with thrombocytopenia but not thromboembolism. Rheumatology (Oxford) 2005; 45:150-6. [PMID: 16188945 DOI: 10.1093/rheumatology/kei118] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To examine the prevalence, clinical associations and pathogenic roles of autoantibodies to CD40 ligand (CD40L) in patients with systemic lupus erythematosus (SLE). METHODS Plasma anti-CD40L antibodies from 125 patients with SLE, 24 with primary antiphospholipid syndrome (APS) and 90 with idiopathic thrombocytopenic purpura (ITP) and from 62 healthy individuals were measured with an enzyme-linked immunosorbent assay (ELISA). HeLa cells transfected with human CD40L cDNA (HeLa/CD40L) were used to confirm the presence of anti-CD40L autoantibodies. The effect of anti-CD40L antibodies on the CD40L-CD40 interaction was evaluated by observing CD40L-induced IkappaB activation in CD40-expressing fibroblasts. RESULTS Anti-CD40L autoantibody was detected in seven (6%) SLE, three (13%) primary APS and 11 (12%) ITP patients, but in no healthy controls. Antibody binding in an ELISA was competitively inhibited by membrane components of HeLa/CD40L. Anti-CD40L antibody-positive IgG specifically bound the surface of living HeLa/CD40L, as shown by flow cytometry. The frequency of thrombocytopenia was significantly higher in SLE patients with the anti-CD40L antibody than in those without (100 vs 14%; P<0.00001), whereas there was no association between the anti-CD40L antibody and thrombosis. Binding of the anti-CD40L antibodies in patients' plasma to CD40L was competitively inhibited by a series of mouse anti-CD40L monoclonal antibodies. Anti-CD40L antibody-positive IgG failed to inhibit CD40L-induced IkappaB activation. CONCLUSIONS Anti-CD40L autoantibody is associated with thrombocytopenia but not thromboembolism. Our findings are potentially useful in understanding the complex roles of CD40L in the pathophysiology of thrombosis and haemostasis as well as the thromboembolic complications that occur during treatment with anti-CD40L humanized antibody.
Collapse
Affiliation(s)
- M Nakamura
- Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Pham LV, Tamayo AT, Yoshimura LC, Lin-Lee YC, Ford RJ. Constitutive NF-kappaB and NFAT activation in aggressive B-cell lymphomas synergistically activates the CD154 gene and maintains lymphoma cell survival. Blood 2005; 106:3940-7. [PMID: 16099873 PMCID: PMC1895110 DOI: 10.1182/blood-2005-03-1167] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abnormalities in B-lymphocyte CD40 ligand (CD154) expression have been described for a number of immunologic diseases, including B-cell lymphomas. Although functional analysis of the CD154 gene and protein has been extensive, little is known about the mechanisms controlling CD154 expression in activated T cells, and even less is known for normal and malignant B cells. In this study we describe the transcriptional mechanism controlling CD154 expression in large B-cell lymphoma (LBCL). We show that the nuclear factor of activated T cells (NFAT) transcription factor is also constitutively activated in LBCL. We demonstrate that the constitutively active NFATc1 and c-rel members of the NFAT and nuclear factor-kappaB (NF-kappaB) families of transcription factors, respectively, directly interact with each other, bind to the CD154 promoter, and synergistically activate CD154 gene transcription. Down-regulation of NFATc1 or c-rel with small interfering RNA (siRNA) or chemical inhibitors inhibits CD154 gene transcription and lymphoma cell growth. These findings suggest that targeting NF-kappaB and NFAT, by inhibiting the expression of these transcription factors, or interdicting their interaction may provide a therapeutic rationale for patients with non-Hodgkin lymphoma of B-cell origin, and possibly other disorders that display dysregulated CD154 expression.
Collapse
Affiliation(s)
- Lan V Pham
- Department of Hematopathology, Box 54, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
38
|
Choudhury A, Maldonado MA, Cohen PL, Eisenberg RA. The Role of Host CD4 T Cells in the Pathogenesis of the Chronic Graft-versus-Host Model of Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2005; 174:7600-9. [PMID: 15944260 DOI: 10.4049/jimmunol.174.12.7600] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus is characterized by production of autoantibodies and glomerulonephritis. The murine chronic graft-vs-host (cGVH) model of systemic lupus erythematosus is induced by allorecognition of foreign MHC class II determinants. Previous studies have shown that cGVH could not be induced in CD4 knockout (CD4KO) mice. We have further explored the role of host CD4 T cells in this model. Our studies now show that B cells in CD4KO mice have intrinsic defects that prevent them from responding to allohelp. In addition, B cells in CD4KO mice showed phenotypic differences compared with congeneic C57BL/6 B cells, indicating some degree of in vivo activation and increased numbers of cells bearing a marginal zone B cell phenotype. The transfer of syngeneic CD4 T cells at the time of initiation of cGVH did not correct these B cell abnormalities; however, if CD4 T cells were transferred during the development and maturation of B cells, then the B cells from CD4KO mice acquire the ability to respond in cGVH. These studies clearly indicate that B cells need to coexist with CD4 T cells early in their development to develop full susceptibility to alloactivation signals.
Collapse
Affiliation(s)
- Arpita Choudhury
- Department of Medicine, Division of Rheumatology, University of Pennsylvania, and Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
39
|
Chen Y, Cuda C, Morel L. Genetic Determination of T Cell Help in Loss of Tolerance to Nuclear Antigens. THE JOURNAL OF IMMUNOLOGY 2005; 174:7692-702. [PMID: 15944270 DOI: 10.4049/jimmunol.174.12.7692] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sle1 is a major lupus susceptibility locus in NZM2410 lupus model that is associated with a loss of tolerance to nuclear Ags. At least three genes, Sle1a, Sle1b, and Sle1c contribute to Sle1, and their relative role in lupus pathogenesis is unknown. We show here that Sle1-expressing CD4(+) T cells present an activated phenotype associated with increased proliferation and cytokine production. In addition, Sle1 CD4(+) T cells provide help to anti-chromatin B cells to produce anti-nuclear antibodies, whether or not these B cells express Sle1. The Sle1a locus alone accounts for all these Sle1 phenotypes, implying that a specific genetic defect in Sle1a is necessary and sufficient to produce autoreactive T cells. However, Sle1c induces intermediate T cell activation and only provides help to Sle1-expressing anti-chromatin-producing B cells, demonstrating the synergic interactions between Sle1c T and Sle1 B cells. Moreover, Sle1a and Sle1c were associated with a significantly reduced level of CD4(+)CD25(+) regulatory T cells that precedes autoantibody production, suggesting a causal relationship with the generation of autoreactive T cells. Our study identifies for the first time that a specific genetic defect is responsible for lupus pathogenesis by inducing autoreactive T cells to break self-tolerance and that this genetic defect is also associated with a decreased number of regulatory T cells.
Collapse
MESH Headings
- Animals
- Antibodies, Antinuclear/biosynthesis
- Antigens, Nuclear/immunology
- Apoptosis/genetics
- Apoptosis/immunology
- B-Lymphocytes/immunology
- Cell Proliferation
- Cells, Cultured
- Chromatin/immunology
- Chromosome Mapping
- Cytokines/biosynthesis
- Epitopes, T-Lymphocyte/immunology
- Female
- Genetic Predisposition to Disease
- Histones/immunology
- Immune Tolerance/genetics
- Immunoglobulin G/biosynthesis
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lymphocyte Activation/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Yifang Chen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
40
|
Palucka AK, Blanck JP, Bennett L, Pascual V, Banchereau J. Cross-regulation of TNF and IFN-alpha in autoimmune diseases. Proc Natl Acad Sci U S A 2005; 102:3372-7. [PMID: 15728381 PMCID: PMC552921 DOI: 10.1073/pnas.0408506102] [Citation(s) in RCA: 402] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytokines, most particularly TNF and type I IFN (IFN-alphabeta), have been long considered essential elements in the development of autoimmunity. Identification of TNF in the pathogenesis of rheumatoid arthritis and TNF antagonist therapy represent successes of immunology. IFN-alphabeta plays a major role in systemic lupus erythematosus (SLE), a prototype autoimmune disease characterized by a break of tolerance to nuclear components. Here, we show that TNF regulates IFN-alpha production in vitro at two levels. First, it inhibits the generation of plasmacytoid dendritic cells (pDCs), a major producer of IFN-alphabeta, from CD34+ hematopoietic progenitors. Second, it inhibits IFN-alpha release by immature pDCs exposed to influenza virus. Neutralization of endogenous TNF sustains IFN-alpha secretion by pDCs. These findings are clinically relevant, as five of five patients with systemic juvenile arthritis treated with TNF antagonists display overexpression of IFN-alpha-regulated genes in their blood leukocytes. These results, therefore, might provide a mechanistic explanation for the development of anti-dsDNA antibodies and lupus-like syndrome in patients undergoing anti-TNF therapy.
Collapse
Affiliation(s)
- A Karolina Palucka
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, TX 75214, USA
| | | | | | | | | |
Collapse
|
41
|
Daoussis D, Andonopoulos AP, Liossis SNC. Targeting CD40L: a promising therapeutic approach. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:635-41. [PMID: 15242934 PMCID: PMC440614 DOI: 10.1128/cdli.11.4.635-641.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dimitris Daoussis
- Division of Rheumatology, Department of Internal Medicine, Patras University Hospital, University of Patras Medical School, Patras, Greece
| | | | | |
Collapse
|
42
|
Abstract
CD154 (CD40-ligand) has a wide variety of pleiotropic effects throughout the immune system and is critical to both cellular and humoral immunity. Cell surface and soluble CD154 are primarily expressed by activated CD4 T cells. Expression of CD154 is tightly regulated in a time-dependent manner, and, like most T cell-derived cytokines and other members of the tumor necrosis factor (TNF) superfamily, CD154 is largely regulated at the level of gene transcription. Recently, dysregulated expression of CD154 has been noted in a number of autoimmune disorders, including systemic lupus erythematosus (SLE). In addition, abnormal expression of CD154 has been hypothesized to contribute to a wider array of diseases, from atherosclerosis to Alzheimer's disease. Until recently, very little was known about the transcriptional regulation of CD154. We are exploring CD154 regulation in primary human CD4 T cells in hopes of understanding the cis- and trans-regulatory elements that control its expression in the cells that normally express CD154. Ultimately, we hope to be able to correct abnormal expression of CD154 in various disease states and to help design gene therapy vectors for treating CD154-deficient individuals with hyper-IgM syndrome.
Collapse
Affiliation(s)
- Randy Q Cron
- Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA.
| |
Collapse
|
43
|
Citores MJ, Rua-Figueroa I, Rodriguez-Gallego C, Durántez A, García-Laorden MI, Rodríguez-Lozano C, Rodríguez-Pérez JC, Vargas JA, Pérez-Aciego P. The dinucleotide repeat polymorphism in the 3'UTR of the CD154 gene has a functional role on protein expression and is associated with systemic lupus erythematosus. Ann Rheum Dis 2004; 63:310-7. [PMID: 14962968 PMCID: PMC1754911 DOI: 10.1136/ard.2003.006148] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the association of the (CA)n dinucleotide repeat in the 3' untranslated region (3'UTR) of the CD154 gene with systemic lupus erythematosus (SLE), and its functional role in protein expression. METHODS The allelic and genotypic distributions of the polymorphism were compared in 80 patients with SLE and 80 controls. A complete clinical and analytical database was recorded in each patient in order to correlate the clinical manifestations in SLE with different alleles. To investigate the functional role of the polymorphism, the CD154 protein expression on activated lymphocytes from healthy homozygous controls was evaluated by flow cytometry. RESULTS The 24 CA allele was the most represented in controls (p = 0.029), whereas the alleles containing >24 CA repeats were found in patients (p = 0.0043). Furthermore, when only homozygous women were considered, most controls carried two 24 CA alleles (p = 0.041), whereas most patients carried two alleles containing >24 CA repeats (p = 0.032). Also, patients carrying at least one 24 CA allele had less neurological involvement (p = 0.034), and carriers of at least one allele with fewer than 24 CA repeats presented more livedo reticularis (p = 0.006) and anti-Sm (p = 0.01) and anti-RNP (p = 0.038) autoantibodies. CD154 maximum expression in activated lymphocytes from all controls was reached after 54 hours, but it was more prolonged in controls carrying two alleles with >24 CA repeats (p = 0.0068). CONCLUSION The CD154 3'UTR microsatellite is associated with SLE, and the most represented alleles in patients were accompanied by a more prolonged protein expression in activated lymphocytes from controls.
Collapse
|
44
|
Takaya M, Tamura N, Kato K, Kobayashi S, Haruta K, Tajima M, Hara M, Yang KS, Tsuda H, Hashimoto H. CD154 expression and mRNA stability of activated CD4-positive T cells in patients with systemic lupus erythematosus. Mod Rheumatol 2003; 13:220-6. [PMID: 24387208 DOI: 10.3109/s10165-003-0227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract The expression of CD154 (CD40 ligand) on activated CD4+ T cells is known to be transient and tightly regulated for antigen-specific immune responses, and is increased and prolonged among patients with systemic lupus erythematosus (SLE). We investigated the regulation of CD154 expression by determining the protein and mRNA expression with PMA and ionomycin stimulation in CD4+ T cells, and confirmed their increase and prolongation in SLE T cells. Treatment with actinomycin D, a transcription inhibitor, after PMA and ionomycin stimulation was performed, and the findings revealed that the stability of CD154 mRNA increased significantly in activated SLE T cells compared with that of controls. However, alternations or abnormal sequences were not identified in the 3″ untranslated region, including AU-rich elements and CU-rich sequences, while their partial involvement in the posttranscriptional regulation of CD154 mRNA stability has been reported. With 96 h culture in vitro, the destabilization of CD154 mRNA was demonstrated, resulting in a corresponding decrease and normalization of surface expression on activated SLE T cells. We speculate that the CD154 expression on T cells from SLE patients may be increased and prolonged, with mRNA stabilization being related to a continuous stimulation in vivo.
Collapse
Affiliation(s)
- Makiyo Takaya
- Department of Rheumatology, Juntendo University School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 , Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Skov S, Rieneck K, Bovin LF, Skak K, Tomra S, Michelsen BK, Ødum N. Histone deacetylase inhibitors: a new class of immunosuppressors targeting a novel signal pathway essential for CD154 expression. Blood 2003; 101:1430-8. [PMID: 12393479 DOI: 10.1182/blood-2002-07-2073] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we report that histone deacetylase inhibitors (HDAC-i) comprise a new class of immunosuppressive agents. HDAC-i inhibited CD4 T-cell proliferation in a dose-dependent manner, which was not caused by apoptosis or decreased viability. Although early intracellular signals such as tyrosine kinase activity and elevation of intracellular calcium concentration were not affected, the characteristic aggregation of T cells following activation was completely abrogated. This correlated with diminished activation-induced expression of the adhesion molecules. HDAC-i furthermore inhibited activation-induced CD25 and CD154 expression on CD4 cells, without affecting induction of CD69. HDAC-i inhibited CD154 expression by a mechanism distinctly different from cyclosporine-mediated inhibition. HDAC-i thus inhibited interleukin 2 (IL-2)-induced CD154 expression on effector T cells and constitutively expressed CD154 on various tumor cells, events that were not affected by cyclosporine. Additional studies showed that HDAC-i treatment inhibited c-Myc expression, which was further shown to be important for CD154 gene activation. These results demonstrate pronounced T-cell inhibitory activity of HDAC-i, which may form the basis of novel therapeutic interventions against autoimmune diseases and allograft rejection.
Collapse
Affiliation(s)
- Søren Skov
- Cell Cybernetics Laboratory, Department of Medical Microbiology and Immunology, The Panum Institute, University of Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
46
|
Katsiari CG, Liossis SNC, Dimopoulos AM, Charalambopoulo DV, Mavrikakis M, Sfikakis PP. CD40L overexpression on T cells and monocytes from patients with systemic lupus erythematosus is resistant to calcineurin inhibition. Lupus 2002; 11:370-8. [PMID: 12139375 DOI: 10.1191/0961203302lu211oa] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To explore the regulatory defects underlying the overexpression of CD40 ligand (CD40L, CD154) in human lupus we studied the effects of cyclosporin-A (CsA), which blocks Ca2+/calcineurin-dependent CD40L gene expression, on peripheral blood-derived T cells and monocytes. In contrast to control subjects, CsA failed to inhibit the prolonged CD40L expression observed in vitro on anti-CD3-activated lupus T cells. Resistance to CsA was not restricted to CD4+ or CD8+ T cell subsets and was disease activity-independent. Experiments assessing the effects of dexamethasone on CD40L expression, as well as of CsA on the early activation marker CD69 expression and on surface CD40L cleavage, confirmed the unique regulation of CD40L in lupus T cells. On the other hand, co-culture with anti-CD3-activated T cells caused surface CD40L expression on monocytes, which was not an Fc receptor-mediated event. Lupus monocytes clearly overexpressed CD40L comparing to healthy and disease-control monocytes, and, similarly to lupus T cells, displayed a prominent resistance to CsA inhibitory effects. These findings indicate that, besides Ca2+/calcineurin-dependent mechanisms, other pathways are involved in the dysregulation of CD40L in SLE immune cells, dissection of which may have important therapeutic implications.
Collapse
Affiliation(s)
- C G Katsiari
- First Department of Propedeutic Medicine, Athens University Medical School, Laikon Hospital, Greece
| | | | | | | | | | | |
Collapse
|
47
|
Katsiari CG, Liossis SNC, Souliotis VL, Dimopoulos AM, Manoussakis MN, Sfikakis PP. Aberrant expression of the costimulatory molecule CD40 ligand on monocytes from patients with systemic lupus erythematosus. Clin Immunol 2002; 103:54-62. [PMID: 11987985 DOI: 10.1006/clim.2001.5172] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
CD40 ligand (CD40L, CD154) is overexpressed on T and B cells in systemic lupus erythematosus (SLE). Monocytes have been shown to contribute to immune-mediated pathology in SLE and to express CD40L under certain conditions. Therefore, we studied CD40L expression on lupus monocytes ex vivo, as well as after activation in vitro. A highly significant sevenfold increase in the frequency of CD40L-expressing peripheral monocytes from 23 SLE patients, compared to 16 healthy individuals (mean percentage of CD40L(+)CD14(+) among CD14(+) cells, 11.7 versus 1.6), was found by flow cytometry. Increased CD40L expression on monocytes correlated significantly with disease activity, elevated gamma-globulin serum levels, as well as increased CD40L expression on T cells. CD40L expression by lupus monocytes was verified at both the mRNA and protein levels, while LPS stimulation was found to upregulate CD40L mRNA accumulation and surface protein expression. CD40L expression on activated lupus monocytes within anti-CD3-stimulated, mononuclear cell cultures was also enhanced compared to control-derived monocytes. These novel findings underscore the multiplicity of pathways through which monocytes may contribute to SLE pathology and suggest that T cell-independent CD40L-mediated cell to cell interactions may be also involved in humoral immune activation in SLE.
Collapse
Affiliation(s)
- Christina G Katsiari
- First Department of Propedeutic Medicine, Athens University Medical School, Athens, Greece
| | | | | | | | | | | |
Collapse
|