1
|
Quail DF, Park M, Welm AL, Ekiz HA. Breast Cancer Immunity: It is TIME for the Next Chapter. Cold Spring Harb Perspect Med 2024; 14:a041324. [PMID: 37188526 PMCID: PMC10835621 DOI: 10.1101/cshperspect.a041324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Our ability to interrogate the tumor immune microenvironment (TIME) at an ever-increasing granularity has uncovered critical determinants of disease progression. Not only do we now have a better understanding of the immune response in breast cancer, but it is becoming possible to leverage key mechanisms to effectively combat this disease. Almost every component of the immune system plays a role in enabling or inhibiting breast tumor growth. Building on early seminal work showing the involvement of T cells and macrophages in controlling breast cancer progression and metastasis, single-cell genomics and spatial proteomics approaches have recently expanded our view of the TIME. In this article, we provide a detailed description of the immune response against breast cancer and examine its heterogeneity in disease subtypes. We discuss preclinical models that enable dissecting the mechanisms responsible for tumor clearance or immune evasion and draw parallels and distinctions between human disease and murine counterparts. Last, as the cancer immunology field is moving toward the analysis of the TIME at the cellular and spatial levels, we highlight key studies that revealed previously unappreciated complexity in breast cancer using these technologies. Taken together, this article summarizes what is known in breast cancer immunology through the lens of translational research and identifies future directions to improve clinical outcomes.
Collapse
Affiliation(s)
- Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
- Departments of Biochemistry, Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - H Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce, 35430 Urla, Izmir, Turkey
| |
Collapse
|
2
|
Hegewisch-Solloa E, Nalin AP, Freud AG, Mace EM. Deciphering the localization and trajectory of human natural killer cell development. J Leukoc Biol 2023; 114:487-506. [PMID: 36869821 DOI: 10.1093/jleuko/qiad027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 03/05/2023] Open
Abstract
Innate immune cells represent the first line of cellular immunity, comprised of both circulating and tissue-resident natural killer cells and innate lymphoid cells. These innate lymphocytes arise from a common CD34+ progenitor that differentiates into mature natural killer cells and innate lymphoid cells. The successive stages in natural killer cell maturation are characterized by increased lineage restriction and changes to phenotype and function. Mechanisms of human natural killer cell development have not been fully elucidated, especially the role of signals that drive the spatial localization and maturation of natural killer cells. Cytokines, extracellular matrix components, and chemokines provide maturation signals and influence the trafficking of natural killer cell progenitors to peripheral sites of differentiation. Here we present the latest advances in our understanding of natural killer and innate lymphoid cell development in peripheral sites, including secondary lymphoid tissues (i.e. tonsil). Recent work in the field has provided a model for the spatial distribution of natural killer cell and innate lymphoid cell developmental intermediates in tissue and generated further insights into the developmental niche. In support of this model, future studies using multifaceted approaches seek to fully map the developmental trajectory of human natural killer cells and innate lymphoid cells in secondary lymphoid tissues.
Collapse
Affiliation(s)
- Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W 168th St. New York, NY 10032, USA
| | - Ansel P Nalin
- Biomedical Sciences Graduate Program, Medical Scientist Training Program, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, 460 W 10th Ave. Columbus, OH 43210, USA
| | - Aharon G Freud
- Department of Pathology, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, 460 W 12th Ave. Columbus, OH 43210, USA
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W 168th St. New York, NY 10032, USA
| |
Collapse
|
3
|
Kumrić M, Tičinović Kurir T, Borovac JA, Božić J. The Role of Natural Killer (NK) Cells in Acute Coronary Syndrome: A Comprehensive Review. Biomolecules 2020; 10:E1514. [PMID: 33167533 PMCID: PMC7694449 DOI: 10.3390/biom10111514] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
With poor outcomes and an immense financial burden, acute coronary syndrome (ACS) and its ischemic repercussions still present a major global health problem. Unfavorable outcomes seem to be mainly due to adverse cardiac remodeling. Since the inflammatory response takes an important role in remodeling secondary to myocardial infarction (MI), and as inflammation in this manner has not been completely elucidated, we attempted to give rise to a further understanding of ACS pathophysiology. Hence, in this review, we integrated current knowledge of complex communication networks between natural killer (NK) cells and immune and resident heart cells in the context of ACS. Based on available data, the role of NK cells seems to be important in the infarcted myocardium, where it affects heart remodeling. On the other hand, in atherosclerotic plaque, NK cells seem to be mere passers-by, except in the case of chronic infections by atherogenic pathogens. In that case, NK cells seem to support proinflammatory milieu. NK cell research is challenging due to ethical reasons, convergent evolution, and phenotypic diversity among individuals. Therefore, we argue that further research of NK cells in ACS is valuable, given their therapeutic potential in improving postischemic heart remodeling.
Collapse
Affiliation(s)
- Marko Kumrić
- Department of Pathophysiology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.K.); (T.T.K.); (J.A.B.)
| | - Tina Tičinović Kurir
- Department of Pathophysiology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.K.); (T.T.K.); (J.A.B.)
- Endocrinology Clinic, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Josip A. Borovac
- Department of Pathophysiology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.K.); (T.T.K.); (J.A.B.)
- Institute of Emergency Medicine of Split-Dalmatia County (ZHM SDZ), Spinčićeva 1, 21000 Split, Croatia
| | - Joško Božić
- Department of Pathophysiology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.K.); (T.T.K.); (J.A.B.)
| |
Collapse
|
4
|
Shankar K, Capitini CM, Saha K. Genome engineering of induced pluripotent stem cells to manufacture natural killer cell therapies. Stem Cell Res Ther 2020; 11:234. [PMID: 32546200 PMCID: PMC7298853 DOI: 10.1186/s13287-020-01741-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/16/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells play a crucial role in host immunity by detecting cells that downregulate MHC class I presentation and upregulate stress ligands, as commonly seen in cancers. Current NK therapies using primary NK cells are prone to manufacturing issues related to expansion and storage. Alternative cell sources utilizing immortalized NK cell lines require irradiation and are dependent on systemic IL-2 administration, which has been associated with adverse effects. In contrast, NK cells differentiated from induced pluripotent stem cells (iPSC-NK cells) offer an off-the-shelf alternative that may overcome these bottlenecks. The development of a serum-free and feeder-free differentiation protocol allows for the manufacturing of clinically adaptable iPSC-NK cells that are equally as effective as primary NK cells and the NK-92 cell line for many indications. Moreover, genetic modifications targeting NK-mediated antibody-dependent cellular cytotoxicity capabilities, cytotoxicity, and checkpoint inhibitors may increase the therapeutic potential of iPSC-NK products. This review will highlight the current sources for NK therapies and their respective constraints, discuss recent developments in the manufacturing and genetic engineering of iPSC-NK cells, and provide an overview of ongoing clinical trials using NK cells.
Collapse
Affiliation(s)
- Keerthana Shankar
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4137, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N Orchard St, WID 4164, Madison, WI, 53715, USA.
| |
Collapse
|
5
|
Jang JH, Janker F, De Meester I, Arni S, Borgeaud N, Yamada Y, Gil Bazo I, Weder W, Jungraithmayr W. The CD26/DPP4-inhibitor vildagliptin suppresses lung cancer growth via macrophage-mediated NK cell activity. Carcinogenesis 2019; 40:324-334. [PMID: 30698677 DOI: 10.1093/carcin/bgz009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/16/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
CD26/dipeptidyl peptidase 4 (DPP4) is a transmembrane protein which is expressed by various malignant cells. We found that the expression of CD26/DPP4 was significantly higher in lung adenocarcinoma samples in our own patient cohort compared to normal lung tissue. We therefore hypothesize that the inhibition of CD26/DPP4 can potentially suppress lung cancer growth. The CD26/DPP4 inhibitor vildagliptin was employed on Lewis Lung Carcinoma (LLC) cell line and a human lung adenocarcinoma (H460) cell line. Two weeks after subcutaneous injection of tumor cells into C57BL/6 and CD1/nude mice, the size of LLC and H460 tumors was significantly reduced by vildagliptin. Immunohistochemically, the number of macrophages (F4/80+) and NK cells (NKp46+) was significantly increased in vildagliptin-treated tumor samples. Mechanistically, we found in vitro that lung cancer cell lines expressed increased levels of surfactant protein upon vildagliptin treatment thereby promoting the pro-inflammatory activity of macrophages. By the depletion of macrophages with clodronate and by using NK cell deficient (IL-15-/-) mice, tumors reversed to the size of controls, suggesting that indeed macrophages and NK cells were responsible for the observed tumor-suppressing effect upon vildagliptin treatment. FACS analysis showed tumor-infiltrating NK cells to express tumor necrosis-related apoptosis-inducing ligand (TRAIL) which induced the intra-cellular stress marker γH2AX. Accordingly, we found upregulated γH2AX in vildagliptin-treated tumors and TRAIL-treated cell lines. Moreover, the effect of vildagliptin-mediated enhanced NK cell cytotoxicity could be reversed by antagonizing the TRAIL receptor. Our data provide evidence that the CD26/DPP4-inhibitor vildagliptin reduces lung cancer growth. We could demonstrate that this effect is exerted by surfactant-activated macrophages and NK cells that act against the tumor via TRAIL-mediated cytotoxicity.
Collapse
Affiliation(s)
- Jae-Hwi Jang
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Florian Janker
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Ingrid De Meester
- Department of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Stephan Arni
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Nathalie Borgeaud
- Department of Visceral Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Yoshito Yamada
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Ignacio Gil Bazo
- Department of Oncology, University Hospital Navarra, Pamplona, Spain
| | - Walter Weder
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland.,Department of Thoracic Surgery, University Hospital Rostock, Rostock, Germany
| |
Collapse
|
6
|
Ex Vivo-expanded Natural Killer Cells Derived From Long-term Cryopreserved Cord Blood are Cytotoxic Against Primary Breast Cancer Cells. J Immunother 2019; 41:64-72. [PMID: 29189387 DOI: 10.1097/cji.0000000000000192] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With over 600,000 units of umbilical cord blood (CB) stored on a global scale, it is important to elucidate the therapeutic abilities of this cryopreserved reservoir. In the advancing field of natural killer (NK) cell cancer immunotherapy, CB has proven to be a promising and noninvasive source of therapeutic NK cells. Although studies have proven the clinical efficacy of using long-term cryopreserved CB in the context of hematopoietic stem cell transplantations, little is known about its use for the ex vivo expansion of effector immune cells. Therefore, our group sought to derive ex vivo-expanded NK cells from long-term cryopreserved CB, using an artificial antigen presenting cell-mediated expansion technique. We compared the expansion potential and antitumor effector function of CB-derived NK (CB-NK) cells expanded from fresh (n=4), short-term cryopreserved (<1-year old, n=5), and long-term cryopreserved (1-10-year old, n=5) CB. Here, we demonstrated it is possible to obtain an exponential amount of expanded CB-NK cells from long-term cryopreserved CB. Ex vivo-expanded CB-NK cells had an increased surface expression of activating markers and showed potent antitumor function by producing robust levels of proinflammatory cytokines, interferon-γ, and tumor necrosis factor-α. Moreover, expanded CB-NK cells (n=3-5) demonstrated cytotoxicity towards primary breast cancer cells (n=2) derived from a triple-negative breast cancer and an estrogen receptor-positive/progesterone receptor-positive breast cancer patient. Long-term cryopreservation had no effect on the expansion potential or effector function of expanded CB-NK cells. Therefore, we propose that long-term cryopreserved CB remains clinically useful for the ex vivo expansion of therapeutic NK cells.
Collapse
|
7
|
In Vitro Killing of Colorectal Carcinoma Cells by Autologous Activated NK Cells is Boosted by Anti-Epidermal Growth Factor Receptor-induced ADCC Regardless of RAS Mutation Status. J Immunother 2019; 41:190-200. [PMID: 29293164 DOI: 10.1097/cji.0000000000000205] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Treatment of advanced metastatic colorectal cancer (mCRC) patients is associated with a poor prognosis and significant morbidity. Moreover, targeted therapies such as anti-epidermal growth factor receptor (EGFR) have no effect in metastatic patients with tumors harboring a mutation in the RAS gene. The failure of conventional treatment to improve outcomes in mCRC patients has prompted the development of adoptive immunotherapy approaches including natural killer (NK)-based therapies. In this study, after confirmation that patients' NK cells were not impaired in their cytotoxic activity, evaluated against long-term tumor cell lines, we evaluated their interactions with autologous mCRC cells. Molecular and phenotypical evaluation of mCRC cells, expanded in vitro from liver metastasis, showed that they expressed high levels of polio virus receptor and Nectin-2, whereas UL16-binding proteins were less expressed in all tumor samples evaluated. Two different patterns of MICA/B and HLA class I expression on the membrane of mCRC were documented; approximately half of mCRC patients expressed high levels of these molecules on the membrane surface, whereas, in the remaining, very low levels were documented. Resting NK cells were unable to display sizeable levels of cytotoxic activity against mCRC cells, whereas their cytotoxic activity was enhanced after overnight or 5-day incubation with IL-2 or IL-15. The susceptibility of NK-mediated mCRC lysis was further significantly enhanced after coating with cetuximab, irrespective of their RAS mutation and HLA class I expression. These data open perspectives for combined NK-based immunotherapy with anti-epidermal growth factor receptor antibodies in a cohort of mCRC patients with a poor prognosis refractory to conventional therapies.
Collapse
|
8
|
Makowska A, Braunschweig T, Denecke B, Shen L, Baloche V, Busson P, Kontny U. Interferon β and Anti-PD-1/PD-L1 Checkpoint Blockade Cooperate in NK Cell-Mediated Killing of Nasopharyngeal Carcinoma Cells. Transl Oncol 2019; 12:1237-1256. [PMID: 31295651 PMCID: PMC6617170 DOI: 10.1016/j.tranon.2019.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/22/2019] [Indexed: 01/16/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a highly malignant epithelial cancer linked to EBV infection. Addition of interferon-β (IFNβ) to chemo- and radiochemotherapy has led to survival rates >90% in children and adolescents. As NPC cells are sensitive to apoptosis via tumor necrosis factor-related apoptosis inducing ligand (TRAIL), we explored the role of TRAIL and IFNβ in the killing of NPC cells by natural killer (NK) cells. NPC cells, including cells of a patient-derived xenograft were exposed to NK cells in the presence or absence of IFNβ. NK cells killed NPC- but not nasoepithelial cells and killing was predominately mediated via TRAIL. Incubation of NK cells with IFNβ increased cytotoxicity against NPC cells. Concomitant incubation of NK- and NPC cells with IFNβ before coculture reduced cytotoxicity and could be overcome by blocking the PD-1/PD-L1 axis leading to the release of intracellular TRAIL from NK cells. In conclusion, combination of IFNβ and anti-PD-1, augmenting cytotoxicity of NK cells against NPC cells, could be a strategy to improve NPC-directed therapy and warrants further evaluation in vivo.
Collapse
Affiliation(s)
- Anna Makowska
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Till Braunschweig
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Bernd Denecke
- IZKF, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Lian Shen
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Valentin Baloche
- CNRS UMR 8126, Gustave Roussy and Université Paris-Sud/Paris-Saclay, Villejuif, France.
| | - Pierre Busson
- CNRS UMR 8126, Gustave Roussy and Université Paris-Sud/Paris-Saclay, Villejuif, France.
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
9
|
Clinical efficacy of percutaneous cryoablation combined with allogenic NK cell immunotherapy for advanced non-small cell lung cancer. Immunol Res 2018; 65:880-887. [PMID: 28508945 DOI: 10.1007/s12026-017-8927-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, the safety and clinical efficacy of cryosurgery combined with allogenic NK cell immunotherapy for the treatment of advanced non-small cell lung cancer (NSCLC) were evaluated. From July 2016 to March 2017, we enrolled 60 patients who met the enrollment criteria and divided them into two groups: (1) the simple cryoablation group (n = 30) and (2) the cryoablation combined with allogenic NK cell group (n = 30). The changes in immune function, quality of life, and clinical response were evaluated. We found that allogenic NK cells combined with cryosurgical treatment for advanced NSCLC have a synergistic effect, which not only enhancing the immune function of patients, improving the quality of life, and significantly increasing the response rate (RR) and disease control rate (DCR) compared to cryoablation group. This study is the first clinical trial of allogenic NK cells combined with cryosurgery for the treatment of advanced NSCLC and preliminaily its safety and efficacy.
Collapse
|
10
|
Guo Y, Feng X, Jiang Y, Shi X, Xing X, Liu X, Li N, Fadeel B, Zheng C. PD1 blockade enhances cytotoxicity of in vitro expanded natural killer cells towards myeloma cells. Oncotarget 2018; 7:48360-48374. [PMID: 27356741 PMCID: PMC5217023 DOI: 10.18632/oncotarget.10235] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/03/2016] [Indexed: 01/12/2023] Open
Abstract
Aiming for an adoptive natural killer (NK) cell therapy, we have developed a novel protocol to expand NK cells from peripheral blood. With this protocol using anti-human CD16 antibody and interleukin (IL)-2, NK (CD3-CD56+) cells could be expanded about 4000-fold with over 70% purity during a 21-day culture. The expanded NK (exNK) cells were shown to be highly cytotoxic to multiple myeloma (MM) cells (RPMI8226) at low NK-target cell ratios. Furthermore, NK cells expanded in the presence of a blocking antibody (exNK+PD1-blockage) against programmed cell death protein-1 (PD1), a key counteracting molecule for NK and T cell activity, demonstrated more potent cytolytic activity against the RPMI8226 than the exNK cells without PD1 blocking. In parallel, the exNK cells showed significantly higher expression of NK activation receptors NKG2D, NKp44 and NKp30. In a murine model of MM, transfusion of exNK cells, exNK+PD1-blockage, and exNK plus intratumor injection of anti-PD-L2 antibody (exNK+PD-L2 blockage) all significantly suppressed tumor growth and prolonged survival of the myeloma mice. Importantly, exNK+PD1-blockage presented more efficient therapeutic effects. Our results suggest that the NK cell expansion protocol with PD1 blockade presented in this study has considerable potential for the clinical application of allo- and auto-NK cell-based therapies against malignancies.
Collapse
Affiliation(s)
- Yanan Guo
- Hematology Department, The Second Hospital of Shandong University, Jinan, China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China
| | - Xiaoli Feng
- Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Clinical Laboratory Department of The Second Hospital, Shandong University, Jinan, China
| | - Yang Jiang
- Hematology Department, The Second Hospital of Shandong University, Jinan, China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China
| | - Xiaoyun Shi
- Hematology Department, The Second Hospital of Shandong University, Jinan, China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China
| | - Xiangling Xing
- Hematology Department, The Second Hospital of Shandong University, Jinan, China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China
| | - Xiaoli Liu
- Hematology Department, The Second Hospital of Shandong University, Jinan, China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China
| | - Nailin Li
- Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China.,Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska Institutet, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Bengt Fadeel
- Karolinska Institutet, Institute of Environmental Medicine, Division of Molecular Toxicology, Stockholm, Sweden.,Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Chengyun Zheng
- Hematology Department, The Second Hospital of Shandong University, Jinan, China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, China.,Shandong University-Karolinska Institutet Collaborative Laboratory for Stem Cell Research, The Second Hospital of Shandong University, Jinan, China.,Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Mehta RS, Rezvani K. Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer. Front Immunol 2018; 9:283. [PMID: 29497427 PMCID: PMC5818392 DOI: 10.3389/fimmu.2018.00283] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Adoptive cell therapy has emerged as a powerful treatment for advanced cancers resistant to conventional agents. Most notable are the remarkable responses seen in patients receiving autologous CD19-redirected chimeric antigen receptor (CAR) T cells for the treatment of B lymphoid malignancies; however, the generation of autologous products for each patient is logistically cumbersome and has restricted widespread clinical use. A banked allogeneic product has the potential to overcome these limitations, yet allogeneic T-cells (even if human leukocyte antigen-matched) carry a major risk of graft-versus-host disease (GVHD). Natural killer (NK) cells are bone marrow-derived innate lymphocytes that can eliminate tumors directly, with their activity governed by the integration of signals from activating and inhibitory receptors and from cytokines including IL-15, IL-12, and IL-18. NK cells do not cause GVHD or other alloimmune or autoimmune toxicities and thus, can provide a potential source of allogeneic “off-the-shelf” cellular therapy, mediating major anti-tumor effects without inducing potentially lethal alloreactivity such as GVHD. Given the multiple unique advantages of NK cells, researchers are now exploring the use of CAR-engineered NK cells for the treatment of various hematological and non-hematological malignancies. Herein, we review preclinical data on the development of CAR-NK cells, advantages, disadvantages, and current obstacles to their clinical use.
Collapse
|
12
|
Mehta RS, Randolph B, Daher M, Rezvani K. NK cell therapy for hematologic malignancies. Int J Hematol 2018; 107:262-270. [PMID: 29383623 DOI: 10.1007/s12185-018-2407-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/22/2018] [Indexed: 12/17/2022]
Abstract
Natural killer (NK) cells are part of the innate immune system and represent the first line of defense against infections and tumors. In contrast to T cells, NK cells do not require prior antigen sensitization to induce cytotoxicity and do not cause graft-versus-host disease. These, along with other advantages, make NK cells an attractive candidate for adoptive cellular therapy. Herein, we describe the mechanisms of NK cell cytotoxicity, which is governed by an intricate balance between various activating and inhibitory receptors, including the killer cell immunoglobulin-like receptors (KIRs). We illustrate the advantages of NK alloreactivity as demonstrated in various types of hematopoietic stem cell transplants (HSCT), such as haploidentical, human leukocyte antigen-matched related or unrelated donor and umbilical cord blood transplant. We elaborate on different models used to predict NK cell alloreactivity in these studies, which are either based on the absence of the ligands for inhibitory KIRs, presence of activating NK cell receptors and KIR genes content in donors, or a combination of these. We will review clinical studies demonstrating anti-tumor efficacy of NK cells used either as a stand-alone immunotherapy or as an adjunct to HSCT and novel genetic engineering strategies to improve the anti-tumor activity of NK cells.
Collapse
Affiliation(s)
- Rohtesh S Mehta
- Department of Stem Cell Transplant and Cellular Therapy, University of Texas M. D. Anderson Cancer Center, Unit 0423, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Brion Randolph
- Department of Stem Cell Transplant and Cellular Therapy, University of Texas M. D. Anderson Cancer Center, Unit 0423, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - May Daher
- Department of Stem Cell Transplant and Cellular Therapy, University of Texas M. D. Anderson Cancer Center, Unit 0423, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplant and Cellular Therapy, University of Texas M. D. Anderson Cancer Center, Unit 0423, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| |
Collapse
|
13
|
Fischer K, Tognarelli S, Roesler S, Boedicker C, Schubert R, Steinle A, Klingebiel T, Bader P, Fulda S, Ullrich E. The Smac Mimetic BV6 Improves NK Cell-Mediated Killing of Rhabdomyosarcoma Cells by Simultaneously Targeting Tumor and Effector Cells. Front Immunol 2017; 8:202. [PMID: 28326081 PMCID: PMC5339542 DOI: 10.3389/fimmu.2017.00202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/14/2017] [Indexed: 11/13/2022] Open
Abstract
Rhabdomyosarcoma (RMS), the most common cancer of connective tissues in pediatrics, is often resistant to conventional therapies. One underlying mechanism of this resistance is the overexpression of Inhibitor of Apoptosis (IAP) proteins, leading to a dysfunctional cell death program within tumor cells. Smac mimetics (SM) are small molecules that can reactivate the cell death program by antagonizing IAP proteins and thereby compensating their overexpression. Here, we report that SM sensitize two RMS cell lines (RD and RH30) toward natural killer (NK) cell-mediated killing on the one hand, and increase the cytotoxic potential of NK cells on the other. The SM-induced sensitization of RH30 cells toward NK cell-mediated killing is significantly reduced through blocking tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on NK cells prior to coculture. In addition, the presence of zVAD.fmk, a pancaspase inhibitor, rescues tumor cells from the increase in killing, indicating an apoptosis-dependent cell death. On the NK cell side, the presence of SM in addition to IL-2 during the ex vivo expansion leads to an increase in their cytotoxic activity against RH30 cells. This effect is mainly TNFα-dependent and partially mediated by NK cell activation, which is associated with transcriptional upregulation of NF-κB target genes such as IκBα and RelB. Taken together, our findings implicate that SM represent a novel double-hit strategy, sensitizing tumor and activating NK cells with one single drug.
Collapse
Affiliation(s)
- Kyra Fischer
- University Hospital Frankfurt, Department for Children and Adolescents Medicine, Division of Stem Cell Transplantation and Immunology, Goethe University, Frankfurt, Germany; LOEWE Center for Cell and Gene Therapy, Goethe University, Frankfurt, Germany
| | - Sara Tognarelli
- University Hospital Frankfurt, Department for Children and Adolescents Medicine, Division of Stem Cell Transplantation and Immunology, Goethe University, Frankfurt, Germany; LOEWE Center for Cell and Gene Therapy, Goethe University, Frankfurt, Germany
| | - Stefanie Roesler
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cathinka Boedicker
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf Schubert
- University Hospital Frankfurt, Department for Children and Adolescents Medicine, Goethe University, Frankfurt, Germany; University Hospital Frankfurt/Main, Department for Children and Adolescents Medicine, Division of Pulmonology, Allergy and Cystic Fibrosis, Goethe University, Frankfurt, Germany
| | - Alexander Steinle
- University Hospital Frankfurt, Department for Molecular Medicine, Goethe University , Frankfurt , Germany
| | - Thomas Klingebiel
- LOEWE Center for Cell and Gene Therapy, Goethe University, Frankfurt, Germany; University Hospital Frankfurt, Department for Children and Adolescents Medicine, Goethe University, Frankfurt, Germany
| | - Peter Bader
- University Hospital Frankfurt, Department for Children and Adolescents Medicine, Division of Stem Cell Transplantation and Immunology, Goethe University, Frankfurt, Germany; LOEWE Center for Cell and Gene Therapy, Goethe University, Frankfurt, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Evelyn Ullrich
- University Hospital Frankfurt, Department for Children and Adolescents Medicine, Division of Stem Cell Transplantation and Immunology, Goethe University, Frankfurt, Germany; LOEWE Center for Cell and Gene Therapy, Goethe University, Frankfurt, Germany
| |
Collapse
|
14
|
Prospective study of percutaneous cryoablation combined with allogenic NK cell immunotherapy for advanced renal cell cancer. Immunol Lett 2017; 184:98-104. [PMID: 28274792 DOI: 10.1016/j.imlet.2017.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 11/23/2022]
Abstract
In this study, the clinical efficacy of cryosurgery combined with allogenic NK cell immunotherapy for advanced renal cell cancer was evaluated. From July to December 2016, we enrolled 60 patients who met the enrollment criteria and divided them into two groups: (1) the simple cryoablation group (n=30); and (2) the cryoablation combined with allogenic NK cells group (n=30). The clinical efficacy, quality of life, immune function, and other related indicators were evaluated. Combining allogeneic NK cells with cryoablation had a synergistic effect, not only enhancing the immune function and improving the quality of life of the patients, but also significantly exhibiting good clinical efficacy of the patients. This study is the first clinical trial that has evaluated the safety and efficacy of allogenic NK cells combined with cryosurgery for the treatment of renal cell cancer.
Collapse
|
15
|
Veluchamy JP, Lopez-Lastra S, Spanholtz J, Bohme F, Kok N, Heideman DAM, Verheul HMW, Di Santo JP, de Gruijl TD, van der Vliet HJ. In Vivo Efficacy of Umbilical Cord Blood Stem Cell-Derived NK Cells in the Treatment of Metastatic Colorectal Cancer. Front Immunol 2017; 8:87. [PMID: 28220124 PMCID: PMC5292674 DOI: 10.3389/fimmu.2017.00087] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/18/2017] [Indexed: 02/03/2023] Open
Abstract
Therapeutic monoclonal antibodies against the epidermal growth factor receptor (EGFR) act by inhibiting EGFR downstream signaling and by eliciting a natural killer (NK) cell-mediated antitumor response. The IgG1 mAb cetuximab has been used for treatment of RASwt metastatic colorectal cancer (mCRC) patients, showing limited efficacy. In the present study, we address the potential of adoptive NK cell therapy to overcome these limitations investigating two allogeneic NK cell products, i.e., allogeneic activated peripheral blood NK cells (A-PBNK) and umbilical cord blood stem cell-derived NK cells (UCB-NK). While cetuximab monotherapy was not effective against EGFR− RASwt, EGFR+ RASmut, and EGFR+ BRAFmut cells, A-PBNK were able to initiate lysis of EGFR+ colon cancer cells irrespective of RAS or BRAF status. Cytotoxic effects of A-PBNK (but not UCB-NK) were further potentiated significantly by coating EGFR+ colon cancer cells with cetuximab. Of note, a significantly higher cytotoxicity was induced by UCB-NK in EGFR−RASwt (42 ± 8 versus 67 ± 7%), EGFR+ RASmut (20 ± 2 versus 37 ± 6%), and EGFR+ BRAFmut (23 ± 3 versus 43 ± 7%) colon cancer cells compared to A-PBNK and equaled the cytotoxic efficacy of the combination of A-PBNK and cetuximab. The antitumor efficacy of UCB-NK cells against cetuximab-resistant human EGFR+ RASmut colon cancer cells was further confirmed in an in vivo preclinical mouse model where UCB-NK showed enhanced antitumor cytotoxicity against colon cancer independent of EGFR and RAS status. As UCB-NK have been proven safe in a recently conducted phase I clinical trial in acute myeloid leukemia, a fast translation into clinical proof of concept for mCRC could be considered.
Collapse
Affiliation(s)
- John P Veluchamy
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Glycostem Therapeutics, Oss, Netherlands
| | - Silvia Lopez-Lastra
- Innate Immunity Unit, Institut Pasteur, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France; Université Paris-Sud (Paris-Saclay), Paris, France
| | | | | | - Nina Kok
- Glycostem Therapeutics , Oss , Netherlands
| | | | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam , Amsterdam , Netherlands
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam , Amsterdam , Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
16
|
Mehta RS, Rezvani K. Can we make a better match or mismatch with KIR genotyping? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:106-118. [PMID: 27913469 PMCID: PMC6142490 DOI: 10.1182/asheducation-2016.1.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Natural killer (NK) cell function is regulated by a fine balance between numerous activating and inhibitory receptors, of which killer-cell immunoglobulin-like receptors (KIRs) are among the most polymorphic and comprehensively studied. KIRs allow NK cells to recognize downregulation or the absence of HLA class I molecules on target cells (known as missing-self), a phenomenon that is commonly observed in virally infected cells or cancer cells. Because KIR and HLA genes are located on different chromosomes, in an allogeneic environment such as after hematopoietic stem cell transplantation, donor NK cells that express an inhibitory KIR for an HLA class I molecule that is absent on recipient targets (KIR/KIR-ligand mismatch), can recognize and react to this missing self and mediate cytotoxicity. Accumulating data indicate that epistatic interactions between KIR and HLA influence outcomes in several clinical conditions. Herein, we discuss the genetic and functional features of KIR/KIR-ligand interactions in hematopoietic stem cell transplantation and how these data can guide donor selection. We will also review clinical studies of adoptive NK cell therapy in leukemia and emerging data on the use of genetically modified NK cells that could broaden the scope of cancer immunotherapy.
Collapse
Affiliation(s)
- Rohtesh S Mehta
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
17
|
Natural killer cells in inflammatory heart disease. Clin Immunol 2016; 175:26-33. [PMID: 27894980 DOI: 10.1016/j.clim.2016.11.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/09/2016] [Accepted: 11/20/2016] [Indexed: 02/07/2023]
Abstract
Despite of a multitude of excellent studies, the regulatory role of natural killer (NK) cells in the pathogenesis of inflammatory cardiac disease is greatly underappreciated. Clinical abnormalities in the numbers and functions of NK cells are observed in myocarditis and inflammatory dilated cardiomyopathy (DCMi) as well as in cardiac transplant rejection [1-6]. Because treatment of these disorders remains largely symptomatic in nature, patients have little options for targeted therapies [7,8]. However, blockade of NK cells and their receptors can protect against inflammation and damage in animal models of cardiac injury and inflammation. In these models, NK cells suppress the maturation and trafficking of inflammatory cells, alter the local cytokine and chemokine environments, and induce apoptosis in nearby resident and hematopoietic cells [1,9,10]. This review will dissect each protective mechanism employed by NK cells and explore how their properties might be exploited for their therapeutic potential.
Collapse
|
18
|
Bouchlaka MN, Ludwig KD, Gordon JW, Kutz MP, Bednarz BP, Fain SB, Capitini CM. (19)F-MRI for monitoring human NK cells in vivo. Oncoimmunology 2016; 5:e1143996. [PMID: 27467963 DOI: 10.1080/2162402x.2016.1143996] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 01/13/2023] Open
Abstract
The availability of clinical-grade cytokines and artificial antigen-presenting cells has accelerated interest in using natural killer (NK) cells as adoptive cellular therapy (ACT) for cancer. One of the technological shortcomings of translating therapies from animal models to clinical application is the inability to effectively and non-invasively track these cells after infusion in patients. We have optimized the nonradioactive isotope fluorine-19 ((19)F) as a means to label and track NK cells in preclinical models using magnetic resonance imaging (MRI). Human NK cells were expanded with interleukin (IL)-2 and labeled in vitro with increasing concentrations of (19)F. Doses as low as 2 mg/mL (19)F were detected by MRI. NK cell viability was only decreased at 8 mg/mL (19)F. No effects on NK cell cytotoxicity against K562 leukemia cells were observed with 2, 4 or 8 mg/mL (19)F. Higher doses of (19)F, 4 mg/mL and 8 mg/mL, led to an improved (19)F signal by MRI with 3 × 10(11) (19)F atoms per NK cell. The 4 mg/mL (19)F labeling had no effect on NK cell function via secretion of granzyme B or interferon gamma (IFNγ), compared to NK cells exposed to vehicle alone. (19)F-labeled NK cells were detectable immediately by MRI after intratumoral injection in NSG mice and up to day 8. When (19)F-labeled NK cells were injected subcutaneously, we observed a loss of signal through time at the site of injection suggesting NK cell migration to distant organs. The (19)F perfluorocarbon is a safe and effective reagent for monitoring the persistence and trafficking of NK cell infusions in vivo, and may have potential for developing novel imaging techniques to monitor ACT for cancer.
Collapse
Affiliation(s)
- Myriam N Bouchlaka
- Department of Pediatrics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health , Madison, WI, USA
| | - Kai D Ludwig
- Department of Medical Physics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health , Madison, WI, USA
| | - Jeremy W Gordon
- Department of Medical Physics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health , Madison, WI, USA
| | - Matthew P Kutz
- Department of Pediatrics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health , Madison, WI, USA
| | - Bryan P Bednarz
- Department of Medical Physics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health , Madison, WI, USA
| | - Sean B Fain
- Department of Medical Physics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Radiology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Biomedical Engineering, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christian M Capitini
- Department of Pediatrics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health , Madison, WI, USA
| |
Collapse
|
19
|
Dahlberg CIM, Sarhan D, Chrobok M, Duru AD, Alici E. Natural Killer Cell-Based Therapies Targeting Cancer: Possible Strategies to Gain and Sustain Anti-Tumor Activity. Front Immunol 2015; 6:605. [PMID: 26648934 PMCID: PMC4663254 DOI: 10.3389/fimmu.2015.00605] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells were discovered 40 years ago, by their ability to recognize and kill tumor cells without the requirement of prior antigen exposure. Since then, NK cells have been seen as promising agents for cell-based cancer therapies. However, NK cells represent only a minor fraction of the human lymphocyte population. Their skewed phenotype and impaired functionality during cancer progression necessitates the development of clinical protocols to activate and expand to high numbers ex vivo to be able to infuse sufficient numbers of functional NK cells to the cancer patients. Initial NK cell-based clinical trials suggested that NK cell-infusion is safe and feasible with almost no NK cell-related toxicity, including graft-versus-host disease. Complete remission and increased disease-free survival is shown in a small number of patients with hematological malignances. Furthermore, successful adoptive NK cell-based therapies from haploidentical donors have been demonstrated. Disappointingly, only limited anti-tumor effects have been demonstrated following NK cell infusion in patients with solid tumors. While NK cells have great potential in targeting tumor cells, the efficiency of NK cell functions in the tumor microenvironment is yet unclear. The failure of immune surveillance may in part be due to sustained immunological pressure on tumor cells resulting in the development of tumor escape variants that are invisible to the immune system. Alternatively, this could be due to the complex network of immune-suppressive compartments in the tumor microenvironment, including myeloid-derived suppressor cells, tumor-associated macrophages, and regulatory T cells. Although the negative effect of the tumor microenvironment on NK cells can be transiently reverted by ex vivo expansion and long-term activation, the aforementioned NK cell/tumor microenvironment interactions upon reinfusion are not fully elucidated. Within this context, genetic modification of NK cells may provide new possibilities for developing effective cancer immunotherapies by improving NK cell responses and making them less susceptible to the tumor microenvironment. Within this review, we will discuss clinical trials using NK cells with a specific reflection on novel potential strategies, such as genetic modification of NK cells and complementary therapies aimed at improving the clinical outcome of NK cell-based immune therapies.
Collapse
Affiliation(s)
- Carin I M Dahlberg
- Cell Therapies Institute, Nova Southeastern University , Fort Lauderdale, FL , USA ; Cell and Gene Therapy Group, Center for Hematology and Regenerative Medicine (HERM), Karolinska University Hospital Huddinge, NOVUM , Stockholm , Sweden
| | - Dhifaf Sarhan
- Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet , Stockholm , Sweden ; Division of Hematology, Oncology and Transplantation, Masonic Cancer Research Center, University of Minnesota , Minnesota, MN , USA
| | - Michael Chrobok
- Cell Therapies Institute, Nova Southeastern University , Fort Lauderdale, FL , USA ; Cell and Gene Therapy Group, Center for Hematology and Regenerative Medicine (HERM), Karolinska University Hospital Huddinge, NOVUM , Stockholm , Sweden
| | - Adil D Duru
- Cell Therapies Institute, Nova Southeastern University , Fort Lauderdale, FL , USA ; Cell and Gene Therapy Group, Center for Hematology and Regenerative Medicine (HERM), Karolinska University Hospital Huddinge, NOVUM , Stockholm , Sweden
| | - Evren Alici
- Cell Therapies Institute, Nova Southeastern University , Fort Lauderdale, FL , USA ; Cell and Gene Therapy Group, Center for Hematology and Regenerative Medicine (HERM), Karolinska University Hospital Huddinge, NOVUM , Stockholm , Sweden ; Hematology Center, Karolinska University Hospital Huddinge , Stockholm , Sweden
| |
Collapse
|
20
|
Li Y, Yin J, Li T, Huang S, Yan H, Leavenworth J, Wang X. NK cell-based cancer immunotherapy: from basic biology to clinical application. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1233-45. [DOI: 10.1007/s11427-015-4970-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/16/2015] [Indexed: 12/31/2022]
|
21
|
Cata JP, Conrad C, Rezvani K. Potential Use of Natural Killer Cell Transfer Therapy in the Perioperative Period to Improve Oncologic Outcomes. SCIENTIFICA 2015; 2015:732438. [PMID: 26576322 PMCID: PMC4632007 DOI: 10.1155/2015/732438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Immune suppression after oncologic surgery is a common phenomenon. Several studies have demonstrated that it is associated with poor survival owing to cancer progression. Immunotherapy, especially NK cell transfer therapy, is an attractive alternative because current methodologies to isolate, generate, and expand NK cells have shown good safety profiles in current active investigations. We believe that the use of NK cell transfer therapy in the context of postoperative minimal residual disease deserves significant investigation.
Collapse
Affiliation(s)
- Juan P. Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Anesthesiology and Surgical Oncology Research Group, Houston, TX, USA
| | - Claudius Conrad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katy Rezvani
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
22
|
Sakamoto N, Ishikawa T, Kokura S, Okayama T, Oka K, Ideno M, Sakai F, Kato A, Tanabe M, Enoki T, Mineno J, Naito Y, Itoh Y, Yoshikawa T. Phase I clinical trial of autologous NK cell therapy using novel expansion method in patients with advanced digestive cancer. J Transl Med 2015; 13:277. [PMID: 26303618 PMCID: PMC4548900 DOI: 10.1186/s12967-015-0632-8] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/07/2015] [Indexed: 11/10/2022] Open
Abstract
Background NK cells can destroy tumor cells without prior sensitization or immunization. Tumors often lose expression of MHC molecules and/or antigens. However, NK cells can lyse tumor cells in a non-MHC-restricted manner and independent of the expression of tumor-associated antigens. NK cells are therefore considered ideal for adoptive cancer immunotherapy; however the difficulty of obtaining large numbers of fully functional NK cells that are safe to administer deters its clinical use. This phase I clinical trial seeks to address this obstacle by first developing a novel system that expands large numbers of highly activated clinical grade NK cells, and second, determining if these cells are safe in a mono-treatment so they can be combined with other reagents in the next round of clinical trials. Methods Patients with unresectable, locally advanced and/or metastatic digestive cancer who did not succeed with standard therapy were enrolled. NK cells were expanded ex vivo by stimulating PBMCs with OK432, IL-2, and modified FN-CH296 induced T cells. Patients were administered autologous natural killer cell three times weekly via intravenous infusions in a dose-escalating manner (dose 0.5 × 109, 1.0 × 109, 2.0 × 109 cells/injection, three patients/one cohort). Results Total cell population had a median expansion of 586-fold (range 95–1102), with a significantly pure (90.96 %) NK cell population. Consequently, NK cells were expanded to approximately 4720-fold (range 1372–14,116) with cells being highly lytic in vitro and strongly expressing functional markers such as NKG2D and CD16. This NK cell therapy was very well tolerated with no severe adverse events. Although no clinical responses were observed, cytotoxicity of peripheral blood was elevated approximately twofolds up to 4 weeks post the last transfer. Conclusion We successfully generated large numbers of activated NK cells from small quantities of blood without prior purification of the cells. We also determined that the expanded cells were safe to administer in a monotherapy and are suitable for the next round of clinical trials where their efficacy will be tested combined with other reagents. Trial Registration: UMIN UMIN000007527 Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0632-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naoyuki Sakamoto
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan. .,Iseikai Hyakumanben Clinic, Kyoto, Japan.
| | - Takeshi Ishikawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan. .,Department of Cancer ImmunoCell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Satoshi Kokura
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan. .,Center for Education Research and Development, Kyoto Gakuen University, Kyoto, Japan.
| | - Tetsuya Okayama
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan. .,Department of Cancer ImmunoCell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Kaname Oka
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | - Akiko Kato
- CDM Center, Takara Bio Inc, Otsu, Japan.
| | | | | | | | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Toshikazu Yoshikawa
- Department of Cancer ImmunoCell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| |
Collapse
|
23
|
Huijskens MJAJ, Walczak M, Sarkar S, Atrafi F, Senden-Gijsbers BLMG, Tilanus MGJ, Bos GMJ, Wieten L, Germeraad WTV. Ascorbic acid promotes proliferation of natural killer cell populations in culture systems applicable for natural killer cell therapy. Cytotherapy 2015; 17:613-20. [PMID: 25747742 DOI: 10.1016/j.jcyt.2015.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Natural killer (NK) cell-based immunotherapy is a promising treatment for a variety of malignancies. However, generating sufficient cell numbers for therapy remains a challenge. To achieve this, optimization of protocols is required. METHODS Mature NK cells were expanded from peripheral blood mononuclear cells PBMCs in the presence of anti-CD3 monoclonal antibody and interleukin-2. Additionally, NK-cell progenitors were generated from CD34(+) hematopoietic stem cells or different T/NK-cell progenitor populations. Generated NK cells were extensively phenotyped, and functionality was determined by means of cytotoxicity assay. RESULTS Addition of ascorbic acid (AA) resulted in more proliferation of NK cells without influencing NK-cell functionality. In more detail, PBMC-derived NK cells expanded 2362-fold (median, range: 90-31,351) in the presence of AA and were capable of killing tumor cells under normoxia and hypoxia. Moreover, hematopoietic stem cell-derived progenitors appeared to mature faster in the presence of AA, which was also observed in the NK-cell differentiation from early T/NK-cell progenitors. CONCLUSIONS Mature NK cells proliferate faster in the presence of phospho-L-AA, resulting in higher cell numbers with accurate functional capacity, which is required for adoptive immunotherapy.
Collapse
Affiliation(s)
- Mirelle J A J Huijskens
- Department of Internal Medicine, Division of Haematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mateusz Walczak
- Department of Internal Medicine, Division of Haematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Subhashis Sarkar
- Department of Internal Medicine, Division of Haematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Florance Atrafi
- Department of Internal Medicine, Division of Haematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Birgit L M G Senden-Gijsbers
- Department of Internal Medicine, Division of Haematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marcel G J Tilanus
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gerard M J Bos
- Department of Internal Medicine, Division of Haematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Wilfred T V Germeraad
- Department of Internal Medicine, Division of Haematology, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
24
|
Fisher JP, Heuijerjans J, Yan M, Gustafsson K, Anderson J. γδ T cells for cancer immunotherapy: A systematic review of clinical trials. Oncoimmunology 2014; 3:e27572. [PMID: 24734216 PMCID: PMC3984269 DOI: 10.4161/onci.27572] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/18/2013] [Indexed: 12/12/2022] Open
Abstract
γδ T cells contribute to the front line of lymphoid antitumor surveillance and bridge the gap between innate and adaptive immunity. They can be readily expanded to high numbers in vivo and in vitro, starting from the blood of cancer patients, and a number of Phase I trials have demonstrated that these cells can be employed in cancer immunotherapy. Sufficient patients have received γδ T cell-based immunotherapies in the context of clinical trials to evaluate their utility, and to inform the direction of new trials. A systematic approach was used to identify Phase I, Phase II, and feasibility studies testing γδ T cell-based immunotherapy in cancer patients. Studies were excluded from further analysis if they did not provide patient-specific data. Data were compiled to evaluate efficacy, with stratification by treatment approach. When possible, comparisons were made with the efficacy of second-line conventional therapeutic approaches for the same malignancy. Twelve eligible studies were identified, providing information on 157 patients who had received γδ T cell-based immunotherapy. The comparison of objective response data suggests that γδ T cell-based immunotherapy is superior to current second-line therapies for advanced renal cell carcinoma and prostate cancer, but not for non-small cell lung carcinoma. An evaluation of pooled data from 132 published in vitro experiments shows a consistent improvement in the cytotoxicity of γδ T cells in the presence of antitumor antibodies. Immunotherapy using γδ T cells alone shows promising clinical activity, but there is a strong preclinical rationale for combining this treatment modality with cancer-targeting antibodies to augment its efficacy.
Collapse
Affiliation(s)
| | | | | | - Kenth Gustafsson
- UCL Institute of Child Health; Molecular Immunology Unit; London, UK
| | | |
Collapse
|
25
|
Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol 2013; 10:230-52. [PMID: 23604045 DOI: 10.1038/cmi.2013.10] [Citation(s) in RCA: 465] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells play critical roles in host immunity against cancer. In response, cancers develop mechanisms to escape NK cell attack or induce defective NK cells. Current NK cell-based cancer immunotherapy aims to overcome NK cell paralysis using several approaches. One approach uses expanded allogeneic NK cells, which are not inhibited by self histocompatibility antigens like autologous NK cells, for adoptive cellular immunotherapy. Another adoptive transfer approach uses stable allogeneic NK cell lines, which is more practical for quality control and large-scale production. A third approach is genetic modification of fresh NK cells or NK cell lines to highly express cytokines, Fc receptors and/or chimeric tumor-antigen receptors. Therapeutic NK cells can be derived from various sources, including peripheral or cord blood cells, stem cells or even induced pluripotent stem cells (iPSCs), and a variety of stimulators can be used for large-scale production in laboratories or good manufacturing practice (GMP) facilities, including soluble growth factors, immobilized molecules or antibodies, and other cellular activators. A list of NK cell therapies to treat several types of cancer in clinical trials is reviewed here. Several different approaches to NK-based immunotherapy, such as tissue-specific NK cells, killer receptor-oriented NK cells and chemically treated NK cells, are discussed. A few new techniques or strategies to monitor NK cell therapy by non-invasive imaging, predetermine the efficiency of NK cell therapy by in vivo experiments and evaluate NK cell therapy approaches in clinical trials are also introduced.
Collapse
Affiliation(s)
- Min Cheng
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | | | | | | | | |
Collapse
|
26
|
Lim SA, Kim TJ, Lee JE, Sonn CH, Kim K, Kim J, Choi JG, Choi IK, Yun CO, Kim JH, Yee C, Kumar V, Lee KM. Ex vivo expansion of highly cytotoxic human NK cells by cocultivation with irradiated tumor cells for adoptive immunotherapy. Cancer Res 2013; 73:2598-607. [PMID: 23580577 DOI: 10.1158/0008-5472.can-12-2893] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adoptive natural killer (NK) cell therapy may offer an effective treatment regimen for cancer patients whose disease is refractory to conventional therapy. NK cells can kill a wide range of tumor cells by patterned recognition of target ligands. We hypothesized that tumor targets sensitive to NK lysis would drive vigorous expansion of NK cells from human peripheral blood mononuclear cells (PBMC). Here, we provide the basis for developing a novel ex vivo expansion process. By screening class I-negative or -mismatched tumor cell lines we identified a Jurkat T-lymphoblast subline termed KL-1, which was highly effective in specifically expanding NK cells. KL-1 addition to PBMC cultures achieved approximately 100-fold expansion of NK cells with nearly 90% purity, accompanied by reciprocal inhibition of T-cell growth. Marked elevations in expression of activation receptors, natural cytotoxicity receptors (NKp30, NKp44), and adhesion molecules (CD11a, ICAM-1) were associated with high tumor-lytic capacity, in both in vitro and in vivo models. KL-1-mediated expansion of NK cells was contact dependent and required interactions with CD16, the Fcγ receptor on NK cells, with ligands that are expressed on B cells. Indeed, B-cell depletion during culture abrogated selective NK cell expansion, while addition of EBV-transformed B cells further augmented NK expansion to approximately 740-fold. Together, our studies define a novel method for efficient activation of human NK cells that employs KL-1-lysed tumor cells and cocultured B cells, which drive a robust expansion of potent antitumor effector cells that will be useful for clinical evaluation.
Collapse
Affiliation(s)
- Seon Ah Lim
- Global Research Laboratory, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Roberti MP, Mordoh J, Levy EM. Biological role of NK cells and immunotherapeutic approaches in breast cancer. Front Immunol 2012; 3:375. [PMID: 23248625 PMCID: PMC3520123 DOI: 10.3389/fimmu.2012.00375] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/23/2012] [Indexed: 12/31/2022] Open
Abstract
In recent decades, tumor surveillance by the immune system and its impact on disease outcomes in cancer patients in general and in breast cancer (BC) patients in particular has been documented. Natural killer (NK) cells are central components of the innate immunity and existing data indicate that they play a role in preventing and controlling tumor growth and metastasis. Their biological significance was first recognized by their ability to exert direct cellular cytotoxicity without prior sensitization. This is important in tumors, as transforming events are likely to result in downregulation of self-ligands and expression of stress-induced ligands which can be recognized by NK cells. Their activation also leads to secretion of stimulatory cytokines which participate in cancer elimination by several direct mechanisms as well as by stimulating the adaptive immune system. In this regard, it was recently revealed a dendritic cell (DC)-NK-cell crosstalk which provides another novel pathway linking innate and adaptive immunity. In addition, NK cells are feasible targets of stimulation in immunotherapeutic approaches such as antibody-based strategies and adoptive cell transfer. Nevertheless, NK cells display impaired functionality and capability to infiltrate tumors in BC patients. This review compiles information about NK-cell biology in BC and the attempts which aim to manipulate them in novel therapeutic approaches in this pathology.
Collapse
Affiliation(s)
- María P Roberti
- Centro de Investigaciones Oncológicas, Fundación Cáncer FUCA Buenos Aires, Argentina
| | | | | |
Collapse
|
28
|
IL-2- or IL-15-activated NK cells enhance Cetuximab-mediated activity against triple-negative breast cancer in xenografts and in breast cancer patients. Breast Cancer Res Treat 2012; 136:659-71. [DOI: 10.1007/s10549-012-2287-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/03/2012] [Indexed: 01/10/2023]
|
29
|
Luevano M, Madrigal A, Saudemont A. Generation of natural killer cells from hematopoietic stem cells in vitro for immunotherapy. Cell Mol Immunol 2012; 9:310-20. [PMID: 22705914 DOI: 10.1038/cmi.2012.17] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Natural killer (NK) cells are part of the innate immune system and are an alluring option for immunotherapy due to their ability to kill infected cells or cancer cells without prior sensitization. Throughout the past 20 years, different groups have been able to reproduce NK cell development in vitro, and NK cell ontogeny studies have provided the basis for the establishment of protocols to produce NK cells in vitro for immunotherapy. Here, we briefly discuss NK cell development and NK cell immunotherapy approaches. We review the factors needed for NK cell differentiation in vitro, which stem cell sources have been used, published protocols, challenges and future directions for Good Manufacturing Practice protocols.
Collapse
Affiliation(s)
- Martha Luevano
- Anthony Nolan Research Institute, and University College London, Royal Free Campus, London, UK
| | | | | |
Collapse
|
30
|
Cheng M, Zhang J, Jiang W, Chen Y, Tian Z. Natural killer cell lines in tumor immunotherapy. Front Med 2012; 6:56-66. [PMID: 22460449 DOI: 10.1007/s11684-012-0177-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/23/2011] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells are considered to be critical players in anticancer immunity. However, cancers are able to develop mechanisms to escape NK cell attack or to induce defective NK cells. Current NK cell-based cancer immunotherapy is aimed at overcoming NK cell paralysis through several potential approaches, including activating autologous NK cells, expanding allogeneic NK cells, usage of stable allogeneic NK cell lines and genetically modifying fresh NK cells or NK cell lines. The stable allogeneic NK cell line approach is more practical for quality-control and large-scale production. Additionally, genetically modifying NK cell lines by increasing their expression of cytokines and engineering chimeric tumor antigen receptors could improve their specificity and cytotoxicity. In this review, NK cells in tumor immunotherapy are discussed, and a list of therapeutic NK cell lines currently undergoing preclinical and clinical trials of several kinds of tumors are reviewed.
Collapse
Affiliation(s)
- Min Cheng
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | | | | | |
Collapse
|
31
|
Mamessier E, Sylvain A, Bertucci F, Castellano R, Finetti P, Houvenaeghel G, Charaffe-Jaufret E, Birnbaum D, Moretta A, Olive D. Human breast tumor cells induce self-tolerance mechanisms to avoid NKG2D-mediated and DNAM-mediated NK cell recognition. Cancer Res 2011; 71:6621-32. [PMID: 21937679 DOI: 10.1158/0008-5472.can-11-0792] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer is the leading cause of death for women between the ages of 35 to 65. This is mostly due to intertumor heterogeneity and the lack of specific therapies for all subtypes. However, some breast cancers with an unexpected good prognosis are associated with enhanced antitumor immunity in situ. We studied whether breast cancer subtypes might have different susceptibilities to natural killer (NK) cells' antitumor immunity. We collected a large public set of microarray data for primary breast tumors and determined NK cell ligand expression. We found that despite heterogeneous levels of inhibitory HLA members, NKG2D ligands and DNAM ligands are expressed in virtually all breast tumor subtypes. Functional experiments in breast cancer subtypes expressing various levels of NK cell ligands showed that NK-mediated cytotoxicity is mainly HLA, NKG2D, and DNAM dependent. In parallel, we showed that cell lines and primary breast tumor cells secrete soluble inhibitory factors that alter NK cell functions. Finally, we showed that these mechanisms of escape occur in vivo in the MMTV-Neu model of spontaneous murine breast cancer. Our study shows that breast cancer cells, independent of the subtype, have developed different mechanisms to escape from NK cells' antitumor immunity. These results emphasize the role of NK cells in breast tumor clearance and underlie the importance of devising future therapy aiming at enhancing NK cell-mediated recognition in parallel with the prevention of the tumor-editing process.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, T-Lymphocyte/immunology
- Breast Neoplasms/classification
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/classification
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/immunology
- Carcinoma, Ductal, Breast/pathology
- Cell Line, Tumor/immunology
- Cell Line, Tumor/metabolism
- Cytotoxicity, Immunologic
- Estrogens
- Female
- Gene Expression Profiling
- Humans
- Killer Cells, Natural/classification
- Killer Cells, Natural/immunology
- Ligands
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mice
- NK Cell Lectin-Like Receptor Subfamily K/immunology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/immunology
- Neoplasms, Hormone-Dependent/pathology
- Progesterone
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Receptors, Immunologic/immunology
- Self Tolerance
- Tumor Escape
Collapse
Affiliation(s)
- Emilie Mamessier
- Centre de Recherche en Cancérologie de Marseille, Genova, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hu Z, Li J. Natural killer cells are crucial for the efficacy of Icon (factor VII/human IgG1 Fc) immunotherapy in human tongue cancer. BMC Immunol 2010; 11:49. [PMID: 20939894 PMCID: PMC2965132 DOI: 10.1186/1471-2172-11-49] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 10/12/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Icon is a novel, dual neovascular- and cancer cell-targeting immunotherapeutic agent and has shown efficacy in the treatment of cancer, wet form macular degeneration and endometriosis. However, its underlying mechanism remains to be investigated. The objective of this study is to elucidate the mechanism of Icon immunotherapy in cancer using a squamous carcinoma human tongue cancer line TCA8113 in vitro and in vivo in severe combined immunodeficiency (SCID) mice. RESULTS We showed that Icon, as a chimeric factor VII and human IgG1 Fc immunoconjugate, could separately induce murine natural killer (NK) cells and activate complement to kill TCA8113 cancer cells in vitro via antibody dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). However, Icon-NK ADCC had a significantly stronger effect than that of Icon-CDC. Moreover, Icon could completely eradicate established human tongue tumour xenografts in vivo in the CB-17 strain of SCID mice that have functional NK cells at a normal level, whereas it was less effective in SCID/Beige mice that do not have functional NK cells. CONCLUSIONS We conclude that NK cells are crucial for the efficacy of Icon immunotherapy in the treatment of cancer. The results also suggest that impaired NK level/activity could contribute to the resistance to therapeutic antibodies that are currently under investigation in preclinical and clinical studies.
Collapse
Affiliation(s)
- Zhiwei Hu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
33
|
Abstract
As our understanding of the molecular mechanisms governing natural killer (NK) cell activity increases, their potential in cancer immunotherapy is growing increasingly prominent. This review analyses the currently available preclinical and clinical data regarding NK cell-based immunotherapeutic approaches in cancer starting from a historical background and an overview of molecular mechanisms taking part in NK cell responses. The status of NK cells in cancer patients, currently investigated clinical applications such as in vivo modulation of NK cell activity, ex vivo purification/expansion and adoptive transfer as well as future possibilities such as genetic modifications are discussed in detail.
Collapse
Affiliation(s)
- T Sutlu
- Division of Haematology, Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
34
|
Abstract
There is a critical need to develop new and effective cancer therapies that target bone, the primary metastatic site for prostate cancer and other malignancies. Among the various therapeutic approaches being considered for this application, gene-modified cell-based therapies may have specific advantages. Gene-modified cell therapy uses gene transfer and cell-based technologies in a complementary fashion to chaperone appropriate gene expression cassettes to active sites of tumor growth. In this paper, we briefly review potential cell vehicles for this approach and discuss relevant gene therapy strategies for prostate cancer. We further discuss selected studies that led to the conceptual development and preclinical testing of IL-12 gene-modified bone marrow cell therapy for prostate cancer. Finally, we discuss future directions in the development of gene-modified cell therapy for metastatic prostate cancer, including the need to identify and test novel therapeutic genes such as GLIPR1.
Collapse
Affiliation(s)
- H Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
35
|
Agrawal S, Tripathi P, Naik S. Roles and mechanism of natural killer cells in clinical and experimental transplantation. Expert Rev Clin Immunol 2008; 4:79-91. [DOI: 10.1586/1744666x.4.1.79] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
36
|
Meehan KR, Wu J, Bengtson E, Hill J, Ely P, Szczepiorkowski Z, Kendall M, Ernstoff MS. Early recovery of aggressive cytotoxic cells and improved immune resurgence with post-transplant immunotherapy for multiple myeloma. Bone Marrow Transplant 2007; 39:695-703. [PMID: 17417660 DOI: 10.1038/sj.bmt.1705665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A phase I/II trial evaluated early administration and dose escalation of interleukin (IL)-2 with granulocyte macrophage colony stimulating factor (GM-CSF) post-transplant. Following melphalan (200 mg/m(2)) and an autologous transplant, IL-2 was initiated (day 0) and continued for 4 weeks. GM-CSF (250 mcg/m(2)/day) began on day 5. Fifteen of 19 patients completed therapy. No treatment-related deaths occurred. IL-2 (1 x 10(6) IU/m(2)/day) was not tolerated in two of six patients due to > or =grade 3 fatigue/diarrhea (n=1) or supraventricular tachycardia (n=1). The maximum tolerated dose of IL-2 was 6 x 10(5) IU/m(2)/day; this dose was well tolerated by 11 of 13 patients. Neutrophil and platelet engraftment occurred on day 13 (median; range 10-17 days) and day 13 (median; range 0-74 days), respectively. When compared to control patients, there was a marked increase in the number of CD3+ T cells (P=0.005), CD4+ T cells (P=0.01), CD8+ T cells (P=0.001) and CD4+CD25+Treg cells (P=0.015) post-transplant. Cytotoxicity directed against myeloma cells was markedly increased when compared to control patients (P=0.017). This unique trial design using early administration of IL-2 with GM-CSF during the period of lymphodepletion, demonstrated a marked increase in the number and function of early cytotoxic effector T cells, without suppression of engraftment.
Collapse
Affiliation(s)
- K R Meehan
- Bone Marrow Transplant Program, Dartmouth Hitchcock Medical Center, Dartmouth Medical School and the Norris Cotton Cancer Center, Lebanon, NH 03756, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Grande C, Firvida JL, Navas V, Casal J. Interleukin-2 for the treatment of solid tumors other than melanoma and renal cell carcinoma. Anticancer Drugs 2006; 17:1-12. [PMID: 16317284 DOI: 10.1097/01.cad.0000182748.47353.51] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interleukin-2 (IL-2) is a lymphokine produced by T cells whose main function is to stimulate the growth and cytotoxic response of activated T lymphocytes. It has been used to stimulate the immune system for the treatment of multiples tumors. This article is intended to review the reports published from 1990 to 2004 on the IL-2 treatment of tumors other than melanoma and renal carcinoma. A literature search was made in various databases (MEDLINE, EMBASE and BioAssay), focused on IL-2 clinical efficacy in such tumors. A selection was made over 150 publications reporting on administration of IL-2 in multiple tumors: lung carcinoma (small cell and non-small cell), colorectal, gastric, pancreatic, ovarian and breast cancer, sarcomas, hepatocarcinoma, mesothelioma, and brain, urological, and head and neck tumors. IL-2 was mainly used in metastatic disease, associated with other immunotherapy or chemotherapy schedules. We conclude that adjuvant IL-2 may be of value in early stages combined with standard treatment for colon and pancreas cancers. In other neoplasms, the indication for adjuvant IL-2 has been sporadic and does not allow conclusions to be drawn. Assessment of the efficacy of IL-2 combined with chemotherapy as treatment for advanced stages is complex, due to the lack of a control, and the variety of dosages and schemes. The activity of IL-2 in monotherapy or in association with immunotherapy is clinically relevant in hepatocarcinoma, mesothelioma and in malignant overflows as palliative treatment. Randomized trials would be required in order to be able to draw conclusions about its indication in other tumors.
Collapse
Affiliation(s)
- Carlos Grande
- Department of Medical Oncology, Vigo University Hospital Complex, Vigo, Spain.
| | | | | | | |
Collapse
|
38
|
NK cell-based immunotherapies against tumors. Open Med (Wars) 2006. [DOI: 10.2478/s11536-006-0023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractNatural killer (NK) cells provide the first line of defence against pathogens and tumors. Their activation status is regulated by pro-inflammatory cytokines and by ligands that either target inhibitory or activating cell surface receptors belonging to the immunoglobulin-like, C-type lectin or natural cytotoxicity receptor families. Apart from non-classical HLA-E, membrane-bound heat shock protein 70 (Hsp70) has been identified as a tumor-specific recognition structure for NK cells expressing high amounts of the C-type lectin receptor CD94, acting as one component of an activating heterodimeric receptor complex. Full-length Hsp70 protein (Hsp70) or the 14-mer Hsp70 peptide T-K-D-N-N-L-L-G-R-F-E-L-S-G (TKD) in combination with pro-inflammatory cytokines enhances the cytolytic activity of NK cells towards Hsp70 membrane-positive tumors. Based on these findings cytokine/TKD-activated NK cells were adoptively transferred in tumor patients. These findings were compared to results of clinical trials using cytokine-activated NK cells.
Collapse
|
39
|
Hallett WHD, Murphy WJ. Positive and negative regulation of Natural Killer cells: therapeutic implications. Semin Cancer Biol 2006; 16:367-82. [PMID: 16934486 DOI: 10.1016/j.semcancer.2006.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Natural Killer (NK) cells can mediate numerous anti-tumor and anti-viral effector functions as well as play important immunoregulatory roles in various disease states. Promoting the ability of NK cells to respond in an immunotherapeutic setting has often been sought by the addition of NK cell-stimulating factors. However, such therapies are often found to be insufficient, which may in part be due to the presence of inhibitory influences on the NK cell. NK cells can respond to a plethora of cytokines which are generated by numerous cell types and these interactions can markedly affect NK cell survival and activity. NK cells also possess multiple activating and inhibiting receptors which can alter their function. Whether the NK cell will become activated or not can depend on a complex balance of activating and inhibitory signals received by the cell and modulation of these signals may shift the balance on NK activation. This review discusses the various activating and inhibitory stimuli which can act on NK cells, and suggests that future NK cell-based therapies consider not only activating stimuli but also removal of possible inhibitory elements which could prevent optimal NK cell function and/or survival.
Collapse
Affiliation(s)
- William H D Hallett
- Department of Microbiology and Immunology, MS 199, University of Nevada School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | | |
Collapse
|
40
|
Grund EM, Spyropoulos DD, Watson DK, Muise-Helmericks RC. Interleukins 2 and 15 Regulate Ets1 Expression via ERK1/2 and MNK1 in Human Natural Killer Cells. J Biol Chem 2005; 280:4772-8. [PMID: 15563472 DOI: 10.1074/jbc.m408356200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukins (IL)-2 and IL-15 regulate natural killer (NK) cell proliferation, survival, and cytolytic activity. Ets1 is a transcription factor expressed early in NK cell differentiation. Because IL-2Rbeta, IL-2Rgamma, IL-15, and Ets1 knock-out mice similarly lack NK cells, we explored a molecular connection between IL-2R signaling and Ets1. Here we report the post-transcriptional regulation of Ets1 by IL-2R signaling in human NK cells. IL-2 and IL-15 stimulation leads to increased Ets1 protein levels with no significant change in mRNA levels. Pulse and pulse-chase experiments show that IL-2 stimulation results in both a marked increase in the nascent translation of Ets1 and an increased protein half-life. Pharmacological inhibition of MEK specifically blocks IL-2- and IL-15-induced translation, whereas p38, phosphatidylinositol 3-kinase, and mTOR inhibitors had no effect on Ets1 levels. Fli1, an Ets family member, exhibited a different mechanism of regulation, illustrating the specificity of IL-2R beta and gamma subunit signaling on the regulation of Ets1 expression. Expression of a dominant negative form of MNK1, a regulator of the translation initiation factor eIF4E, blocks the expression of Ets1 as do the dominant negative forms of the common IL-2R beta and gamma chains. Expression of Ets1 is regulated similarly in normal peripheral human NK cells. Taken together, our findings provide a direct link between IL-2R subunit signaling and Ets1 expression and helps to explain the interdependence of the IL-2R subunits and Ets1 for NK cell development and function.
Collapse
MESH Headings
- Androstadienes/pharmacology
- Blotting, Northern
- Blotting, Western
- Cell Differentiation
- Cell Line, Transformed
- Enzyme Inhibitors/pharmacology
- Flow Cytometry
- Gene Expression Regulation
- Gene Expression Regulation, Enzymologic
- Genes, Dominant
- Humans
- Interleukin-15/metabolism
- Interleukin-15/physiology
- Interleukin-2/metabolism
- Interleukin-2/physiology
- Interleukin-2 Receptor beta Subunit
- Intracellular Signaling Peptides and Proteins
- Killer Cells, Natural/metabolism
- Lymphocytes/metabolism
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Models, Biological
- Phenotype
- Phosphatidylinositol 3-Kinases/metabolism
- Protein Biosynthesis
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Protein c-ets-1
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-ets
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-2/metabolism
- Signal Transduction
- Time Factors
- Transcription Factors/metabolism
- Transfection
- Wortmannin
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Eric M Grund
- Department of Cell Biology and Anatomy, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
41
|
Abstract
The need for less toxic adjuvant therapies and a better understanding of the processes by which the immune system can eradicate micrometastatic disease has generated significant interest in breast cancer immunotherapy. There are many potential approaches to stimulating an immune response against a tumor, each with relative advantages and disadvantages in regards to cost, immunogenicity, and clinical applicability in treating breast cancer. This article will review the mechanisms by which the immune system can recognize and eradicate neoplastic cells and the various methods of stimulating an anti-tumor immune response. Obstacles to the clinical effectiveness of immunotherapies in breast cancer are also discussed.
Collapse
Affiliation(s)
- Michael S Sabel
- Department of Surgery, University of Michigan, 3304 Cancer Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
42
|
Morse MA, Lyerly H, Clay TM, Abdel-Wahab O, Chui SY, Garst J, Gollob J, Grossi PM, Kalady M, Mosca PJ, Onaitis M, Sampson JH, Seigler HF, Toloza EM, Tyler D, Vieweg J, Yang Y. How does the immune system attack cancer? Curr Probl Surg 2004. [DOI: 10.1016/j.cpsurg.2003.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Barao I, Murphy WJ. The immunobiology of natural killer cells and bone marrow allograft rejection. Biol Blood Marrow Transplant 2003; 9:727-41. [PMID: 14677112 DOI: 10.1016/j.bbmt.2003.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Natural killer (NK) cells mediate the acute rejection of bone marrow cell (BMC) allografts, but not solid tissue grafts, in lethally irradiated mice. However, the mechanisms underlying this capability for rejecting BMC remain unclear. NK cells express (1) inhibitory receptors specific for major histocompatibility complex (MHC) class I molecules and (2) activating receptors with diverse specificities. Inhibitory NK receptors confer to NK cells the ability to discriminate between MHC class I-positive and -negative target cells and are therefore involved in the control of NK cell tolerance to self, as well as in the elimination of cells that have downregulation of MHC class I molecules. Preclinical studies in mice have provided good evidence that subsets of NK cells that bear different combinations of both inhibitory and activating Ly49 receptors can interact with each other and target specific BMC rejection, as well as NK cell responses toward tumor cells. Recent clinical studies have also shown that the use of killer cell immunoglobulin-like receptor ligand incompatibility in patients with leukemia who received hematopoietic stem cell transplants correlated not only with the elimination of graft rejection, but also with eradication of tumor and prevention of graft-versus-host disease; this offers a significant advantage for survival. In this review, we attempt to bring together literature regarding the biology of NK cells and discuss the current issues in bone marrow transplantation and the potential clinical role of NK cell alloreactivity in the efficacy of this procedure for immunotherapy of cancer and infectious states.
Collapse
Affiliation(s)
- Isabel Barao
- Department of Microbiology and Immunology, University of Nevada School of Medicine, University of Nevada, Reno, Nevda 89557, USA
| | | |
Collapse
|
44
|
Georgiannos SN, Renaut A, Goode AW, Sheaff M. The immunophenotype and activation status of the lymphocytic infiltrate in human breast cancers, the role of the major histocompatibility complex in cell-mediated immune mechanisms, and their association with prognostic indicators. Surgery 2003; 134:827-34. [PMID: 14639362 DOI: 10.1016/s0039-6060(03)00292-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND The aims of this study were to characterize, phenotypically, the immune infiltrate in human breast cancers, to assess the activation status of tumor-infiltrating lymphocytes (TIL), and to define the association of these findings with established prognostic indicators. METHODS Immunohistochemistry was performed on frozen sections of 60 primary breast cancers by use of monoclonal antibodies to T lymphocytes (CD3), T-helper cells (CD4), cytotoxic T-cells (CD8), natural killer cells (CD56), interleukin-2 receptors (IL-2R), and major histocompatibility (MHC) class I antigen (HLA-ABC) and MHC class II antigen (HLA-DR). RESULTS All tumors stained positive for CD3, CD4 and CD8, but with marked variation in the intensity of the infiltrate. In tumors with a moderate infiltrate of TIL, there was a trend toward a greater representation of T-helper cells. However, as the intensity of TIL increased, there was a decline in the proportion of T-helper cells and a concomitant rise in the relative proportion of cytotoxic T cells. There was a relative paucity of natural killer cells. A significant association was found between the intensity of TIL and the number of positive nodes (P=.02) and the intensity of the infiltrate of both T-helper cells and cytotoxic T cells with ER expression (P=.03 and.05, respectively). Most tumors stained positive for IL-2R. The expression of IL-2R was associated with the intensity of TIL (P<.0001), T-helper cells (P<.002), cytotoxic T cells (P=.01) and natural killer cells (P=0.04), and also with the degree of lymph node positivity (P=.02) and histologic tumor grade (P=.05). MHC class II expression was variable, and a large proportion of the tumors showed limited expression in individual cancer cells. There was an association between the expression of HLA-DR in tumor cells and the activation status of TIL (P=.03). CONCLUSION An immune infiltrate is an invariable finding in breast cancers, and the intensity of the infiltrate is greater in node positive tumors. Additionally, TIL may well be activated, albeit partially, in most tumors, suggesting that cell-mediated immune mechanisms are functionally intact.
Collapse
Affiliation(s)
- Stavros N Georgiannos
- Department of Academic Surgery, Barts and the London NHS Trust, The Royal London Hospital, Whitechapel, London E1 1BB, United Kingdom
| | | | | | | |
Collapse
|
45
|
Burns LJ, Weisdorf DJ, DeFor TE, Vesole DH, Repka TL, Blazar BR, Burger SR, Panoskaltsis-Mortari A, Keever-Taylor CA, Zhang MJ, Miller JS. IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I/II trial. Bone Marrow Transplant 2003; 32:177-86. [PMID: 12838283 DOI: 10.1038/sj.bmt.1704086] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We determined the safety, immune activating effects, and potential efficacy of i.v. infusion of ex vivo interleukin-2 (IL-2) activated natural killer (NK) cells (part I) or IL-2 boluses (part II) during daily s.c. IL-2 administration following hematopoietic recovery from autologous transplantation. In all, 57 patients with relapsed lymphoma (n=29) or metastatic breast cancer (n=28) were enrolled. In part I of the study, 34 patients were enrolled at three dose levels of ex vivo IL-2-activated NK cells. Lymphaphereses were performed on days 28 and 42 of s.c. IL-2 administration. Following overnight ex vivo IL-2 activation of the pheresis product, the cells were reinfused the following day. In part II, 23 patients were enrolled at three dose levels of supplemental i.v. IL-2 bolus infusions, given on days 28 and 35 during s.c. IL-2 administration. Toxicities were generally mild, and no patient required hospitalization. Lytic function was markedly enhanced for fresh peripheral blood mononuclear cells (PBMNCs) obtained 1 day postinfusion of either IL-2-activated cells or IL-2 boluses. IL-2 boluses transiently increased the levels of IL-6, IFN-gamma, TNF-alpha and IL1-beta, with increases in IL-6 and IFN-gamma being dose dependent. A total of 37 patients (19 patients with lymphoma, 18 with breast cancer) treated with an optimum dose of post-transplant immunotherapy (defined as having received 1.75 x 10(6) IU/m(2)/day of s.c. IL-2 plus at least one of the planned ex vivo IL-2-activated cell infusions/IL-2 boluses) could be matched with controls from the Autologous Blood and Marrow Transplant Registry database. The matched-pairs analysis demonstrated no improvement in disease outcomes of survival and relapse. We conclude that IL-2-activated cells/IL-2 boluses can be safely administered, generate PBMNCs with enhanced cytotoxicity against NK-resistant targets, and increase cytokine levels. With this dose and schedule of administration of IL-2, no improvement in patient disease outcomes was noted. Alternative strategies will be needed to exploit the immunotherapeutic potential of IL-2-activated NK cells.
Collapse
Affiliation(s)
- L J Burns
- Blood and Marrow Transplant Program and Cancer Center, University of Minnesota, Mayo Mail Code 286, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abken H, Hombach A, Reinhard G, Märten A, Schlimper C, Glasmacher A, Bieber T, Schmidt-Wolf IGH. Cellular immunotherapy after autologous hematopoietic stem cell transplantation: experimental strategies and clinical experiences. Leuk Lymphoma 2003; 44:583-92. [PMID: 12769334 DOI: 10.1080/1042819021000055318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recurrence of disease after autologous hematopoietic stem cell transplantation is at least partly due to contamination of the reinfused transplant with tumor cells, thereby limiting the clinical outcome after transplantation. On the other hand, immunological effector cells are capable of purging bone marrow transplants in vitro and of destroying disseminated tumor cells in vivo. Cellular immunotherapy subsequent to autologous stem cell transplantation is therefore expected to have a major impact on recurrence rates of the disease. In this review, we present various strategies utilizing immunologic effector cells for elimination of disseminated tumor cells and discuss the advantages and limitations of cellular immunotherapy after autologous hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Hinrich Abken
- Klinik I für Innere Medizin, Labor Tumorgenetik, Universität zu Köln, Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Pascal V, Brunet C, Pradel V, Thirion X, Andre P, Faucher C, Sampol J, Dignat-George F, Blaise D, Vivier E, Chabannon C. Analysis of donor NK and T cells infused in patients undergoing MHC-matched allogeneic hematopoietic transplantation. Leukemia 2002; 16:2259-66. [PMID: 12399971 DOI: 10.1038/sj.leu.2402670] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2002] [Accepted: 05/31/2002] [Indexed: 11/09/2022]
Abstract
We retrospectively analyzed the percentages and absolute numbers of T cells, natural killer (NK) cells and NK cell subsets in cryopreserved samples of either bone marrow or blood non-T cell-depleted allogeneic MHC-matched hematopoietic grafts. Using flow cytometry, we found higher numbers of NK cells in aphereses than in bone marrow collections. We further investigated the distribution of NK cell subsets, defined by the cell surface expression of MHC class I-specific receptors, in these allogeneic grafts. The distribution of NK cell subsets from the two different origins were similar, with the exception of the CD158a/h(+) NK cell subset, whose size appeared to be smaller in bone marrow. The search for relations between the numbers of infused cells and post-transplantation events demonstrated that increasing numbers of infused T cells but not NK cells are related with decreased overall survival. Our study highlights the toxicity of infused T cells but not NK cells in allogeneic MHC-matched hematopoietic grafts. These data pave the way for further trials to investigate the effect of NK cell infusion in MHC-matched allogeneic transplantation, and in particular whether ex vivo NK cell expansion and activation may enhance the anti-tumoral effect of the procedure and decrease its morbidity.
Collapse
Affiliation(s)
- V Pascal
- Centre d'Immunologie INSERM/CNRS de Marseille-Luminy, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Harrington K, Alvarez-Vallina L, Crittenden M, Gough M, Chong H, Diaz RM, Vassaux G, Lemoine N, Vile R. Cells as vehicles for cancer gene therapy: the missing link between targeted vectors and systemic delivery? Hum Gene Ther 2002; 13:1263-80. [PMID: 12162810 DOI: 10.1089/104303402760128504] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Systemic administration of currently manufactured viral stocks has not so far achieved sufficient circulating titers to allow therapeutic targeting of metastatic disease. This is due to low initial viral titers, immune inactivation, nonspecific adhesion, and loss of particles. One way to exploit the elegant molecular manipulations that have been made to increase vector targeting is to protect these vectors until they reach the local sites of tumor growth. Various cell types home preferentially to tumors and can be loaded with the constructs required to produce targeted vectors. Here we discuss the potential of using such cell carriers to chaperone precious vectors directly to the tumors. The vectors can incorporate mechanisms to achieve tumor site-inducible expression, along with tumor cell-specific expression of the therapeutic gene and/or replicating viral genomes that would be released at the tumor. In this way, the great advances that have so far been made with the engineering of vector tropisms might be genuinely exploited and converted into clinical benefit.
Collapse
Affiliation(s)
- Kevin Harrington
- Cancer Research Campaign, Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research, London SW3 6JB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Al-Atrash G, Shetty S, Idell S, Xue Y, Kitson RP, Halady PKS, Goldfarb RH. IL-2-mediated upregulation of uPA and uPAR in natural killer cells. Biochem Biophys Res Commun 2002; 292:184-9. [PMID: 11890690 DOI: 10.1006/bbrc.2002.6627] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Urokinase plasminogen activator (uPA) and its receptor uPAR play a major role in immune cell-mediated, including natural killer (NK) cell-mediated, degradation of extracellular matrices. Herein, we investigate the effects of IL-2 on NK cell uPA and uPAR. RNA and protein analyses showed upregulation of uPA and uPAR following IL-2 stimulation. Gel-shift assays and Western blots detected uPA and uPAR mRNA binding proteins (mRNABPs), previously shown to destabilize uPA and uPAR mRNA. Following IL-2 stimulation, a downregulation of uPAR mRNABP and a reciprocal induction of uPAR mRNA were noted. The increase in uPA following IL-2 stimulation appeared to be more transcriptionally regulated. These data suggest that IL-2 upregulates both uPA and uPAR in NK cells through posttranscriptional as well as transcriptional mechanisms, partially explaining increases in NK cell invasiveness following IL-2 stimulation.
Collapse
Affiliation(s)
- Gheath Al-Atrash
- Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Hinterberger-Fischer M, Hinterberger W. Blood stem cell transplantation for breast cancer: new approaches using pre- peri- post-transplant immunotherapy. Expert Opin Biol Ther 2001; 1:1029-48. [PMID: 11728234 DOI: 10.1517/14712598.1.6.1029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Autologous peripheral blood stem cell transplantation (auto-PBSCT) after high dose chemotherapy is usually offered to breast cancer patients carrying a high risk of relapse or having chemosensitive metastatic disease. Whether progression free and overall survival of such patients is improved after auto-PBSCT compared to conventional chemotherapy is a matter of debate. Currently available results of randomised trials could not uniformly prove or disprove auto-PBSCT being advantageous. Yet such studies have not employed any manipulation of the stem cell graft or any post-transplant immunomodulation exploiting the unique immunological environment for tumour eradication which exists only after auto-PBSCT. Preliminary data have discussed the ex vivo and in vivo generation of cytotoxic effector cells employing IL-2 and/or IFN-alpha/gamma in the auto-PBSCT setting. Other cytokines such as IL-12, IL-15 and prolactin have likewise been considered. Several anticancer vaccine protocols after auto-PBSCT are ongoing using monovalent vaccines or anti-idiotypic antibodies. Polyvalent anticancer vaccines, cytokine secreting tumour cells, tumour pulsed or hybridised dendritic cells (DC) enhanced with cytokines are studied. Monoclonal antibodies (mAb) could assist: unlabelled for pretransplant exvivo purging, post-transplant for enhancing antibody-dependent cell mediated cytotoxicity (ADCC) or radioimmunoconjugated as an additive cytotoxic part of the conditioning regimen. Autologous graft versus host induction and allogeneic stem cell transplantation (probably with non-myeloablative conditioning followed by donor lymphocyte infusions) are other approaches. Evaluation of successful combinations, optimal dosages and appropriate timing schedules is the subject of future investigations. Since breast cancer patients belong to countless subgroups, a large number of protocols need to be addressed in order to avoid over treatment and prevent relapse.
Collapse
Affiliation(s)
- M Hinterberger-Fischer
- Ludwig Boltzmann Institute for Stem Cell Transplantation, 2nd Dept. of Int. Medicine, Donauspital, Langobardenstrasse 122, A-1220 Vienna, Austria.
| | | |
Collapse
|