1
|
Logsdon AF, Erickson MA, Herbert MJ, Noonan C, Foresi BD, Qiu J, Lim YP, Banks WA, Stonestreet BS. Inter-alpha inhibitor proteins attenuate lipopolysaccharide-induced blood-brain barrier disruption in neonatal mice. Exp Neurol 2023; 370:114563. [PMID: 37806514 DOI: 10.1016/j.expneurol.2023.114563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
There is a paucity of information regarding efficacious pharmacological neuroprotective strategies to attenuate or reduce brain injury in neonates. Lipopolysaccharide (LPS) disrupts blood-brain barrier (BBB) function in adult rodents and increases inflammation in adults and neonates. Human blood-derived Inter-alpha Inhibitor Proteins (IAIPs) are neuroprotective, improve neonatal survival after LPS, and attenuate LPS-induced disruption of the BBB in adult male mice. We hypothesized that LPS also disrupts the function of the BBB in neonatal mice and that IAIPs attenuate the LPS-induced BBB disruption in male and female neonatal mice. IAIPs were administered to neonatal mice after LPS and BBB permeability quantified with intravenous 14C-sucrose and 99mTc-albumin. Although repeated high doses (3 mg/kg) of LPS in neonates resulted in high mortality rates and a robust increase in BBB permeability, repeated lower doses (1 mg/kg) of LPS resulted in lower mortality rates and disruption of the BBB in both male and female neonates. IAIP treatment attenuated disruption of the BBB similarly to sucrose and albumin after exposure to low-dose LPS in neonatal mice. Exposure to low-dose LPS elevated IAIP concentrations in blood, but it did not appear to increase the systemic levels of Pre-alpha inhibitor (PaI), one of the family members of the IAIPs that contains heavy chain 3. We conclude that IAIPs attenuate LPS-related disruption of the BBB in both male and female neonatal mice.
Collapse
Affiliation(s)
- Aric F Logsdon
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | - Michelle A Erickson
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Melanie J Herbert
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Cassidy Noonan
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Brian D Foresi
- College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Joseph Qiu
- ProThera Biologics, Inc., Providence, RI 02903, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI 02903, USA; Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, RI, 02905, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Barbara S Stonestreet
- The Alpert Medical School of Brown University, Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA
| |
Collapse
|
2
|
You X, Guo B, Wang Z, Ma H, Zhang X. Label-free quantitative proteomic analysis of serum exosomes from patients of renal anemia: The Good and the Bad of Roxadustat. Clin Proteomics 2022; 19:21. [PMID: 35690731 PMCID: PMC9187900 DOI: 10.1186/s12014-022-09358-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Roxadustat is a new oral anti-renal anemia medication that works by stabilizing hypoxia-inducible factor (HIF) which can activate the expression of more than 100 genes in addition to genes related to anemia. However, the more potential molecular targets of roxadustat are not completely clear. Therefore, it is essential to further reveal its molecular targets to guide its clinical applications. METHODS We performed label-free quantification and LC-MS/MS to study the proteomic alterations in serum exosome of renal anemia patients before and after roxadustat therapy. Results were validated by PRM. RESULTS A total of 30 proteins were significantly changed after treatment with roxadustat. Among these proteins, 18 proteins were up-regulated (and 12 were down-regulated). The results are statistically significant (P < 0.05). Then, we validated the result by PRM, the results confirmed that TFRC, HSPA8, ITGB3, COL1A2, and YWHAZ were markedly upregulated, while ITIH2 and CFH were significantly downregulated upon treatment with roxadustat. CONCLUSIONS TFRC and HSPA8 could be an important target of the action of roxadustat, and roxadustat may increase cardiovascular risk through its influence on platelet activation. Our results provide a theoretical basis for its wider clinical application and preventing expected side effects.
Collapse
Affiliation(s)
- Xiaoe You
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China
| | - Baochun Guo
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China.,Department of Nephrology, Shenzhen Peoples Hospital The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.,Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Zhen Wang
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China.,Department of Nephrology, Shenzhen Peoples Hospital The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.,Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Hualin Ma
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China.,Department of Nephrology, Shenzhen Peoples Hospital The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.,Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Xinzhou Zhang
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China. .,Department of Nephrology, Shenzhen Peoples Hospital The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China. .,Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
3
|
Chen X, Zhang J, Wu Y, Tucker R, Baird GL, Domonoske R, Barrios-Anderson A, Lim YP, Bath K, Walsh EG, Stonestreet BS. Inter-alpha Inhibitor Proteins Ameliorate Brain Injury and Improve Behavioral Outcomes in a Sex-Dependent Manner After Exposure to Neonatal Hypoxia Ischemia in Newborn and Young Adult Rats. Neurotherapeutics 2022; 19:528-549. [PMID: 35290609 PMCID: PMC9226254 DOI: 10.1007/s13311-022-01217-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
Hypoxic-ischemic (HI) brain injury is a major contributor to neurodevelopmental morbidities. Inter-alpha inhibitor proteins (IAIPs) have neuroprotective effects on HI-related brain injury in neonatal rats. However, the effects of treatment with IAIPs on sequential behavioral, MRI, and histopathological abnormalities in the young adult brain after treatment with IAIPs in neonates remain to be determined. The objective of this study was to examine the neuroprotective effects of IAIPs at different neurodevelopmental stages from newborn to young adults after exposure of neonates to HI injury. IAIPs were given as 11-sequential 30-mg/kg doses to postnatal (P) day 7-21 rats after right common carotid artery ligation and exposure to 90 min of 8% oxygen. The resulting brain edema and injury were examined by T2-weighted magnetic resonance imaging (MRI) and cresyl violet staining, respectively. The mean T2 values of the ipsilateral hemisphere from MRI slices 6 to 10 were reduced in IAIP-treated HI males + females on P8, P9, and P10 and females on P8, P9, P10, and P14. IAIP treatment reduced hemispheric volume atrophy by 44.5 ± 29.7% in adult male + female P42 rats and improved general locomotor abilities measured by the righting reflex over time at P7.5, P8, and P9 in males + females and males and muscle strength/endurance measured by wire hang on P16 in males + females and females. IAIPs provided beneficial effects during the learning phase of the Morris water maze with females exhibiting beneficial effects. IAIPs confer neuroprotection from HI-related brain injury in neonates and even in adult rats and beneficial MRI and behavioral benefits in a sex-dependent manner.
Collapse
Affiliation(s)
- Xiaodi Chen
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Jiyong Zhang
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Yuqi Wu
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Richard Tucker
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Grayson L Baird
- Department of Diagnostic Imaging, Biostatistics Core Lifespan Hospital System, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Rose Domonoske
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Adriel Barrios-Anderson
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Kevin Bath
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical College, New York, NY, USA
| | - Edward G Walsh
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA.
| |
Collapse
|
4
|
Bouwman AC, van Daalen KR, Crnko S, Ten Broeke T, Bovenschen N. Intracellular and Extracellular Roles of Granzyme K. Front Immunol 2021; 12:677707. [PMID: 34017346 PMCID: PMC8129556 DOI: 10.3389/fimmu.2021.677707] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022] Open
Abstract
Granzymes are a family of serine proteases stored in granules inside cytotoxic cells of the immune system. Granzyme K (GrK) has been only limitedly characterized and knowledge on its molecular functions is emerging. Traditionally GrK is described as a granule-secreted, pro-apoptotic serine protease. However, accumulating evidence is redefining the functions of GrK by the discovery of novel intracellular (e.g. cytotoxicity, inhibition of viral replication) and extracellular roles (e.g. endothelial activation and modulation of a pro-inflammatory immune cytokine response). Moreover, elevated GrK levels are associated with disease, including viral and bacterial infections, airway inflammation and thermal injury. This review aims to summarize and discuss the current knowledge of i) intracellular and extracellular GrK activity, ii) cytotoxic and non-cytotoxic GrK functioning, iii) the role of GrK in disease, and iv) GrK as a potential therapeutic target.
Collapse
Affiliation(s)
- Annemieke C Bouwman
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kim R van Daalen
- Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Toine Ten Broeke
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
5
|
Koehn LM, Chen X, Logsdon AF, Lim YP, Stonestreet BS. Novel Neuroprotective Agents to Treat Neonatal Hypoxic-Ischemic Encephalopathy: Inter-Alpha Inhibitor Proteins. Int J Mol Sci 2020; 21:E9193. [PMID: 33276548 PMCID: PMC7731124 DOI: 10.3390/ijms21239193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/02/2023] Open
Abstract
Perinatal hypoxia-ischemia (HI) is a major cause of brain injury and mortality in neonates. Hypoxic-ischemic encephalopathy (HIE) predisposes infants to long-term cognitive deficits that influence their quality of life and place a large burden on society. The only approved treatment to protect the brain after HI is therapeutic hypothermia, which has limited effectiveness, a narrow therapeutic time window, and is not considered safe for treatment of premature infants. Alternative or adjunctive therapies are needed to improve outcomes of full-term and premature infants after exposure to HI. Inter-alpha inhibitor proteins (IAIPs) are immunomodulatory molecules that are proposed to limit the progression of neonatal inflammatory conditions, such as sepsis. Inflammation exacerbates neonatal HIE and suggests that IAIPs could attenuate HI-related brain injury and improve cognitive outcomes associated with HIE. Recent studies have shown that intraperitoneal treatment with IAIPs can decrease neuronal and non-neuronal cell death, attenuate glial responses and leukocyte invasion, and provide long-term behavioral benefits in neonatal rat models of HI-related brain injury. The present review summarizes these findings and outlines the remaining experimental analyses necessary to determine the clinical applicability of this promising neuroprotective treatment for neonatal HI-related brain injury.
Collapse
Affiliation(s)
- Liam M. Koehn
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA; (L.M.K.); (X.C.)
| | - Xiaodi Chen
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA; (L.M.K.); (X.C.)
| | - Aric F. Logsdon
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA;
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI 02903, USA;
- Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Barbara S. Stonestreet
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA; (L.M.K.); (X.C.)
| |
Collapse
|
6
|
Logsdon AF, Erickson MA, Chen X, Qiu J, Lim YP, Stonestreet BS, Banks WA. Inter-alpha inhibitor proteins attenuate lipopolysaccharide-induced blood-brain barrier disruption and downregulate circulating interleukin 6 in mice. J Cereb Blood Flow Metab 2020; 40:1090-1102. [PMID: 31234704 PMCID: PMC7181088 DOI: 10.1177/0271678x19859465] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/07/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
Circulating levels of inter-alpha inhibitor proteins change dramatically in acute inflammatory disorders, which suggest an important contribution to the immunomodulatory system. Human blood-derived inter-alpha inhibitor proteins are neuroprotective and improve survival of neonatal mice exposed to lipopolysaccharide. Lipopolysaccharide augments inflammatory conditions and disrupts the blood-brain barrier. There is a paucity of therapeutic strategies to treat blood-brain barrier dysfunction, and the neuroprotective effects of human blood-derived inter-alpha inhibitor proteins are not fully understood. To examine the therapeutic potential of inter-alpha inhibitor proteins, we administered human blood-derived inter-alpha inhibitor proteins to male and female CD-1 mice after lipopolysaccharide exposure and quantified blood-brain barrier permeability of intravenously injected 14C-sucrose and 99mTc-albumin. We hypothesized that human blood-derived inter-alpha inhibitor protein treatment would attenuate lipopolysaccharide-induced blood-brain barrier disruption and associated inflammation. Lipopolysaccharide increased blood-brain barrier permeability to both 14C-sucrose and 99mTc-albumin, but human blood-derived inter-alpha inhibitor protein treatment only attenuated increases in 14C-sucrose blood-brain barrier permeability in male mice. Lipopolysaccharide stimulated a more robust elevation of male serum inter-alpha inhibitor protein concentration compared to the elevation measured in female serum. Lipopolysaccharide administration also increased multiple inflammatory factors in serum and brain tissue, including interleukin 6. Human blood-derived inter-alpha inhibitor protein treatment downregulated serum interleukin 6 levels, which were inversely correlated with serum inter-alpha inhibitor protein concentration. We conclude that inter-alpha inhibitor proteins may be neuroprotective through mechanisms of blood-brain barrier disruption associated with systemic inflammation.
Collapse
Affiliation(s)
- Aric F Logsdon
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Michelle A Erickson
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of RI, The Alpert Medical School of Brown University, Providence, RI, USA
| | - Joseph Qiu
- ProThera Biologics, Inc., Providence, RI, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI, USA
- Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, RI, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of RI, The Alpert Medical School of Brown University, Providence, RI, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
7
|
Garantziotis S, Matalon S. Sugarcoating Lung Injury: A Novel Role for High-Molecular-Weight Hyaluronan in Pneumonia. Am J Respir Crit Care Med 2020; 200:1197-1198. [PMID: 31461631 PMCID: PMC6857491 DOI: 10.1164/rccm.201908-1554ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Stavros Garantziotis
- National Institute of Environmental Health SciencesResearch Triangle Park, North Carolinaand
| | - Sadis Matalon
- University of Alabama in BirminghamBirmingham, Alabama
| |
Collapse
|
8
|
Barrios-Anderson A, Chen X, Nakada S, Chen R, Lim YP, Stonestreet BS. Inter-alpha Inhibitor Proteins Modulate Neuroinflammatory Biomarkers After Hypoxia-Ischemia in Neonatal Rats. J Neuropathol Exp Neurol 2019; 78:742-755. [PMID: 31274164 PMCID: PMC6640908 DOI: 10.1093/jnen/nlz051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation contributes to hypoxic-ischemic (HI) brain injury. Inter-alpha inhibitor proteins (IAIPs) have important immunomodulatory properties. Human (h) plasma-derived IAIPs reduce brain injury and improve neurobehavioral outcomes after HI. However, the effects of hIAIPs on neuroinflammatory biomarkers after HI have not been examined. We determined whether hIAIPs attenuated HI-related neuroinflammation. Postnatal day-7 rats exposed to sham-placebo, or right carotid ligation and 8% oxygen for 90 minutes with placebo, and hIAIP treatment were studied. hIAIPs (30 mg/kg) or PL was injected intraperitoneally immediately, 24, and 48 hours after HI. Rat complete blood counts and sex were determined. Brain tissue and peripheral blood were prepared for analysis 72 hours after HI. The effects of hIAIPs on HI-induced neuroinflammation were quantified by image analysis of positively stained astrocytic (glial fibrillary acid protein [GFAP]), microglial (ionized calcium binding adaptor molecule-1 [Iba-1]), neutrophilic (myeloperoxidase [MPO]), matrix metalloproteinase-9 (MMP9), and MMP9-MPO cellular markers in brain regions. hIAIPs reduced quantities of cortical GFAP, hippocampal Iba-1-positive microglia, corpus callosum MPO, and cortical MMP9-MPO cells and the percent of neutrophils in peripheral blood after HI in male, but not female rats. hIAIPs modulate neuroinflammatory biomarkers in the neonatal brain after HI and may exhibit sex-related differential effects.
Collapse
Affiliation(s)
- Adriel Barrios-Anderson
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| | - Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| | - Sakura Nakada
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| | - Ray Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| | - Yow-Pin Lim
- ProThera Biologics, Inc
- Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, Rhode Island
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| |
Collapse
|
9
|
Inter-α-inhibitor Ameliorates Endothelial Inflammation in Sepsis. Lung 2019; 197:361-369. [PMID: 31028466 DOI: 10.1007/s00408-019-00228-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/12/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Vascular endothelial cells demonstrate severe injury in sepsis, and a reduction in endothelial inflammation would be beneficial. Inter-α-Inhibitor (IαI) is a family of abundant plasma proteins with anti-inflammatory properties and has been investigated in human and animal sepsis with encouraging results. We hypothesized that IαI may protect endothelia from sepsis-related inflammation. METHODS IαI-deficient or sufficient mice were treated with endotoxin or underwent complement-induced lung injury. VCAM-1 and ICAM-1 expression was measured in blood and lung as marker of endothelial activation. Human endothelia were exposed to activated complement C5a with or without IαI. Blood from human sepsis patients was examined for VCAM-1 and ICAM-1 and levels were correlated with blood levels of IαI. RESULTS IαI-deficient mice showed increased endothelial activation in endotoxin/sepsis- and complement-induced lung injury models. In vitro, levels of endothelial pro-inflammatory cytokines and cell growth factors induced by activated complement C5a were significantly decreased in the presence of IαI. This effect was associated with decreased ERK and NFκB activation. IαI levels were inversely associated with VCAM-1 and ICAM-1 levels in a human sepsis cohort. CONCLUSIONS IαI ameliorates endothelial inflammation and may be beneficial as a treatment of sepsis.
Collapse
|
10
|
Inter-α inhibitor proteins maintain neutrophils in a resting state by regulating shape and reducing ROS production. Blood Adv 2019; 2:1923-1934. [PMID: 30093530 DOI: 10.1182/bloodadvances.2018018986] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023] Open
Abstract
The plasma levels of inter-α inhibitor proteins (IAIPs) are decreased in patients with sepsis and the reduced levels correlate with increased mortality. In the present study, we examined the effects of IAIPs on human neutrophils to better understand the beneficial effects of IAIPs in the treatment of sepsis. We demonstrated that IAIPs induced a spherical shape that was smaller in size with a smooth cellular surface in a concentration-dependent manner. These changes were inhibited by a specific antibody against IAIPs. In contrast, bikunin, light chain of IAIP, had no effect on neutrophil morphology. The neutrophils treated with IAIPs could easily pass through the artificial microcapillaries and were prevented from entrapment inside the capillaries. Coincubation of human blood neutrophils with a confluent human vascular endothelial monolayer showed that adhesion of neutrophils on endothelial cells was suppressed by treatment with IAIPs. IAIPs inhibited the spontaneous release of reactive oxygen species (ROS) in a concentration-dependent fashion. ROS inhibition was associated with reductions in p47phox phosphorylation on Ser328. These results suggest that IAIP-induced morphological changes that render neutrophils quiescent, facilitate passage through the microvasculature, and reduce adhesion to vascular endothelial cells and production of ROS. Thus, IAIP plays a key role in controlling neutrophil activation.
Collapse
|
11
|
Chen X, Nakada S, Donahue JE, Chen RH, Tucker R, Qiu J, Lim YP, Stopa EG, Stonestreet BS. Neuroprotective effects of inter-alpha inhibitor proteins after hypoxic-ischemic brain injury in neonatal rats. Exp Neurol 2019; 317:244-259. [PMID: 30914159 DOI: 10.1016/j.expneurol.2019.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/08/2019] [Accepted: 03/22/2019] [Indexed: 11/30/2022]
Abstract
Hypoxic-ischemic (HI) brain injury is one of the most common neurological problems occurring in the perinatal period. Hypothermia is the only approved intervention for neonatal HI encephalopathy. However, this treatment is only partially protective, has a narrow therapeutic time window after birth and only can be used to treat full-term infants. Consequently, additional therapies are critically needed. Inflammation is an important contributing factor to the evolution of HI brain injury in neonates. Inter-alpha Inhibitor Proteins (IAIPs) are immunomodulatory proteins with anti-inflammatory properties. We have previously shown that IAIPs reduce neuronal cell death and improve behavioral outcomes when given after carotid artery ligation, but before hypoxia in male neonatal rats. The objective of the current study was to investigate the neuroprotective effects of treatment with IAIPs given immediately or 6 h after HI in both male and female neonatal rats. HI was induced with the Rice-Vannucci method in postnatal (P) day 7 rats. After ligation of the right common carotid artery, P7 rats were exposed to 90 min of hypoxia (8% oxygen). Human plasma-derived IAIPs or placebo (phosphate buffered saline) was given at zero, 24, and 48 h after HI. Brains were perfused, weighed and fixed 72 h after HI at P10. In a second, delayed treatment group, the same procedure was followed except that IAIPs or placebo were given at 6, 24 and 48 h after HI. Separate sham-operated, placebo-treated groups were exposed to identical protocols but were not exposed to carotid artery ligation and remained in room air. Rat sex was recorded. The effects of IAIPs on HI brain injury were examined using histopathological scoring and immunohistochemical analyses of the brain and by using infarct volume measurements on frozen tissue of the entire brain hemispheres ipsilateral and contralateral to HI injury. IAIPs given immediately after HI improved (P < 0.050) histopathological brain injury across and within the cingulate, caudate/putamen, thalamus, hippocampus and parietal cortex in males, but not in females. In contrast, IAIPs given immediately after HI reduced (P < 0.050) infarct volumes of the hemispheres ipsilateral to HI injury in similarly both the males and females. Treatment with IAIPs also resulted in higher (P < 0.050) brain weights compared with the placebo-treated HI group, reduced (P < 0.050) neuronal and non-neuronal cell death in the cortex and total hemisphere, and also increased the total area of oligodendrocytes determined by CNPase in the ipsilateral hemisphere and corpus callosum (P < 0.050) of male, but not female subjects exposed to HI. Delayed treatment with IAIPs 6 h after HI did not improve histopathological brain injury in males or females, but resulted in higher (P < 0.050) brain weights compared with the placebo-treated HI males. Therefore, treatment with IAIPs immediately after HI improved brain weights and reduced neuropathological brain injury and cell death in male rats, and reduced infarct volume in both male and female neonatal rats. We conclude that IAIPs exert neuroprotective effects after exposure to HI in neonatal rats and may exhibit some sex-related differential effects.
Collapse
Affiliation(s)
- Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Warren Alpert Medical School of Brown University, USA
| | - Sakura Nakada
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Warren Alpert Medical School of Brown University, USA
| | - John E Donahue
- The Warren Alpert Medical School of Brown University, USA; Department of Pathology and Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, USA
| | - Ray H Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Warren Alpert Medical School of Brown University, USA
| | - Richard Tucker
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA
| | - Joseph Qiu
- ProThera Biologics, Inc, Providence, RI, USA
| | - Yow-Pin Lim
- The Warren Alpert Medical School of Brown University, USA; ProThera Biologics, Inc, Providence, RI, USA; Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Edward G Stopa
- The Warren Alpert Medical School of Brown University, USA; Department of Pathology and Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Warren Alpert Medical School of Brown University, USA.
| |
Collapse
|
12
|
Shah BA, Migliori A, Kurihara I, Sharma S, Lim YP, Padbury J. Blood Level of Inter-Alpha Inhibitor Proteins Distinguishes Necrotizing Enterocolitis From Spontaneous Intestinal Perforation. J Pediatr 2017; 180:135-140.e1. [PMID: 27745748 PMCID: PMC5183497 DOI: 10.1016/j.jpeds.2016.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/10/2016] [Accepted: 09/08/2016] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To examine circulating levels of inter-alpha inhibitor protein (IaIp) in infants with necrotizing enterocolitis (NEC), spontaneous intestinal perforation (SIP), and matched controls to assess the diagnostic accuracy of IaIp to differentiate NEC from SIP and to compare receiver operating characteristics of IaIp for NEC with C-reactive protein (CRP). STUDY DESIGN A prospective, nested case-control study of infants with feeding intolerance was carried out. Blood and clinical data were collected from 27 infants diagnosed with NEC or SIP and from 26 matched controls admitted to our unit. Infants with modified Bell criteria stage 2 or greater were included as NEC. Clinical, radiologic, and/or surgical findings were used to identify infants with SIP. Controls were matched for gestational age, postnatal age, sex, and birth weight. RESULTS Mean ± SD IaIp blood levels were 147 ± 38 mg/L, 276 ± 67 mg/L, and 330 ± 100 mg/L in infants with NEC, SIP, and matched controls, respectively (P < .004 and P < .01). Receiver operating characteristics analysis to establish the predictive value of NEC demonstrated areas under curve of 0.98 and 0.63 for IaIp and CRP, respectively. CONCLUSIONS IaIp levels were significantly decreased in infants with NEC compared with SIP and matched controls. The diagnostic accuracy of IaIp for NEC was superior to that of CRP.
Collapse
Affiliation(s)
- Birju A Shah
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK; Department of Pediatrics, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI.
| | - Alison Migliori
- Department of Pediatrics, Women and Infants Hospital, Alpert Medical School of Brown University, Providence RI
| | - Itsuka Kurihara
- Department of Pediatrics, Women and Infants Hospital, Alpert Medical School of Brown University, Providence RI
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital, Alpert Medical School of Brown University, Providence RI
| | - Yow-Pin Lim
- ProThera Biologics Inc., Providence, RI,Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence RI
| | - James Padbury
- Department of Pediatrics, Women and Infants Hospital, Alpert Medical School of Brown University, Providence RI
| |
Collapse
|
13
|
Sharma M, Merkulova Y, Raithatha S, Parkinson LG, Shen Y, Cooper D, Granville DJ. Extracellular granzyme K mediates endothelial activation through the cleavage of protease-activated receptor-1. FEBS J 2016; 283:1734-47. [PMID: 26936634 DOI: 10.1111/febs.13699] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/25/2016] [Accepted: 02/29/2016] [Indexed: 01/26/2023]
Abstract
Granzymes are a family of serine proteases that were once thought to function exclusively as mediators of cytotoxic lymphocyte-induced target cell death. However, non-apoptotic roles for granzymes, including granzyme K (GzK), have been proposed. As recent studies have observed elevated levels of GzK in the plasma of patients diagnosed with clinical sepsis, we hypothesized that extracellular GzK induces a proinflammatory response in endothelial cells. In the present study, extracellular GzK proteolytically activated protease-activated receptor-1 leading to increased interleukin 6 and monocyte chemotactic protein 1 production in endothelial cells. Enhanced expression of intercellular adhesion molecule 1 along with an increased capacity for adherence of THP-1 cells was also observed. Characterization of downstream pathways implicated the mitogen-activated protein kinase p38 pathway for intercellular adhesion molecule 1 expression, and both the p38 and the extracellular signal-regulated protein kinases 1 and 2 pathways in cytokine production. GzK also increased tumour necrosis factor α-induced inflammatory adhesion molecule expression. Furthermore, the physiological inhibitor of GzK, inter-α-inhibitor protein, significantly inhibited GzK activity in vitro. In summary, extracellular GzK promotes a proinflammatory response in endothelial cells.
Collapse
Affiliation(s)
- Mehul Sharma
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yulia Merkulova
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sheetal Raithatha
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Leigh G Parkinson
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yue Shen
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Dawn Cooper
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - David J Granville
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Huth S, Heise R, Vetter-Kauczok CS, Skazik C, Marquardt Y, Czaja K, Knüchel R, Merk HF, Dahl E, Baron JM. Inter-α-trypsin inhibitor heavy chain 5 (ITIH5) is overexpressed in inflammatory skin diseases and affects epidermal morphology in constitutive knockout mice and murine 3D skin models. Exp Dermatol 2015; 24:663-8. [PMID: 25809190 DOI: 10.1111/exd.12704] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 11/30/2022]
Abstract
Inter-α-trypsin inhibitors are protease inhibitors that are thought to be important regulators in various acute-phase processes. They are composed of one light chain (bikunin) and different heavy chains (ITIHs). The only function known so far of ITIHs is the covalent linkage to hyaluronan (HA). As there is virtually no knowledge on the distribution and function of ITIH proteins in skin tissue, we performed a systematic characterization of ITIH expression in healthy and diseased skin. Using GeneChip(®) Human Exon 1.0 ST expression profiling, we found that ITIH5 represents the major ITIH family member expressed in human skin. Moreover, the use of quantitative reverse transcription PCR and a customized ITIH5-specific antibody indicated that ITIH5 is predominantly produced by dermal fibroblasts. Immunohistochemical analysis revealed a clearly detectable ITIH5 protein expression in normal skin. Interestingly, ITIH5 expression was significantly up-regulated in inflammatory skin diseases. Furthermore, 3D skin models employing murine Itih5(-/-) epidermal keratinocytes and dermal fibroblasts as well as skin specimens of Itih5(-/-) mice revealed a significantly altered epidermal structure compared to wild-type controls. Hence, we can strengthen the presumption that ITIH5 may constitute a novel regulatory molecule of the human skin that could play an important role in inflammation via its interaction with HA.
Collapse
Affiliation(s)
- Sebastian Huth
- Department of Dermatology and Allergology, University Hospital of the RWTH, Aachen, Germany.,Molecular Oncology Group, Institute of Pathology, University Hospital of the RWTH, Aachen, Germany
| | - Ruth Heise
- Department of Dermatology and Allergology, University Hospital of the RWTH, Aachen, Germany
| | | | - Claudia Skazik
- Department of Dermatology and Allergology, University Hospital of the RWTH, Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, University Hospital of the RWTH, Aachen, Germany
| | - Katharina Czaja
- Department of Dermatology and Allergology, University Hospital of the RWTH, Aachen, Germany
| | - Ruth Knüchel
- Molecular Oncology Group, Institute of Pathology, University Hospital of the RWTH, Aachen, Germany
| | - Hans F Merk
- Department of Dermatology and Allergology, University Hospital of the RWTH, Aachen, Germany
| | - Edgar Dahl
- Molecular Oncology Group, Institute of Pathology, University Hospital of the RWTH, Aachen, Germany
| | - Jens M Baron
- Department of Dermatology and Allergology, University Hospital of the RWTH, Aachen, Germany
| |
Collapse
|
15
|
Inter-α inhibitor protein and its associated glycosaminoglycans protect against histone-induced injury. Blood 2015; 125:2286-96. [PMID: 25631771 DOI: 10.1182/blood-2014-06-582759] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 01/20/2015] [Indexed: 11/20/2022] Open
Abstract
Extracellular histones are mediators of tissue injury and organ dysfunction; therefore they constitute potential therapeutic targets in sepsis, inflammation, and thrombosis. Histone cytotoxicity in vitro decreases in the presence of plasma. Here, we demonstrate that plasma inter-α inhibitor protein (IAIP) neutralizes the cytotoxic effects of histones and decreases histone-induced platelet aggregation. These effects are mediated through the negatively charged glycosaminoglycans (GAGs) chondroitin sulfate and high-molecular-weight hyaluronan (HMW-HA) associated with IAIP. Cell surface anionic glycosaminoglycans heparan sulfate and HA protect the cells against histone-mediated damage in vitro. Surface plasmon resonance showed that both IAIP and HMW-HA directly bind to recombinant histone H4. In vivo neutralization of histones with IAIP and HMW-HA prevented histone-induced thrombocytopenia, bleeding, and lung microvascular thrombosis, decreased neutrophil activation, and averted histone-induced production of inflammatory cytokines and chemokines. IAIP and HMW-HA colocalized with histones in necrotic tissues and areas that displayed neutrophil extracellular traps. Increasing amounts of IAIP-histone complexes detected in the plasma of septic baboons correlated with increase in histones and/or nucleosomes and consumption of plasma IAIP. Our data suggest that IAIP, chondroitin sulfate, and HMW-HA are potential therapeutic agents to protect against histone-induced cytotoxicity, coagulopathy, systemic inflammation, and organ damage during inflammatory conditions such as sepsis and trauma.
Collapse
|
16
|
Hepponstall M, Ignjatovic V, Binos S, Attard C, Karlaftis V, d’Udekem Y, Monagle P, Konstantinov IE. Cardiopulmonary bypass changes the plasma proteome in children undergoing tetralogy of Fallot repair. Perfusion 2015; 30:556-64. [DOI: 10.1177/0267659114566065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction: Cardiopulmonary bypass (CPB) can be associated with deleterious clinical effects. However, the impact of CPB on inflammatory, immunological and other homeostatic pathways remains poorly understood. We investigated the impact of CPB on the plasma proteome in children undergoing tetralogy of Fallot repair. Methods: Blood samples were taken from 20 children prior to and at the end of CPB and 6h, 12h and 24h after CPB. Plasma was analysed by liquid chromatography-mass spectrometry (LC-MS) in a label-free, untargeted approach. Data were analysed using Genedata software to identify peptides that were differentially expressed (p<0.01 above a false discovery rate). Proteins were identified from peptides that demonstrated differential expression. Results: The proteins that were found to be differentially expressed were haptoglobin isoform 1 preproprotein, isoform 2 of semaphorin-6C, vitamin D-binding protein, inter-alpha-trypsin inhibitor, ceruloplasmin, apolipoprotein B100 and fibrinogen alpha. Conclusion: CPB alters the plasma proteome with differences most apparent at 6h and 12h post CPB. There was a return to baseline with no proteins differentially regulated by 24h.
Collapse
Affiliation(s)
- M Hepponstall
- Murdoch Childrens Research Institute, Melbourne, Australia
- Cardiac Surgery Unit, Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- Department of Primary Industries, Bioscience Research Division, Melbourne, Australia
| | - V Ignjatovic
- Murdoch Childrens Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - S Binos
- Department of Primary Industries, Bioscience Research Division, Melbourne, Australia
| | - C Attard
- Murdoch Childrens Research Institute, Melbourne, Australia
| | - V Karlaftis
- Murdoch Childrens Research Institute, Melbourne, Australia
| | - Y d’Udekem
- Murdoch Childrens Research Institute, Melbourne, Australia
- Cardiac Surgery Unit, Royal Children’s Hospital, Melbourne, Australia
| | - P Monagle
- Murdoch Childrens Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - I E Konstantinov
- Murdoch Childrens Research Institute, Melbourne, Australia
- Cardiac Surgery Unit, Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
17
|
Abstract
Neonatal sepsis continues to be a common and significant health care burden, especially in very-low-birth-weight infants (VLBW <1500 g). Though intrapartum antibiotic prophylaxis has decreased the incidence of early-onset group B streptococcal infection dramatically, it still remains a major cause of neonatal sepsis. Moreover, some studies among VLBW preterm infants have shown an increase in early-onset sepsis caused by Escherichia coli. As the signs and symptoms of neonatal sepsis are nonspecific, early diagnosis and prompt treatment remains a challenge. There have been a myriad of studies on various diagnostic markers like hematological indices, acute phase reactants, C-reactive protein, procalcitonin, cytokines, and cell surface markers among others. Nonetheless, further research is needed to identify a biomarker with high diagnostic accuracy and validity. Some of the newer markers like inter α inhibitor proteins have shown promising results thereby potentially aiding in early detection of neonates with sepsis. In order to decrease the widespread, prolonged use of unnecessary antibiotics and improve the outcome of the infants with sepsis, reliable identification of sepsis at an earlier stage is paramount.
Collapse
Affiliation(s)
- Birju A Shah
- Instructor of Pediatrics; Neonatal-Perinatal Medicine; Warren Alpert Medical School of Brown University; Women & Infants Hospital of Rhode Island; Providence, RI USA
| | - James F Padbury
- Pediatrician-in-Chief, Professor of Pediatrics; Warren Alpert Medical School of Brown University; Women & Infants Hospital of Rhode Island; Providence, RI USA
| |
Collapse
|
18
|
Affiliation(s)
- Andrew W Artenstein
- Center for Biodefense and Emerging Pathogens, Department of Medicine, Memorial Hospital of Rhode Island, Pawtucket 02860, USA.
| | | |
Collapse
|
19
|
Abstract
The future application of biomarkers in critical illness will be to select and guide therapy. Specific biomarkers could identify a pathophysiologic perturbation or noxious mediator to counteract or the need to replete a deficient protective protein. Functional genomics could identify patients at risk for illness or at risk for a poor outcome in critical illness. Genetic expression studies could help differentiate patients with sepsis from those with noninfectious inflammation and could also help to monitor illnesses over time. Expressional and functional proteomics could lead to the identification of new biomarkers and organ-specific therapies.
Collapse
Affiliation(s)
- Steven P LaRosa
- Warren Alpert School of Medicine, Brown University, 171 Meeting Street, Providence, RI 02912, USA.
| | | |
Collapse
|
20
|
Chaaban H, Shin M, Sirya E, Lim YP, Caplan M, Padbury JF. Inter-alpha inhibitor protein level in neonates predicts necrotizing enterocolitis. J Pediatr 2010; 157:757-61. [PMID: 20955849 PMCID: PMC2958175 DOI: 10.1016/j.jpeds.2010.04.075] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 03/30/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVES To compare inter-alpha inhibitor protein (IaIp) levels in neonates with proven necrotizing enterocolitis (NEC) and neonates with other, nonspecific abdominal disorders. STUDY DESIGN This was a prospective observational study of neonates in the neonatal intensive care unit. NEC was diagnosed according to Bell's staging criteria. The nNeonates in the control group had a nonspecific abdominal disorder, but no radiographic evidence of NEC and no disease progression. All neonates with radiographically confirmed NEC were included. Plasma IaIp levels were quantitated by enzyme-linked immunosorbent assay. RESULTS Seventeen neonates had confirmed NEC, and 34 neonates had nonspecific abdominal disorders that improved rapidly. Gestational age, postnatal age, weight, sex, maternal obstetric variables, rupture of membranes, and mode of delivery did not differ between the two groups. Mean IaIp level was significantly lower in the NEC group compared with the control group (137 ± 38 mg/L; 95% confidence interval [CI], 118-157 mg/L vs 258 ± 53 mg/L; 95% CI, 238-277 mg/L; P <.0001). CONCLUSIONS The finding of significantly lower IaIp levels in neonates with NEC suggests that IaIp might be a useful, sensitive biomarker, allowing initiation of appropriate therapy and reducing antibiotic overuse in neonates with suspected but unproven NEC. Administration of IaIp may significantly reduce the severity of systemic inflammation and associated tissue injury.
Collapse
Affiliation(s)
- Hala Chaaban
- Department of Pediatrics, Women & Infants’ Hospital, Brown Medical School, Providence, Rhode Island, 02905
| | | | | | - Yow-Pin Lim
- ProThera Biologics, East Providence, RI 02914
| | - Michael Caplan
- Department of Pediatrics, Evanston Hospital, Evanston, ILL, 60201
| | - James F. Padbury
- Department of Pediatrics, Women & Infants’ Hospital, Brown Medical School, Providence, Rhode Island, 02905
| |
Collapse
|
21
|
Singh K, Zhang LX, Bendelja K, Heath R, Murphy S, Sharma S, Padbury JF, Lim YP. Inter-alpha inhibitor protein administration improves survival from neonatal sepsis in mice. Pediatr Res 2010; 68:242-7. [PMID: 20520583 PMCID: PMC2928396 DOI: 10.1203/pdr.0b013e3181e9fdf0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Inter-alpha inhibitor proteins (IaIp) are serine proteases inhibitors that modulate endogenous protease activity and have been shown to improve survival in adult models of sepsis. We evaluated the effect of IaIp on survival and systemic responses to sepsis in neonatal mice. Sepsis was induced in 2-d-old mice with lipopolysaccharide (LPS), Escherichia coli, and group B Streptococci. Sepsis was associated with 75% mortality. IaIp, given by i.p. administration at doses between 15 and 45 mg/kg from 1 to 6 h after the onset of sepsis, improved survival to approximately 90% (p = 0.0159) in both LPS-induced sepsis and with live bacterial infections. The greatest effect was on reversal of hemorrhagic pneumonitis. The effects were dose and time dependent. Systemic cytokine profile and tissue histology were examined. Survival was compared in IL-10 knock out animals. Systemic cytokine levels including TNF-[alpha] and IL-10 were increased after induction of sepsis and modulated significantly after IaIp administration. Because the effect of IaIp was still demonstrable in IL-10 deficient mice, we conclude the beneficial effects of IaIp is because of suppression of proinflammatory cytokines such as TNF-[alpha] rather than augmentation of IL-10. IaIp may offer significant benefits as a therapeutic
Collapse
Affiliation(s)
- Kultar Singh
- Department of Pediatrics, Women & Infants' Hospital, Brown Medical School, Providence, RI 02905, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Anti-inflammatory actions of serine protease inhibitors containing the Kunitz domain. Inflamm Res 2010; 59:679-87. [PMID: 20454830 DOI: 10.1007/s00011-010-0205-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/01/2010] [Accepted: 04/12/2010] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Protease inhibitors, including the Kunitz, Kazal, serpin and mucus families, play important roles in inhibiting protease activities during homeostasis, inflammation, tissue injury, and cancer progression. Interestingly, in addition to their anti-protease activity, protease inhibitors also often possess other intrinsic properties that contribute to termination of the inflammatory process, including modulation of cytokine expression, signal transduction and tissue remodeling. In this review we have tried to summarize recent findings on the Kunitz family of serine proteinase inhibitors and their implications in health and disease. MATERIALS AND METHODS A systematic search was performed in the electronic databases PubMed and ScienceDirect up to October 2009. We tried to limit the review to anti-inflammatory actions and actions not related to protease inhibition. RESULTS AND CONCLUSION Recent studies have demonstrated that the Kunitz inhibitors are not only protease inhibitors, but can also prevent inflammation and tissue injury and subsequently promote tissue remodeling.
Collapse
|
23
|
Lull ME, Carkaci-Salli N, Freeman WM, Myers JL, Midgley FM, Thomas NJ, Kimatian SJ, Vrana KE, Undar A. Plasma biomarkers in pediatric patients undergoing cardiopulmonary bypass. Pediatr Res 2008; 63:638-44. [PMID: 18317239 DOI: 10.1203/pdr.0b013e31816e391f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is critical to identify at-risk patients and minimize the deleterious effects of cardiopulmonary bypass (CPB) procedures in pediatric populations. The present study screened the plasma proteome of pediatric patients undergoing CPB procedures to identify potential clinical biomarkers related to tissue damage, inflammation, or other pathologies. Blood samples were collected at five different time points from 10 children undergoing a CPB procedure. Plasma was isolated and analyzed using two-dimensional differential in-gel electrophoresis and matrix-assisted laser desorption ionization time of flight mass spectrometry. Levels of differentially regulated proteins identified by two-dimensional differential in-gel electrophoresis, and related proteins were then measured in all time points and patients. As well, associated small molecules and ions were measured. The present study identified 13 proteins and protein isoforms altered in expression, including hemopexin, ceruloplasmin, inter-alpha inhibitor H4, and alpha-2-macroglobulin. Immunoblot analysis revealed significant decreases in each of these proteins during the CPB procedure. Significant changes in the levels of copper, iron, Hb, epinephrine, norepinephrine, and serotonin were observed. The potential markers of pathology (inflammation, oxidative stress) identified during this preliminary study may illuminate opportunities for preventative measures and/or treatments during and following CPB procedures in pediatric patients.
Collapse
Affiliation(s)
- Melinda E Lull
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hamm A, Veeck J, Bektas N, Wild PJ, Hartmann A, Heindrichs U, Kristiansen G, Werbowetski-Ogilvie T, Del Maestro R, Knuechel R, Dahl E. Frequent expression loss of Inter-alpha-trypsin inhibitor heavy chain (ITIH) genes in multiple human solid tumors: a systematic expression analysis. BMC Cancer 2008; 8:25. [PMID: 18226209 PMCID: PMC2268946 DOI: 10.1186/1471-2407-8-25] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 01/28/2008] [Indexed: 02/06/2023] Open
Abstract
Background The inter-alpha-trypsin inhibitors (ITI) are a family of plasma protease inhibitors, assembled from a light chain – bikunin, encoded by AMBP – and five homologous heavy chains (encoded by ITIH1, ITIH2, ITIH3, ITIH4, and ITIH5), contributing to extracellular matrix stability by covalent linkage to hyaluronan. So far, ITIH molecules have been shown to play a particularly important role in inflammation and carcinogenesis. Methods We systematically investigated differential gene expression of the ITIH gene family, as well as AMBP and the interacting partner TNFAIP6 in 13 different human tumor entities (of breast, endometrium, ovary, cervix, stomach, small intestine, colon, rectum, lung, thyroid, prostate, kidney, and pancreas) using cDNA dot blot analysis (Cancer Profiling Array, CPA), semiquantitative RT-PCR and immunohistochemistry. Results We found that ITIH genes are clearly downregulated in multiple human solid tumors, including breast, colon and lung cancer. Thus, ITIH genes may represent a family of putative tumor suppressor genes that should be analyzed in greater detail in the future. For an initial detailed analysis we chose ITIH2 expression in human breast cancer. Loss of ITIH2 expression in 70% of cases (n = 50, CPA) could be confirmed by real-time PCR in an additional set of breast cancers (n = 36). Next we studied ITIH2 expression on the protein level by analyzing a comprehensive tissue micro array including 185 invasive breast cancer specimens. We found a strong correlation (p < 0.001) between ITIH2 expression and estrogen receptor (ER) expression indicating that ER may be involved in the regulation of this ECM molecule. Conclusion Altogether, this is the first systematic analysis on the differential expression of ITIH genes in human cancer, showing frequent downregulation that may be associated with initiation and/or progression of these malignancies.
Collapse
Affiliation(s)
- Alexander Hamm
- Institute of Pathology, University Hospital of RWTH Aachen, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Inter-alpha-trypsin inhibitor family proteins are mainly detected in plasma and urine and comprise the common light chain bikunin and at least 6 closely related heavy chains. The bikunin moiety exhibits protease inhibitory activity and has been studied extensively; however, the heavy chains have been largely overlooked. Recent studies clearly indicate that the heavy chain moieties have important biological functions either in association with or independent of bikunin. Because the heavy chains comprise the main part of the protein structure of this family, it is important to understand their functions. This review summarizes the domain structural features of heavy chains, the heavy chain-interacting molecules identified thus far, and the association of heavy chains with diseases to encourage the discovery of novel heavy chains-interacting molecules and to gain a deeper insight into their functions.
Collapse
Affiliation(s)
- Lisheng Zhuo
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | | |
Collapse
|
26
|
Garantziotis S, Hollingsworth JW, Ghanayem RB, Timberlake S, Zhuo L, Kimata K, Schwartz DA. Inter-alpha-trypsin inhibitor attenuates complement activation and complement-induced lung injury. THE JOURNAL OF IMMUNOLOGY 2007; 179:4187-92. [PMID: 17785858 DOI: 10.4049/jimmunol.179.6.4187] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement activation is a central component of inflammation and sepsis and can lead to significant tissue injury. Complement factors are serum proteins that work through a cascade of proteolytic reactions to amplify proinflammatory signals. Inter-alpha-trypsin inhibitor (IaI) is an abundant serum protease inhibitor that contains potential complement-binding domains, and has been shown to improve survival in animal sepsis models. We hypothesized that IaI can bind complement and inhibit complement activation, thus ameliorating complement-dependent inflammation. We evaluated this hypothesis with in vitro complement activation assays and in vivo in a murine model of complement-dependent lung injury. We found that IaI inhibited complement activation through the classical and alternative pathways, inhibited complement-dependent phagocytosis in vitro, and reduced complement-dependent lung injury in vivo. This novel function of IaI provides a mechanistic explanation for its observed salutary effects in sepsis and opens new possibilities for its use as a treatment agent in inflammatory diseases.
Collapse
|
27
|
Wu R, Dong W, Zhou M, Zhang F, Marini CP, Ravikumar TS, Wang P. Ghrelin attenuates sepsis-induced acute lung injury and mortality in rats. Am J Respir Crit Care Med 2007; 176:805-13. [PMID: 17626913 PMCID: PMC2020826 DOI: 10.1164/rccm.200604-511oc] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Our study has shown that plasma levels of ghrelin, a stomach-derived peptide, are significantly reduced in sepsis, and that ghrelin administration improves organ blood flow via a nuclear factor (NF)-kappaB-dependent pathway. However, it remains unknown whether ghrelin has any protective effects on severe sepsis-induced acute lung injury (ALI) and, if so, whether inhibition of NF-kappaB plays any role in it. OBJECTIVES To test the hypothesis that ghrelin reduces severe sepsis-induced ALI and mortality through inhibition of NF-kappaB. METHODS Sepsis was induced in rats by cecal ligation and puncture (CLP). Five hours after CLP, a bolus intravenous injection of 2 nmol of ghrelin was followed by continuous infusion of 12 nmol of ghrelin via a minipump for 15 hours. Samples were harvested 20 hours post-CLP (i.e., severe sepsis). Pulmonary levels of ghrelin and proinflammatory cytokines were measured by ELISA. NF-kappaB p65 and IkappaBalpha expression and NF-kappaB activity were measured by Western blot analysis and ELISA, respectively. Pulmonary blood flow was measured with radioactive microspheres. In additional animals, the necrotic cecum was excised 20 hours post-CLP and 10-day survival was recorded. MEASUREMENTS AND MAIN RESULTS Pulmonary levels of ghrelin decreased significantly 20 hours post-CLP. Ghrelin administration restored pulmonary levels of ghrelin, reduced lung injury, increased pulmonary blood flow, down-regulated proinflammatory cytokines, inhibited NF-kappaB activation, and improved survival in sepsis. Administration of a specific ghrelin receptor antagonist worsened the survival rate after CLP and cecal excision. CONCLUSIONS Ghrelin can be developed as a novel treatment for severe sepsis-induced ALI. The protective effect of ghrelin is mediated through inhibition of NF-kappaB.
Collapse
Affiliation(s)
- Rongqian Wu
- Department of Surgery, North Shore University Hospital, Manhasset, New York, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Wu R, Dong W, Cui X, Zhou M, Simms HH, Ravikumar TS, Wang P. Ghrelin down-regulates proinflammatory cytokines in sepsis through activation of the vagus nerve. Ann Surg 2007; 245:480-6. [PMID: 17435556 PMCID: PMC1877017 DOI: 10.1097/01.sla.0000251614.42290.ed] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To test the hypothesis that administration of ghrelin attenuates inflammatory responses in sepsis through vagal nerve stimulation. SUMMARY BACKGROUND DATA Ghrelin has been demonstrated to possess multiple functions, including stimulation of the vagus nerve. Our recent study has shown that plasma levels of ghrelin were significantly reduced in sepsis; and ghrelin administration improved organ perfusion and function. However, it remained unknown whether ghrelin also decreases proinflammatory cytokines in sepsis and, if so, whether the down-regulatory effect of ghrelin is mediated by activation of the vagus nerve. METHODS Male rats were subjected to sepsis by cecal ligation and puncture (CLP). At 5 hours after CLP, a bolus intravenous injection of 2 nmol ghrelin was followed by a continuous infusion of 12 nmol ghrelin via a primed 200-microL Alzet mini-pump for 15 hours. At 20 hours after CLP, plasma and peritoneal fluid levels of TNF-alpha and IL-6 were determined. The direct effect of ghrelin on cytokine production was studied using cultured normal rat Kupffer cells or peritoneal macrophages stimulated by lipopolysaccharide (LPS). In additional animals, vagotomy or sham vagotomy was performed in sham and septic animals immediately prior to ghrelin administration and cytokine levels were then measured. RESULTS Ghrelin significantly reduced TNF-alpha and IL-6 levels in sepsis. In contrast, ghrelin did not inhibit TNF-alpha and IL-6 release from LPS-stimulated Kupffer cells or peritoneal macrophages. However, vagotomy, but not sham vagotomy, prevented ghrelin's down-regulatory effect on TNF-alpha and IL-6 production. CONCLUSIONS Ghrelin down-regulates proinflammatory cytokines in sepsis through activation of the vagus nerve. Pharmacologic stimulation of the vagus nerve may offer a novel approach of anti-sepsis therapy.
Collapse
Affiliation(s)
- Rongqian Wu
- Department of Surgery, North Shore University Hospital, Manhasset, NY 11030, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Opal SM, Lim YP, Siryaporn E, Moldawer LL, Pribble JP, Palardy JE, Souza S. Longitudinal studies of inter-alpha inhibitor proteins in severely septic patients: a potential clinical marker and mediator of severe sepsis. Crit Care Med 2007; 35:387-92. [PMID: 17205024 DOI: 10.1097/01.ccm.0000253810.08230.83] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the clinical relevance and prognostic significance of serial measurement of inter-alpha inhibitor proteins (IalphaIp) in severely septic patients. DESIGN A laboratory-based study of serial plasma samples over the first 5 days of severe sepsis from a prospective clinical trial. SETTING Small business and academic medical center research laboratories. PATIENTS Two hundred sixty-six patients with severe sepsis from a multiple-center phase III clinical trial. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Inter-alpha inhibitor proteins serve as endogenous serine protease inhibitors in human plasma. The levels of IalphaIp were markedly reduced to a mean value of 290+/-15 microg/mL at the onset of severe sepsis compared with normal plasma levels (617+/-197 microg/mL). Failure of IalphaIp levels to recover over the first 5 days of sepsis was associated with an unfavorable outcome (p<.001). IalphaIp levels were inversely correlated with interleukin-6 levels at study entry and over the first 5 days of management of severe sepsis. IalphaIp levels were significantly lower in women, with increased age, in the presence of multiple organ failure and in patients with intra-abdominal sources of sepsis. CONCLUSIONS Inter-alpha inhibitor proteins are markedly reduced in severe sepsis, and failure of recovery of IalphaIp levels over the course of sepsis is associated with an unfavorable outcome.
Collapse
Affiliation(s)
- Steven M Opal
- Infectious Disease Division, Brown Medical School, ProThera Biologics, LLC, East Providence, RI, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Josic D, Brown MK, Huang F, Lim YP, Rucevic M, Clifton JG, Hixson DC. Proteomic characterization of inter-alpha inhibitor proteins from human plasma. Proteomics 2006; 6:2874-85. [PMID: 16596706 DOI: 10.1002/pmic.200500563] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inter-alpha inhibitor proteins (IaIp) are a family of structurally related serine protease inhibitors found in relatively high concentrations in human plasma. Recent studies have implicated a role for IaIp in sepsis, and have demonstrated their potential as biomarkers in sepsis and cancer. For characterization of isolated IaI proteins and contaminating proteins during the last steps of the purification process, SELDI-TOF MS and HPLC-ESI-MS/MS were used. After separation by SDS-PAGE or 2-DE, polypeptide bands of 80, 125 and 250 kDa were excised from gels and digested by trypsin. The tryptic peptides were analyzed by both MS methods. The main contamination during the purification process, a band of 80 kDa, contains mainly IaIp heavy chain (HC) H3. HC H1 and H2 were also found in this band. In addition, some vitamin K-dependent clotting factors and inhibitors and other plasma proteins were identified. The 125-kDa band, representing the pre-alpha inhibitor, was found to contain both bikunin and HC H3. The presence of other HC H1, H2 and the recently described HC H4 was also detected by SELDI-TOF MS. The presence of HC H1, H2, and H3 in the 125-kDa band was confirmed by ESI-MS/MS, but not the presence of the H4. Three polypeptides, H1 and H2 together with bikunin, were identified in the 250-kDa band, representing the ITI, by both MS techniques. Once again, the presence of H4 was detected in this band only by SELDI-TOF MS, but the number of corresponding peptides was still not sufficient for final identification of this polypeptide. The importance of the application of proteomic methods for the proper evaluation of therapeutic drugs based on human plasma is discussed.
Collapse
Affiliation(s)
- Djuro Josic
- Proteomics Core, COBRE Center for Cancer Research Development, Rhode Island Hospital, Providence, RI 02904, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Yagyu T, Kobayashi H, Matsuzaki H, Wakahara K, Kondo T, Kurita N, Sekino H, Inagaki K. Enhanced spontaneous metastasis in bikunin-deficient mice. Int J Cancer 2006; 118:2322-8. [PMID: 16331631 DOI: 10.1002/ijc.21293] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previously, we showed that bikunin, a Kunitz-type protease inhibitor, inhibits invasion and metastasis in several types of cancer cells possibly through suppression of upregulation of urokinase-type plasminogen activator (uPA) expression. Bikunin corresponds to a light chain of the inter-alpha inhibitor. To explore critical role of endogenous bikunin, we used bikunin knockout (Bik-/-) mice. Here, we show that 1) higher frequency of spontaneous 3LL lung metastasis was observed in Bik-/- mice compared to Bik+/+ mice, suggesting that bikunin deficiency increases the sensitivity of mice to lung metastasis; 2) administration of exogenous bikunin caused a significant reduction of lung metastasis in Bik-/- and Bik+/+ mice; 3) primary and metastatic tumors significantly upregulated uPA and PAI-1 expression in Bik-/- mice relative to Bik+/+ mice at least through phosphorylation of ERK1/2 and 4) exogenous bikunin suppressed phosphorylation of ERK1/2 and upregulation of uPA and PAI-1 expression in 3LL cells in response to G-CSF. These data allow us to conclude that the increased sensitivity of Bik-/- mice to lung metastasis in vivo is due to a lack of circulating proteins of the inter-alpha inhibitor family, especially bikunin.
Collapse
Affiliation(s)
- Tatsuo Yagyu
- NetForce Co., Ltd., Nakamura, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Duan X, Yarmush D, Berthiaume F, Jayaraman A, Yarmush ML. Immunodepletion of albumin for two-dimensional gel detection of new mouse acute-phase protein and other plasma proteins. Proteomics 2006; 5:3991-4000. [PMID: 16130172 DOI: 10.1002/pmic.200401257] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Immunodepletion of albumin to improve the 2-D gel resolution of human plasma proteins has recently been described. With the importance of mouse models in many studies in which serum or plasma is often analyzed, we have adopted this approach to immunoprecipitate mouse albumin and evaluated its effectiveness for 2-D separation of mouse plasma proteins. Purified polyclonal antibodies against mouse albumin were effective depleting intact albumin as well as its numerous fragments from mouse plasma samples. Removal of albumin resulted in better resolution of mouse plasma proteins. Three proteins, alpha2-macroglobulin, coagulation factor XII, and hemopexin, that were previously either undetectable or poorly resolved, were identified from albumin-depleted 2-D gels by peptide mass fingerprinting. Albumin depletion also led to partial loss of several other proteins such as clusterin and gelsolin. This loss can be attributed to the interaction with albumin itself because the specificity of the antibody was demonstrated by Western blot. When applying this method to the 2-D separation of plasma from inflamed mouse induced by cutaneous burn injury with superimposed Pseudomonas aeruginosa infection, the upregulation of inter alpha-trypsin inhibitor heavy chain 4 (ITIH4) and hemopexin was unambiguously detected along with other mouse acute-phase proteins (APP), including haptoglobin and serum amyloid A. Based on the significant increase of ITIH4, we propose that this protein is a new member of mouse APP that are upregulated during the inflammatory response.
Collapse
Affiliation(s)
- Xunbao Duan
- Center for Engineering in Medicine/Department of Surgery, Massachusetts General Hospital, Harvard Medical School and Shriners Burns Hospital, Boston, MA, USA
| | | | | | | | | |
Collapse
|
34
|
Opal SM, Artenstein AW, Cristofaro PA, Jhung JW, Palardy JE, Parejo NA, Lim YP. Inter-alpha-inhibitor proteins are endogenous furin inhibitors and provide protection against experimental anthrax intoxication. Infect Immun 2005; 73:5101-5. [PMID: 16041026 PMCID: PMC1201260 DOI: 10.1128/iai.73.8.5101-5105.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inter-alpha-inhibitor protein (IalphaIp) functions as an endogenous serine protease inhibitor in human plasma, and IalphaIp levels diminish rapidly during acute inflammatory states. One potential target for IalphaIp is furin, a cell-associated serine endopeptidase essential for the activation of protective antigen and the formation of anthrax lethal toxin (LT). IalphaIp blocks furin activity in vitro and provides significant protection against cytotoxicity for murine peritoneal macrophages exposed to up to 500 ng/ml LT. A monoclonal antibody (MAb), 69.31, that specifically blocks the enzymatic activity of IalphaIp eliminates its protective effect against LT-induced cytotoxicity. IalphaIp (30 mg/kg of body weight) administered to BALB/c mice 1 hour prior to an intravenous LT challenge resulted in 71% survival after 7 days compared with no survivors among the control animals (P < 0.001). We conclude that human IalphaIp may be an effective preventative or therapeutic agent against anthrax intoxication.
Collapse
Affiliation(s)
- Steven M Opal
- Center for Biodefense and Emerging Pathogens, Memorial Hospital of RI, 111 Brewster Street, Pawtucket, RI 02860, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
van Woensel JBM, Biezeveld MH, Hack CE, Bos AP, Kuijpers TW. Elastase and granzymes during meningococcal disease in children: correlation to disease severity. Intensive Care Med 2005; 31:1239-47. [PMID: 16010574 DOI: 10.1007/s00134-005-2720-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Accepted: 06/21/2005] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the levels of human neutrophil elastase and lymphocyte-derived granzymes A and B in relation to disease severity in children with meningococcal disease. DESIGN Clinical observational cohort study. SETTING Paediatric intensive care unit. PATIENTS All patients with meningococcal disease during the study period were included. MEASUREMENTS AND RESULTS Blood sampling was done on the day of admission and on days 3 and 7. Assays for elastase and granzymes were done with ELISA. Sixty-one patients were included: 19 having distinct meningitis; 17 meningitis and shock; and 25 fulminant septicaemia. On admission levels of elastase were increased in all patients, being highest in those with fulminant septicaemia and lowest in those with distinct meningitis. Granzyme A (although marginally) and granzyme B levels were only increased in patients with shock. In 20 of the 28 patients admitted for > or = 3 days elastase decreased from admission ("rapid-decrease" group). In the remaining 8 patients, elastase started to decrease after 2 days ("slow-decrease" group). Patients of the "slow-decrease" group had a higher temperature up to day 4, needed more respiratory support (mean airway pressure in cm H2O on days 3 and 4: p=0.02 and p<0.01, respectively), and more circulatory support (>2 inotropic agents on day 3; p=0.04) compared with the "rapid-decrease" group. CONCLUSIONS Human neutrophil elastase and granzyme B are related with disease severity during the initial phase of meningococcal disease and prolonged neutrophil activation is associated with the extent of organ dysfunction during the period thereafter.
Collapse
Affiliation(s)
- Job B M van Woensel
- Paediatric Intensive Care Unit, Emma Children's Hospital, Academic Medical Center, P.O. Box 22660, 1100DD Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
Lim YP, Josic D, Callanan H, Brown J, Hixson DC. Affinity purification and enzymatic cleavage of inter-alpha inhibitor proteins using antibody and elastase immobilized on CIM monolithic disks. J Chromatogr A 2005; 1065:39-43. [PMID: 15782948 DOI: 10.1016/j.chroma.2004.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epoxy-activated monolithic CIM disks seem to be excellent supports for immobilization of protein ligands. The potential use of enzymes, immobilized on monolithic disks for rapid preparative cleavage proteins in solution was investigated. Digestion of complex plasma proteins was demonstrated by using inter-alpha inhibitors with elastase, immobilized on epoxy-activated CIM disks. Recently, a monoclonal antibody against human inter-alpha inhibitor proteins (MAb 69.31) was developed. MAb 69.31 blocks the inhibitory activity of inter-alpha inhibitor proteins to serine proteases. These results suggest that the epitope defined by this antibody is located within or proximal to the active site of the inhibitor molecule. This antibody, immobilized on monolithic disk, was used for very rapid isolation of inter-alpha proteins. The isolated complex protein was used for enzymatic digestion and isolation of cleavage products, especially from inter-alpha inhibitor light chain to elucidate precisely the target sequence for MAb 69.31 by N-terminal amino acid sequencing. Bovine pancreatic elastase immobilized on monolithic disk cleaves inter-alpha inhibitor protein complex into small fragments which are still reactive with MAb 69.31. One of these proteolytic fragments was isolated and partially sequenced. It could be shown that this sequence is located at the beginning of two proteinase inhibitor domains of the inter-alpha inhibitor light chain (bikunin). Elastase immobilized on monolithic disk offers a simple and rapid method for preparative isolation of protease cleavage fragments. The immobilized enzyme is stable and still active after repeated runs. A partial or complete digestion can be achieved by varying the flow rate.
Collapse
Affiliation(s)
- Yow-Pin Lim
- Division Hematology/Oncology, Department Medicine, Rhode Island Hospital/Brown Medical School, Providence, RI 02903, USA.
| | | | | | | | | |
Collapse
|
37
|
Matsuzaki H, Kobayashi H, Yagyu T, Wakahara K, Kondo T, Kurita N, Sekino H, Inagaki K, Suzuki M, Kanayama N, Terao T. Bikunin inhibits lipopolysaccharide-induced tumor necrosis factor alpha induction in macrophages. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:1140-7. [PMID: 15539519 PMCID: PMC524767 DOI: 10.1128/cdli.11.6.1140-1147.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bikunin, a Kunitz-type protease inhibitor, exhibits anti-inflammatory activity in protection against cancer and inflammation. To investigate the molecular mechanism of this inhibition, we analyzed the effect of bikunin on tumor necrosis factor alpha (TNF-alpha) production in human peripheral mononuclear cells stimulated by lipopolysaccharide (LPS), an inflammatory inducer. Here, we show the following results. (i) LPS induced TNF-alpha expression in time- and dose-dependent manners through phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase pathways. (ii) Bikunin inhibits LPS-induced up-regulation of TNF-alpha protein expression in a dose-dependent manner, reaching 60% inhibition at the highest doses of bikunin tested (5.0 microM). (iii) Inhibition by bikunin of TNF-alpha induction correlates with the suppressive capacity of ERK1/2, JNK, and p38 signaling pathways, implicating repressions of at least three different signals in the inhibition. (iv) Bikunin blocks the induction of TNF-alpha target molecules interleukin-1beta (IL-1beta) and IL-6 proteins. (v) Bikunin is functional in vivo, and this glycoprotein blocks systemic TNF-alpha release in mice challenged with LPS. (vi) Finally, bikunin can prevent LPS-induced lethality. In conclusion, bikunin significantly inhibits LPS-induced TNF-alpha production, suggesting a mechanism of anti-inflammation by bikunin through control of cytokine induction during inflammation. Bikunin might be a candidate for the treatment of inflammation, including septic shock.
Collapse
|
38
|
Molor-Erdene P, Okajima K, Isobe H, Uchiba M, Harada N, Okabe H. Urinary trypsin inhibitor reduces LPS-induced hypotension by suppressing tumor necrosis factor-alpha production through inhibition of Egr-1 expression. Am J Physiol Heart Circ Physiol 2004; 288:H1265-71. [PMID: 15539418 DOI: 10.1152/ajpheart.00885.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although urinary trypsin inhibitor (UTI) has been shown to inhibit tumor necrosis factor (TNF)-alpha- production, the detailed mechanism(s) remains unclear. This study was undertaken to elucidate the molecular mechanism(s) underlying this inhibitory effect in monocytes in vitro and in rats given lipopolysaccharide (LPS). TNF-alpha production by monocytes stimulated with LPS (100 ng/ml) was inhibited by UTI at concentrations higher than 100 U/ml. Expression of early growth response factor-1 (Egr-1) and phosphorylation of extracellular signal-regulated protein kinases 1/2 in monocytes stimulated with LPS were inhibited by UTI. UTI (50,000 U/kg i.v.) inhibited LPS (5 mg/kg i.v.)-induced increases in lung tissue levels of Egr-1, TNF-alpha mRNA, and TNF-alpha in rats. UTI inhibited LPS-induced hypotension by inhibiting pulmonary induction of inducible nitric oxide synthase (iNOS). We previously demonstrated that anti-TNF-alpha antibody and aminoguanidine, a selective inhibitor of iNOS, reduced LPS-induced hypotension in this animal model. Furthermore, we also reported that reduction of LPS-induced coagulation abnormalities in rats did not affect inflammatory responses and hypotension in this animal model. Taken together, these observations strongly suggested that UTI inhibited LPS-induced production of TNF-alpha by inhibiting activation of the extracellular signal-regulated protein kinases 1/2-Egr-1 pathway in monocytes, which might at least partly contribute to reduction of hypotension through inhibition of iNOS induction in rats given LPS.
Collapse
Affiliation(s)
- Perenlei Molor-Erdene
- Department of Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University., 1-1-1 Honjo, Kumamoto, 860-0811, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Wu R, Cui X, Lim YP, Bendelja K, Zhou M, Simms HH, Wang P. Delayed administration of human inter-alpha inhibitor proteins reduces mortality in sepsis. Crit Care Med 2004; 32:1747-52. [PMID: 15286553 DOI: 10.1097/01.ccm.0000132903.14121.0e] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We have recently shown that administration of human inter-alpha inhibitor proteins (IalphaIp) very early after the onset of sepsis maintains cardiovascular stability and reduced mortality. However, it remains unknown whether injection of IalphaIp at later time points of sepsis has any beneficial effects. We therefore hypothesized that IalphaIp and its active component bikunin are reduced in sepsis and that the delayed administration of IalphaIp also improves survival rate. DESIGN : Prospective, controlled, and randomized animal study. SETTING A research institute laboratory. SUBJECTS : Male adult Sprague-Dawley rats. INTERVENTIONS Rats were subjected either to polymicrobial sepsis by cecal ligation and puncture (CLP) or to sham operation followed by the administration of normal saline solution (i.e., fluid resuscitation). MEASUREMENTS AND MAIN RESULTS : Bikunin gene expression in the liver was measured by reverse transcription polymerase chain reaction. Plasma concentrations of IalphaIp were determined by Western blot at 5 and 20 hrs after CLP. IalphaIp clearance was assessed by injecting radioactive IalphaIp at 12 hrs post-CLP, and the half-life was determined. In addition, IalphaIp (30 mg/kg of body weight) or vehicle was administered at 1, 5, or 10 hrs (single treatment) or at both 10 and 20 hrs (double treatment) post-CLP. The necrotic cecum was excised at 20 hrs post-CLP, and 10-day survival was recorded. The results indicate that bikunin gene expression decreased significantly at 20 hrs post-CLP. Moreover, IalphaIp concentrations decreased significantly at 5 and 20 hrs post-CLP, and its half-life increased from 5.6 +/- 0.3 hrs to 11.8 +/- 2.7 hrs (p <.05), suggesting down-regulation of IalphaIp in sepsis despite the decreased clearance. Administration of IalphaIp at 1 hr post-CLP improved the survival rate from 50% to 92% (p <.05), whereas there was no significant improvement when IalphaIp was administrated at 5 or 10 hrs post-CLP. However, double injection of IalphaIp at 10 and 20 hrs post-CLP (i.e., severe sepsis) increased the survival rate from 44% to 81% (p <.05). CONCLUSION Since delayed but repeated administration of human IalphaIp improves survival after CLP, this compound appears to be a useful agent for the treatment of severe sepsis.
Collapse
Affiliation(s)
- Rongqian Wu
- Division of Surgical Research, Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, Manhasset, NY, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Williams DL, Li C, Ha T, Ozment-Skelton T, Kalbfleisch JH, Preiszner J, Brooks L, Breuel K, Schweitzer JB. Modulation of the Phosphoinositide 3-Kinase Pathway Alters Innate Resistance to Polymicrobial Sepsis. THE JOURNAL OF IMMUNOLOGY 2003; 172:449-56. [PMID: 14688354 DOI: 10.4049/jimmunol.172.1.449] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the effect of modulating phosphoinositide 3-kinase (PI3K) activity in a murine model of cecal ligation and puncture-induced polymicrobial sepsis. Inhibition of PI3K activity with wortmannin increased serum cytokine levels and decreased survival time in septic mice. We have reported that an immunomodulator, glucan phosphate, induces protection in murine polymicrobial sepsis. We observed that glucan stimulated tissue PI3K activity, which positively correlated with increased survival in septic mice. We investigated the effect of PI3K inhibition on survival in septic mice treated with glucan. Treatment of mice with the PI3K inhibitors, wortmannin and LY294002, completely eliminated the protective effect of glucan, indicating that protection against septic mortality was mediated through PI3K. Inhibition of PI3K resulted in increased serum levels of IL1-beta, IL-2, IL-6, IL-10, IL-12, and TNF-alpha in septic mice. Apoptosis is thought to play a central role in the response to septic injury. We observed that inhibition of PI3K activity in septic mice resulted in increased splenocyte apoptosis and a change in the anatomic distribution of splenocyte apoptosis. We conclude that PI3K is a compensatory mechanism that suppresses proinflammatory and apoptotic processes in response to sepsis and/or inflammatory injury. Thus, PI3K may play a pivotal role in the maintenance of homeostasis and the integrity of the immune response during sepsis. We also observed that glucan phosphate decreased septic morbidity and mortality through a PI3K-dependent mechanism. This suggests that stimulation of the PI3K pathway may be an effective approach for preventing or treating sepsis and/or septic shock.
Collapse
Affiliation(s)
- David L Williams
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70575, Johnson City, TN 37614, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sheehan M, Wong HR, Hake PW, Zingarelli B. Parthenolide improves systemic hemodynamics and decreases tissue leukosequestration in rats with polymicrobial sepsis. Crit Care Med 2003; 31:2263-70. [PMID: 14501955 DOI: 10.1097/01.ccm.0000085186.14867.f7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Nuclear factor (NF)-kappaB is a transcriptional factor required for the gene expression of many inflammatory mediators. This study was designed to investigate the biological effects of parthenolide, a specific inhibitor of NF-kappaB activation, in experimental sepsis and multiple organ failure. DESIGN Prospective, randomized laboratory investigation that used an established model of cecal ligation and puncture to induce polymicrobial sepsis in rats. SETTING University hospital laboratory. SUBJECTS Male Sprague Dawley rats underwent cecal ligation and puncture followed by the administration of saline solution. INTERVENTIONS A group of rats received parthenolide (1 mg/kg) intraperitoneally. Mean arterial blood pressure was monitored for 18 hrs, and survival rate was monitored for 4 days. In a separate experiment, rats were killed at 1, 3, 6, and 18 hrs after cecal ligation and puncture. MEASUREMENTS AND MAIN RESULTS In vehicle-treated animals, cecal ligation and puncture resulted in polymicrobial sepsis and was associated with 20% mortality rate, marked hypotension, and lung injury. Immunohistochemistry showed positive staining for nitrotyrosine and poly(adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) in thoracic aortas. There was a significant increase in plasma concentrations of tumor necrosis factor-alpha, interleukin-6, and interleukin-10. Elevated levels of myeloperoxidase activity in lung, colon, and liver were indicative of infiltration of neutrophils. These inflammatory events were associated with activation of NF-kappaB in the lung in a time-dependent fashion. In vivo treatment with parthenolide improved the hemodynamic profile and survival; reduced neutrophil infiltration in lung, colon, and liver; and reduced plasma concentrations of cytokines. Treatment with parthenolide also abolished formation of nitrotyrosine and expression of PARP-1 in thoracic aortas. These beneficial effects of parthenolide were associated with reduction of NF-kappaB activity in the lung. CONCLUSIONS Our data suggest that pharmacologic inhibition of NF-kappaB may represent a potential therapeutic approach in sepsis.
Collapse
|
42
|
Baek YW, Brokat S, Padbury JF, Pinar H, Hixson DC, Lim YP. Inter-alpha inhibitor proteins in infants and decreased levels in neonatal sepsis. J Pediatr 2003; 143:11-5. [PMID: 12915817 DOI: 10.1016/s0022-3476(03)00190-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Adjunctive tests are needed to predict sepsis in the newborn and to lower the rate or duration of unnecessary antibiotic use. We evaluated the normal Inter-alpha inhibitor protein (IaIp) values in infants and the association of plasma levels of IaIp with sepsis in term and preterm newborns. METHODS Plasma IaIp levels were measured by enzyme-linked immunosorbent assay in samples from 135 newborn infants at a wide range of gestational ages (24-42 weeks). IaIp levels were also determined in 19 infants undergoing prospective evaluation for sepsis. RESULTS IaIp levels in umbilical cord blood and circulating peripheral blood of healthy newborn infants (525+/-66 mg/L) were not significantly different from the level in healthy adults (691+/-80 mg/L). IaIp levels were similar in infants between 24 and 42 weeks gestational age. There was a significant reduction in IaIp levels in infants with sepsis compared with nonseptic controls (169+/-126 mg/L vs 613+/-286 mg/L, P<.0001). CONCLUSIONS IaIp levels in the blood of newborns are independent of gestational age and similar to adults. IaIp levels are significantly reduced in infants with bacterial sepsis and might serve as an adjunctive diagnostic marker to allow prospective reduction of antibiotic use.
Collapse
Affiliation(s)
- Yong Woon Baek
- Department of Pediatrics, Women and Infants' Hospital, and Brown Medical School, Providence, Rhode Island 02903, USA
| | | | | | | | | | | |
Collapse
|
43
|
Deutschman CS. Understanding sepsis: promise, caution, and accolades to a mentor's mentor. Crit Care Med 2002; 30:717-8. [PMID: 11990949 DOI: 10.1097/00003246-200203000-00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|