1
|
Alonazi A, Nash CA, Wang CH, Christofidou E, Challiss RAJ, Willets JM. GRK2 expression and catalytic activity are essential for vasoconstrictor/ERK-stimulated arterial smooth muscle proliferation. Biochem Pharmacol 2023; 216:115795. [PMID: 37690571 DOI: 10.1016/j.bcp.2023.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Prolonged vasoconstrictor signalling found in hypertension, increases arterial contraction, and alters vessel architecture by stimulating arterial smooth muscle cell (ASMC) growth, underpinning the development of re-stenosis lesions and vascular remodelling. Vasoconstrictors interact with their cognate G protein coupled receptors activating a variety of signalling pathways to promote smooth muscle proliferation. Here, angiotensin II (AngII) and endothelin 1 (ET1), but not UTP stimulates ASMC proliferation. Moreover, siRNA-mediated depletion of endogenous GRK2 expression, or GRK2 inhibitors, compound 101 or paroxetine, prevented AngII and ET1-promoted ASMC growth. Depletion of GRK2 expression or inhibition of GRK2 activity ablated the prolonged phase of AngII and ET-stimulated ERK signalling, while enhancing and prolonging UTP-stimulated ERK signalling. Increased GRK2 expression enhanced and prolonged AngII and ET1-stimulated ERK signalling, but suppressed UTP-stimulated ERK signalling. In ASMC prepared from 6-week-old WKY and SHR, AngII and ET1-stimulated proliferation rates were similar, however, in cultures prepared from 12-week-old rats AngII and ET1-stimulated growth was enhanced in SHR-derived ASMC, which was reversed following depletion of GRK2 expression. Furthermore, in ASMC cultures isolated from 6-week-old WKY and SHR rats, AngII and ET1-stimulated ERK signals were similar, while in cultures from 12-week-old rats ERK signals were both enhanced and prolonged in SHR-derived ASMC, and were reversed to those seen in age-matched WKY-derived ASMC following pre-treatment of SHR-derived ASMC with compound 101. These data indicate that the presence of GRK2 and its catalytic activity are essential to enable pro-proliferative vasoconstrictors to promote growth via recruitment and activation of the ERK signalling pathway in ASMC.
Collapse
Affiliation(s)
- Asma Alonazi
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom; Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, P.O. Box 145111, Saudi Arabia(1)
| | - Craig A Nash
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom; Cardiovascular Metabolism, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA 02139, USA
| | - Chuan-Han Wang
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom
| | - Elena Christofidou
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom; Tumor Viruses and Cancer Laboratory, Department of Biological Sciences, University of Cyprus, Panepistimiou 1, Aglantzia 2109, Nicosia, Cyprus(1)
| | - R A John Challiss
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom
| | - Jonathon M Willets
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom.
| |
Collapse
|
2
|
Tusa I, Menconi A, Tubita A, Rovida E. Pathophysiological Impact of the MEK5/ERK5 Pathway in Oxidative Stress. Cells 2023; 12:cells12081154. [PMID: 37190064 DOI: 10.3390/cells12081154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Oxidative stress regulates many physiological and pathological processes. Indeed, a low increase in the basal level of reactive oxygen species (ROS) is essential for various cellular functions, including signal transduction, gene expression, cell survival or death, as well as antioxidant capacity. However, if the amount of generated ROS overcomes the antioxidant capacity, excessive ROS results in cellular dysfunctions as a consequence of damage to cellular components, including DNA, lipids and proteins, and may eventually lead to cell death or carcinogenesis. Both in vitro and in vivo investigations have shown that activation of the mitogen-activated protein kinase kinase 5/extracellular signal-regulated kinase 5 (MEK5/ERK5) pathway is frequently involved in oxidative stress-elicited effects. In particular, accumulating evidence identified a prominent role of this pathway in the anti-oxidative response. In this respect, activation of krüppel-like factor 2/4 and nuclear factor erythroid 2-related factor 2 emerged among the most frequent events in ERK5-mediated response to oxidative stress. This review summarizes what is known about the role of the MEK5/ERK5 pathway in the response to oxidative stress in pathophysiological contexts within the cardiovascular, respiratory, lymphohematopoietic, urinary and central nervous systems. The possible beneficial or detrimental effects exerted by the MEK5/ERK5 pathway in the above systems are also discussed.
Collapse
Affiliation(s)
- Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Alessio Menconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| |
Collapse
|
3
|
Doan TNA, Bianco-Miotto T, Parry L, Winter M. The role of angiotensin II and relaxin in vascular adaptation to pregnancy. Reproduction 2022; 164:R87-R99. [PMID: 36018774 DOI: 10.1530/rep-21-0428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
Abstract
In brief There is a pregnancy-induced vasodilation of blood vessels, which is known to have a protective effect on cardiovascular function and can be maintained postpartum. This review outlines the cardiovascular changes that occur in a healthy human and rodent pregnancy, as well as different pathways that are activated by angiotensin II and relaxin that result in blood vessel dilation. Abstract During pregnancy, systemic and uteroplacental blood flow increase to ensure an adequate blood supply that carries oxygen and nutrients from the mother to the fetus. This results in changes to the function of the maternal cardiovascular system. There is also a pregnancy-induced vasodilation of blood vessels, which is known to have a protective effect on cardiovascular health/function. Additionally, there is evidence that the effects of maternal vascular vasodilation are maintained post-partum, which may reduce the risk of developing high blood pressure in the next pregnancy and reduce cardiovascular risk later in life. At both non-pregnant and pregnant stages, vascular endothelial cells produce a number of vasodilators and vasoconstrictors, which transduce signals to the contractile vascular smooth muscle cells to control the dilation and constriction of blood vessels. These vascular cells are also targets of other vasoactive factors, including angiotensin II (Ang II) and relaxin. The binding of Ang II to its receptors activates different pathways to regulate the blood vessel vasoconstriction/vasodilation, and relaxin can interact with some of these pathways to induce vasodilation. Based on the available literature, this review outlines the cardiovascular changes that occur in a healthy human pregnancy, supplemented by studies in rodents. A specific focus is placed on vasodilation of blood vessels during pregnancy; the role of endothelial cells and endothelium-derived vasodilators will also be discussed. Additionally, different pathways that are activated by Ang II and relaxin that result in blood vessel dilation will also be reviewed.
Collapse
Affiliation(s)
- Thu Ngoc Anh Doan
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Laura Parry
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Marnie Winter
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Molecules and Mechanisms to Overcome Oxidative Stress Inducing Cardiovascular Disease in Cancer Patients. Life (Basel) 2021; 11:life11020105. [PMID: 33573162 PMCID: PMC7911715 DOI: 10.3390/life11020105] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) are molecules involved in signal transduction pathways with both beneficial and detrimental effects on human cells. ROS are generated by many cellular processes including mitochondrial respiration, metabolism and enzymatic activities. In physiological conditions, ROS levels are well-balanced by antioxidative detoxification systems. In contrast, in pathological conditions such as cardiovascular, neurological and cancer diseases, ROS production exceeds the antioxidative detoxification capacity of cells, leading to cellular damages and death. In this review, we will first describe the biology and mechanisms of ROS mediated oxidative stress in cardiovascular disease. Second, we will review the role of oxidative stress mediated by oncological treatments in inducing cardiovascular disease. Lastly, we will discuss the strategies that potentially counteract the oxidative stress in order to fight the onset and progression of cardiovascular disease, including that induced by oncological treatments.
Collapse
|
5
|
St. Paul A, Corbett CB, Okune R, Autieri MV. Angiotensin II, Hypercholesterolemia, and Vascular Smooth Muscle Cells: A Perfect Trio for Vascular Pathology. Int J Mol Sci 2020; 21:E4525. [PMID: 32630530 PMCID: PMC7350267 DOI: 10.3390/ijms21124525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in the Western and developing world, and the incidence of cardiovascular disease is increasing with the longer lifespan afforded by our modern lifestyle. Vascular diseases including coronary heart disease, high blood pressure, and stroke comprise the majority of cardiovascular diseases, and therefore represent a significant medical and socioeconomic burden on our society. It may not be surprising that these conditions overlap and potentiate each other when we consider the many cellular and molecular similarities between them. These intersecting points are manifested in clinical studies in which lipid lowering therapies reduce blood pressure, and anti-hypertensive medications reduce atherosclerotic plaque. At the molecular level, the vascular smooth muscle cell (VSMC) is the target, integrator, and effector cell of both atherogenic and the major effector protein of the hypertensive signal Angiotensin II (Ang II). Together, these signals can potentiate each other and prime the artery and exacerbate hypertension and atherosclerosis. Therefore, VSMCs are the fulcrum in progression of these diseases and, therefore, understanding the effects of atherogenic stimuli and Ang II on the VSMC is key to understanding and treating atherosclerosis and hypertension. In this review, we will examine studies in which hypertension and atherosclerosis intersect on the VSMC, and illustrate common pathways between these two diseases and vascular aging.
Collapse
Affiliation(s)
| | | | | | - Michael V. Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; (A.S.P.); (C.B.C.); (R.O.)
| |
Collapse
|
6
|
Renin-Angiotensin System in Lung Tumor and Microenvironment Interactions. Cancers (Basel) 2020; 12:cancers12061457. [PMID: 32503281 PMCID: PMC7352181 DOI: 10.3390/cancers12061457] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
The mechanistic involvement of the renin-angiotensin system (RAS) reaches beyond cardiovascular physiopathology. Recent knowledge pinpoints a pleiotropic role for this system, particularly in the lung, and mainly through locally regulated alternative molecules and secondary pathways. Angiotensin peptides play a role in cell proliferation, immunoinflammatory response, hypoxia and angiogenesis, which are critical biological processes in lung cancer. This manuscript reviews the literature supporting a role for the renin-angiotensin system in the lung tumor microenvironment and discusses whether blockade of this pathway in clinical settings may serve as an adjuvant therapy in lung cancer.
Collapse
|
7
|
Essential Role of the ELABELA-APJ Signaling Pathway in Cardiovascular System Development and Diseases. J Cardiovasc Pharmacol 2020; 75:284-291. [DOI: 10.1097/fjc.0000000000000803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Alanazi AZ, Clark MA. Effects of angiotensin III on c-Jun N terminal kinase in Wistar and hypertensive rat vascular smooth muscle cells. Peptides 2020; 123:170204. [PMID: 31738968 DOI: 10.1016/j.peptides.2019.170204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022]
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) and inflammation are well known actions associated with hypertension. Angiotensin (Ang) II mediates these physiological actions through the c-Jun N terminal Kinase (JNK), mitogen-activated proteins kinase (MAPK) pathway. Ang III effects on this pathway in VSMCs are unknown. The aim of this study was to determine whether Ang III activates JNK MAPK in Wistar VSMCs and determined whether the response was different in spontaneously hypertensive rat (SHR) VSMCs. We also ascertained whether this effect leads to VSMC proliferation. Western blots were used to determine the time and concentration effects of Ang II on JNK MAPK phosphorylation in Wistar VSMCs. Similar studies were conducted for Ang III in Wistar and SHR VSMCs. Both peptides induced JNK phosphorylation in a concentration- and time-dependent manner in Wistar VSMCs. Ang III also increased JNK phosphorylation in a concentration- and time-dependent fashion in SHR VSMCs as well. However, the ability of Ang III to induce JNK MAPK was different in SHR VSMCs as the phosphorylation levels of JNK were significantly higher in Wistar VSMCs as compared to SHR VSMCs at several time points and concentrations. Further, Ang III-mediated DNA synthesis, a measure of VSMC proliferation, occurred through activation of JNK MAPK. This study is the first to show Ang III effects on the JNK MAPK pathway in VSMCs and the role of JNK in Ang III-mediated cellular proliferation. These findings impart key information for the understanding of Ang III functions, especially in VSMCs and possible cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmed Z Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL, 33328, United States
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL, 33328, United States.
| |
Collapse
|
9
|
Durairaj Pandian V, Giovannucci DR, Vazquez G, Kumarasamy S. CACNB2 is associated with aberrant RAS-MAPK signaling in hypertensive Dahl Salt-Sensitive rats. Biochem Biophys Res Commun 2019; 513:760-765. [DOI: 10.1016/j.bbrc.2019.03.215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/31/2019] [Indexed: 12/25/2022]
|
10
|
El-Said NT, Mohamed EA, Taha RA. Irbesartan suppresses cardiac toxicity induced by doxorubicin via regulating the p38-MAPK/NF-κB and TGF-β1 pathways. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:647-658. [DOI: 10.1007/s00210-019-01624-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/28/2019] [Indexed: 12/19/2022]
|
11
|
Xu J, Chen L, Jiang Z, Li L. Biological functions of Elabela, a novel endogenous ligand of APJ receptor. J Cell Physiol 2018; 233:6472-6482. [PMID: 29350399 DOI: 10.1002/jcp.26492] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/17/2018] [Indexed: 12/31/2022]
Abstract
The G protein-coupled receptor APJ and its cognate ligand, apelin, are widely expressed throughout human body. They are implicated in different key physiological processes such as angiogenesis, cardiovascular functions, fluid homeostasis, and energy metabolism regulation. Recently, a new endogenous peptidic ligand of APJ, named Elabela, has been identified and shown to play a crucial role in embryonic development. In addition, increasing evidences show that Elabela is also intimate associated with a large number of physiological processes in adulthood. However, a comprehensive summary of Elabela has not been reported to date. In this review, we provide an overview of the biological functions of Elabela. Collectively, Elabela, a potential therapeutic peptide, exerts diverse biological functions in both embryos and adult organisms, such as dysontogenesis, self-renewing of human embryonic stem cells, endoderm differentiation, heart morphogenesis, cardiac dyfunctions, blood pressure control, angiogenesis, blood pressure control, regulation of food and water intake, bone formation, and kidney diseases.
Collapse
Affiliation(s)
- Jin Xu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, P.R. China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, P.R. China
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, P.R. China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, P.R. China
| |
Collapse
|
12
|
Bali A, Jaggi AS. Angiotensin II-triggered kinase signaling cascade in the central nervous system. Rev Neurosci 2018; 27:301-15. [PMID: 26574890 DOI: 10.1515/revneuro-2015-0041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/26/2015] [Indexed: 12/26/2022]
Abstract
Recent studies have projected the renin-angiotensin system as a central component of the physiological and pathological processes of assorted neurological disorders. Its primary effector hormone, angiotensin II (Ang II), not only mediates the physiological effects of vasoconstriction and blood pressure regulation in cardiovascular disease but is also implicated in a much wider range of neuronal activities and diseases, including Alzheimer's disease, neuronal injury, and cognitive disorders. Ang II produces different actions by acting on its two subtypes of receptors (AT1 and AT2); however, the well-known physiological actions of Ang II are mainly mediated through AT1 receptors. Moreover, recent studies also suggest the important functional role of AT2 receptor in the brain. Ang II acts on AT1 receptors and conducts its functions via MAP kinases (ERK1/2, JNK, and p38MAPK), glycogen synthase kinase, Rho/ROCK kinase, receptor tyrosine kinases (PDGF and EGFR), and nonreceptor tyrosine kinases (Src, Pyk2, and JAK/STAT). AT1R-mediated NADPH oxidase activation also leads to the generation of reactive oxygen species, widely implicated in neuroinflammation. These signaling cascades lead to glutamate excitotoxicity, apoptosis, cerebral infarction, astrocyte proliferation, nociception, neuroinflammation, and progression of other neurological disorders. The present review focuses on the Ang II-triggered signal transduction pathways in central nervous system.
Collapse
|
13
|
Zhu LA, Fang NY, Gao PJ, Jin X, Wang HY, Liu Z. Differential ERK1/2 Signaling and Hypertrophic Response to Endothelin-1 in Cardiomyocytes from SHR and Wistar-Kyoto Rats: A Potential Target for Combination Therapy of Hypertension. Curr Vasc Pharmacol 2016; 13:467-74. [PMID: 25360842 PMCID: PMC4997939 DOI: 10.2174/1570161112666141014150007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/29/2014] [Accepted: 05/21/2014] [Indexed: 11/26/2022]
Abstract
Extracellular signal regulated kinase½ (ERK1/2) signaling is critical to endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy. This study was to investigate ERK1/2 signaling and hypertrophic response to ET-1 stimulation in cardiomyocytes (CMs) from spontaneous hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Primary neonatal SHR and WKY CMs were exposed to ET-1 for up to 24 hrs. Minimal basal ERK1/2 phosphorylation was present in WKY CMs, while a significant baseline ERK1/2 phosphorylation was observed in SHR CMs. ET-1 induced a time- and dose-dependent increase in ERK1/2 phosphorylation in both SHR and WKY CMs. However, ET-1-induced ERK1/2 activation occurred much earlier with significantly higher peak phosphorylation level, and stayed elevated for longer duration in SHR CMs than that in WKY CMs. ET-1-induced hypertrophic response was more prominent in SHR CMs than that in WKY CMs as reflected by increased cell surface area, intracellular actin density, and protein synthesis. Pre-treatment with ERK1/2 phosphorylation inhibitor PD98059 completely prevented ET-1-induced ERK1/2 phosphorylation and increases in cell surface area and protein synthesis in SHR and WKY CMs. The specific PI3 kinase inhibitor LY294002 blocked ET-1-induced Akt and ERK1/2 phosphorylation, and protein synthesis in CMs. These data indicated that ERK1/2 signaling was differentially enhanced in CMs, and was associated with increased cardiac hypertrophic response to ET-1 in SHR. ET-1-induced ERK1/2 activation and cardiac hypertrophy appeared to be mediated via PI3 kinase/Akt signaling in SHR and WKY. The differential ERK1/2 activation in SHR CMs by ET-1 might represent a potential target for combination therapy of hypertension.
Collapse
Affiliation(s)
| | - Ning-Yuan Fang
- Department of Geriatrics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Shan-Dong Middle Road, Shanghai 200001, China.
| | | | | | | | - Zhenguo Liu
- Davis Heart & Lung Research Institute, the Ohio State University Medical Center, DHLRI Suite 200; 473 West 12th Ave, Columbus, OH 43210, USA.
| |
Collapse
|
14
|
Michel MC, Brunner HR, Foster C, Huo Y. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease. Pharmacol Ther 2016; 164:1-81. [PMID: 27130806 DOI: 10.1016/j.pharmthera.2016.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
Abstract
We have reviewed the effects of angiotensin II type 1 receptor antagonists (ARBs) in various animal models of hypertension, atherosclerosis, cardiac function, hypertrophy and fibrosis, glucose and lipid metabolism, and renal function and morphology. Those of azilsartan and telmisartan have been included comprehensively whereas those of other ARBs have been included systematically but without intention of completeness. ARBs as a class lower blood pressure in established hypertension and prevent hypertension development in all applicable animal models except those with a markedly suppressed renin-angiotensin system; blood pressure lowering even persists for a considerable time after discontinuation of treatment. This translates into a reduced mortality, particularly in models exhibiting marked hypertension. The retrieved data on vascular, cardiac and renal function and morphology as well as on glucose and lipid metabolism are discussed to address three main questions: 1. Can ARB effects on blood vessels, heart, kidney and metabolic function be explained by blood pressure lowering alone or are they additionally directly related to blockade of the renin-angiotensin system? 2. Are they shared by other inhibitors of the renin-angiotensin system, e.g. angiotensin converting enzyme inhibitors? 3. Are some effects specific for one or more compounds within the ARB class? Taken together these data profile ARBs as a drug class with unique properties that have beneficial effects far beyond those on blood pressure reduction and, in some cases distinct from those of angiotensin converting enzyme inhibitors. The clinical relevance of angiotensin receptor-independent effects of some ARBs remains to be determined.
Collapse
Affiliation(s)
- Martin C Michel
- Dept. Pharmacology, Johannes Gutenberg University, Mainz, Germany; Dept. Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim, Ingelheim, Germany.
| | | | - Carolyn Foster
- Retiree from Dept. of Research Networking, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Yong Huo
- Dept. Cardiology & Heart Center, Peking University First Hospital, Beijing, PR China
| |
Collapse
|
15
|
Zhao L, Geng H, Liang ZF, Zhang ZQ, Zhang T, Yu DX, Zhong CY. Benzidine induces epithelial-mesenchymal transition in human uroepithelial cells through ERK1/2 pathway. Biochem Biophys Res Commun 2015; 459:643-9. [PMID: 25757908 DOI: 10.1016/j.bbrc.2015.02.163] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 02/27/2015] [Indexed: 12/18/2022]
Abstract
Prolonged benzidine exposure is a known cause of urothelial carcinoma (UC). Benzidine-induced epithelial-to-mesenchymal transition (EMT) is critically involved in cell malignant transformation. The role of ERK1/2 in regulating benzidine-triggered EMT has not been investigated. This study was to investigate the regulatory role of ERK1/2 in benzidine-induced EMT. By using wound healing and transwell chamber migration assays, we found that benzidine could increase SV-HUC-1 cells invasion activity, western blotting and Immunofluorescence showed that the expression levels of Snail, β-catenin, Vimentin, and MMP-2 were significantly increased, while, the expression levels of E-cadherin, ZO-1 were decreased. To further demonstrate the mechanism in this process, we found that the phosphorylation of ERK1/2, p38, JNK and AP-1 proteins were significantly enhanced compared to the control group (*P < 0.05). Afterward, treated with MAPK pathways inhibitors, only ERK inhibitor(U0126)could reduce the expression of EMT markers in SV-HUC-1 cells, but not p38 and JNK inhibitor(SB203580, SP600125), which indicated that benzidine induces the epithelial-mesenchymal transition in human uroepithelial cells through ERK1/2 pathway. Taken together, findings from this study could provide into the molecular mechanisms by which benzidine exerts its bladder-cancer-promoting effect as well as its target intervention.
Collapse
Affiliation(s)
- Li Zhao
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Hao Geng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Zhao-Feng Liang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhi-Qiang Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Tao Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - De-Xin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| | - Cai-Yun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
16
|
Atef ME, Anand-Srivastava MB. Enhanced expression of Gqα and PLC-β1 proteins contributes to vascular smooth muscle cell hypertrophy in SHR: role of endogenous angiotensin II and endothelin-1. Am J Physiol Cell Physiol 2014; 307:C97-106. [DOI: 10.1152/ajpcell.00337.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Vascular Gqα signaling has been shown to contribute to cardiac hypertrophy. In addition, angiotensin II (ANG II) was shown to induce vascular smooth muscle cell (VSMC) hypertrophy through Gqα signaling; however, the studies on the role of Gqα and PLC-β1 proteins in VSMC hypertrophy in animal model are lacking. The present study was therefore undertaken to examine the role of Gqα/PLC-β1 proteins and the signaling pathways in VSMC hypertrophy using spontaneously hypertensive rats (SHR). VSMC from 16-wk-old SHR and not from 12-wk-old SHR exhibited enhanced levels of Gqα/PLC-β1 proteins compared with age-matched Wistar-Kyoto (WKY) rats as determined by Western blotting. However, protein synthesis as determined by [3H]leucine incorporation was significantly enhanced in VSMC from both 12- and 16-wk-old SHR compared with VSMC from age-matched WKY rats. Furthermore, the knockdown of Gqα/PLC-β1 in VSMC from 16-wk-old SHR by antisense and small interfering RNA resulted in attenuation of protein synthesis. In addition, the enhanced expression of Gqα/PLC-β1 proteins, enhanced phosphorylation of ERK1/2, and enhanced protein synthesis in VSMC from SHR were attenuated by the ANG II AT1 and endothelin-1 (ET-1) ETA receptor antagonists losartan and BQ123, respectively, but not by the ETB receptor antagonist BQ788. In addition, PD98059 decreased the enhanced expression of Gqα/PLC-β1 and protein synthesis in VSMC from SHR. These results suggest that the enhanced levels of endogenous ANG II and ET-1 through the activation of AT1 and ETA receptors, respectively, and MAP kinase signaling, enhanced the expression of Gqα/PLC-β1 proteins in VSMC from 16-wk-old SHR and result in VSMC hypertrophy.
Collapse
Affiliation(s)
- Mohammed Emehdi Atef
- Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Madhu B. Anand-Srivastava
- Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Huang YH, Yang HY, Hsu YF, Chiu PT, Ou G, Hsu MJ. Src contributes to IL6-induced vascular endothelial growth factor-C expression in lymphatic endothelial cells. Angiogenesis 2013; 17:407-18. [DOI: 10.1007/s10456-013-9386-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 09/12/2013] [Indexed: 12/20/2022]
|
18
|
Pathophysiology of vascular remodeling in hypertension. Int J Hypertens 2013; 2013:808353. [PMID: 23970958 PMCID: PMC3736482 DOI: 10.1155/2013/808353] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/02/2013] [Accepted: 05/16/2013] [Indexed: 11/20/2022] Open
Abstract
Vascular remodeling refers to alterations in the structure of resistance vessels contributing to elevated systemic vascular resistance in hypertension. We start with some historical aspects, underscoring the importance of Glagov's contribution. We then move to some basic concepts on the biomechanics of blood vessels and explain the definitions proposed by Mulvany for specific forms of remodeling, especially inward eutrophic and inward hypertrophic. The available evidence for the existence of remodeled resistance vessels in hypertension comes next, with relatively more weight given to human, in comparison with animal data. Mechanisms are discussed. The impact of antihypertensive drug treatment on remodeling is described, again with emphasis on human data. Some details are given on the three mechanisms to date which point to remodeling resistance arteries as an independent predictor of cardiovascular risk in hypertensive patients. We terminate by considering the potential role of remodeling in the pathogenesis of endorgan damage and in the perpetuation of hypertension.
Collapse
|
19
|
Xiao L, Haack KKV, Zucker IH. Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling. Am J Physiol Cell Physiol 2013; 304:C1073-9. [PMID: 23535237 DOI: 10.1152/ajpcell.00364.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain ANG II plays an important role in modulating sympathetic function and homeostasis. The generation and degradation of ANG II are carried out, to a large extent, through the angiotensin-converting enzyme (ACE) and ACE2, respectively. In disease states, such as hypertension and chronic heart failure, central expression of ACE is upregulated and ACE2 is decreased in central sympathoregulatory neurons. In this study, we determined the expression of ACE and ACE2 in response to ANG II in a neuronal cell culture and the subsequent signaling mechanism(s) involved. A mouse catecholaminergic neuronal cell line (CATH.a) was treated with ANG II (30, 100, and 300 nM) for 24 h, and protein expression was determined by Western blot analysis. ANG II induced a significant dose-dependent increase in ACE and decrease in ACE2 mRNA and protein expression in CATH.a neurons. This effect was abolished by pretreatment of the cells with the p38 MAPK inhibitor SB-203580 (10 μM) 30 min before administration of ANG II or the ERK1/2 inhibitor U-0126 (10 μM). These data suggest that ANG II increases ACE and attenuates ACE2 expression in neurons via the ANG II type 1 receptor, p38 MAPK, and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Liang Xiao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
20
|
Roberts RE. The extracellular signal-regulated kinase (ERK) pathway: a potential therapeutic target in hypertension. J Exp Pharmacol 2012; 4:77-83. [PMID: 27186119 PMCID: PMC4863547 DOI: 10.2147/jep.s28907] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypertension is a risk factor for myocardial infarction, stroke, renal failure, heart failure, and peripheral vascular disease. One feature of hypertension is a hyperresponsiveness to contractile agents, and inhibition of vasoconstriction forms the basis of some of the treatments for hypertension. Hypertension is also associated with an increase in the growth and proliferation of vascular smooth muscle cells, which can lead to a thickening of the smooth muscle layer of the blood vessels and a reduction in lumen diameter. Targeting both the enhanced contractile responses, and the increased vascular smooth muscle cell growth could potentially be important pharmacological treatment of hypertension. Extracellular signal-regulated kinase (ERK) is a member of the mitogen-activated protein kinase family that is involved in both vasoconstriction and vascular smooth muscle cell growth and this, therefore, makes it attractive therapeutic target for treatment of hypertension. ERK activity is raised in vascular smooth muscle cells from animal models of hypertension, and inhibition of ERK activation reduces both vascular smooth muscle cell growth and vasoconstriction. This review discusses the potential for targeting ERK activity in the treatment of hypertension.
Collapse
Affiliation(s)
- Richard E Roberts
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
21
|
Ptasinska-Wnuk D, Lawnicka H, Mucha S, Kunert-Radek J, Pawlikowski M, Stepien H. Angiotensins inhibit cell growth in GH3 lactosomatotroph pituitary tumor cell culture: a possible involvement of the p44/42 and p38 MAPK pathways. ScientificWorldJournal 2012; 2012:189290. [PMID: 22619620 PMCID: PMC3349324 DOI: 10.1100/2012/189290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/22/2011] [Indexed: 12/13/2022] Open
Abstract
The local renin-angiotensin system is present in the pituitary. We investigated the effects of angiotensins on GH3 lactosomatotroph cells proliferation in vitro and the involvement of p44/42 and p38 MAPK inhibitors in the growth-regulatory effects of angiotensins. Materials and Methods. Cell viability using the Mosmann method and proliferation by the measurement of BrdU incorporation during DNA synthesis were estimated. Results. Ang II and ang IV decreased the viability and proliferation of GH3 cells. Inhibitor of p44/42 MAPK attenuated the effects of ang II on cell viability and proliferation but did not affect the ang 5-8-dependent actions. Inhibitor of p38 MAPK prevented the decrease in the number of GH3 cells in ang-II- and ang-IV-treated groups. Conclusions. The growth-inhibitory effect of ang II is possibly mediated by the p44/42 MAPK. The p38 MAPK appears to mediate the inhibitory effects of both ang II and ang 5-8 upon cell survival.
Collapse
Affiliation(s)
- Dorota Ptasinska-Wnuk
- Department of Endocrinology, The County Hospital of Kutno, 52 Kosciuszki Street, 99-300 Kutno, Poland
| | - Hanna Lawnicka
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| | - Slawomir Mucha
- Clinic of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| | - Jolanta Kunert-Radek
- Clinic of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| | - Marek Pawlikowski
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| | - Henryk Stepien
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| |
Collapse
|
22
|
Contrasting effects of aliskiren versus losartan on hypertensive vascular remodeling. Int J Cardiol 2012; 167:1199-205. [PMID: 22483258 DOI: 10.1016/j.ijcard.2012.03.137] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/14/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Hyperactivation of the renin-angiotensin system contributes to hypertension-induced upregulation of vascular matrix metalloproteinases (MMPs) and remodeling, especially in the two kidney, one clip (2K1C) hypertension model. We hypothesized that the AT1R antagonist losartan or the renin inhibitor aliskiren, given at doses allowing similar antihypertensive effects, could prevent in vivo vascular MMPs upregulation and remodeling, and collagen/elastin deposition found in 2K1C hypertension by preventing the activation of extracellular signal-regulated kinase 1/2 (ERK 1/2) and transforming growth factor-β1 (TGF-β1). We also hypothesized that aliskiren could enhance the effects of losartan. METHODS 2K1C rats were treated with aliskiren (50mg.kg(-1).day(-1)), or losartan (10mg.kg(-1).day(-1)), or both by gavage during 4 weeks. RESULTS Aliskiren, losartan, or both drugs exerted similar antihypertensive effects when compared with 2K-1C rats treated with water. Aliskiren reduced plasma renin activity in both sham and 2K-1C rats. Losartan alone or combined with aliskiren, but not aliskiren alone, abolished 2K1C-induced aortic hypertrophy and hyperplasia, and prevented the increases in aortic collagen/elastin content, MMP-2 levels, gelatinolytic activity, and expression of phospho-ERK 1/2 and TGF-β1. No significant differences were found in the aortic expression of the (pro)renin receptor. CONCLUSIONS These findings show that although losartan and aliskiren exerted similar antihypertensive effects, only losartan prevented the activation of vascular profibrotic mechanisms and MMP upregulation associated with vascular remodeling in 2K1C hypertension. Our findings also suggest that aliskiren does not enhance the protective effects exerted by losartan.
Collapse
|
23
|
Paravicini TM, Montezano AC, Yusuf H, Touyz RM. Activation of vascular p38MAPK by mechanical stretch is independent of c-Src and NADPH oxidase: influence of hypertension and angiotensin II. ACTA ACUST UNITED AC 2012; 6:169-78. [PMID: 22341198 DOI: 10.1016/j.jash.2012.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 12/27/2011] [Accepted: 01/08/2012] [Indexed: 01/13/2023]
Abstract
Little is known about vascular MAPK regulation in response to mechanical strain. Whether mechanically-sensitive pathways are altered in hypertension is unclear. We examined effects of stretch and Ang II on activation of p38MAPK in vascular smooth muscle cells (VSMC) from WKY and SHR. The role of c-Src and redox-sensitive pathways in stretch-induced effects were examined. VSMC from mesenteric arteries were plated onto flexible silastic plates and exposed to acute or chronic cyclic stretch (10%, 1 Hz) with or without Ang II (0.1 uM). Acute stretch stimulated p38MAPK activation in WKY and SHR, independently of c-Src and reactive oxygen species (ROS), since PP2 (c-Src inhibitor) and apocynin (NADPH oxidase inhibitor), failed to alter stretch-mediated p38MAPK. Chronic stretch blunted p38MAPK phosphorylation in WKY and increased phosphorylation in SHR. Stretch, in the presence of Ang II, induced an increase in procollagen-1 expression. This was blocked by SB203580 (p38MAPK inhibitor). Accordingly, vascular p38MAPK is a mechano-sensitive MAPK, differentially regulated by acute and chronic stretch in WKY and SHR. Functionally, stretch and Ang II, amplify profibrotic responses in a p38MAPK-dependent manner, responses that are perturbed in SHR. Such molecular process may influence vascular fibrosis in hypertension and appear to be independent of c-Src and ROS.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Animals
- Blotting, Western
- CSK Tyrosine-Protein Kinase
- Cells, Cultured
- Disease Models, Animal
- Enzyme Activation
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/physiopathology
- Multienzyme Complexes/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- NADH, NADPH Oxidoreductases/metabolism
- Protein-Tyrosine Kinases/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Wistar
- Signal Transduction
- Stress, Mechanical
- Vascular Resistance/physiology
- Vasoconstriction/physiology
- p38 Mitogen-Activated Protein Kinases/metabolism
- src-Family Kinases
Collapse
Affiliation(s)
- Tamara M Paravicini
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Ohanian J, Forman SP, Katzenberg G, Ohanian V. Endothelin-1 Stimulates Small Artery VCAM-1 Expression through p38MAPK-Dependent Neutral Sphingomyelinase. J Vasc Res 2012; 49:353-62. [DOI: 10.1159/000336649] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/10/2012] [Indexed: 01/21/2023] Open
|
25
|
Angiotensin II inhibits chemokine CCL5 expression in vascular smooth muscle cells from spontaneously hypertensive rats. Hypertens Res 2011; 34:1313-20. [DOI: 10.1038/hr.2011.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
The role of the p38 MAPK signaling pathway in high glucose-induced epithelial-mesenchymal transition of cultured human renal tubular epithelial cells. PLoS One 2011; 6:e22806. [PMID: 21829520 PMCID: PMC3146517 DOI: 10.1371/journal.pone.0022806] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 07/07/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition of tubular epithelial cells, which is characterized by a loss of epithelial cell characteristics and a gain of ECM-producing myofibroblast characteristics, is an essential mechanism that is involved in tubulointerstitial fibrosis, an important component of the renal injury that is associated with diabetic nephropathy. Under diabetic conditions, p38 MAPK activation has been reported in glomeruli and mesangial cells; however, studies on p38 MAPK in TECs are lacking. In this study, the role of p38 MAPK in AP-1 activation and in the EMT in the human proximal tubular epithelial cell line (HK-2) under high glucose concentration conditions is investigated. METHODOLOGY/PRINCIPAL FINDINGS A vector for small interfering RNA that targets p38 MAPK was constructed; the cells were then either transfected with p38 siRNA or pretreated with a chemical inhibitor of AP-1 and incubated with low glucose plus TGF-β1 or high glucose for 48 h. Cells that were not transfected or pretreated and were exposed to low glucose with or without TGF-β1 or high glucose for 48 h were considered to be the controls. We found that high glucose induced an increase in TGF-β1. And high glucose-induced p38 MAPK activation was inhibited by p38 siRNA (P<0.05). A significant decline in E-cadherin and CK expression and a notable increase in vimentin and α-SMA were detected when exposed to low glucose with TGF-β1 or high glucose, and a significant raise of secreted fibronectin were detected when exposed to high glucose; whereas these changes were reversed when the cells were treated with p38 siRNA or AP-1 inhibitor (P<0.05). AP-1 activity levels and Snail expression were up-regulated under high glucose conditions but were markedly down-regulated through knockdown of p38 MAPK with p38 siRNA or pretreatment with AP-1 inhibitor (P<0.05). CONCLUSION This study suggests that p38 MAPK may play an important role in the high glucose-induced EMT by activating AP-1 in tubular epithelial cells.
Collapse
|
27
|
Src mediates cytokine-stimulated gene expression in airway myocytes through ERK MAPK. Cell Commun Signal 2011; 9:14. [PMID: 21599982 PMCID: PMC3123314 DOI: 10.1186/1478-811x-9-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/20/2011] [Indexed: 12/02/2022] Open
Abstract
The p38 and extracellular signal-regulated kinases (ERK) mitogen-activated protein kinases (MAPK) participate in cytokine-stimulated inflammatory gene expression in airway smooth muscle cells. The following study was undertaken to determine whether Src tyrosine kinases are signaling intermediaries upstream of cytokine-stimulated MAPK activation and gene expression. Treating human airway myocytes with interleukin (IL)-1β, tumor necrosis factor (TNF) α and interferon (IFN) γ caused a rapid 1.8-fold increase in Src family tyrosine kinase activity within 1 minute that remained 2.3 to 2.7 fold above basal conditions for 15 minutes. This activity was blocked by addition of 30 μM PP1, a pyrimidine inhibitor specific for Src family tyrosine kinases, in immune-complex assays to confirm that this stimulus activates Src tyrosine kinase. Addition of PP1 also blocked cytokine-stimulated expression of IL-1β, IL-6 and IL-8, while decreasing phosphorylation of ERK, but not p38 MAPK. Since this inflammatory stimulus may activate additional inflammatory signaling pathways downstream of Src, we tested the effects of PP1 on phosphorylation of signal transducers and activators of transcription (STAT). PP1 had no effect on cytokine-stimulated STAT 1 or STAT 3 phosphorylation. These results demonstrate that Src tyrosine kinases participate in the regulation of IL-1β, IL-6 and IL-8 expression and that these effects of Src are mediated through activation of ERK MAPK and not p38 MAPK or STAT1/STAT3 phosphorylation.
Collapse
|
28
|
Ebrahimian T, Li MW, Lemarié CA, Simeone SMC, Pagano PJ, Gaestel M, Paradis P, Wassmann S, Schiffrin EL. Mitogen-activated protein kinase-activated protein kinase 2 in angiotensin II-induced inflammation and hypertension: regulation of oxidative stress. Hypertension 2010; 57:245-54. [PMID: 21173344 DOI: 10.1161/hypertensionaha.110.159889] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vascular oxidative stress and inflammation play an important role in angiotensin II-induced hypertension, and mitogen-activated protein kinases participate in these processes. We questioned whether mitogen-activated protein kinase-activated protein kinase 2 (MK2), a downstream target of p38 mitogen-activated protein kinase, is involved in angiotensin II-induced vascular responses. In vivo experiments were performed in wild-type and Mk2 knockout mice infused intravenously with angiotensin II. Angiotensin II induced a 30 mm Hg increase in mean blood pressure in wild-type that was delayed in Mk2 knockout mice. Angiotensin II increased superoxide production and vascular cell adhesion molecule-1 in blood vessels of wild-type but not in Mk2 knockout mice. Mk2 knockdown by small interfering RNA in mouse mesenteric vascular smooth muscle cells caused a 42% reduction in MK2 protein and blunted the angiotensin II-induced 40% increase of MK2 expression. Mk2 knockdown blunted angiotensin II-induced doubling of intracellular adhesion molecule-1 expression, 2.4-fold increase of nuclear p65, and 1.4-fold increase in Ets-1. Mk2 knockdown abrogated the angiotensin II-induced 4.7-fold and 1.3-fold increase of monocyte chemoattractant protein-1 mRNA and protein. Angiotensin II enhanced reactive oxygen species levels (by 29%) and nicotinamide adenine dinucleotide phosphate oxidase activity (by 48%), both abolished by Mk2 knockdown. Reduction of MK2 blocked angiotensin II-induced p47phox translocation to the membrane, associated with a 53% enhanced catalase expression. Angiotensin II-induced increase of MK2 was prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor Nox2ds-tat. Mk2 small interfering RNA prevented the angiotensin II-induced 30% increase of proliferation. In conclusion, MK2 plays a critical role in angiotensin II signaling, leading to hypertension, oxidative stress via activation of p47phox and inhibition of antioxidants, and vascular inflammation and proliferation.
Collapse
Affiliation(s)
- Talin Ebrahimian
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Silva J, Pastorello M, Arzola J, Zavala LE, De Jesús S, Varela M, Matos MG, del Rosario Garrido M, Israel A. AT₁ receptor and NAD(P)H oxidase mediate angiotensin II-stimulated antioxidant enzymes and mitogen-activated protein kinase activity in the rat hypothalamus. J Renin Angiotensin Aldosterone Syst 2010; 11:234-42. [PMID: 20807796 DOI: 10.1177/1470320310376987] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Angiotensin II (AngII) regulates blood pressure and water and electrolyte metabolism through the stimulation of NAD(P)H oxidase and production of reactive oxygen species (ROS) such as O₂⁻, which is metabolised by superoxide dismutase, catalase and glutathione peroxidase. We assessed the role of AT₁ and AT₂ receptors, NAD(P)H oxidase and protein kinase C (PKC) in Ang II-induced sodium and water excretion and their capacity to stimulate antioxidant enzymes in the rat hypothalamus, a brain structure known to express a high density of AngII receptors. MATERIALS AND METHODS Male Sprague-Dawley rats were intracerebroventricularly (ICV) injected with AngII and urinary sodium and water excretion was assessed. Urine sodium concentration was determined using flame photometry. After decapitation the hypothalamus was microdissected under stereomicroscopic control. Superoxide dismutase, catalase and glutathione peroxidase activity were determined spectrophotometrically and extracellular signal-regulated kinase (ERK1/2) activation was analysed by Western blot. RESULTS AngII-ICV resulted in antidiuresis and natriuresis. ICV administration of losartan, PD123319, apocynin and chelerythrine blunted natriuresis. In hypothalamus, AngII increased catalase, superoxide dismutase and glutation peroxidase activity and ERK1/2 phosphorylation. These actions were prevented by losartan, apocynin and chelerythrine, and increased by PD123319. CONCLUSIONS AT₁ and AT₂ receptors, NAD(P)H oxidase and PKC pathway are involved in the regulation of hydromineral metabolism and antioxidant enzyme activity induced by AngII.
Collapse
Affiliation(s)
- José Silva
- School of Pharmacy, Laboratory of Neuropeptides, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ivanova AD, Petrova GI. Hypertension and common complications --analysis of the ambulatory treatment cost. Cent Eur J Public Health 2010; 17:223-30. [PMID: 20377054 DOI: 10.21101/cejph.a3538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIM Retrospective analysis of the prescribing practice and cost of ambulatory treatment of hypertension and its common complications--heart failure, sequelae of cerebrovascular disease, and angina pectoris. METHODS Analysis of 3,240 reimbursable ambulatory prescriptions for hypertension, heart failure, sequelae of cerebrovascular disease and angina pectoris according to the complexity of the therapy and frequency of the prescribed medicines. Modeling and calculation of the expected monthly cost for outpatient therapy by using the "decision tree model". Sensitivity analysis is performed within the +/- 30% interval. RESULTS 65% of the prescription were for the hypertension, and 35% for the observed complications. 1,297 prescriptions for hypertension include one medicine, 647 include two medicines, and only 8% of prescriptions were for three medicines. ACE inhibitors have been prescribed in 41% of all hypertension prescriptions, followed by beta-blockers (19%), Ca channel blockers (16%), diuretics (15%) etc. The prescriptions for hypertension complications are more diverse as therapeutic groups. The expected monthly cost of prescribed medicines per patient with hypertension alone is 6.90 Euro and in case of complications it is 10.71 Euro according to the prevalence of the complexity of therapy, and weighted monthly cost of medicines. The overall ambulatory cost is expected to be around 148 million Euro per year for near 1.5 million patients with 44% reimbursement. The cost of the therapy is sensitive more to changes in the medicine's prices than to its complexity. CONCLUSION This study is a first step in providing information for evidence-based cost containment measures or policy decisions at ambulatory level in Bulgaria and for the assessment of the share of complications' therapy on the overall hypertension cost.
Collapse
Affiliation(s)
- Anna D Ivanova
- Department of Social Pharmacy, Faculty of Pharmacy, Medical University, Sofia, Bulgaria.
| | | |
Collapse
|
31
|
Kishi T, Hirooka Y, Konno S, Ogawa K, Sunagawa K. Angiotensin II Type 1 Receptor–Activated Caspase-3 Through Ras/Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase in the Rostral Ventrolateral Medulla Is Involved in Sympathoexcitation in Stroke-Prone Spontaneously Hypertensive Rats. Hypertension 2010; 55:291-7. [DOI: 10.1161/hypertensionaha.109.138636] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the rostral ventrolateral medulla (RVLM), angiotensin II-derived superoxide anions, which increase sympathetic nerve activity, induce a pressor response by activating the p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-regulated kinase (ERK) pathway. The small G protein Ras mediates a caspase-3–dependent apoptotic pathway through p38 MAPK, ERK, and c-Jun N-terminal kinase. We hypothesized that angiotensin II type 1 receptors activate caspase-3 through the Ras/p38 MAPK/ERK/c-Jun N-terminal kinase pathway in the RVLM and that this pathway is involved in sympathoexcitation in stroke-prone spontaneously hypertensive rats (SHRSP), a model of human hypertension. The activities of Ras, p38 MAPK, ERK, and caspase-3 in the RVLM were significantly higher in SHRSP (14 to 16 weeks old) than in age-matched Wistar-Kyoto rats (WKY). The mitochondrial apoptotic proteins Bax and Bad in the RVLM were significantly increased in SHRSP compared with WKY. c-Jun N-terminal kinase activity did not differ between SHRSP and WKY. In SHRSP, intracerebroventricular infusion of a Ras inhibitor significantly reduced sympathetic nerve activity and improved baroreflex sensitivity, partially because of inhibition of the Ras/p38 MAPK/ERK, Bax, Bad, and caspase-3 pathway in the RVLM. Intracerebroventricular infusion of a caspase-3 inhibitor also inhibited sympathetic nerve activity and improved baroreflex sensitivity in SHRSP. Intracerebroventricular infusion of an angiotensin II type 1 receptor blocker in SHRSP partially inhibited the Ras/p38 MAPK/ERK, Bax, Bad, and caspase-3 pathway in the RVLM. These findings suggest that in SHRSP, angiotensin II type 1 receptor-activated caspase-3 acting through the Ras/p38 MAPK/ERK pathway in the RVLM might be involved in sympathoexcitation, which in turn plays a crucial role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Takuya Kishi
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshitaka Hirooka
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Satomi Konno
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kiyohiro Ogawa
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kenji Sunagawa
- From the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
32
|
Jing L, Zhang JZ, Zhao L, Wang YL, Guo FY. High-Expression of Transforming Growth Factor β1and Phosphorylation of Extracellular Signal-Regulated Protein Kinase in Vascular Smooth Muscle Cells from Aorta and Renal Arterioles of Spontaneous Hypertension Rats. Clin Exp Hypertens 2009; 29:107-17. [PMID: 17364610 DOI: 10.1080/10641960701195447] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To further elucidate the molecular mechanisms involved in hypertensive vascular remodeling, an immunohistochemical technique and Western blot were applied to study phospho-extracellular signal-regulated kinase (ERK1/2) and transforming growth factor beta1 (TGF-beta1) expression in endothelial and vascular smooth muscle cell (VSMC) of the thoracic aorta and renal arterioles from SHR of different ages. Results of both the immunohistochemistry and Western blot assays showed that either the phospho-ERK1/2 at endothelium or VSMC of renal small arteries from SHR8, SHR16, and SHR20 groups and of the aorta from SHR16 and SHR20 were higher than that from control group. Comparing with that in the small arteries of the kidney, the phospho-ERK1/2 in the endothelium and in VSMC was markedly increased in the aorta, and high expression of TGF-beta1 was detected in the aorta and kidney from SHR16 and SHR20 by Western blot. These results suggested that ERK 1/2 could be activated by phosphorylation with over-expression of TGF-beta1 in the endothelium and in VSMC of aorta and renal arterioles from SHR, which might play an important role in VSMC proliferation under hypertension.
Collapse
Affiliation(s)
- Li Jing
- Institute of Immunopathology, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science & Technology, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | |
Collapse
|
33
|
Vardatsikos G, Sahu A, Srivastava AK. The insulin-like growth factor family: molecular mechanisms, redox regulation, and clinical implications. Antioxid Redox Signal 2009; 11:1165-90. [PMID: 19014342 DOI: 10.1089/ars.2008.2161] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin-like growth factor (IGF)-induced signaling networks are vital in modulating multiple fundamental cellular processes, such as cell growth, survival, proliferation, and differentiation. Aberrations in the generation or action of IGF have been suggested to play an important role in several pathological conditions, including metabolic disorders, neurodegenerative diseases, and multiple types of cancer. Yet the exact mechanism involved in the pathogenesis of these diseases by IGFs remains obscure. Redox pathways involving reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the pathogenetic mechanism of various diseases by modifying key signaling pathways involved in cell growth, proliferation, survival, and apoptosis. Furthermore, ROS and RNS have been demonstrated to alter IGF production and/or action, and vice versa, and thereby have the ability to modulate cellular functions, leading to clinical manifestations of diseases. In this review, we provide an overview on the IGF system and discuss the potential role of IGF-1/IGF-1 receptor and redox pathways in the pathophysiology of several diseases.
Collapse
Affiliation(s)
- George Vardatsikos
- Laboratory of Cell Signaling, Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
34
|
Kutcher ME, Herman IM. The pericyte: cellular regulator of microvascular blood flow. Microvasc Res 2009; 77:235-46. [PMID: 19323975 DOI: 10.1016/j.mvr.2009.01.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 01/03/2023]
Abstract
The vascular system - through its development, response to injury, and remodeling during disease - constitutes one of the key organ systems sustaining normal human physiology; conversely, its dysregulation also underlies multiple pathophysiologic processes. Regulation of vascular endothelial cell function requires the integration of complex signals via multiple cell types, including arterial smooth muscle, capillary and post-capillary pericytes, and other perivascular cells such as glial and immune cells. Here, we focus on the pericyte and its roles in microvascular remodeling, reviewing current concepts in microvascular pathophysiology and offering new insights into the specific roles that pericyte-dependent signaling pathways may play in modulating endothelial growth and microvascular tone during pathologic angiogenesis and essential hypertension.
Collapse
Affiliation(s)
- Matthew E Kutcher
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
35
|
Transactivation of epidermal growth factor receptor in vascular and renal systems in rats with experimental hyperleptinemia: role in leptin-induced hypertension. Biochem Pharmacol 2008; 75:1623-38. [PMID: 18282556 DOI: 10.1016/j.bcp.2008.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/28/2007] [Accepted: 01/02/2008] [Indexed: 01/09/2023]
Abstract
We examined the role of epidermal growth factor (EGF) receptor in the pathogenesis of leptin-induced hypertension in the rat. Leptin, administered in increasing doses (0.1-0.5 mg/kg/day) for 10 days, increased phosphorylation levels of non-receptor tyrosine kinase, c-Src, EGF receptor and extracellular signal-regulated kinases (ERK) in aorta and kidney, which was accompanied by the increase in plasma concentration and urinary excretion of isoprostanes and H2O2. Blood pressure and renal Na+,K+-ATPase activity were higher, whereas urinary sodium excretion was lower in animals receiving leptin. The effects of leptin on renal Na+,K+-ATPase, natriuresis and blood pressure were abolished by NADPH oxidase inhibitor, apocynin, Src kinase inhibitor, PP2, EGF receptor inhibitor, AG1478, protein farnesyltransferase inhibitor, manumycin A, and ERK inhibitor, PD98059. In contrast, inhibitors of insulin-like growth factor-1 and platelet-derived growth factor receptors, AG1024 and AG1295, respectively, only slightly reduced ERK phosphorylation and had no effect on blood pressure in rats receiving leptin. These data indicate that: (1) experimental hyperleptinemia is associated with oxidative stress and c-Src-dependent transactivation of the EGF receptor, which stimulates ERK in vascular wall and the kidney, (2) overactivity of EGF receptor-ERK pathway contributes to leptin-induced hypertension by stimulating renal Na+,K+-ATPase and reducing sodium excretion, (3) inhibitors of c-Src, EGF receptor and ERK may be considered as a novel therapy for hypertension associated with hyperleptinemia, e.g. in patients with obesity and metabolic syndrome.
Collapse
|
36
|
ZHAO X, ZHANG LK, ZHANG CY, ZENG XJ, YAN H, JIN HF, TANG CS, DU JB. Regulatory Effect of Hydrogen Sulfide on Vascular Collagen Content in Spontaneously Hypertensive Rats. Hypertens Res 2008; 31:1619-30. [DOI: 10.1291/hypres.31.1619] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Wójcicka G, Jamroz-Wiśniewska A, Widomska S, Ksiazek M, Bełtowski J. Role of extracellular signal-regulated kinases (ERK) in leptin-induced hypertension. Life Sci 2007; 82:402-12. [PMID: 18206959 DOI: 10.1016/j.lfs.2007.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 09/27/2007] [Accepted: 11/25/2007] [Indexed: 11/30/2022]
Abstract
We investigated if extracellular signal-regulated kinases (ERK) and oxidative stress are involved in the pathogenesis of arterial hypertension induced by chronic leptin administration in the rat. Leptin was administered at a dose of 0.25 mg/kg twice daily s.c. for 4 or 8 days. Blood pressure (BP) was higher in leptin-treated than in control animals from the third day of the experiment. The superoxide dismutase (SOD) mimetic, tempol, normalized BP in leptin-treated rats on days 6, 7 and 8, whereas the ERK inhibitor, PD98059, exerted a hypotensive effect on days 3 through 6. Leptin increased ERK phosphorylation level in renal and aortic tissues more markedly after 4 than after 8 days of treatment. In addition, leptin reduced urinary Na(+) excretion and increased renal Na(+),K(+)-ATPase activity, and these effects were abolished on days 4 and 8 by PD98059 and tempol, respectively. The levels of NO metabolites and cGMP were reduced in animals receiving leptin for 8 days. Markers of oxidative stress (H(2)O(2) and lipid peroxidation products) were elevated to a greater extent after 4 than after 8 days of leptin treatment. In contrast, nitrotyrosine, a marker of protein nitration by peroxynitrite, was higher in animals receiving leptin for 8 days. NADPH oxidase inhibitor, apocynin, prevented leptin's effect on BP, ERK, Na(+),K(+)-ATPase/Na(+) excretion and NO formation at all time points. SOD activity was reduced, whereas glutathione peroxidase (GPx) activity was increased in the group treated with leptin for 8 days. These data indicate that: (1) ERK, activated by oxidative stress, is involved only in the early phase of leptin-induced BP elevation, (2) the later phase of leptin-induced hypertension is characterized by excessive NO inactivation by superoxide, (3) the time-dependent shift from ERK to O(2)(-)-NO dependent mechanism may be associated with reduced SOD/GPx ratio, which favors formation of O(2)(-) instead of H(2)O(2).
Collapse
Affiliation(s)
- Grazyna Wójcicka
- Department of Pathophysiology, Medical University, ul. Jaczewskiego 8, 20-090 Lublin, Poland
| | | | | | | | | |
Collapse
|
38
|
Reja V, Goodchild AK, Phillips JK, Pilowsky PM. Upregulation of angiotensin AT1 receptor and intracellular kinase gene expression in hypertensive rats. Clin Exp Pharmacol Physiol 2007; 33:690-5. [PMID: 16895541 DOI: 10.1111/j.1440-1681.2006.04420.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. Activation of angiotensin II AT1 receptors (AT1R) stimulates catecholamine systems within both central and peripheral tissues that are associated with blood pressure control. In the present study, we sought to determine whether the hypertensive phenotype of the spontaneously hypertensive rat (SHR) is associated with changes in AT1R gene expression and whether gene expression of downstream signalling molecules was coupled to catecholamine gene expression, both in key brainstem nuclei and in peripheral sites implicated in cardiovascular control. 2. Gene expression levels of AT1R, extracellular signal-regulated kinase (ERK) 1 and 2 and phosphatidylinositol 3-kinase (PI3-K) were quantified in Wistar-Kyoto (WKY) rats and SHR. Messenger RNA expression levels were quantified using real time reverse transcription-polymerase chain reaction. In addition, we investigated whether there was a relationship between gene expression and systolic blood pressure. 3. The gene expression levels of AT1R, ERK2 and PI3-K were significantly higher in the paraventricular nucleus of the hypothalamus (4.12-, 1.40- and 1.38-fold, respectively), rostral ventrolateral medulla (2.71-, 1.33- and 2.73-fold, respectively), spinal cord (30.5-, 2.72- and 1.53-fold, respectively), adrenal medulla (1.68-, 1.55- and 1.76-fold, respectively) and coeliac ganglion (1.39-, 1.35- and 1.12-fold, respectively) in SHR compared with WKY rats. There was no significant difference in the level of ERK1 gene expression between the two strains. The gene expression levels of AT1R and ERK2 were positively correlated with blood pressure in all central nervous tissues investigated in the SHR, but not in WKY rats. Gene expression levels of the AT1R in the coeliac ganglion and adrenal medulla were also positively correlated with increased systolic blood pressure. 4. The present data suggest that a defect in AT1R expression (that may further alter downstream signalling pathways) in the SHR may be responsible, at least in part, for the hypertensive phenotype.
Collapse
Affiliation(s)
- Valin Reja
- Hypertension and Stroke Research Laboratories, Kolling Institute and School of Medical Sciences, Department Physiology, University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|
39
|
Callera GE, Montezano AC, Yogi A, Tostes RC, Touyz RM. Vascular signaling through cholesterol-rich domains: implications in hypertension. Curr Opin Nephrol Hypertens 2007; 16:90-104. [PMID: 17293683 DOI: 10.1097/mnh.0b013e328040bfbd] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Lipid rafts are emerging as key players in the integration of cellular responses. Alterations in these highly regulated signaling cascades are important in structural, mechanical and functional abnormalities that underlie vascular pathological processes. The present review focuses on recent advances in signal transduction through caveolae/lipid rafts, implicated in hypertensive processes. RECENT FINDINGS Caveolae/lipid rafts function as sites of dynamic regulatory events in receptor-induced signal transduction. Mediators of vascular function, including G-protein coupled receptors, Src family tyrosine kinases, receptor tyrosine kinases, protein phosphatases and nitric oxide synthase, are concentrated within these microdomains. The assembly of functionally active nicotinamide adenine dinucleotide phosphate oxidase and subsequent reactive oxygen species production are also dependent on interactions within the caveolae/lipid rafts. Recent findings have also demonstrated the importance of actin-cytoskeleton and focal adhesion sites for protein interactions with caveolae/lipid raft. SUMMARY Many vascular signaling processes are altered in hypertension. Whether these events involve lipid rafts/caveolae remains unclear. A better understanding of how signaling molecules compartmentalize in lipid rafts/caveolae will provide further insights into molecular mechanisms underlying vascular damage in cardiovascular disease.
Collapse
Affiliation(s)
- Glaucia E Callera
- Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ottawa, Canada.
| | | | | | | | | |
Collapse
|
40
|
Lyle AN, Griendling KK. Modulation of vascular smooth muscle signaling by reactive oxygen species. Physiology (Bethesda) 2006; 21:269-80. [PMID: 16868316 DOI: 10.1152/physiol.00004.2006] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modulation of signaling in vascular cells by reactive oxygen species (ROS) affects many aspects of cellular function, including growth, migration, and contraction. NADPH oxidases, important sources of ROS, regulate many growth-specific and migration-related signaling pathways. Identifying the precise intracellular targets of ROS enhances understanding of their role in cardiovascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Alicia N Lyle
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
41
|
Liu D, Scholze A, Zhu Z, Krueger K, Thilo F, Burkert A, Streffer K, Holz S, Harteneck C, Zidek W, Tepel M. Transient receptor potential channels in essential hypertension. J Hypertens 2006; 24:1105-14. [PMID: 16685211 DOI: 10.1097/01.hjh.0000226201.73065.14] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The role of nonselective cation channels of the transient receptor potential channel (TRPC) family in essential hypertension has not yet been investigated. METHODS We studied TRPCs in 51 patients with essential hypertension and 51 age-matched and sex-matched normotensive control subjects. Calcium and gadolinium influx into human monocytes was determined using the fluorescent dye technique. TRPC expression was measured using reverse transcriptase-polymerase chain reaction and in-cell western assay. Gene silencing by small interfering RNA for specific TRPC knockdown was also performed. RESULTS We observed an increased gadolinium/calcium-influx ratio through TRPC in essential hypertensive patients compared with normotensive control subjects [cation influx ratio (mean +/- SEM), 125 +/- 14 versus 80 +/- 7%; each n = 51; P < 0.01], due to an increase of gadolinium influx in hypertensive patients compared with normotensive control subjects (48 +/- 4 versus 36 +/- 3%; each n = 51; P < 0.05). We observed a significant increase of TRPC3 and TRPC5 protein expression in essential hypertensive patients compared with normotensive control subjects (normalized TRPC3 expression, 3.21 +/- 0.59 versus 1.36 +/- 0.07; each n = 20; P < 0.01; normalized TRPC5 expression, 2.10 +/- 0.28 versus 1.40 +/- 0.52; each n = 12; P < 0.05). We used small interfering RNA for knockdown of TRPC5. The thereby reduced channel expression caused a significant attenuation of calcium and gadolinium influx. CONCLUSION This study points to an important role of TRPCs in essential hypertension.
Collapse
Affiliation(s)
- Daoyan Liu
- Med. Klinik IV, Nephrologie, Charité Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
García MP, Giménez J, Serna M, Salom MG, Bonacasa B, Carbonell LF, Quesada T, Hernández I. Effect of estrogen and angiotensin-converting enzyme inhibitor on vascular remodeling in ovariectomized spontaneously hypertensive rats. Menopause 2006; 13:397-403. [PMID: 16735936 DOI: 10.1097/01.gme.0000222472.08593.e4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The present study evaluated whether estrogen influences the effect of angiotensin-converting enzyme inhibition in preventing the vascular remodeling induced by hypertension and also investigated the signal mechanism involved in that effect. DESIGN Ten-week-old female spontaneously hypertensive rats were ovariectomized (OVX) and randomly assigned to the groups: untreated OVX and treated with 17beta-estradiol (estradiol, 1.5 mg) and/or captopril (5 mg/kg/day). Evolution of systolic blood pressure was determined until 18 weeks. At that time, the heart and mesentery were excised. Structural changes in coronary vessels were quantified by an image analyzer. Inmunoblotting was performed on mesenteric arteries for determination of phosphorylated (ERK1/2). RESULTS Estradiol treatment enhanced the antihypertensive effect of captopril in OVX rats. Treatment with captopril slightly modified the media cross-sectional area and wall-to-lumen of myocardial arterioles from OVX spontaneously hypertensive rats, whereas coadministration of captopril and estradiol significantly reduced the media cross-sectional area, wall-to-lumen ratio, and perivascular fibrosis in OVX spontaneously hypertensive rats. Captopril alone did not significantly inhibit extracellular signal-regulated kinase 1/2 phosphorylation, whereas coadministration of captopril and estradiol significantly attenuated this parameter. CONCLUSIONS These results indicate that estrogen may enhance the angiotensin-converting enzyme inhibition-mediated improvement of vascular remodeling in hypertension, which may be partly mediated via inhibition of extracellular signal-regulated kinase 1/2.
Collapse
Affiliation(s)
- Maria P García
- Department of Physiology, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Mitogen activated protein kinase signaling in the kidney: target for intervention? ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200500063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Chan SHH, Hsu KS, Huang CC, Wang LL, Ou CC, Chan JYH. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla. Circ Res 2005; 97:772-80. [PMID: 16151022 DOI: 10.1161/01.res.0000185804.79157.c0] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons are located, is a central site via which angiotensin II (Ang II) elicits its pressor effect. We tested the hypothesis that NADPH oxidase-derived superoxide anion (O2*-) in the RVLM mediates Ang II-induced pressor response via activation of mitogen-activated protein kinase (MAPK) signaling pathways. Bilateral microinjection of Ang II into the RVLM resulted in an angiotensin subtype 1 (AT1) receptor-dependent phosphorylation of p38 MAPK and extracellular signal-regulated protein kinase (ERK)1/2, but not stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK), in the ventrolateral medulla. The Ang II-induced p38 MAPK or ERK1/2 phosphorylation was attenuated by application into the RVLM of a NADPH oxidase inhibitor, diphenyleneiodonium chloride (DPI), an antisense oligonucleotide that targets against p22phox or p47phox subunit of NADPH oxidase mRNA, or the superoxide dismutase mimetic tempol. DPI or antisense p22phox or p47phox oligonucleotide treatment also attenuated the AT1 receptor-dependent increase in O2*- production in the ventrolateral medulla elicited by Ang II at the RVLM. Functionally, Ang II-elicited pressor response in the RVLM was attenuated by DPI, tempol, or a p38 MAPK inhibitor, SB203580. The AT1 receptor-mediated enhancement of the frequency of glutamate-sensitive spontaneous excitatory postsynaptic currents induced by Ang II in RVLM neurons was also abolished by SB203580. These results suggest that NADPH oxidase-derived O2*- underlies the activation of p38 MAPK or ERK1/2 by Ang II in the ventrolateral medulla. Furthermore, the p38 MAPK signaling pathway may mediate Ang II-induced pressor response via enhancement of presynaptic release of glutamate to RVLM neurons.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Neuroscience, National Sun Yat-sen University, Tainan, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Nemoto K, Sekimoto M, Fukamachi K, Kageyama H, Degawa M, Hamadai M, Hendley ED, Macrae IM, Clark JS, Dominiczak AF, Ueyama T. No involvement of the nerve growth factor gene locus in hypertension in spontaneously hypertensive rats. Hypertens Res 2005; 28:155-63. [PMID: 16025743 DOI: 10.1291/hypres.28.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sympathetic hyper-innervation and increased levels of nerve growth factor (NGF), an essential neurotrophic factor for sympathetic neurons, have been observed in the vascular tissues of spontaneously hypertensive rats (SHRs). Such observations have suggested that the pathogenesis of hypertension might involve a qualitative or quantitative abnormality in the NGF protein, resulting from a significant mutation in the gene's promoter or coding region. In the present study, we analyzed the nucleotide sequences of the cis-element of the NGF gene in SHRs, stroke-prone SHRs (SHRSPs), and normotensive Wistar-Kyoto (WKY) rats. The present analyses revealed some differences in the 3-kb promoter region, coding exon, and 3' untranslated region (3'UTR) for the NGF gene among those strains. However, the observed differences did not lead to changes in promoter activity or to amino acid substitution; nor did they represent a link between the 3'UTR mutation of SHRSPs and elevated blood pressure in an F2 generation produced by crossbreeding SHRSPs with WKY rats. These results suggest that the NGF gene locus is not involved in hypertension in SHR/ SHRSP strains. The present study also revealed two differences between SHRs and WKY rats, as found in cultured vascular smooth muscle cells and in mRNA prepared from each strain. First, SHRs had higher expression levels of c-fos and c-jun genes, which encode the component of the AP-1 transcription factor that activates NGF gene transcription. Second, NGF mRNAs prepared from SHRs had a longer 3'UTR than those prepared from WKY rats. Although it remains to be determined whether these events play a role in the hypertension of SHR/SHRSP strains, the present results emphasize the importance of actively searching for aberrant trans-acting factor(s) leading to the enhanced expression of the NGF gene and NGF protein in SHR/SHRSP strains.
Collapse
Affiliation(s)
- Kiyomitsu Nemoto
- Department of Molecular Toxicology and COE Program in the 21 st Century, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dupuis F, Atkinson J, Limiñana P, Chillon JM. Comparative effects of the angiotensin II receptor blocker, telmisartan, and the angiotensin-converting enzyme inhibitor, ramipril, on cerebrovascular structure in spontaneously hypertensive rats. J Hypertens 2005; 23:1061-6. [PMID: 15834293 DOI: 10.1097/01.hjh.0000166848.95592.a5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Antihypertensive treatment with angiotensin-converting enzyme inhibitors (ACEIs) reverses cerebral arteriolar remodeling, thus restoring dilatation and hence the lower limit of cerebral blood flow (CBF) autoregulation (LLCBF). The objective of this study was to determine whether angiotensin II receptor AT1 blockers (ARBs) produce the same effect. DESIGN We examined the effects of treatment with an ARB [telmisartan (TEL), 1.93 +/- 0.04 mg/kg per day] or an ACEI [ramipril (RAM), 1.00 +/- 0.02 mg/kg per day] on the cerebral circulation in spontaneously hypertensive rats (SHR). METHODS Arteriolar pressure and diameter (cranial window) and CBF (laser Doppler) were measured during stepwise hypotensive hemorrhage, before and after deactivation (ethylenediamine tetraacetic acid), in untreated Wistar-Kyoto (WKY) rats and SHR untreated or treated for 3 months with TEL or RAM in the drinking water. RESULTS Treatment normalized arteriolar internal diameter (SHR, 38 +/- 3 microm; TEL, 52 +/- 2 microm; RAM, 50 +/- 2 microm; WKY, 58 +/- 4 microm), essentially by reversing eutrophic inward remodeling, and the LLCBF (SHR, 80 +/- 11 mmHg; TEL, 60 +/- 4 mmHg; RAM, 71 +/- 6 mmHg; WKY, 57 +/- 5 mmHg). CONCLUSION The fact that the ARB (TEL) is as effective as an ACEI (RAM) in reversing cerebral arteriolar remodeling suggests that the cerebrovascular AT1 receptor is an underlying mechanism that promotes hypertensive eutrophic inward remodeling.
Collapse
Affiliation(s)
- François Dupuis
- Cardiovascular Research Group, INSERM U684, Faculté de Pharmacie, Université Henri Poincaré-Nancy I, Nancy, France
| | | | | | | |
Collapse
|
47
|
Kiribayashi K, Masaki T, Naito T, Ogawa T, Ito T, Yorioka N, Kohno N. Angiotensin II induces fibronectin expression in human peritoneal mesothelial cells via ERK1/2 and p38 MAPK. Kidney Int 2005; 67:1126-35. [PMID: 15698454 DOI: 10.1111/j.1523-1755.2005.00179.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The renin-angiotensin system has been implicated in the pathogenesis of fibrosis in various organs. However, its involvement in peritoneal fibrosis, a crucial complication of peritoneal dialysis, is unclear. Human peritoneal mesothelial cells (HPMC) play a major role in peritoneal fibrosis by producing extracellular matrix (ECM). However, there is scant data regarding the effect of angiotensin II (Ang II) on ECM expression and signal transduction pathways in HPMC. METHODS The concentration of Ang II in the peritoneal dialysis effluent was measured by radioimmunoassay. We investigated the expression of Ang II type 1 (AT1) and type 2 (AT2) receptors by HPMC. We also examined the effect of Ang II upon fibronectin production by HPMC, and dissected the receptor and intracellular signaling pathways involved. RESULTS Ang II levels in the peritoneal dialysis effluent at the onset of peritonitis were 30 times higher than baseline levels. HPMC expression of AT1 and AT2 receptors was confirmed at the mRNA and protein level by reverse transcriptase-polymerase chain reaction (PCR), Western blotting, and immunocytochemistry. Quantitative reverse transcriptase-PCR and Western blotting showed that 10 nmol/L Ang II increased fibronectin mRNA expression followed by secretion of fibronectin protein. This response was completely inhibited by the AT1 receptor antagonist RNH6270, while the AT2 receptor antagonist PD123319 had no effect. Ang II-induced fibronectin expression was mediated by the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (p38 MAPK), but not c-Jun N-terminal kinase. CONCLUSION These results indicate the potential importance of ERK1/2 and p38 MAPK signaling pathways in Ang II-induced fibronectin expression in HPMC, and suggest the therapeutic potential of AT1 receptor blockers in the prevention or treatment of peritoneal fibrosis in patients on peritoneal dialysis.
Collapse
Affiliation(s)
- Kei Kiribayashi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Touyz RM, Yao G, Viel E, Amiri F, Schiffrin EL. Angiotensin II and endothelin-1 regulate MAP kinases through different redox-dependent mechanisms in human vascular smooth muscle cells. J Hypertens 2004; 22:1141-9. [PMID: 15167449 DOI: 10.1097/00004872-200406000-00015] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The role of reactive oxygen species (ROS) in mitogen-activated protein kinase (MAPK) signaling by angiotensin (Ang) II and endothelin-1 (ET-1) in human vascular smooth muscle cells (VSMC) was investigated. DESIGN VSMCs were derived from resistance arteries from healthy subjects. MAPK activity was assessed using phospho-specific antibodies. ROS generation was measured by CMH2DCFDA fluorescence and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity by lucigenin chemiluminescence. RESULTS Ang II and ET-1 increased MAPK phosphorylation (P < 0.01). Pre-treatment with Tiron and Tempol, *O2 scavengers, attenuated agonist-stimulated phosphorylation of p38MAPK, c-Jun N-terminal kinases (JNK) and ERK5, but not of ERK1/2 (extracellular signal-regulated kinases). Apocynin and diphenylene iodinium (DPI), NAD(P)H oxidase inhibitors, decreased Ang II-induced responses 60-70%. ET-1-mediated MAPK phosphorylation was unaffected by apocynin but was reduced (> 50%) by thenoyltrifluoroacetone (TIFT) and carboxyl cyanide-m-chlorophenylhydrazone (CCCP), mitochondrial inhibitors. Allopurinol and N-nitro-l-arginine methyl ester (l-NAME), xanthine oxidase and nitric oxide synthase (NOS) inhibitors, respectively, did not influence MAPK activation. Intracellular ROS generation, was increased by Ang II and ET-1 (P < 0.01). DPI inhibited Ang II- but not ET-1-mediated ROS production. Expression of p22phox and p47phox and activation of NAD(P)H oxidase were increased by Ang II but not by ET-1. CCCP and TIFT significantly attenuated ET-1-mediated ROS formation (P < 0.05), without influencing Ang II effects. CONCLUSIONS Ang II activates p38MAPK, JNK and ERK5 primarily through NAD(P)H oxidase-generated ROS. ET-1 stimulates these kinases via redox-sensitive processes that involve mitochondrial-derived ROS. These data suggest that redox-dependent activation of MAPKs by Ang II and ET-1 occur through distinct ROS-generating systems that could contribute to differential signaling by these agonists in VSMCs.
Collapse
Affiliation(s)
- Rhian M Touyz
- CIHR Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
49
|
Wang JM, Wang Y, Zhu ZS, Zhang MC, Zou Y, Li JJ, Li MJ, Jiang XJ, Li XY. Diverse effects of long-term treatment with imidapril and irbesartan on cell growth signal, apoptosis and collagen type I expression in the left ventricle of spontaneously hypertensive rats. Life Sci 2004; 75:407-20. [PMID: 15147828 DOI: 10.1016/j.lfs.2003.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Accepted: 10/28/2003] [Indexed: 10/26/2022]
Abstract
To compare diverse effects of angiotensin II type 1 receptor antagonists (irbesartan) and angiotensin converting enzyme inhibitors (imidapril) on left ventricular remodeling in spontaneously hypertensive rats (SHR). Thirty male SHR were randomly divided into three groups: SHR-IR (treated with irbesartan, 50 mg/kg), SHR-IM (imidapril, 3 mg/kg), SHR-C (placebo). Ten male Wistar Kyoto rats (WKY) treated with placebo acted as the control. All treatments were administered once daily from 14 to 27 weeks of age. Imidapril and irbesartan have the similar inhibitor effects on blood pressure and left ventricular mass indexes in SHR. Despite both drugs suppressed ERK-1 protein expression, decreased cardiomyocytes apoptosis index, blocked collagen type I deposition, reduced TGF-beta(1) gene expression in SHR, imidapril elicits a stronger inhibitory effect. Irbesartan had little effect on MKP-1 protein expression, but imidapril decreased it significantly. As a result, the ERK-1/MKP-1 ratio in SHR-IR was significantly greater than that in SHR-IM (P < 0.05). These results suggest that the balance between MKP-1 and ERKs in myocardial tissue is important for cardiac cell proliferation and growth. They also indicate that the similar efficacy of antihypertensive treatment in reducing blood pressure does not predict the similar capacity to control the individual facet of left ventricular remodeling. Irbesartan is more effective in regressing the homeostasis between ERK-1 and MKP-1, however imidapril is superior in suppressing apoptosis and collagen synthesis in cardiac tissue.
Collapse
Affiliation(s)
- Jin-Ming Wang
- Department of Cardiology, Renmin Hospital, Wuhan University School of Medicine, Wuhan 430060, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhu ZS, Wang JM, Chen SL. Mesenteric artery remodeling and effects of imidapril and irbesartan on it in spontaneously hypertensive rats. World J Gastroenterol 2004; 10:1471-5. [PMID: 15133856 PMCID: PMC4656287 DOI: 10.3748/wjg.v10.i10.1471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To investigate the remodeling of mesenteric artery and the expression of TGF-β1, c-Jun in mesenteric artery and effects of imidapril and irbesartan on the remodeling in spontaneously hypertensive rats (SHR).
METHODS: Thirty SHR (male/female, 21/9), aged 13 wk, were randomly divided into 3 groups (7 male rats and 3 female rats each group): SHR group, imidapril group (imidapril 3 mg/kg·d was given in drinking water for 14 wk), and irbesartan group (irbesartan 50 mg/kg·d was given in drinking water foe 14 wk). Ten homogenous Wistar Kyoto rats, 5 males and 5 females, weighing 206 ± 49 g, were selected as normal control group (WKY group). Systolic pressure was measured on day 1, 2, 4, 6, 8, 10, 12 and 14 during the experiment and the rats were killed at the end of the experiment. Angiotensin II (Ang II) level in plasma and mesenteric arteries was measured by radioimmunoassay. The morphology of the secondary branches of mesenteric artery were examined by light microscopy and electron microscopy. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect the expression of transforming growth factor TGF-β1 and c-Jun mRNA.
RESULTS: Compared with imidapril group and irbesartan group, the blood pressure was remarkably increased in SHR group. Ang II level in plasma and mesenteric arteries in SHR group was the same or lower than that in WKY group, and was higher in irbesartan group and lower in imidapril group. The remodeling of mesenteric arteries in SHR group was mostly obvious among the 4 groups. The ratio of TGF-β1 absorbed light value to GAPDH absorbed light value in the SHR group was 0.887 ± 0.019, which was significantly higher than that in WKY group, imidapril group, and irbesartan group with the ratios of 0.780 ± 0.018, 0.803 ± 0.005, and 0.847 ± 0.017, respectively (P < 0.01). Ang II level in plasma and mesenteric arteries in imidapril group was significantly lower than that in irbesartan group (P < 0.05). The c-Jun absorbed light value/GAPDH absorbed light value of mesenteric arteries in the SHR group was 0.850 ± 0.015, which was significantly higher than that in the WKY, imidapril, and irbesartan groups (0.582 ± 0.013, 0.743 ± 0.012, and 0.789 ± 0.013, respectively, P < 0.01), and was significantly lower in imidapril group than in irbesartan group (P < 0.05).
CONCLUSION: Imidapril and irbesartan can not only control blood pressure but also inhibit mesenteric arteries remodeling and mRNA expression of TGF-β1, c-Jun in SHR. Imidapril is more effective than irbesartan.
Collapse
Affiliation(s)
- Zhong-Sheng Zhu
- Department of Cardiovascular Medicine, Third Affiliated Hospital of Nanjing Medical University, Nanjing 210006, Jiangsu Province, China.
| | | | | |
Collapse
|