1
|
Pauziene N, Ranceviene D, Rysevaite-Kyguoliene K, Ragauskas T, Inokaitis H, Sabeckis I, Plekhanova K, Khmel O, Pauza DH. Neurochemical alterations of intrinsic cardiac ganglionated nerve plexus caused by arterial hypertension developed during ageing in spontaneously hypertensive and Wistar Kyoto rats. J Anat 2023; 243:630-647. [PMID: 37083051 PMCID: PMC10485580 DOI: 10.1111/joa.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
The acknowledged hypothesis of the cause of arterial hypertension is the emerging disbalance in sympathetic and parasympathetic regulations of the cardiovascular system. This disbalance manifests in a disorder of sustainability of endogenous autonomic and sensory neural substances including calcitonin gene-related peptide (CGRP). This study aimed to examine neurochemical alterations of intrinsic cardiac ganglionated nerve plexus (GP) triggered by arterial hypertension during ageing in spontaneously hypertensive rats of juvenile (prehypertensive, 8-9 weeks), adult (early hypertensive, 12-18 weeks) and elderly (persistent hypertensive, 46-60 weeks) age in comparison with the age-matched Wistar-Kyoto rats as controls. Parasympathetic, sympathetic and sensory neural structures of GP were analysed and evaluated morphometrically in tissue sections and whole-mount cardiac preparations. Both the elevated blood pressure and the evident ultrasonic signs of heart failure were identified for spontaneously hypertensive rats and in part for the aged control rats. The amount of adrenergic and immunoreactive to CGRP neural structures was increased in the adult group of spontaneously hypertensive rats along with the significant alterations that occurred during ageing. In conclusion, the revealed chemical alterations of GP support the hypothesis about the possible disbalance of efferent and afferent heart innervation and may be considered as the basis for the emergence and progression of arterial hypertension and perhaps even as a consequence of hypertension in the aged spontaneously hypertensive rats. The determined anatomical changes in the ageing Wistar-Kyoto rats suggest this breed being as inappropriate for its use as control animals for hypertension studies in older animal age.
Collapse
Affiliation(s)
- Neringa Pauziene
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dalia Ranceviene
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Tomas Ragauskas
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Hermanas Inokaitis
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ignas Sabeckis
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Khrystyna Plekhanova
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Olena Khmel
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius H Pauza
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
2
|
van Weperen VYH, Ripplinger CM, Vaseghi M. Autonomic control of ventricular function in health and disease: current state of the art. Clin Auton Res 2023; 33:491-517. [PMID: 37166736 PMCID: PMC10173946 DOI: 10.1007/s10286-023-00948-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE Cardiac autonomic dysfunction is one of the main pillars of cardiovascular pathophysiology. The purpose of this review is to provide an overview of the current state of the art on the pathological remodeling that occurs within the autonomic nervous system with cardiac injury and available neuromodulatory therapies for autonomic dysfunction in heart failure. METHODS Data from peer-reviewed publications on autonomic function in health and after cardiac injury are reviewed. The role of and evidence behind various neuromodulatory therapies both in preclinical investigation and in-use in clinical practice are summarized. RESULTS A harmonic interplay between the heart and the autonomic nervous system exists at multiple levels of the neuraxis. This interplay becomes disrupted in the setting of cardiovascular disease, resulting in pathological changes at multiple levels, from subcellular cardiac signaling of neurotransmitters to extra-cardiac, extra-thoracic remodeling. The subsequent detrimental cycle of sympathovagal imbalance, characterized by sympathoexcitation and parasympathetic withdrawal, predisposes to ventricular arrhythmias, progression of heart failure, and cardiac mortality. Knowledge on the etiology and pathophysiology of this condition has increased exponentially over the past few decades, resulting in a number of different neuromodulatory approaches. However, significant knowledge gaps in both sympathetic and parasympathetic interactions and causal factors that mediate progressive sympathoexcitation and parasympathetic dysfunction remain. CONCLUSIONS Although our understanding of autonomic imbalance in cardiovascular diseases has significantly increased, specific, pivotal mediators of this imbalance and the recognition and implementation of available autonomic parameters and neuromodulatory therapies are still lagging.
Collapse
Affiliation(s)
- Valerie Y H van Weperen
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | | | - Marmar Vaseghi
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Cao LL, Marshall JM, Fabritz L, Brain KL. Resting cardiac sympathetic firing frequencies suppress terminal norepinephrine transporter uptake. Auton Neurosci 2021; 232:102794. [PMID: 33714751 DOI: 10.1016/j.autneu.2021.102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
The prejunctional norepinephrine transporter (NET) is responsible for the clearance of released norepinephrine (NE) back into the sympathetic nerve terminal. NET regulation must be tightly controlled as variations could have important implications for neurotransmission. Thus far, the effects of sympathetic neuronal activity on NET function have been unclear. Here, we optically monitor single-terminal cardiac NET activity ex vivo in response to a broad range of sympathetic postganglionic action potential (AP) firing frequencies. Isolated murine left atrial appendages were loaded with a fluorescent NET substrate [Neurotransmitter Transporter Uptake Assay (NTUA)] and imaged with confocal microscopy. Sympathetic APs were induced with electrical field stimulation at 0.2-10 Hz (0.1-0.2 ms pulse width). Exogenous NE was applied during the NTUA uptake- and washout phases to investigate substrate competition and displacement, respectively, on transport. Single-terminal NET reuptake rate was rapidly suppressed in a frequency-dependent manner with an inhibitory EF50 of 0.9 Hz. At 2 Hz, the effect was reversed by the α2-adrenoceptor antagonist yohimbine (1 μM) (p < 0.01) with no further effect imposed by the muscarinic receptor antagonist atropine (1 μM). Additionally, high exogenous NE concentrations abolished NET reuptake (1 μM NE; p < 0.0001) and displaced terminal specific NTUA during washout (1-100 μM NE; p < 0.0001). We have also identified α2-adrenoceptor-induced suppression of NET reuptake rate during resting stimulation frequencies, which could oppose the effect of autoinhibition-mediated suppression of exocytosis and thus amplify the effects of sympathetic drive on cardiac function.
Collapse
Affiliation(s)
- Lily L Cao
- School of Biomedical Science, Institute of Clinical Science, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, UK.
| | - Janice M Marshall
- School of Biomedical Science, Institute of Clinical Science, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, UK.
| | - Larissa Fabritz
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, UK; Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| | - Keith L Brain
- School of Biomedical Science, Institute of Clinical Science, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, UK.
| |
Collapse
|
4
|
Ferreira Miranda MT, Lemos MP, Sasaki JE, Mota GR, Marocolo M, Sordi CCD, Almeida TR, Dias da Silva VJ, Neto OB. Exercise training ameliorates adrenergic control in spontaneously hypertensive rats. Clin Exp Hypertens 2021; 43:101-111. [PMID: 32924628 DOI: 10.1080/10641963.2020.1817474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The goal of this study was to examine vascular control after sympathetic stimulation by tyramine infusion in hypertensive rats submitted to swimming training. To this end, male rats were assigned to the following groups: sedentary (SN) and trained normotensive (TN), sedentary (SH) and trained hypertensive (TH). Arterial pressure (AP), heart rate (HR), HR variability (HRV), AP variability (APV), and cardiac autonomic function were recorded. Following, infusion of tyramine was administrated. The TN and TH showed a lower resting HR compared with their respective sedentary groups (p < .05). Pressure levels were less in TH than SH (p < .05). The TH showed a higher HRV together with a lower APV in comparison to SH (p < .05). The sympathetic modulation of HRV and APV was lower in TH than in SH (p < .05). Both trained groups presented an increased parasympathetic modulation of HRV compared with their respective sedentary groups (p < .05). The TN and TH groups had a higher vagal effect in comparison with their respective sedentary groups (p < .001). The sympathetic effect was lower in TH than in SH (p < .001). Pressor and HR responses to tyramine in different doses were attenuated in TH (p < .001). Further analysis showed a significant association between infusion of tyramine and normalized LF component of HRV (r = 0.84, p < .001), systolic APV (r = 0.58, p < .001) and diastolic APV (r = 0.49, p < .001). In conclusion, exercise training provokes less pressor response variation by tyramine infusion in hypertensive animals suggesting sympathetic nerve endings adjustments and decrease of the vasoconstrictor effect attenuates injury caused by hypertension improving cardiovascular autonomic dysfunction, which can be associated with sympathetic attenuation.
Collapse
Affiliation(s)
- Munique Tostes Ferreira Miranda
- Exercise Science, Health and Human Performance Research Group, Department of Sport Sciences, Federal University of Triângulo Mineiro , Uberaba, Brazil.,Department of Medicine, Federal University of São Paulo , São Paulo, Brazil
| | - Marina Paiva Lemos
- Exercise Science, Health and Human Performance Research Group, Department of Sport Sciences, Federal University of Triângulo Mineiro , Uberaba, Brazil
| | - Jeffer Eidi Sasaki
- Exercise Science, Health and Human Performance Research Group, Department of Sport Sciences, Federal University of Triângulo Mineiro , Uberaba, Brazil
| | - Gustavo R Mota
- Exercise Science, Health and Human Performance Research Group, Department of Sport Sciences, Federal University of Triângulo Mineiro , Uberaba, Brazil
| | - Moacir Marocolo
- Department of Physiology, Federal University of Juiz de Fora , Juiz de Fora, Brazil
| | - Carla Cristina de Sordi
- Department of Endocrinology and Metabolism, Postgraduate Course on Health Science, Federal University of Triângulo Mineiro , Uberaba, Brazil
| | | | | | - Octávio Barbosa Neto
- Exercise Science, Health and Human Performance Research Group, Department of Sport Sciences, Federal University of Triângulo Mineiro , Uberaba, Brazil.,Department of Physiology, Federal University of Triângulo Mineiro , Uberaba, Brazil
| |
Collapse
|
5
|
Abstract
Hypertension represents an autonomic dysfunction, characterized by increased sympathetic and decreased parasympathetic cardiovascular tone leading to resting tachycardia. Therefore, studies assessing hypertension-associated changes in isolated cardiac tissues were conducted under electric field stimulation to stimulate the neurons. Herein, we characterize the influence of the autonomic neurotransmitter on the baseline atrial chronotropism of unpaced isolated right atria of normotensive Wistar rats (NWR) and spontaneously hypertensive rats (SHR). Our results revealed a resting bradycardia in tissues from SHR in comparison to NWR. The release of autonomic neurotransmitters, acetylcholine or norepinephrine, still occurs in the electrically unstimulated right atrium, after excision of the sympathetic nerve, which could explain differences in basal heart rate between NWR and SHR. Nicotine and the acetylcholinesterase inhibitor physostigmine reduced the chronotropism of right atria from either NWR or SHR. Conversely, the muscarinic receptor antagonist atropine did not affect the basal chronotropism of tissues from both strains. Furthermore, tyramine increased the chronotropism of NWR and SHR atria indicating availability of the neuronal stocks of noradrenaline. Although the monoamine uptake inhibitor cocaine increased right atrium chronotropism in both strains, the basal heart rate was not affected by the β-adrenoceptor antagonist propranolol. In summary, after acute section of the sympathetic nerve, autonomic neurotransmitters are still released either in resting conditions or upon pharmacological stimulation of right atria from both strains. Nevertheless, autonomic neurotransmission does not affect resting chronotropism, nor is the responsible for reduced basal heart rate of the isolated right atrium of hypertensive rats.
Collapse
|
6
|
Khaddaj Mallat R, Mathew John C, Mishra RC, Kendrick DJ, Braun AP. Pharmacological Targeting of KCa Channels to Improve Endothelial Function in the Spontaneously Hypertensive Rat. Int J Mol Sci 2019; 20:ijms20143481. [PMID: 31315169 PMCID: PMC6678254 DOI: 10.3390/ijms20143481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 01/01/2023] Open
Abstract
Systemic hypertension is a major risk factor for the development of cardiovascular disease and is often associated with endothelial dysfunction. KCa2.3 and KCa3.1 channels are expressed in the vascular endothelium and contribute to stimulus-evoked vasodilation. We hypothesized that acute treatment with SKA-31, a selective activator of KCa2.x and KCa3.1 channels, would improve endothelium-dependent vasodilation and transiently lower mean arterial pressure (MAP) in male, spontaneously hypertensive rats (SHRs). Isolated vascular preparations exhibited impaired vasodilation in response to bradykinin (i.e., endothelial dysfunction) compared with Wistar controls, which was associated with decreased bradykinin receptor expression in mesenteric arteries. In contrast, similar levels of endothelial KCa channel expression were observed, and SKA-31 evoked vasodilation was comparable in vascular preparations from both strains. Addition of a low concentration of SKA-31 (i.e., 0.2–0.3 μM) failed to augment bradykinin-induced vasodilation in arteries from SHRs. However, responses to acetylcholine were enhanced. Surprisingly, acute bolus administration of SKA-31 in vivo (30 mg/kg, i.p. injection) modestly elevated MAP compared with vehicle injection. In summary, pharmacological targeting of endothelial KCa channels in SHRs did not readily reverse endothelial dysfunction in situ, or lower MAP in vivo. SHRs thus appear to be less responsive to endothelial KCa channel activators, which may be related to their vascular pathology.
Collapse
Affiliation(s)
- Rayan Khaddaj Mallat
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Cini Mathew John
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Ramesh C Mishra
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Dylan J Kendrick
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Andrew P Braun
- Department of Physiology and Pharmacology and Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
7
|
Li D, Paterson DJ. Pre-synaptic sympathetic calcium channels, cyclic nucleotide-coupled phosphodiesterases and cardiac excitability. Semin Cell Dev Biol 2019; 94:20-27. [PMID: 30658154 DOI: 10.1016/j.semcdb.2019.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/07/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
In sympathetic neurons innervating the heart, action potentials activate voltage-gated Ca2+ channels and evoke Ca2+ entry into presynaptic terminals triggering neurotransmitter release. Binding of transmitters to specific receptors stimulates signal transduction pathways that cause changes in cardiac function. The mechanisms contributing to presynaptic Ca2+ dynamics involve regulation of endogenous Ca2+ buffers, in particular the endoplasmic reticulum, mitochondria and cyclic nucleotide targeted pathways. The purpose of this review is to summarize and highlight recent findings about Ca2+ homeostasis in cardiac sympathetic neurons and how modulation of second messengers can drive neurotransmission and affect myocyte excitability in cardiovascular disease. Moreover, we discuss the underlying mechanism of abnormal intracellular Ca2+ homeostasis and signaling in these neurons, and speculate on the role of phosphodiesterases as a therapeutic target to restore normal autonomic transmission in disease states of overactivity.
Collapse
Affiliation(s)
- Dan Li
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
8
|
Yamazato M, Nakamoto M, Sakima A, Yamazato Y, Takishita S, Ohya Y. Responsiveness of α2-adrenoceptor/I1-imidazoline receptor in the rostral ventrolateral medulla to cardiovascular regulation is enhanced in conscious spontaneously hypertensive rat. Clin Exp Hypertens 2018; 41:255-262. [PMID: 29764227 DOI: 10.1080/10641963.2018.1469641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Stimulation of α2-adrenoceptor/I1-imidazoline receptors in the rostral ventrolateral medulla decreases the blood pressure via sympathoinhibition. However, alteration of receptor responses in genetically hypertensive rats remains unclear. We examined cardiovascular responses of α2-adrenoceptor/I1-imidazoline receptor agonist and antagonists microinjected into the rostral ventrolateral medulla of conscious spontaneously hypertensive rats and normotensive Wistar Kyoto rats. Injection of 2-nmol clonidine-an α2-adrenoceptor/I1-imidazoline receptor agonist-unilaterally into the rostral ventrolateral medulla decreased the blood pressure, heart rate, and renal sympathetic nerve activity; the responses were significantly enhanced in spontaneously hypertensive rats than in Wistar Kyoto rats. Co-injection of 2-nmol 2-methoxyidazoxan (a selective α2-adrenoceptor antagonist) or 2-nmol efaroxan (an I1-receptor antagonist) with 2 nmol of clonidine attenuated the hypotensive and bradycardic effects of clonidine-only injection. Injection of 2-methoxyidazoxan alone increased the blood pressure and heart rate in spontaneously hypertensive rats, but not in Wistar Kyoto rats. These results suggest enhanced responsiveness of α2-adrenoceptor/I1-imidazoline receptors in the rostral ventrolateral medulla of spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Masanobu Yamazato
- a Department of Cardiovascular Medicine, Nephrology and Neurology , Graduate School of Medicine, University of the Ryukyus , Nishihara-cho, Okinawa , Japan
| | - Minori Nakamoto
- a Department of Cardiovascular Medicine, Nephrology and Neurology , Graduate School of Medicine, University of the Ryukyus , Nishihara-cho, Okinawa , Japan
| | - Atsushi Sakima
- a Department of Cardiovascular Medicine, Nephrology and Neurology , Graduate School of Medicine, University of the Ryukyus , Nishihara-cho, Okinawa , Japan
| | - Yoriko Yamazato
- b Department of Infectious, Respiratory and Digestive Medicine, Faculty of Medicine , University of the Ryukyus , Nishihara-cho, Okinawa , Japan
| | - Shuichi Takishita
- a Department of Cardiovascular Medicine, Nephrology and Neurology , Graduate School of Medicine, University of the Ryukyus , Nishihara-cho, Okinawa , Japan
| | - Yusuke Ohya
- a Department of Cardiovascular Medicine, Nephrology and Neurology , Graduate School of Medicine, University of the Ryukyus , Nishihara-cho, Okinawa , Japan
| |
Collapse
|
9
|
Liu K, Li D, Hao G, McCaffary D, Neely O, Woodward L, Ioannides D, Lu CJ, Brescia M, Zaccolo M, Tandri H, Ajijola OA, Ardell JL, Shivkumar K, Paterson DJ. Phosphodiesterase 2A as a therapeutic target to restore cardiac neurotransmission during sympathetic hyperactivity. JCI Insight 2018; 3:98694. [PMID: 29720569 DOI: 10.1172/jci.insight.98694] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
Elevated levels of brain natriuretic peptide (BNP) are regarded as an early compensatory response to cardiac myocyte hypertrophy, although exogenously administered BNP shows poor clinical efficacy in heart failure and hypertension. We tested whether phosphodiesterase 2A (PDE2A), which regulates the action of BNP-activated cyclic guanosine monophosphate (cGMP), was directly involved in modulating Ca2+ handling from stellate ganglia (SG) neurons and cardiac norepinephrine (NE) release in rats and humans with an enhanced sympathetic phenotype. SG were also isolated from patients with sympathetic hyperactivity and healthy donor patients. PDE2A activity of the SG was greater in both spontaneously hypertensive rats (SHRs) and patients compared with their respective controls, whereas PDE2A mRNA was only high in SHR SG. BNP significantly reduced the magnitude of the calcium transients and ICaN in normal Wistar Kyoto (WKY) SG neurons, but not in the SHRs. cGMP levels stimulated by BNP were also attenuated in SHR SG neurons. Overexpression of PDE2A in WKY neurons recapitulated the calcium phenotype seen in SHR neurons. Functionally, BNP significantly reduced [3H]-NE release in the WKY rats, but not in the SHRs. Blockade of overexpressed PDE2A with Bay 60-7550 or overexpression of catalytically inactive PDE2A reestablished the modulatory action of BNP in SHR SG neurons. This suggests that PDE2A may be a key target in modulating the action of BNP to reduce sympathetic hyperactivity.
Collapse
Affiliation(s)
- Kun Liu
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Guoliang Hao
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - David McCaffary
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Oliver Neely
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Lavinia Woodward
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Demetris Ioannides
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Chieh-Ju Lu
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Marcella Brescia
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Manuela Zaccolo
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Harikrishna Tandri
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA Health System, Los Angeles, California, USA
| | - Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA Health System, Los Angeles, California, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA Health System, Los Angeles, California, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Dysregulation of Neuronal Ca2+ Channel Linked to Heightened Sympathetic Phenotype in Prohypertensive States. J Neurosci 2017; 36:8562-73. [PMID: 27535905 DOI: 10.1523/jneurosci.1059-16.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/27/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Hypertension is associated with impaired nitric oxide (NO)-cyclic nucleotide (CN)-coupled intracellular calcium (Ca(2+)) homeostasis that enhances cardiac sympathetic neurotransmission. Because neuronal membrane Ca(2+) currents are reduced by NO-activated S-nitrosylation, we tested whether CNs affect membrane channel conductance directly in neurons isolated from the stellate ganglia of spontaneously hypertensive rats (SHRs) and their normotensive controls. Using voltage-clamp and cAMP-protein kinase A (PKA) FRET sensors, we hypothesized that impaired CN regulation provides a direct link to abnormal signaling of neuronal calcium channels in the SHR and that targeting cGMP can restore the channel phenotype. We found significantly larger whole-cell Ca(2+) currents from diseased neurons that were largely mediated by the N-type Ca(2+) channel (Cav2.2). Elevating cGMP restored the SHR Ca(2+) current to levels seen in normal neurons that were not affected by cGMP. cGMP also decreased cAMP levels and PKA activity in diseased neurons. In contrast, cAMP-PKA activity was increased in normal neurons, suggesting differential switching in phosphodiesterase (PDE) activity. PDE2A inhibition enhanced the Ca(2+) current in normal neurons to a conductance similar to that seen in SHR neurons, whereas the inhibitor slightly decreased the current in diseased neurons. Pharmacological evidence supported a switching from cGMP acting via PDE3 in control neurons to PDE2A in SHR neurons in the modulation of the Ca(2+) current. Our data suggest that a disturbance in the regulation of PDE-coupled CNs linked to N-type Ca(2+) channels is an early hallmark of the prohypertensive phenotype associated with intracellular Ca(2+) impairment underpinning sympathetic dysautonomia. SIGNIFICANCE STATEMENT Here, we identify dysregulation of cyclic-nucleotide (CN)-linked neuronal Ca(2+) channel activity that could provide the trigger for the enhanced sympathetic neurotransmission observed in the prohypertensive state. Furthermore, we provide evidence that increasing cGMP rescues the channel phenotype and restores ion channel activity to levels seen in normal neurons. We also observed CN cross-talk in sympathetic neurons that may be related to a differential switching in phosphodiesterase activity. The presence of these early molecular changes in asymptomatic, prohypertensive animals could facilitate the identification of novel therapeutic targets with which to modulate intracellular Ca(2+) Turning down the gain of sympathetic hyperresponsiveness in cardiovascular disease associated with sympathetic dysautonomia would have significant therapeutic utility.
Collapse
|
11
|
Berg T. β- and α 2-Adrenoceptor Control of Vascular Tension and Catecholamine Release in Female Normotensive and Spontaneously Hypertensive Rats. Front Neurol 2017; 8:130. [PMID: 28424658 PMCID: PMC5380753 DOI: 10.3389/fneur.2017.00130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/20/2017] [Indexed: 11/26/2022] Open
Abstract
As in humans, young, female, spontaneously hypertensive rats (SHR) have a lower blood pressure than male SHR. In male, normotensive rats (WKY), α2- and β1+2-adrenoceptors (AR) reciprocally controlled catecholamine release and vascular smooth muscle tension. This interaction was malfunctioning in male SHR. The present study analyzed if a favorable shift in the α2/β1+2AR interaction may represent an antihypertensive protection in females. Female SHR (early hypertension, 12–14 weeks) and age-matched WKY were infused with tyramine (15 min) to stimulate norepinephrine (NE) release through the reuptake transporter, consequently preventing reuptake. Presynaptic control of vesicular release was therefore reflected as differences in overflow to plasma. The released NE increased total peripheral vascular resistance (TPR). The results showed that β1>2AR facilitated tyramine-stimulated NE release in both strains, also in the presence of α2AR-antagonist (L-659,066). βAR-antagonist (atenolol-β1, ICI-118551-β2, nadolol-β1+2) had no effect on the increased secretion of epinephrine after L-659,066 in WKY, but β1>2AR-antagonist augmented the L-659,066-induced increase in the secretion of epinephrine in SHR. Nadolol increased the TPR response to tyramine with a greater effect in WKY than SHR, whereas β1or2-selective antagonists did not. One βAR-subtype may therefore substitute for the other. When both β1+2AR were blocked, α2AR-antagonist still reduced the TPR response in WKY but not SHR. Thus, α2/β1+2AR reciprocally controlled catecholamine release, with a particular negative β1AR-influence on α2AR-auto-inhibition of epinephrine secretion in SHR. Moreover, in these female rats, β1/2AR-independent α2AR-mediated vasoconstriction was seen in WKY but not SHR, but β1/2AR-mediated vasodilation downregulated adrenergic vasoconstriction, not only in WKY but also in SHR.
Collapse
Affiliation(s)
- Torill Berg
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Sympathetic neurons are a powerful driver of myocyte function in cardiovascular disease. Sci Rep 2016; 6:38898. [PMID: 27966588 PMCID: PMC5155272 DOI: 10.1038/srep38898] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/15/2016] [Indexed: 01/23/2023] Open
Abstract
Many therapeutic interventions in disease states of heightened cardiac sympathetic activity are targeted to the myocytes. However, emerging clinical data highlights a dominant role in disease progression by the neurons themselves. Here we describe a novel experimental model of the peripheral neuro-cardiac axis to study the neuron’s ability to drive a myocyte cAMP phenotype. We employed a co-culture of neonatal ventricular myocytes and sympathetic stellate neurons from normal (WKY) and pro-hypertensive (SHR) rats that are sympathetically hyper-responsive and measured nicotine evoked cAMP responses in the myocytes using a fourth generation FRET cAMP sensor. We demonstrated the dominant role of neurons in driving the myocyte ß-adrenergic phenotype, where SHR cultures elicited heightened myocyte cAMP responses during neural activation. Moreover, cross-culturing healthy neurons onto diseased myocytes rescued the diseased cAMP response of the myocyte. Conversely, healthy myocytes developed a diseased cAMP response if diseased neurons were introduced. Our results provide evidence for a dominant role played by the neuron in driving the adrenergic phenotype seen in cardiovascular disease. We also highlight the potential of using healthy neurons to turn down the gain of neurotransmission, akin to a smart pre-synaptic ß-blocker.
Collapse
|
13
|
Cobos-Puc LE, Sánchez-López A, Centurión D. Pharmacological analysis of the cardiac sympatho-inhibitory actions of moxonidine and agmatine in pithed spontaneously hypertensive rats. Eur J Pharmacol 2016; 791:25-36. [DOI: 10.1016/j.ejphar.2016.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/03/2016] [Accepted: 08/22/2016] [Indexed: 02/02/2023]
|
14
|
Li D, Paterson DJ. Cyclic nucleotide regulation of cardiac sympatho-vagal responsiveness. J Physiol 2016; 594:3993-4008. [PMID: 26915722 DOI: 10.1113/jp271827] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are now recognized as important intracellular signalling molecules that modulate cardiac sympatho-vagal balance in the progression of heart disease. Recent studies have identified that a significant component of autonomic dysfunction associated with several cardiovascular pathologies resides at the end organ, and is coupled to impairment of cyclic nucleotide targeted pathways linked to abnormal intracellular calcium handling and cardiac neurotransmission. Emerging evidence also suggests that cyclic nucleotide coupled phosphodiesterases (PDEs) play a key role limiting the hydrolysis of cAMP and cGMP in disease, and as a consequence this influences the action of the nucleotide on its downstream biological target. In this review, we illustrate the action of nitric oxide-CAPON signalling and brain natriuretic peptide on cGMP and cAMP regulation of cardiac sympatho-vagal transmission in hypertension and ischaemic heart disease. Moreover, we address how PDE2A is now emerging as a major target that affects the efficacy of soluble/particulate guanylate cyclase coupling to cGMP in cardiac dysautonomia.
Collapse
Affiliation(s)
- Dan Li
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| |
Collapse
|
15
|
Berg T. α2-Adrenoreceptor Constraint of Catecholamine Release and Blood Pressure Is Enhanced in Female Spontaneously Hypertensive Rats. Front Neurosci 2016; 10:130. [PMID: 27065790 PMCID: PMC4812064 DOI: 10.3389/fnins.2016.00130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 03/15/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED α2-adrenoceptors (α2AR) lower central sympathetic output and peripheral catecholamine release, and may therefore prevent sympathetic hyperactivity and hypertension. The α2AR are dysfunctional in male spontaneously hypertensive rats (SHR). Premenopausal females are less hypertensive than males. The purpose of this study was to test if this difference could be explained by functional α2AR in the female SHR. A 15-min tyramine-infusion was used to stimulate norepinephrine release through the re-uptake transporter, consequently preventing re-uptake. Presynaptic control of vesicular release will therefore be reflected as differences in overflow to plasma. The surgical trauma activates secretion of epinephrine, also subjected to α2AR auto-inhibition. Blood pressure was monitored through a femoral artery catheter and cardiac output by ascending aorta flow in 12-14 weeks-old (early hypertension) SHR and normotensive rats (WKY). Total peripheral vascular resistance (TPR) was calculated. Female SHR, unlike male, were close to normotensive. Pre-treatment with none-selective (clonidine) or non-A-selective (ST-91) α2AR agonist reduced, and none-selective α2AR antagonist (L-659,066) increased tyramine-induced norepinephrine overflow in female WKY and SHR. L-659,066 also increased secretion of epinephrine. The L-659,066-induced increase in catecholamine release was further enhanced by additional pre-treatment with ST-91 or angiotensin AT1 receptor antagonist (losartan) in SHR only. L-659,066 eliminated the tyramine-induced rise in TPR in both strains in female rats. CONCLUSION α2AR-mediated control of catecholamine release and vascular tension was therefore functional in female SHR, unlike that previously observed in male SHR. Functional α2AR is likely to have a protective function and may explain the lack of hypertension in the young female SHR.
Collapse
Affiliation(s)
- Torill Berg
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| |
Collapse
|
16
|
A 9-nucleotide Ins/Del in ADRA2B modulates orientation of attention to facial expressions and emotional words. Behav Pharmacol 2015; 25:717-24. [PMID: 25325286 DOI: 10.1097/fbp.0000000000000089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Norepinephrine is involved in the arousal of attention and the treatment of affective disorders. Therefore, we hypothesized that adrenergic receptors underpinned individual differences in attention regulation and emotional processes of healthy populations. Here, we investigated to what extent the expression of ADRA2B, an adrenergic receptor, modulated attention regulation and emotional processes. We evaluated orientation of attention, emotion regulation, and pleasantness ratings of expressions and words in 665 college students, and then genotyped the +901 Ins/Del variants in ADRA2B of these participants. The results indicated that +901 Ins/Del significantly modulated orientation of attention to facial expressions and emotional words, such that the Del allele facilitated reorientation to the originally attended locations. However, this polymorphism exerted no significant effects on emotional regulation of attention and pleasantness ratings of emotional stimulus. These findings suggest that ADRA2B is closely related to the individual difference in human attention orientation, but not to the individual difference in emotional processing.
Collapse
|
17
|
Kreusser MM, Lehmann LH, Riffel JH, Haass M, Maser-Gluth C, Backs J, Katus HA, Buss SJ. Aldosterone augments Na+-induced reduction of cardiac norepinephrine reuptake. Am J Physiol Heart Circ Physiol 2014; 307:H1169-77. [PMID: 25128164 DOI: 10.1152/ajpheart.00193.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Impairment of the cardiac norepinephrine (NE) reuptake by the neuronal NE transporter contributes to enhanced cardiac NE net release in congestive heart failure. Elevated plasma levels of aldosterone (AL) promote sympathetic overstimulation in failing hearts by unclear mechanisms. Our aim was to evaluate if elevated AL and/or alterations in Na(+) intake regulate cardiac NE reuptake. To test the effects of AL and Na(+) on cardiac NE reuptake, Wistar rats were fed a normal-salt (NS) diet (0.2% NaCl), a low-salt (LS) diet (0.015% NaCl), or a high-salt (HS) diet (8% NaCl). Another group of animals received AL infusion alone (0.75 μg/h) or AL infusion plus HS diet. Specific cardiac [(3)H]NE uptake via the NE transporter in a Langendorff preparation and AL plasma levels were measured at different time points between 5 and 42 days of treatment. To compare these findings from healthy animals with a disease model, Dahl salt-sensitive rats were investigated as a model of congestive heart failure with endogenously elevated AL. In summary, neither exogenous nor endogenous elevations of AL alone were sufficient to reduce cardiac NE reuptake. Only the HS diet induced a reduction of NE reuptake by 26%; additional infusion of AL augmented this effect to a further reduction of NE reuptake by 36%. In concordance, Dahl salt-sensitive rats treated with a HS diet displayed elevated AL and a marked reduction of NE reuptake. We conclude that exogenous or endogenous AL elevations alone do not reduce cardiac NE reuptake, but AL serves as an additional factor that negatively regulates cardiac NE reuptake in concert with HS intake.
Collapse
Affiliation(s)
- Michael M Kreusser
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Heidelberg/Mannheim, Germany;
| | - Lorenz H Lehmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Heidelberg/Mannheim, Germany
| | - Johannes H Riffel
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Heidelberg/Mannheim, Germany
| | - Markus Haass
- Department of Cardiology, Theresienkrankenhaus, Mannheim, Germany; and
| | | | - Johannes Backs
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Heidelberg/Mannheim, Germany
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Heidelberg/Mannheim, Germany
| | - Sebastian J Buss
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Heidelberg/Mannheim, Germany
| |
Collapse
|
18
|
Shanks J, Herring N. Peripheral cardiac sympathetic hyperactivity in cardiovascular disease: role of neuropeptides. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1411-20. [PMID: 24005254 PMCID: PMC3882692 DOI: 10.1152/ajpregu.00118.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 08/20/2013] [Indexed: 02/08/2023]
Abstract
High levels of sympathetic drive in several cardiovascular diseases including postmyocardial infarction, chronic congestive heart failure and hypertension are reinforced through dysregulation of afferent input and central integration of autonomic balance. However, recent evidence suggests that a significant component of sympathetic hyperactivity may also reside peripherally at the level of the postganglionic neuron. This has been studied in depth using the spontaneously hypertensive rat, an animal model of genetic essential hypertension, where larger neuronal calcium transients, increased release and impaired reuptake of norepinephrine in neurons of the stellate ganglia lead to a significant tachycardia even before hypertension has developed. The release of additional sympathetic cotransmitters during high levels of sympathetic drive can also have deleterious consequences for peripheral cardiac parasympathetic neurotransmission even in the presence of β-adrenergic blockade. Stimulation of the cardiac vagus reduces heart rate, lowers myocardial oxygen demand, improves coronary blood flow, and independently raises ventricular fibrillation threshold. Recent data demonstrates a direct action of the sympathetic cotransmitters neuropeptide Y (NPY) and galanin on the ability of the vagus to release acetylcholine and control heart rate. Moreover, there is as a strong correlation between plasma NPY levels and coronary microvascular function in patients with ST-elevation myocardial infarction being treated with primary percutaneous coronary intervention. Antagonists of the NPY receptors Y1 and Y2 may be therapeutically beneficial both acutely during myocardial infarction and also during chronic heart failure and hypertension. Such medications would be expected to act synergistically with β-blockers and implantable vagus nerve stimulators to improve patient outcome.
Collapse
Affiliation(s)
- Julia Shanks
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
19
|
Shanks J, Manou-Stathopoulou S, Lu CJ, Li D, Paterson DJ, Herring N. Cardiac sympathetic dysfunction in the prehypertensive spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol 2013; 305:H980-6. [PMID: 23913706 DOI: 10.1152/ajpheart.00255.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies in prehypertensive spontaneously hypertensive rats (SHR) have shown larger calcium transients and reduced norepinephrine transporter (NET) activity in cultured stellate neurons compared with Wistar-Kyoto (WKY) controls, although the functional significance of these results is unknown. We hypothesized that peripheral sympathetic responsiveness in the SHR at 4 wk of age would be exaggerated compared with the WKY. In vivo arterial pressure (under 2% isoflurane) was similar in SHRs (88 ± 2/50 ± 3 mmHg, n = 18) compared with WKYs (88 ± 3/49 ± 4 mmHg, n = 20). However, a small but significant (P < 0.05) tachycardia was observed in the young SHR despite the heart rate response to vagus stimulation (3 and 5 Hz) in vivo being similar (SHR: n = 12, WKY: n = 10). In isolated atrial preparations there was a significantly greater tachycardia during right stellate stimulation (5 and 7 Hz) in SHRs (n = 19) compared with WKYs (n = 16) but not in response to exogenous NE (0.025-5 μM, SHR: n = 10, WKY: n = 10). There was also a significantly greater release of [(3)H]NE to field stimulation (5 Hz) of atria in the SHR (SHR: n = 17, WKY: n = 16). Additionally, plasma levels of neuropeptide Y sampled from the right atria in vivo were also higher in the SHR (ELISA, n = 12 for both groups). The difference in [(3)H]NE release between SHR and WKY could be normalized by the NET inhibitor desipramine (1 μM, SHR: n = 10, WKY: n = 8) but not the α2-receptor antagonist yohimbine (1 μM, SHR: n = 7, WKY: n = 8). Increased cardiac sympathetic neurotransmission driven by larger neuronal calcium transients and reduced NE reuptake translates into enhanced cardiac sympathetic responsiveness at the end organ in prehypertensive SHRs.
Collapse
Affiliation(s)
- Julia Shanks
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
20
|
Berg T. Angiotensin AT1 - α2C-Adrenoceptor Interaction Disturbs α2A-auto-Inhibition of Catecholamine Release in Hypertensive Rats. Front Neurol 2013; 4:70. [PMID: 23772221 PMCID: PMC3677154 DOI: 10.3389/fneur.2013.00070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/26/2013] [Indexed: 11/13/2022] Open
Abstract
α2-Adrenoceptors lower central sympathetic output and peripheral catecholamine release, and thus may prevent sympathetic hyperactivity and hypertension. α2AR also influence vascular tension. These α2AR are malfunctioning in spontaneously hypertensive rats (SHR). Here I tested if an interaction between α2AR subtypes and the angiotensin AT1 receptor (AT1R) precipitated these disorders. Blood pressure was monitored through a femoral artery catheter and cardiac output by ascending aorta flow in anesthetized rats. Catecholamine concentrations were determined in plasma collected at the end of a 15-min tyramine-infusion. Tyramine stimulates norepinephrine release through the re-uptake transporter, thus preventing re-uptake. Presynaptic control of vesicular release is therefore reflected as differences in overflow to plasma. Previous experiments showed surgical stress to activate some secretion of epinephrine, also subjected to α2AR-auto-inhibition. Normotensive rats (WKY) and SHR were pre-treated with (1) vehicle or α2AR-antagonist (L-659,066), followed by fadolmidine (α2C>B>A + α1AR-agonist), ST-91 (α2non-A-selective agonist), or m-nitrobiphenyline (α2CAR-agonist + α2A+B-antagonist), or (2) AT1R-antagonist losartan, losartan + L-659,066, or losartan + clonidine. In WKY, L-659,066 alone, L-659,066 + agonist or losartan + L-659,066 increased catecholamine overflow to plasma after tyramine and eliminated the norepinephrine-induced rise in total peripheral vascular resistance (TPR). In SHR, L-659,066 + fadolmidine/ST-91/m-nitrobiphenyline and losartan + L-659,066 greatly increased, and losartan + clonidine reduced, catecholamine concentrations, and L-659,066 + ST-91, losartan + L-659,066 and losartan + clonidine eliminated the tyramine-induced rise in TPR. Separately, these drugs had no effect in SHR. In conclusion, peripheral α2CAR-stimulation or AT1R-inhibition restored failing α2AAR-mediated auto-inhibition of norepinephrine and epinephrine release and control of TPR in SHR.
Collapse
Affiliation(s)
- Torill Berg
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo , Oslo , Norway
| |
Collapse
|
21
|
Berg T, Jensen J. Tyramine Reveals Failing α2-Adrenoceptor Control of Catecholamine Release and Total Peripheral Vascular Resistance in Hypertensive Rats. Front Neurol 2013; 4:19. [PMID: 23450822 PMCID: PMC3584258 DOI: 10.3389/fneur.2013.00019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/11/2013] [Indexed: 11/13/2022] Open
Abstract
α2-Adrenoceptor-activation lowers central sympathetic output, peripheral, vesicular norepinephrine release, epinephrine secretion, and modulates vascular tension. We previously demonstrated that α2-adrenoceptor-mediated inhibition of basal norepinephrine release was not reflected in plasma unless re-uptake through the norepinephrine transporter (NET) was blocked. Tyramine activates reverse norepinephrine transport through NET. Here we tested the hypothesis that tyramine, by engaging NET in release, also blocks re-uptake, and therefore allows manipulation of pre-junctional α2-adrenoceptors to directly regulate norepinephrine overflow to plasma. We compared in anesthetized spontaneously hypertensive rats (SHRs) and normotensive controls (WKYs), the effect of α2-adrenoreceptor antagonist (L-659,066) and/or agonist (clonidine) on norepinephrine overflow and increase in total peripheral vascular resistance (TPR) evoked by tyramine-infusion (1.26 μmol/min/kg, 15 min) and epinephrine secretion activated by the surgical stress. TPR was computed as blood pressure divided by cardiac output, recorded as ascending aortic flow. Plasma catecholamine concentrations after tyramine were higher in SHRs than WKYs. Pre-treatment with L-659,066 increased the catecholamine concentrations in WKYs, but only if combined with clonidine in SHRs. Clonidine alone reduced tyramine-induced norepinephrine overflow in SHRs, and epinephrine in both strains. Tyramine-induced increase in TPR was not different after clonidine, eliminated after L-659,066 and L-659,066 + clonidine in WKYs, but only after L-659,066 + clonidine in SHRs. We conclude that tyramine-infusion does allow presynaptic regulation of vesicular release to be accurately assessed by measuring differences in plasma norepinephrine concentration. Our results indicate that presynaptic α2-adrenoceptor regulation of norepinephrine release from nerve vesicles and epinephrine secretion is dysfunctional in SHRs, but can be restored by clonidine.
Collapse
Affiliation(s)
- Torill Berg
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | | |
Collapse
|
22
|
Shanks J, Mane S, Ryan R, Paterson DJ. Ganglion-specific impairment of the norepinephrine transporter in the hypertensive rat. Hypertension 2012; 61:187-93. [PMID: 23172922 DOI: 10.1161/hypertensionaha.112.202184] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypertension is associated with enhanced cardiac sympathetic transmission, although the exact mechanisms underlying this are still unknown. We hypothesized that defective function of the norepinephrine uptake transporter (NET) may contribute to the sympathetic phenotype of the spontaneously hypertensive rat, and that this may occur before the development of hypertension itself. The dynamic kinetics of NET were monitored temporally using a novel fluorescent assay of the transporter in cultured postganglionic sympathetic neurons from the cardiac stellate ganglion, the superior cervical ganglion, the celiac ganglia/superior mesenteric ganglia, and the renal sympathetic chain. All NET activity was blocked by desipramine. NET rate was significantly impaired in cardiac stellate sympathetic neurons from the prehypertensive spontaneously hypertensive rat compared with age-matched normotensive Wistar-Kyoto rats. A similar response was seen in hypertensive spontaneously hypertensive rats stellate sympathetic neurons. However, no reduction in transporter rate was observed at either age in the other major noncardiac sympathetic ganglia. Depolarization of cardiac stellate neurons by electrical field stimulation further potentiated the difference in transporter rate observed between the hypertensive and normotensive rats at both developmental ages. In conclusion, dysregulation of the norepinephrine transporter in the hypertensive rat is ganglion-specific, where NET impairment in the stellate neurons may contribute to the increased cardiac norepinephrine spillover seen in hypertension.
Collapse
Affiliation(s)
- Julia Shanks
- Department of Physiology, Anatomy, and Genetics, Burdon Sanderson Cardiac Science Centre, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
23
|
Berg T, Walaas SI, Roberg BÅ, Huynh TT, Jensen J. Plasma Norepinephrine in Hypertensive Rats Reflects α(2)-Adrenoceptor Release Control Only When Re-Uptake is Inhibited. Front Neurol 2012; 3:160. [PMID: 23162530 PMCID: PMC3492874 DOI: 10.3389/fneur.2012.00160] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 10/21/2012] [Indexed: 12/14/2022] Open
Abstract
α2-adrenoceptors (AR) lower central sympathetic output and peripheral catecholamine release, thereby protecting against sympathetic hyperactivity and hypertension. Norepinephrine re-uptake–transporter effectively (NET) removes norepinephrine from the synapse. Overflow to plasma will therefore not reflect release. Here we tested if inhibition of re-uptake allowed presynaptic α2AR release control to be reflected as differences in norepinephrine overflow in anesthetized hypertensive spontaneously hypertensive rats (SHR) and normotensive rats (WKY). We also tested if α2AR modulated the experiment-induced epinephrine secretion, and a phenylephrine-induced, α1-adrenergic vasoconstriction. Blood pressure was recorded through a femoral artery catheter, and cardiac output by ascending aorta flow. After pre-treatment with NET inhibitor (desipramine), and/or α2AR antagonist (yohimbine, L-659,066) or agonist (clonidine, ST-91), we injected phenylephrine. Arterial blood was sampled 15 min later. Plasma catecholamine concentrations were not influenced by phenylephrine, and therefore reflected effects of pre-treatment. Desipramine and α2AR antagonist separately had little effect on norepinephrine overflow. Combined, they increased norepinephrine overflow, particularly in SHR. Clonidine, but not ST-91, reduced, and pertussis toxin increased norepinephrine overflow in SHR and epinephrine secretion in both strains. L-659,066 + clonidine (central α2AR-stimulation) normalized the high blood pressure, heart rate, and vascular tension in SHR. α2AR antagonists reduced phenylephrine-induced vasoconstriction equally in WKY and SHR. Conclusions: α2AAR inhibition increased norepinephrine overflow only when re-uptake was blocked, and then with particular efficacy in SHR, possibly due to their high sympathetic tone. α2AAR inhibited epinephrine secretion, particularly in SHR. α2AAR supported α1AR-induced vasoconstriction equally in the two strains. α2AR malfunctions were therefore not detected in SHR under this basal condition.
Collapse
Affiliation(s)
- Torill Berg
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | | | | | | | | |
Collapse
|
24
|
Vieira-Coelho MA, Moura E. Effect of Clonidine on Renal Sodium Handling in Spontaneously Hypertensive Rats. J Pharmacol Sci 2012; 119:122-30. [DOI: 10.1254/jphs.12058fp] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
25
|
Berg T, Jensen J. Simultaneous parasympathetic and sympathetic activation reveals altered autonomic control of heart rate, vascular tension, and epinephrine release in anesthetized hypertensive rats. Front Neurol 2011; 2:71. [PMID: 22131984 PMCID: PMC3222849 DOI: 10.3389/fneur.2011.00071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/29/2011] [Indexed: 12/20/2022] Open
Abstract
Sympathetic hyperactivity and parasympathetic insufficiency characterize blood pressure (BP) control in genetic hypertension. This shift is difficult to investigate in anesthetized rats. Here we present a pharmacological approach to simultaneously provoke sympathetic and parasympathetic transmitter release, and identify their respective roles in the concomitant cardiovascular response. To stimulate transmitter release in anesthetized normotensive (WKY) and spontaneously hypertensive rats (SHR), we injected intravenously 4-aminopyridine (4-AP), a voltage-sensitive K+ channel (KV) inhibitor. A femoral artery catheter monitored BP, an ascending aorta flow-probe recorded cardiac output and heart rate (HR). Total peripheral vascular resistance (TPVR) was calculated. 4-AP-induced an immediate, atropine (muscarinic antagonist)- and hexamethonium (ganglion blocker)-sensitive bradycardia in WKY, and in both strains, a subsequent, sustained tachycardia, and norepinephrine but not epinephrine release. Reserpine (sympatholytic), nadolol (β-adrenoceptor antagonist) or right vagal nerve stimulation eliminated the late tachycardia, adrenalectomy, scopolamine (central muscarinic antagonist) or hexamethonium did not. 4-AP increased TPVR, transiently in WKY but sustained in SHR. Yohimbine (α2-adrenoceptor antagonist) prevented the TPVR down-regulation in WKY. Reserpine and prazosin (α1-adrenoceptor antagonist) eliminated the late vasoconstriction in SHR. Plasma epinephrine overflow increased in nadolol-treated SHR. Through inhibition of KV, 4-AP activated parasympathetic ganglion transmission and peripheral, neuronal norepinephrine release. The sympathetic component dominated the 4-AP–HR-response in SHR. α2-adrenoceptor-dependent vasodilatation opposed norepinephrine-induced α1-adrenergic vasoconstriction in WKY, but not SHR. A βAR-activated, probably vagal afferent mechanism, hampered epinephrine secretion in SHR. Thus, 4-AP activated the autonomic system and exposed mechanisms relevant to hypertensive disease.
Collapse
Affiliation(s)
- Torill Berg
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | | |
Collapse
|
26
|
Alteration of the cardiac sympathetic innervation is modulated by duration of diabetes in female rats. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:835932. [PMID: 21792353 PMCID: PMC3142701 DOI: 10.1155/2011/835932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/13/2011] [Indexed: 12/02/2022]
Abstract
To evaluate the sympathetic innervation of the female diabetic heart, resting heart rate and sympathetic tone were assessed in vivo, and effect of tyramine on spontaneous beating rate, norepinephrine atrial concentrations, uptake, and release were determined in vitro in streptozotocin- (STZ-) treated rats and respective controls aged 3 months to 2 years. Resting bradycardia, decreased sympathetic tone, deceleration of spontaneous beating rate, and slightly declining carrier-mediated, but preserved exocytotic norepinephrine release from the atria were found in younger diabetic rats while the reactivity of the right atria to tyramine was not affected with age and disease duration. Diabetic two-year-old animals displayed symptoms of partial spontaneous recovery including normoglycemia, increased plasma insulin concentrations, fully recovered sympathetic tone, but putative change, in releasable norepinephrine tissue stores. Our data suggested that female diabetic heart exposed to long-lasting diabetic conditions seems to be more resistant to alteration in sympathetic innervation than the male one.
Collapse
|
27
|
Moura E, Pinto CE, Caló A, Serrão MP, Afonso J, Vieira-Coelho MA. α2-Adrenoceptor-Mediated Inhibition of Catecholamine Release from the Adrenal Medulla of Spontaneously Hypertensive Rats is Preserved in the Early Stages of Hypertension. Basic Clin Pharmacol Toxicol 2011; 109:253-60. [DOI: 10.1111/j.1742-7843.2011.00712.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Bott-Flügel L, Bernshausen A, Schneider H, Luppa P, Zimmermann K, Albrecht-Küpper B, Kast R, Laugwitz KL, Ehmke H, Knorr A, Seyfarth M. Selective attenuation of norepinephrine release and stress-induced heart rate increase by partial adenosine A1 agonism. PLoS One 2011; 6:e18048. [PMID: 21464936 PMCID: PMC3065468 DOI: 10.1371/journal.pone.0018048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 02/23/2011] [Indexed: 11/24/2022] Open
Abstract
The release of the neurotransmitter norepinephrine (NE) is modulated by presynaptic adenosine receptors. In the present study we investigated the effect of a partial activation of this feedback mechanism. We hypothesized that partial agonism would have differential effects on NE release in isolated hearts as well as on heart rate in vivo depending on the genetic background and baseline sympathetic activity. In isolated perfused hearts of Wistar and Spontaneously Hypertensive Rats (SHR), NE release was induced by electrical stimulation under control conditions (S1), and with capadenoson 6 · 10(-8) M (30 µg/l), 6 · 10(-7) M (300 µg/l) or 2-chloro-N(6)-cyclopentyladenosine (CCPA) 10(-6) M (S2). Under control conditions (S1), NE release was significantly higher in SHR hearts compared to Wistar (766+/-87 pmol/g vs. 173+/-18 pmol/g, p<0.01). Capadenoson led to a concentration-dependent decrease of the stimulation-induced NE release in SHR (S2/S1 = 0.90 ± 0.08 with capadenoson 6 · 10(-8) M, 0.54 ± 0.02 with 6 · 10(-7) M), but not in Wistar hearts (S2/S1 = 1.05 ± 0.12 with 6 · 10(-8) M, 1.03 ± 0.09 with 6 · 10(-7) M). CCPA reduced NE release to a similar degree in hearts from both strains. In vivo capadenoson did not alter resting heart rate in Wistar rats or SHR. Restraint stress induced a significantly greater increase of heart rate in SHR than in Wistar rats. Capadenoson blunted this stress-induced tachycardia by 45% in SHR, but not in Wistar rats. Using a [(35)S]GTPγS assay we demonstrated that capadenoson is a partial agonist compared to the full agonist CCPA (74+/-2% A(1)-receptor stimulation). These results suggest that partial adenosine A(1)-agonism dampens stress-induced tachycardia selectively in rats susceptible to strong increases in sympathetic activity, most likely due to a presynaptic attenuation of NE release.
Collapse
Affiliation(s)
- Lorenz Bott-Flügel
- 1. Medizinische Klinik, Klinikum rechts der Isar and Deutsches Herzzentrum München, Technische Universität, München, Germany
| | - Alexandra Bernshausen
- 1. Medizinische Klinik, Klinikum rechts der Isar and Deutsches Herzzentrum München, Technische Universität, München, Germany
| | - Heike Schneider
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität, München, Germany
| | - Peter Luppa
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität, München, Germany
| | - Katja Zimmermann
- Bayer Schering Pharma AG, Global Drug Discovery, Wuppertal, Germany
| | | | - Raimund Kast
- Bayer Schering Pharma AG, Global Drug Discovery, Wuppertal, Germany
| | - Karl-Ludwig Laugwitz
- 1. Medizinische Klinik, Klinikum rechts der Isar and Deutsches Herzzentrum München, Technische Universität, München, Germany
| | - Heimo Ehmke
- Institut für Vegetative Physiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Knorr
- Bayer Schering Pharma AG, Global Drug Discovery, Wuppertal, Germany
| | - Melchior Seyfarth
- Medizinische Klinik 3, HELIOS Klinikum Wuppertal and Lehrstuhl für Kardiologie, Universität Witten/Herdecke, Witten, Germany
| |
Collapse
|
29
|
Kandlikar SS, Fink GD. Mild DOCA-salt hypertension: sympathetic system and role of renal nerves. Am J Physiol Heart Circ Physiol 2011; 300:H1781-7. [PMID: 21357502 DOI: 10.1152/ajpheart.00972.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Excess sympathetic nervous system activity (SNA) is linked to human essential and experimental hypertension. To test whether sympathetic activation is associated with a model of deoxycorticosterone acetate (DOCA)-salt hypertension featuring two kidneys and a moderate elevation of blood pressure, we measured whole body norepinephrine (NE) spillover as an index of global SNA. Studies were conducted in chronically catheterized male Sprague-Dawley rats drinking water containing 1% NaCl and 0.2% KCl. After a 7-day surgical recovery and a 3-day control period, a DOCA pellet (50 mg/kg) was implanted subcutaneously in one group of rats (DOCA), while the other group underwent sham implantation (Sham). NE spillover was measured on control day 2 and days 7 and 14 after DOCA administration or sham implantation. During the control period, mean arterial pressure (MAP) was similar in Sham and DOCA rats. MAP was significantly increased in the DOCA group compared with the Sham group after DOCA administration (day 14: Sham = 109 ± 5.3, DOCA = 128 ± 3.6 mmHg). However, plasma NE concentration, clearance, and spillover were not different in the two groups at any time. To determine whether selective sympathetic activation to the kidneys contributes to hypertension development, additional studies were performed in renal denervated (RDX) and sham-denervated (Sham-DX) rats. MAP, measured by radiotelemetry, was similar in both groups during the control and DOCA treatment periods. In conclusion, global SNA is not increased during the development of mild DOCA-salt hypertension, and fully intact renal nerves are not essential for hypertension development in this model.
Collapse
Affiliation(s)
- Sachin S Kandlikar
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
30
|
Korzycka L, Górska D. Synthesis, pharmacological activity and nitric oxide generation by nitrate derivatives of theophylline. J Pharm Pharmacol 2010; 60:637-45. [DOI: 10.1211/jpp.60.5.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Nitrates of theophylline derivatives — potential nitric oxide (NO) donors — were synthesized by esterification of 7-hydroxyalkyl theophylline derivatives with fuming nitric acid. The nitrates obtained were tested in-vitro in reactions with sulfydryl compounds at appropriately adjusted pH and temperature. Under the applied conditions, the synthesized compounds underwent decomposition to release NO, quantified using a polarographic method using a selective isolated (ISO-NO) sensor. The effects of dyphylline and proxyphylline and their new synthesized nitrates on arterial blood pressure (BP) were measured in spontaneously hypertensive (SH) rats. BP was measured in conscious SH rats using the tail-cuff method. Both short- and long-term administration of the xanthines tested significantly decreased systolic, diastolic and mean BP. The hypotensive effect of a single dose of nitrate dyphylline on mean BP was greater than that of the parent compound (P = 0.000012; P = 0.000472 at 30 and 60 min post-dose, respectively), whereas proxyphylline and its nitrate derivative had similar activity. In rats treated with the tested compounds for 9 days twice daily, the decrease in BP persisted for at least 16 h after the last dose. Proxyphylline produced the most marked decrease in diastolic and mean BP. Among the xanthines examined, proxyphylline nitrate had the strongest hypotensive effect when administered in a single dose to animals pretreated with the same compound for 9 days. These results indicate that insertion of a nitrate group weakly modifies the hypotensive action of the studied xanthines in SH rats.
Collapse
Affiliation(s)
- Lucyna Korzycka
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, PL 90-151 Lodz, Poland
| | - Dorota Górska
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, PL 90-151 Lodz, Poland
| |
Collapse
|
31
|
Bolte C, Newman G, Schultz JEJ. Hypertensive state, independent of hypertrophy, exhibits an attenuated decrease in systolic function on cardiac kappa-opioid receptor stimulation. Am J Physiol Heart Circ Physiol 2009; 296:H967-75. [PMID: 19181965 DOI: 10.1152/ajpheart.00909.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Opioids/opiates are commonly administered to alleviate pain, unload the heart, or decrease breathlessness in patients with advanced heart failure. As such, it is important to evaluate whether the myocardial opioidergic system is altered in cardiac disease. A hamster model of spontaneous hypertension was investigated before the development of hypertension (1 mo of age) and in the hypertensive state (10 mo of age) to evaluate the effect of prolonged hypertension on myocardial opioidergic activity. Plasma beta-endorphin was decreased before the development of hypertension and in the hypertensive state (P < 0.05). There was no change in cardiac beta-endorphin content at either time point. No differences were detected in cardiac or plasma dynorphin A, Met-enkephalin, or Leu-enkephalin, or in cardiac peptide expression of kappa- or delta-opioid receptors. mu-Opioid receptor was not detected in either model. To determine how hypertension affects myocardial opioid signaling, the ex vivo work-performing heart was used to assess the cardiac response to opioid administration in healthy hearts and those subjected to chronic hypertension. Agonists selective for the kappa- and delta-opioid receptors, but not mu-opioid receptors, induced a concentration-dependent decrease in cardiac function. The decrease in left ventricular systolic pressure on administration of the kappa-opioid receptor-selective agonist, U50488H, was attenuated in hearts from hamsters subjected to chronic, untreated hypertension (P < 0.05) compared with control. These results show that peripheral and myocardial opioid expression and signaling are altered in hypertension.
Collapse
Affiliation(s)
- Craig Bolte
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | |
Collapse
|
32
|
Demel SL, Galligan JJ. Impaired purinergic neurotransmission to mesenteric arteries in deoxycorticosterone acetate-salt hypertensive rats. Hypertension 2008; 52:322-9. [PMID: 18606906 DOI: 10.1161/hypertensionaha.108.110353] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sympathetic nerves release norepinephrine and ATP onto mesenteric arteries. In deoxycorticosterone acetate (DOCA)-salt hypertensive rats, there is increased arterial sympathetic neurotransmission attributable, in part, to impaired prejunctional regulation of norepinephrine release. Prejunctional regulation purinergic transmission in hypertension is less well understood. We hypothesized that alpha(2)-adrenergic receptor dysfunction alters purinergic neurotransmission to arteries in DOCA-salt hypertensive rats. Mesenteric artery preparations were maintained in vitro, and intracellular electrophysiological methods were used to record excitatory junction potentials (EJPs) from smooth muscle cells. EJP amplitude was reduced in smooth muscle cells from DOCA-salt (4+/-1 mV) compared with control arteries (9+/-1 mV; P<0.05). When using short trains of stimulation (0.5 Hz; 5 pulses), the alpha(2)adrenergic receptor antagonist yohimbine (1 micromol/L) potentiated EJPs in control more than in DOCA-salt arteries (180+/-35% versus 86+/-7%; P<0.05). Norepinephrine (0.1 to 3.0 micromol/L), the alpha(2)adrenergic receptor agonist UK 14304 (0.001 to 0.100 micromol/L), the A(1) adenosine receptor agonist cyclopentyladensosine (0.3 to 100.0 micromol/L), and the N-type calcium channel blocker omega-conotoxin GVIA (0.0003 to 0.1000 micromol/L) decreased EJP amplitude equally well in control and DOCA-salt arteries. Trains of stimuli (10 Hz) depleted ATP stores more completely, and the latency to EJP recovery was longer in DOCA-salt compared with control arteries. These data indicate that there is reduced purinergic input to mesenteric arteries of DOCA-salt rats because of decreased ATP bioavailability in sympathetic nerves. These data highlight the potential importance of impaired purinergic regulation of arterial tone as a target for drug treatment of hypertension.
Collapse
Affiliation(s)
- Stacie L Demel
- Neuroscience Program, B328 Life Science Building, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
33
|
Kristen AV, Kreusser MM, Lehmann L, Kinscherf R, Katus HA, Haass M, Backs J. Preserved norepinephrine reuptake but reduced sympathetic nerve endings in hypertrophic volume-overloaded rat hearts. J Card Fail 2006; 12:577-83. [PMID: 16952792 DOI: 10.1016/j.cardfail.2006.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 05/09/2006] [Accepted: 05/10/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND In congestive heart failure (CHF), an activation of the cardiac sympathetic nervous system results in depleted cardiac norepinephrine (NE) stores. The underlying regulatory mechanisms are discussed controversially and were investigated in the present study in CHF resulting from volume overload. METHODS AND RESULTS Aorto-caval shunt (AVS) was performed in rats. Plasma NE levels were determined by radioenzymatic assay, left ventricular NE by high-performance liquid chromatography, endothelin-1 by enzyme-linked immunosorbent assay. Tyrosine-hydroxylase (TH)- and nerve growth factor (NGF)-mRNA was determined by Northern blot analysis and ribonuclease-assay. Cardiac [3H]-NE uptake was measured in isolated perfused hearts. Glyoxylic acid-induced histofluorescence was used to quantify cardiac sympathetic nerves. Compared with sham-operated animals (SH), AVS rats were characterized by depleted cardiac NE stores and enhanced NE plasma levels. Neither TH-mRNA levels in stellate ganglia, nor cardiac [3H]-NE-uptake were reduced in AVS. The left ventricular density of sympathetic nerves was markedly decreased. Gene expression of myocardial NGF (a positive regulator of NE reuptake and cardiac sympathetic nerve density) and left ventricular endothelin-1 (a negative regulator of NE reuptake and positive regulator of cardiac NGF expression) were unchanged. CONCLUSION In volume-overloaded hypertrophic hearts, depletion of cardiac NE stores is caused by a reduction of the sympathetic nerve density, whereas cardiac NE reuptake is preserved.
Collapse
Affiliation(s)
- Arnt V Kristen
- Department of Cardiology, Medical University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Buss SJ, Backs J, Kreusser MM, Hardt SE, Maser-Gluth C, Katus HA, Haass M. Spironolactone preserves cardiac norepinephrine reuptake in salt-sensitive Dahl rats. Endocrinology 2006; 147:2526-34. [PMID: 16439456 DOI: 10.1210/en.2005-1167] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An impairment of cardiac norepinephrine (NE) reuptake via the neuronal NE transporter (NET) enhances the effects of increased cardiac NE release in heart failure patients. Increasing evidence suggests that aldosterone and endothelins promote sympathetic overstimulation of failing hearts. Salt-sensitive Dahl rats (DS) fed a high-salt diet developed arterial hypertension and diastolic heart failure as well as elevated plasma levels of endothelin-1 and NE. Cardiac NE reuptake and NET-binding sites, as assessed by clearance of bolus-injected [(3)H]NE in isolated perfused rat hearts and [(3)H]mazindol binding, were reduced. Treatment of DS with the mineralocorticoid receptor antagonist spironolactone preserved the plasma levels of endothelin-1 and NE, cardiac NE reuptake, and myocardial NET density. Moreover, the ventricular function and survival of spironolactone-treated DS were significantly improved compared with untreated DS. The alpha(1)-inhibitor prazosin decreased blood pressure in DS similar to spironolactone treatment, but did not normalize the plasma levels of endothelin-1 and NE, NE reuptake, or ventricular function. In a heart failure-independent model, Wistar rats that were infused with aldosterone and fed a high-salt diet developed impaired cardiac NE reuptake. Treatment of these rats with the endothelin A receptor antagonist darusentan attenuated the impairment of NE reuptake. In conclusion, spironolactone preserves NET-dependent cardiac NE reuptake in salt-dependent heart failure. Evidence is provided that aldosterone inhibits NET function through an interaction with the endothelin system. Selective antagonism of the mineralocorticoid and/or the endothelin A receptor might represent therapeutic principles to prevent cardiac sympathetic overactivity in salt-dependent heart failure.
Collapse
Affiliation(s)
- Sebastian J Buss
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, 75390-9148, USA
| | | | | | | | | | | | | |
Collapse
|