1
|
Tekin V, Altintas F, Oymak B, Unal EB, Tunc-Ata M, Elmas L, Kucukatay V. S-Sulfocysteine's toxic effects on HT-22 cells are not triggered by glutamate receptors, nor do they involve apoptotic or genotoxicity mechanisms. Cytotechnology 2025; 77:32. [PMID: 39749013 PMCID: PMC11688261 DOI: 10.1007/s10616-024-00697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
S-Sulfocysteine (SSC) is a metabolite derived from the metabolism of sulfur-containing amino acids. It has been implicated in neurotoxicity observed in children with sulfite oxidase deficiency. The aim of our study was to confirm the neurotoxic effects of SSC using a mouse hippocampal cell line (HT-22) and to investigate the role of apoptosis in these effects, especially in terms of caspase-3 activation and genotoxicity. Based on the viability graph obtained following increasing concentrations of SSC, we determined the LC50 dose of SSC to be 125 µM by probit analysis. The cytotoxic effects of SSC were not reversed by glutamate receptor blocker administration. However, SSC treatment did not induce caspase-3 activation or induce DNA damage. Our results showed that SSC has a cytotoxic effect on neurons like glutamate, but glutamate receptor blockers reversed glutamate-induced toxicity, while these blockers did not protect neurons from SSC toxicity. The absence of caspase-3 activation and DNA fragmentation, which are indicative of apoptosis, in SSC-induced cell death suggests that alternative cell death pathways, such as necrosis and oxytosis may be implicated. Further research is necessary to fully elucidate SSC-induced cell death. The aim of our study was to confirm the neurotoxic effects of SSC using a mouse hippocampal cell line (HT-22) and to investigate the role of apoptosis in these effects, especially in terms of caspase-3 activation and genotoxicity.
Collapse
Affiliation(s)
- Volkan Tekin
- Department of Physiology, Gülhane Faculty of Medicine, University of Health Sciences, Ankara, Türkiye
| | - Fatih Altintas
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Türkiye
| | - Burak Oymak
- Department of Physiology, Prof. Dr. Cemil Taşcıoğlu City Hospital, Istanbul, Türkiye
| | - Egem Burcu Unal
- Department of Physiology, Adana City Education and Research Hospital, Adana, Türkiye
| | - Melek Tunc-Ata
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Türkiye
| | - Levent Elmas
- Department of Medical Biology, Faculty of Medicine, Bakırçay University, İzmir, Türkiye
| | - Vural Kucukatay
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Türkiye
| |
Collapse
|
2
|
Schwahn BC, Hart C, Smith LA, Hart A, Fairbanks L, Arenas-Hernandez M, Turner C, Horman A, Rust S, Santamaria-Araujo JA, Mayr SJ, Schwarz G, Sharrard M. cPMP rescue of a neonate with severe molybdenum cofactor deficiency after serendipitous early diagnosis, and characterisation of a novel MOCS1 variant. Mol Genet Metab 2024; 143:108598. [PMID: 39488078 DOI: 10.1016/j.ymgme.2024.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
We report the first, and so far, only index patient with neonatal onset MoCD type A who was diagnosed and treated early enough with cPMP to avoid severe brain injury and disability. The child presented with hypoglycemia at the age of 10 h and was diagnosed because of the incidental finding of severely decreased L-cystine in plasma. Due to a high level of awareness and excellent co-operation between metabolic laboratory and clinical services, cPMP substitution could be initiated before severe encephalopathy set in, and the child subsequently had a normal motor development. The child has been continued on daily substitution with cPMP until today (age 7 years) and has shown a satisfying long-term developmental outcome. Long-term follow-up, however, revealed significant communication difficulties and cognitive abilities in the range of mild to moderate learning disability. The severity of the metabolic disease was confirmed by the extent of biochemical abnormalities and further functional characterisation of the underlying genetic variants. This case provides further evidence that cPMP substitution does significantly alter the disease course when applied early enough. Postnatal treatment in this case was not sufficient to enable an entirely normal cognitive development, despite sustained complete normalization of the biochemical abnormalities.
Collapse
Affiliation(s)
- Bernd C Schwahn
- Willink Metabolic Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK.
| | - Claire Hart
- Department of Clinical Chemistry, Sheffield Children's Hospital, South Yorkshire and Bassetlaw Pathology, Sheffield, UK
| | - Louisa Ann Smith
- Department of Clinical Chemistry, Sheffield Children's Hospital, South Yorkshire and Bassetlaw Pathology, Sheffield, UK
| | - Anthony Hart
- Paediatric Neurology, King's College Hospital NHS Foundation Trust, London, UK
| | - Lynette Fairbanks
- Purine Research Lab, Biochemical Sciences, Synnovis, Guys & St Thomas' NHS Foundation Trust, London, UK
| | - Monica Arenas-Hernandez
- Purine Research Lab, Biochemical Sciences, Synnovis, Guys & St Thomas' NHS Foundation Trust, London, UK
| | - Charles Turner
- WellChild Laboratory, Evelina London Children's Hospital, St Thomas' Hospital, London, UK
| | - Alistair Horman
- Willink Metabolic Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Department of Chemical Pathology, Great Ormond Street Hospital, London, UK
| | - Stewart Rust
- Paediatric Neuropsychology Service, Harrington Building, Royal Manchester Children's Hospital, UK
| | | | - Simon J Mayr
- Department of Biochemistry, University of Cologne, Cologne, Germany
| | - Günter Schwarz
- Department of Biochemistry, University of Cologne, Cologne, Germany
| | - Mark Sharrard
- Metabolic Department, Sheffield Children's Hospital, Sheffield, UK
| |
Collapse
|
3
|
Dahabiyeh LA, Nimer RM, Wells JD, Abu-rish EY, Fiehn O. Diagnosing Parkinson's disease and monitoring its progression: Biomarkers from combined GC-TOF MS and LC-MS/MS untargeted metabolomics. Heliyon 2024; 10:e30452. [PMID: 38720721 PMCID: PMC11077040 DOI: 10.1016/j.heliyon.2024.e30452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder with a poorly understood etiology. An accurate diagnosis of idiopathic PD remains challenging as misdiagnosis is common in routine clinical practice. Moreover, current therapeutics focus on symptomatic management rather than curing or slowing down disease progression. Therefore, identification of potential PD biomarkers and providing a better understanding of the underlying disease pathophysiology are urgent. Herein, hydrophilic interaction liquid chromatography-mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-TOF MS) based metabolomics approaches were used to profile the serum metabolome of 50 patients with different stages of idiopathic PD (early, mid and advanced) and 45 age-matched controls. Levels of 57 metabolites including cysteine-S-sulfate and N-acetyl tryptophan were significantly higher in patients with PD compared to controls, with lower amounts of additional 51 metabolites including vanillic acid, and N-acetylaspartic acid. Xanthines, including caffeine and its downstream metabolites, were lowered in patients with PD relative to controls indicating a potential role caffeine and its metabolites against neuronal damage. Seven metabolites, namely cysteine-S-sulfate, 1-methylxanthine, vanillic acid, N-acetylaspartic acid, 3-N-acetyl tryptophan, 5-methoxytryptophol, and 13-HODE yielded a ROC curve with a high classification accuracy (AUC 0.977). Comparison between different PD stages showed that cysteine-S-sulfate levels were significantly increasing with the advancement of PD stages while LPI 20:4 was significantly decreasing with disease progression. Our findings provide new biomarker candidates to assist in the diagnosis of PD and monitor its progression. Unusual metabolites like cysteine-S-sulfate might point to therapeutic targets that could enhance the development of novel PD treatments, such as NMDA antagonists.
Collapse
Affiliation(s)
- Lina A. Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, 11942, Amman, Jordan
- West Coast Metabolomics Center, University of California, Davis, Sacramento, CA, USA
| | - Refat M. Nimer
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, 22110, Irbid, Jordan
| | - Jeremiah D. Wells
- West Coast Metabolomics Center, University of California, Davis, Sacramento, CA, USA
| | - Eman Y. Abu-rish
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
4
|
Paul KC, Zhang K, Walker DI, Sinsheimer J, Yu Y, Kusters C, Del Rosario I, Folle AD, Keener AM, Bronstein J, Jones DP, Ritz B. Untargeted serum metabolomics reveals novel metabolite associations and disruptions in amino acid and lipid metabolism in Parkinson's disease. Mol Neurodegener 2023; 18:100. [PMID: 38115046 PMCID: PMC10731845 DOI: 10.1186/s13024-023-00694-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Untargeted high-resolution metabolomic profiling provides simultaneous measurement of thousands of metabolites. Metabolic networks based on these data can help uncover disease-related perturbations across interconnected pathways. OBJECTIVE Identify metabolic disturbances associated with Parkinson's disease (PD) in two population-based studies using untargeted metabolomics. METHODS We performed a metabolome-wide association study (MWAS) of PD using serum-based untargeted metabolomics data derived from liquid chromatography with high-resolution mass spectrometry (LC-HRMS) using two distinct population-based case-control populations. We also combined our results with a previous publication of 34 metabolites linked to PD in a large-scale, untargeted MWAS to assess external validation. RESULTS LC-HRMS detected 4,762 metabolites for analysis (HILIC: 2716 metabolites; C18: 2046 metabolites). We identified 296 features associated with PD at FDR<0.05, 134 having a log2 fold change (FC) beyond ±0.5 (228 beyond ±0.25). Of these, 104 were independently associated with PD in both discovery and replication studies at p<0.05 (170 at p<0.10), while 27 were associated with levodopa-equivalent dose among the PD patients. Intriguingly, among the externally validated features were the microbial-related metabolites, p-cresol glucuronide (FC=2.52, 95% CI=1.67, 3.81, FDR=7.8e-04) and p-cresol sulfate. P-cresol glucuronide was also associated with motor symptoms among patients. Additional externally validated metabolites associated with PD include phenylacetyl-L-glutamine, trigonelline, kynurenine, biliverdin, and pantothenic acid. Novel associations include the anti-inflammatory metabolite itaconate (FC=0.79, 95% CI=0.73, 0.86; FDR=2.17E-06) and cysteine-S-sulfate (FC=1.56, 95% CI=1.39, 1.75; FDR=3.43E-11). Seventeen pathways were enriched, including several related to amino acid and lipid metabolism. CONCLUSIONS Our results revealed PD-associated metabolites, confirming several previous observations, including for p-cresol glucuronide, and newly implicating interesting metabolites, such as itaconate. Our data also suggests metabolic disturbances in amino acid and lipid metabolism and inflammatory processes in PD.
Collapse
Affiliation(s)
- Kimberly C Paul
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| | - Keren Zhang
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Janet Sinsheimer
- Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Yu Yu
- Center for Health Policy Research, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Cynthia Kusters
- Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Irish Del Rosario
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Aline Duarte Folle
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Adrienne M Keener
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- Parkinson's Disease Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, USA
| | - Jeff Bronstein
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Beate Ritz
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| |
Collapse
|
5
|
Zhang S, Chen L, Hu M, Zhu J. 2'-Fucosyllactose (2'-FL) changes infants gut microbiota composition and their metabolism in a host-free human colonic model. Food Res Int 2023; 173:113293. [PMID: 37803605 PMCID: PMC10560763 DOI: 10.1016/j.foodres.2023.113293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Breast milk is critical for neonates, providing the necessary energy, nutrients, and bioactive compounds for growth and development. Research indicated that human milk oligosaccharides (HMOs) have been shown to shape a beneficial gut microbiota, as well as their metabolism (e.g. short-chain fatty acids). 2'-Fucosyllactose (2'-FL) is one major HMO that composed of 30% of total HMOs. OBJECTIVES This study aimed to understand the impact of 2'-FL on the composition and metabolism of infant gut microbiota. METHODS Our study utilized an in-vitro human colonic model (HCM) to investigate the host-free interactions between 2'-FL and infant gut microbiota. To simulate the infant gut microbiota, we inoculated the HCM system with eight representative bacterial species from infant gut microbiota. The effects of 2'-FL on the gut microbial composition and their metabolism were determined through real-time quantitative PCR and liquid-chromatography mass spectrometry (LC/MS). The obtained data were analyzed using Compound Discoverer 3.1 and MetaboAnalyst 4.0. RESULTS Our study findings suggest that the intervention of 2'-FL in HCM resulted in a significant change in the abundance of representative bacterial species. PCR analysis showed a consistent increase in the abundance of Parabacteroides. distasonis in all three colon sections. Furthermore, analysis of free fatty acids revealed a significant increase in their levels in the ascending, transverse, and descending colons, except for caproic acid, which was significantly reduced to a non-detectable level. The identification of significant extracellular polar metabolites, such as glutathione and serotonin, enabled us to distinguish between the metabolomes before and after 2'-FL intervention. Moreover, correlation analysis revealed a significant association between the altered microbes and microbial metabolites. CONCLUSIONS In summary, our study demonstrated the impact of 2'-FL intervention on the defined composition of infant gut microbiota and their metabolic pathways in an in vitro setting. Our findings provide valuable insights for future follow-up investigations into the role of 2'-FL in regulating the growth and development of infant gut microbiota in vivo.
Collapse
Affiliation(s)
- Shiqi Zhang
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Li Chen
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Ming Hu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Jiangjiang Zhu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Zambach C, Pan J, Gerward S, Fedorowski A, Smith JG, Engström G, Hamrefors V. The relationships between the plasma metabolome and orthostatic blood pressure responses. Sci Rep 2023; 13:18244. [PMID: 37880314 PMCID: PMC10600108 DOI: 10.1038/s41598-023-44226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
Whereas autonomic dysfunction and the metabolic syndrome are clinically associated, the relationships with the plasma metabolome is unknown. We explored the association between orthostatic blood pressure responses and 818 plasma metabolites in middle-aged subjects from the general population. We included 3803 out of 6251 subjects (mean age, 57 years; 52% women) from the Malmö sub-cohort of The Swedish CardioPulmonary bioImage Study with information on smoking habits, diabetes, antihypertensive drug treatment, anthropometrics, hemodynamic measurements and 818 plasma metabolites (mass-spectrometry). The associations between each metabolite and orthostatic systolic blood pressure responses were determined using multivariable linear regression analysis and p values were corrected using the Bonferroni method. Six amino acids, five vitamins, co-factors and carbohydrates, nine lipids and two xenobiotics were associated with orthostatic blood pressure after adjusting for age, gender and systolic blood pressure. After additional adjustments for BMI, diabetes, smoking and antihypertensive treatment, the association remained significant for six lipids, four amino acids and one xenobiotic. Twenty-two out of 818 plasma metabolites were associated with orthostatic blood pressure responses. Eleven metabolites, including lipids in the dihydrosphingomyelin and sphingosine pathways, were independently associated with orthostatic systolic blood pressure responses after additional adjustment for markers of cardio-metabolic disease.
Collapse
Affiliation(s)
- Christian Zambach
- Department of Clinical Sciences, Clinical Research Center, Lund University, Box 50332, 20313, Malmö, Sweden.
- Department of Internal Medicine, Skåne University Hospital, Lund, Sweden.
| | - Jingxue Pan
- Department of Clinical Sciences, Clinical Research Center, Lund University, Box 50332, 20313, Malmö, Sweden
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sofia Gerward
- Department of Clinical Sciences, Clinical Research Center, Lund University, Box 50332, 20313, Malmö, Sweden
| | - Artur Fedorowski
- Department of Clinical Sciences, Clinical Research Center, Lund University, Box 50332, 20313, Malmö, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences, Clinical Research Center, Lund University, Box 50332, 20313, Malmö, Sweden
| | - Viktor Hamrefors
- Department of Clinical Sciences, Clinical Research Center, Lund University, Box 50332, 20313, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
7
|
Mendel RR, Schwarz G. The History of Animal and Plant Sulfite Oxidase-A Personal View. Molecules 2023; 28:6998. [PMID: 37836841 PMCID: PMC10574614 DOI: 10.3390/molecules28196998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Sulfite oxidase is one of five molybdenum-containing enzymes known in eukaryotes where it catalyzes the oxidation of sulfite to sulfate. This review covers the history of sulfite oxidase research starting out with the early years of its discovery as a hepatic mitochondrial enzyme in vertebrates, leading to basic biochemical and structural properties that have inspired research for decades. A personal view on sulfite oxidase in plants, that sulfates are assimilated for their de novo synthesis of cysteine, is presented by Ralf Mendel with numerous unexpected findings and unique properties of this single-cofactor sulfite oxidase localized to peroxisomes. Guenter Schwarz connects his research to sulfite oxidase via its deficiency in humans, demonstrating its unique role amongst all molybdenum enzymes in humans. In essence, in both the plant and animal kingdoms, sulfite oxidase represents an important player in redox regulation, signaling and metabolism, thereby connecting sulfur and nitrogen metabolism in multiple ways.
Collapse
Affiliation(s)
- Ralf R. Mendel
- Institute of Plant Biology, Technical University Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Günter Schwarz
- Institute of Biochemistry, Department of Chemistry & Center for Molecular Medicine, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany;
| |
Collapse
|
8
|
Jala A, Dutta R, Josyula JVN, Mutheneni SR, Borkar RM. Environmental phenol exposure associates with urine metabolome alteration in young Northeast Indian females. CHEMOSPHERE 2023; 317:137830. [PMID: 36640981 DOI: 10.1016/j.chemosphere.2023.137830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Urinary biomonitoring delivers the most accurate environmental phenols exposure assessment. However, environmental phenol exposure-related biomarkers are required to improve risk assessment to understand the internal processes perturbed, which may link exposure to specific health outcomes. This study aimed to investigate the association between environmental phenols exposure and the metabolome of young adult females from India. Urinary metabolomics was performed using liquid chromatography-mass spectrometry. Environmental phenols-related metabolic biomarkers were investigated by comparing the low and high exposure of environmental phenols. Seven potential biomarkers, namely histidine, cysteine-s-sulfate, 12-KETE, malonic acid, p-hydroxybenzoic acid, PE (36:2), and PS (36:0), were identified, revealing that environmental phenol exposure altered the metabolic pathways such as histidine metabolism, beta-Alanine metabolism, glycerophospholipid metabolism, and other pathways. This study also conceived an innovative strategy for the early prediction of diseases by combining urinary metabolomics with machine learning (ML) algorithms. The differential metabolites predictive accuracy by ML models was >80%. This is the first mass spectrometry-based metabolomics study on young adult females from India with environmental phenols exposure. The study is valuable in demonstrating multiple urine metabolic changes linked to environmental phenol exposure and a better understanding of the mechanisms behind environmental phenol-induced effects in young female adults.
Collapse
Affiliation(s)
- Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Ratul Dutta
- Down Town Hospital, Guwahati, Assam, 781106, India
| | | | - Srinivasa Rao Mutheneni
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India.
| |
Collapse
|
9
|
Zhou L, Surapaneni A, Rhee EP, Yu B, Boerwinkle E, Coresh J, Grams ME, Schlosser P. Integrated proteomic and metabolomic modules identified as biomarkers of mortality in the Atherosclerosis Risk in Communities study and the African American Study of Kidney Disease and Hypertension. Hum Genomics 2022; 16:53. [PMID: 36329547 PMCID: PMC9635174 DOI: 10.1186/s40246-022-00425-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Proteins and metabolites are essential for many biological functions and often linked through enzymatic or transport reactions. Individual molecules have been associated with all-cause mortality. Many of these are correlated and might jointly represent pathways or endophenotypes involved in diseases. RESULTS We present an integrated analysis of proteomics and metabolomics via a local dimensionality reduction clustering method. We identified 224 modules of correlated proteins and metabolites in the Atherosclerosis Risk in Communities (ARIC) study, a general population cohort of older adults (N = 4046, mean age 75.7, mean eGFR 65). Many of the modules displayed strong cross-sectional associations with demographic and clinical characteristics. In comprehensively adjusted analyses, including fasting plasma glucose, history of cardiovascular disease, systolic blood pressure and kidney function among others, 60 modules were associated with mortality. We transferred the network structure to the African American Study of Kidney Disease and Hypertension (AASK) (N = 694, mean age 54.5, mean mGFR 46) and identified mortality associated modules relevant in this disease specific cohort. The four mortality modules relevant in both the general population and CKD were all a combination of proteins and metabolites and were related to diabetes / insulin secretion, cardiovascular disease and kidney function. Key components of these modules included N-terminal (NT)-pro hormone BNP (NT-proBNP), Sushi, Von Willebrand Factor Type A, EGF And Pentraxin (SVEP1), and several kallikrein proteases. CONCLUSION Through integrated biomarkers of the proteome and metabolome we identified functions of (patho-) physiologic importance related to diabetes, cardiovascular disease and kidney function.
Collapse
Affiliation(s)
- Linda Zhou
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 E. Monument St., Baltimore, MD, 21287, USA
| | - Aditya Surapaneni
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 E. Monument St., Baltimore, MD, 21287, USA
| | - Eugene P Rhee
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 E. Monument St., Baltimore, MD, 21287, USA
| | - Morgan E Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 E. Monument St., Baltimore, MD, 21287, USA.,Division of Precision Medicine, Department of Medicine, New York University, New York, NY, USA
| | - Pascal Schlosser
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 E. Monument St., Baltimore, MD, 21287, USA.
| |
Collapse
|
10
|
Johannes L, Fu CY, Schwarz G. Molybdenum Cofactor Deficiency in Humans. Molecules 2022; 27:6896. [PMID: 36296488 PMCID: PMC9607355 DOI: 10.3390/molecules27206896] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Molybdenum cofactor (Moco) deficiency (MoCD) is characterized by neonatal-onset myoclonic epileptic encephalopathy and dystonia with cerebral MRI changes similar to hypoxic-ischemic lesions. The molecular cause of the disease is the loss of sulfite oxidase (SOX) activity, one of four Moco-dependent enzymes in men. Accumulating toxic sulfite causes a secondary increase of metabolites such as S-sulfocysteine and thiosulfate as well as a decrease in cysteine and its oxidized form, cystine. Moco is synthesized by a three-step biosynthetic pathway that involves the gene products of MOCS1, MOCS2, MOCS3, and GPHN. Depending on which synthetic step is impaired, MoCD is classified as type A, B, or C. This distinction is relevant for patient management because the metabolic block in MoCD type A can be circumvented by administering cyclic pyranopterin monophosphate (cPMP). Substitution therapy with cPMP is highly effective in reducing sulfite toxicity and restoring biochemical homeostasis, while the clinical outcome critically depends on the degree of brain injury prior to the start of treatment. In the absence of a specific treatment for MoCD type B/C and SOX deficiency, we summarize recent progress in our understanding of the underlying metabolic changes in cysteine homeostasis and propose novel therapeutic interventions to circumvent those pathological changes.
Collapse
Affiliation(s)
| | | | - Günter Schwarz
- Institute of Biochemistry, Department of Chemistry & Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
11
|
Liu J, Zhou Y, Liu H, Ma M, Wang F, Liu C, Yuan Q, Wang H, Hou X, Yin P. Metabolic reprogramming enables the auxiliary diagnosis of breast cancer by automated breast volume scanner. Front Oncol 2022; 12:939606. [PMCID: PMC9597368 DOI: 10.3389/fonc.2022.939606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the leading cause of female cancer-related deaths worldwide. New technologies with enhanced sensitivity and specificity for early diagnosis and monitoring of postoperative recurrence are in critical demand. Automatic breast full volume scanning system (ABVS) is an emerging technology used as an alternative imaging method for breast cancer screening. Despite its improved detection rate of malignant tumors, ABVS cannot accurately stage breast cancer preoperatively in 30–40% of cases. As a major hallmark of breast cancer, the characteristic metabolic reprogramming may provide potential biomarkers as an auxiliary method for ABVS.ObjectiveThe objective of this study was to identify differential metabolomic signatures between benign and malignant breast tumors and among different subtypes of breast cancer patients based on untargeted metabolomics and improve breast cancer detection rate by combining key metabolites and ABVS.MethodsUntargeted metabolomics approach was used to profile serum samples from 70 patients with different subtypes of breast cancer and benign breast tumor to determine specific metabolomic profiles through univariate and multivariate statistical data analysis.ResultsMetabolic profiles correctly distinguished benign and malignant breast tumors patients, and a total of 791 metabolites were identified. There were 54 different metabolites between benign and malignant breast tumors and 17 different metabolites between invasive and non-invasive breast cancer. Notably, the missed diagnosis rate of ABVS could be reduced by differential metabolite analysis. Moreover, the diagnostic performance analyses of combined metabolites (pelargonic acid, N-acetylasparagine, and cysteine-S-sulfate) with ABVS performance gave a ROC area under the curve of 0.967 (95% CI: 0.926, 0.993).ConclusionsOur study identified metabolic features both in benign and malignant breast tumors and in invasive and non-invasive breast cancer. Combined ultrasound ABVS and a panel of differential serum metabolites could further improve the accuracy of preoperative diagnosis of breast cancer and guide surgical therapy.
Collapse
Affiliation(s)
- Jianjun Liu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yang Zhou
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiying Liu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mengyan Ma
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fei Wang
- Breast Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chang Liu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qihang Yuan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongjiang Wang
- Breast Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiukun Hou
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Peiyuan Yin, ; Xiukun Hou,
| | - Peiyuan Yin
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Integrative Medicine, Dalian Medical University, Dalian, China
- *Correspondence: Peiyuan Yin, ; Xiukun Hou,
| |
Collapse
|
12
|
Alosaimi F, Boonstra JT, Tan S, Temel Y, Jahanshahi A. The role of neurotransmitter systems in mediating deep brain stimulation effects in Parkinson’s disease. Front Neurosci 2022; 16:998932. [PMID: 36278000 PMCID: PMC9579467 DOI: 10.3389/fnins.2022.998932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Deep brain stimulation (DBS) is among the most successful paradigms in both translational and reverse translational neuroscience. DBS has developed into a standard treatment for movement disorders such as Parkinson’s disease (PD) in recent decades, however, specific mechanisms behind DBS’s efficacy and side effects remain unrevealed. Several hypotheses have been proposed, including neuronal firing rate and pattern theories that emphasize the impact of DBS on local circuitry but detail distant electrophysiological readouts to a lesser extent. Furthermore, ample preclinical and clinical evidence indicates that DBS influences neurotransmitter dynamics in PD, particularly the effects of subthalamic nucleus (STN) DBS on striatal dopaminergic and glutamatergic systems; pallidum DBS on striatal dopaminergic and GABAergic systems; pedunculopontine nucleus DBS on cholinergic systems; and STN-DBS on locus coeruleus (LC) noradrenergic system. DBS has additionally been associated with mood-related side effects within brainstem serotoninergic systems in response to STN-DBS. Still, addressing the mechanisms of DBS on neurotransmitters’ dynamics is commonly overlooked due to its practical difficulties in monitoring real-time changes in remote areas. Given that electrical stimulation alters neurotransmitter release in local and remote regions, it eventually exhibits changes in specific neuronal functions. Consequently, such changes lead to further modulation, synthesis, and release of neurotransmitters. This narrative review discusses the main neurotransmitter dynamics in PD and their role in mediating DBS effects from preclinical and clinical data.
Collapse
Affiliation(s)
- Faisal Alosaimi
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
- *Correspondence: Faisal Alosaimi,
| | - Jackson Tyler Boonstra
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sonny Tan
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- Ali Jahanshahi,
| |
Collapse
|
13
|
Spiegel R, Schwahn BC, Squires L, Confer N. Molybdenum cofactor deficiency: A natural history. J Inherit Metab Dis 2022; 45:456-469. [PMID: 35192225 PMCID: PMC9313850 DOI: 10.1002/jimd.12488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/09/2022]
Abstract
Molybdenum cofactor deficiency (MoCD) includes three ultrarare autosomal recessive inborn errors of metabolism (MoCD type A [MoCD-A], MoCD-B, and MoCD-C) that cause sulfite intoxication disorders. This natural history study analyzed retrospective data for 58 living or deceased patients (MoCD-A, n = 41; MoCD-B, n = 17). MoCD genotype, survival, neuroimaging, and medical history were assessed retrospectively. Prospective biomarker data were collected for 21 living MoCD patients. The primary endpoint was survival to 1 year of age in MoCD-A patients. Of the 58 MoCD patients, 49 (MoCD-A, n = 36; MoCD-B, n = 13) had first presenting symptoms by Day 28 (neonatal onset; median: 2 and 4 days, respectively). One-year survival rates were 77.4% (overall), 71.8% (neonatal onset MoCD-A), and 76.9% (neonatal onset MoCD-B); median ages at death were 2.4, 2.4, and 2.2 years, respectively. The most common presenting symptoms in the overall population were seizures (60.3%) and feeding difficulties (53.4%). Sequelae included profound developmental delay, truncal hypotonia, limb hypertonia that evolved to spastic quadriplegia or diplegia, dysmorphic features, and acquired microcephaly. In MoCD-A and MoCD-B, plasma and urinary xanthine and S-sulfocysteine concentrations were high; urate remained below the normal reference range. MOCS1 mutation homozygosity was common. Six novel mutations were identified. MoCD is a severe neurodegenerative disorder that often manifests during the neonatal period with intractable seizures and feeding difficulties, with rapidly progressive significant neurologic disabilities and high 1-year mortality rates. Delineation of MoCD natural history supports evaluations of emerging replacement therapy with cPMP for MoCD-A, which may modify disease course for affected individuals.
Collapse
Affiliation(s)
- Ronen Spiegel
- Emek Medical CenterAfulaIsrael
- Rappaport school of MedicineTechnionHaifaIsrael
| | - Bernd C. Schwahn
- Manchester Centre for Genomic Medicine, St Mary's HospitalManchester University NHS Foundation Trust, Health Innovation ManchesterManchesterUK
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | | | | |
Collapse
|
14
|
Differential Effects of Human P301L Tau Expression in Young versus Aged Mice. Int J Mol Sci 2021; 22:ijms222111637. [PMID: 34769068 PMCID: PMC8583766 DOI: 10.3390/ijms222111637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
The greatest risk factor for developing Alzheimer’s disease (AD) is increasing age. Understanding the changes that occur in aging that make an aged brain more susceptible to developing AD could result in novel therapeutic targets. In order to better understand these changes, the current study utilized mice harboring a regulatable mutant P301L human tau transgene (rTg(TauP301L)4510), in which P301L tau expression can be turned off or on by the addition or removal of doxycycline in the drinking water. This regulatable expression allowed for assessment of aging independent of prolonged mutant tau expression. Our results suggest that P301L expression in aged mice enhances memory deficits in the Morris water maze task. These behavioral changes may be due to enhanced late-stage tau pathology, as evidenced by immunoblotting and exacerbated hippocampal dysregulation of glutamate release and uptake measured by the microelectrode array technique. We additionally observed changes in proteins important for the regulation of glutamate and tau phosphorylation that may mediate these age-related changes. Thus, age and P301L tau interact to exacerbate tau-induced detrimental alterations in aged animals.
Collapse
|
15
|
Schwahn B. Fosdenopterin: a First-in-class Synthetic Cyclic Pyranopterin Monophosphate for the Treatment of Molybdenum Cofactor Deficiency Type A. Neurology 2021. [DOI: 10.17925/usn.2021.17.2.85] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Darst BF, Huo Z, Jonaitis EM, Koscik RL, Clark LR, Lu Q, Kremen WS, Franz CE, Rana B, Lyons MJ, Hogan KJ, Zhao J, Johnson SC, Engelman CD. Metabolites Associated with Early Cognitive Changes Implicated in Alzheimer's Disease. J Alzheimers Dis 2021; 79:1041-1054. [PMID: 33427733 PMCID: PMC8054536 DOI: 10.3233/jad-200176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Understanding metabolic mechanisms associated with cognitive changes preceding an Alzheimer's disease (AD) diagnosis could advance our understanding of AD progression and inform preventive methods. OBJECTIVE We investigated the metabolomics of the early changes in executive function and delayed recall, the earliest aspects of cognitive function to change in the course of AD development, in order to better understand mechanisms that could contribute to early stages and progression of this disease. METHODS This investigation used longitudinal plasma samples from the Wisconsin Registry for Alzheimer's Prevention (WRAP), a cohort of participants who were dementia free at enrollment and enriched with a parental history of AD. Metabolomic profiles were quantified for 2,324 fasting plasma samples among 1,200 participants, each with up to three study visits, which occurred every two years. Metabolites were individually tested for association with executive function and delayed recall trajectories across age. RESULTS Of 1,097 metabolites tested, levels of seven were associated with executive function trajectories, including an amino acid cysteine S-sulfate and three fatty acids, including erucate (22 : 1n9), while none were associated with delayed recall trajectories. Replication was attempted for four of these metabolites that were present in the Vietnam Era Twin Study of Aging (VETSA). Although none reached statistical significance, three of these associations showed consistent effectdirections. CONCLUSION Our results suggest potential metabolomic mechanisms that could contribute to the earliest signs of cognitive decline. In particular, fatty acids may be associated with cognition in a manner that is more complex than previously suspected.
Collapse
Affiliation(s)
- Burcu F. Darst
- Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Erin M. Jonaitis
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rebecca L. Koscik
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lindsay R. Clark
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, WI, USA
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, WI, USA
| | | | | | - Brinda Rana
- University of California, San Diego, La Jolla, CA, USA
| | - Michael J. Lyons
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Kirk J. Hogan
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jinying Zhao
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, WI, USA
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Corinne D. Engelman
- Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
17
|
Mayr SJ, Mendel RR, Schwarz G. Molybdenum cofactor biology, evolution and deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118883. [PMID: 33017596 DOI: 10.1016/j.bbamcr.2020.118883] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
The molybdenum cofactor (Moco) represents an ancient metal‑sulfur cofactor, which participates as catalyst in carbon, nitrogen and sulfur cycles, both on individual and global scale. Given the diversity of biological processes dependent on Moco and their evolutionary age, Moco is traced back to the last universal common ancestor (LUCA), while Moco biosynthetic genes underwent significant changes through evolution and acquired additional functions. In this review, focused on eukaryotic Moco biology, we elucidate the benefits of gene fusions on Moco biosynthesis and beyond. While originally the gene fusions were driven by biosynthetic advantages such as coordinated expression of functionally related proteins and product/substrate channeling, they also served as origin for the development of novel functions. Today, Moco biosynthetic genes are involved in a multitude of cellular processes and loss of the according gene products result in severe disorders, both related to Moco biosynthesis and secondary enzyme functions.
Collapse
Affiliation(s)
- Simon J Mayr
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine, University of Cologne, Zuelpicher Str. 47, 50674 Koeln, Germany
| | - Ralf-R Mendel
- Institute of Plant Biology, Braunschweig University of Technology, Humboldtstr. 1, 38106 Braunschweig, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine, University of Cologne, Zuelpicher Str. 47, 50674 Koeln, Germany.
| |
Collapse
|
18
|
Fu C, Wu Q, Zhang Z, Xia Z, Ji H, Lu H, Wang Y. UPLC-ESI-IT-TOF-MS metabolomic study of the therapeutic effect of Xuefu Zhuyu decoction on rats with traumatic brain injury. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112149. [PMID: 31401321 DOI: 10.1016/j.jep.2019.112149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
It has been widely reported that Xuefu Zhuyu decoction (XFZYD), a traditional Chinese medicine, is effective in the treatment of traumatic brain injury (TBI). However, the mechanism of the therapeutic process is still not fully understood. Metabolomic technique can be used to explore the mechanisms underlying the treatment of TBI with XFZYD. The purpose of this work was to investigate the metabolic characteristics of blood samples from rats with and without XFZYD treatment and the dynamic changes in metabolite profiles on days 1, 3, 7, 14 and 21 after injury (within the severe phase of TBI) based on untargeted UPLC-ESI-IT-TOF-MS analysis. Pattern recognition, clustering analysis and metabolic pathway analysis were used to analyse the metabolomic data of three groups (a sham-operated group, a TBI model, and an XFZYD-treated TBI model). The results showed that XFZYD reversed the abnormalities in the levels of small-molecule metabolites (such as L-acetylcarnitine, L-tryptophan, indoleacrylic acid, γ-aminobutyric acid, hypotaurine, LysoPC(18:1)(11Z), creatine, L-phenylalanine and L-leucine) in TBI rats through six metabolic pathways (including phenylalanine, tyrosine and tryptophan biosynthesis; phenylalanine metabolism; valine, leucine and isoleucine biosynthesis; taurine and hypotaurine metabolism; tryptophan metabolism; and alanine, aspartate and glutamate metabolism) involved in the therapy process. XFZYD regulated the metabolic disorders of endogenous markers by the possible mechanisms of neuroprotection, energy metabolism, inflammatory response and oxidative stress. This study revealed the holistic and dynamic metabolic changes caused by XFZYD in rats with TBI and provided important research methods and approaches for exploring the multiple metabolites and metabolic pathways involved in the therapeutic effect of XFZYD on TBI.
Collapse
Affiliation(s)
- Chunyan Fu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha, PR China; College of Pharmacy, Shaoyang University, Hunan, Shaoyang, PR China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha, PR China
| | - Zhimin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha, PR China
| | - Zian Xia
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Hunan, Changsha, PR China
| | - Hongchao Ji
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha, PR China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha, PR China.
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Hunan, Changsha, PR China.
| |
Collapse
|
19
|
Handelman SK, Romero R, Tarca AL, Pacora P, Ingram B, Maymon E, Chaiworapongsa T, Hassan SS, Erez O. The plasma metabolome of women in early pregnancy differs from that of non-pregnant women. PLoS One 2019; 14:e0224682. [PMID: 31726468 PMCID: PMC6855901 DOI: 10.1371/journal.pone.0224682] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In comparison to the non-pregnant state, the first trimester of pregnancy is characterized by systemic adaptation of the mother. The extent to which these adaptive processes are reflected in the maternal blood metabolome is not well characterized. OBJECTIVE To determine the differences between the plasma metabolome of non-pregnant and pregnant women before 16 weeks gestation. STUDY DESIGN This study included plasma samples from 21 non-pregnant women and 50 women with a normal pregnancy (8-16 weeks of gestation). Combined measurements by ultrahigh performance liquid chromatography/tandem mass spectrometry and by gas chromatography/mass spectrometry generated molecular abundance measurements for each sample. Molecular species detected in at least 10 samples were included in the analysis. Differential abundance was inferred based on false discovery adjusted p-values (FDR) from Mann-Whitney-Wilcoxon U tests <0.1 and a minimum median abundance ratio (fold change) of 1.5. Alternatively, metabolic data were quantile normalized to remove sample-to-sample differences in the overall metabolite abundance (adjusted analysis). RESULTS Overall, 637 small molecules met the inclusion criteria and were tested for association with pregnancy; 44% (281/637) of small molecules had significantly different abundance, of which 81% (229/281) were less abundant in pregnant than in non-pregnant women. Eight percent (14/169) of the metabolites that remained significant in the adjusted analysis also changed as a function of gestational age. A pathway analysis revealed enrichment in steroid metabolites related to sex hormones, caffeine metabolites, lysolipids, dipeptides, and polypeptide bradykinin derivatives (all, FDR < 0.1). CONCLUSIONS This high-throughput mass spectrometry study identified: 1) differences between pregnant vs. non-pregnant women in the abundance of 44% of the profiled plasma metabolites, including known and novel molecules and pathways; and 2) specific metabolites that changed with gestational age.
Collapse
Affiliation(s)
- Samuel K. Handelman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Detroit Medical Center, Detroit, Michigan, United States of America
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Brian Ingram
- Metabolon Inc., Raleigh-Durham, North Carolina, United States of America
| | - Eli Maymon
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Maternity Department "D," Division of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
20
|
Kohl JB, Mellis A, Schwarz G. Homeostatic impact of sulfite and hydrogen sulfide on cysteine catabolism. Br J Pharmacol 2019; 176:554-570. [PMID: 30088670 PMCID: PMC6346071 DOI: 10.1111/bph.14464] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 12/30/2022] Open
Abstract
Cysteine is one of the two key sulfur-containing amino acids with important functions in redox homeostasis, protein functionality and metabolism. Cysteine is taken up by mammals via their diet and can also be derived from methionine via the transsulfuration pathway. The cellular concentration of cysteine is kept within a narrow range by controlling its synthesis and degradation. There are two pathways for the catabolism of cysteine leading to sulfate, taurine and thiosulfate as terminal products. The oxidative pathway produces taurine and sulfate, while the H2 S pathway involves different enzymatic reactions leading to the formation and clearance of H2 S, an important signalling molecule in mammals, resulting in thiosulfate and sulfate. Sulfite is a common intermediate in both catabolic pathways. Sulfite is considered as cytotoxic and produces neurotoxic S-sulfonates. As a result, a deficiency in the terminal steps of cysteine or H2 S catabolism leads to severe forms of encephalopathy with the accumulation of sulfite and H2 S in the body. This review links the homeostatic regulation of both cysteine catabolic pathways to sulfite and H2 S. LINKED ARTICLES: This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc.
Collapse
Affiliation(s)
- Joshua B Kohl
- Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine CologneUniversity of CologneCologneGermany
| | - Anna‐Theresa Mellis
- Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine CologneUniversity of CologneCologneGermany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine CologneUniversity of CologneCologneGermany
| |
Collapse
|
21
|
Kumar A, Dejanovic B, Hetsch F, Semtner M, Fusca D, Arjune S, Santamaria-Araujo JA, Winkelmann A, Ayton S, Bush AI, Kloppenburg P, Meier JC, Schwarz G, Belaidi AA. S-sulfocysteine/NMDA receptor-dependent signaling underlies neurodegeneration in molybdenum cofactor deficiency. J Clin Invest 2017; 127:4365-4378. [PMID: 29106383 DOI: 10.1172/jci89885] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/26/2017] [Indexed: 02/06/2023] Open
Abstract
Molybdenum cofactor deficiency (MoCD) is an autosomal recessive inborn error of metabolism characterized by neurodegeneration and death in early childhood. The rapid and progressive neurodegeneration in MoCD presents a major clinical challenge and may relate to the poor understanding of the molecular mechanisms involved. Recently, we reported that treating patients with cyclic pyranopterin monophosphate (cPMP) is a successful therapy for a subset of infants with MoCD and prevents irreversible brain damage. Here, we studied S-sulfocysteine (SSC), a structural analog of glutamate that accumulates in the plasma and urine of patients with MoCD, and demonstrated that it acts as an N-methyl D-aspartate receptor (NMDA-R) agonist, leading to calcium influx and downstream cell signaling events and neurotoxicity. SSC treatment activated the protease calpain, and calpain-dependent degradation of the inhibitory synaptic protein gephyrin subsequently exacerbated SSC-mediated excitotoxicity and promoted loss of GABAergic synapses. Pharmacological blockade of NMDA-R, calcium influx, or calpain activity abolished SSC and glutamate neurotoxicity in primary murine neurons. Finally, the NMDA-R antagonist memantine was protective against the manifestation of symptoms in a tungstate-induced MoCD mouse model. These findings demonstrate that SSC drives excitotoxic neurodegeneration in MoCD and introduce NMDA-R antagonists as potential therapeutics for this fatal disease.
Collapse
Affiliation(s)
- Avadh Kumar
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Borislav Dejanovic
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Florian Hetsch
- TU Braunschweig, Zoological Institute, Division of Cell Physiology, Braunschweig, Germany
| | - Marcus Semtner
- Cellular Neurosciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Debora Fusca
- Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany
| | - Sita Arjune
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jose Angel Santamaria-Araujo
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Aline Winkelmann
- TU Braunschweig, Zoological Institute, Division of Cell Physiology, Braunschweig, Germany.,Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany
| | - Scott Ayton
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jochen C Meier
- TU Braunschweig, Zoological Institute, Division of Cell Physiology, Braunschweig, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Abdel Ali Belaidi
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Noorafshan A, Vafabin M, Karbalay-Doust S, Asadi-Golshan R. Efficacy of Curcumin in the Modulation of Anxiety Provoked by Sulfite, a Food Preservative, in Rats. Prev Nutr Food Sci 2017; 22:144-148. [PMID: 28702432 PMCID: PMC5503424 DOI: 10.3746/pnf.2017.22.2.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/13/2017] [Indexed: 01/09/2023] Open
Abstract
Sulfites are used as food preservatives and excessive sulfite might disturb the body systems including the brain. Curcumin shows protective effects on the nervous system toxicity. The present study aimed to evaluate the protective role of curcumin in sulfite-induced anxiety in rats. Male rats were divided into five groups. The rats in groups I to V received distilled water (vehicle of sulfite, 1 mL/d), olive oil (vehicle of curcumin, 1 mL/d), curcumin (100 mg/kg/d), sulfite (25 mg/kg/d), and sulfite+curcumin, respectively, by daily gastric gavage for 8 weeks. At the end of 8 weeks the rats were tested in the elevated plus-maze for anxiety. The results showed that concomitant treatment of curcumin during sulfite consumption prevented the reduction of the time spent in the open arm and entrance to the open arm (the indexes of anxiety). Besides, an increase was found in motor activity of the rats in the sulfite+curcumin group compared to the sulfite-treated animals. Exposure of sulfite in rats can induce anxiety, and curcumin can act as an anti-anxiety agent.
Collapse
Affiliation(s)
- Ali Noorafshan
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Masoud Vafabin
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Reza Asadi-Golshan
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| |
Collapse
|
23
|
Adaptation of Candida albicans to Reactive Sulfur Species. Genetics 2017; 206:151-162. [PMID: 28235888 DOI: 10.1534/genetics.116.199679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/20/2017] [Indexed: 12/28/2022] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that is highly resistant to different oxidative stresses. How reactive sulfur species (RSS) such as sulfite regulate gene expression and the role of the transcription factor Zcf2 and the sulfite exporter Ssu1 in such responses are not known. Here, we show that C. albicans specifically adapts to sulfite stress and that Zcf2 is required for that response as well as induction of genes predicted to remove sulfite from cells and to increase the intracellular amount of a subset of nitrogen metabolites. Analysis of mutants in the sulfate assimilation pathway show that sulfite conversion to sulfide accounts for part of sulfite toxicity and that Zcf2-dependent expression of the SSU1 sulfite exporter is induced by both sulfite and sulfide. Mutations in the SSU1 promoter that selectively inhibit induction by the reactive nitrogen species (RNS) nitrite, a previously reported activator of SSU1, support a model for C. albicans in which Cta4-dependent RNS induction and Zcf2-dependent RSS induction are mediated by parallel pathways, different from S. cerevisiae in which the transcription factor Fzf1 mediates responses to both RNS and RSS. Lastly, we found that endogenous sulfite production leads to an increase in resistance to exogenously added sulfite. These results demonstrate that C. albicans has a unique response to sulfite that differs from the general oxidative stress response, and that adaptation to internal and external sulfite is largely mediated by one transcription factor and one effector gene.
Collapse
|
24
|
Yamazaki S, Takei K, Nonaka G. ydjN encodes an S-sulfocysteine transporter required by Escherichia coli for growth on S-sulfocysteine as a sulfur source. FEMS Microbiol Lett 2016; 363:fnw185. [PMID: 27481704 DOI: 10.1093/femsle/fnw185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2016] [Indexed: 11/13/2022] Open
Abstract
Sulfur is an essential element for growth and many physiological functions. As sulfur sources for Escherichia coli and related bacteria, specific transporters import various sulfur-containing compounds from the environment. In this study, we identified and characterized an alternative function of the cystine transporter YdjN in E. coli as a transporter of S-sulfocysteine, a sulfur-containing intermediate in the assimilatory cysteine biosynthesis that is used as a sulfur source for the growth of E. coli We also demonstrated that the transport of S-sulfocysteine via YdjN depends on the transcriptional regulator CysB, a master regulator that controls most of the genes involved in sulfur assimilation and cysteine metabolism. We found that the use of S-sulfocysteine as a sulfur source depends on glutathione because mutations in glutathione biosynthetic genes abolish growth when S-sulfocysteine is used as a sole sulfur source, thereby supporting the previous findings that the conversion of S-sulfocysteine to cysteine is catalyzed by glutaredoxins. To the best of our knowledge, this is the first report of a functional S-sulfocysteine transporter across organisms, which strongly supports the hypothesis that S-sulfocysteine is not only a metabolic intermediate but also a physiologically significant substance in specific natural environments.
Collapse
Affiliation(s)
- Shunsuke Yamazaki
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Kensuke Takei
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Gen Nonaka
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| |
Collapse
|
25
|
Abstract
BACKGROUND We review clinical, neuroimaging, and genetic information on six individuals with isolated sulfite oxidase deficiency (ISOD). METHODS All patients were examined, and clinical records, biochemistry, neuroimaging, and sulfite oxidase gene (SUOX) sequencing were reviewed. RESULTS Data was available on six individuals from four nuclear families affected by ISOD. Each individual began to seize within the first week of life. neurologic development was arrested at brainstem reflexes, and severe microcephaly developed rapidly. neuroimaging within days of birth revealed hypoplasia of the cerebellum and corpus callosum and damage to the supratentorial brain looking like severe hypoxic-ischemic injury that evolved into cystic hemispheric white matter changes. Affected individuals all had elevated urinary S-sulfocysteine and normal urinary xanthine and hypoxanthine levels diagnostic of ISOD. Genetic studies confirmed SUOX mutations in four patients. CONCLUSIONS ISOD impairs systemic sulfite metabolism, and yet this genetic disease affects only the brain with damage that is commonly confused with the clinical and radiologic features of severe hypoxic-ischemic encephalopathy. Lésions neurologiques dans le déficit isolé en sulfite oxydase.
Collapse
|
26
|
Abstract
Molybdenum is an essential trace element and crucial for the survival of animals. Four mammalian Mo-dependent enzymes are known, all of them harboring a pterin-based molybdenum cofactor (Moco) in their active site. In these enzymes, molybdenum catalyzes oxygen transfer reactions from or to substrates using water as oxygen donor or acceptor. Molybdenum shuttles between two oxidation states, Mo(IV) and Mo(VI). Following substrate reduction or oxidation, electrons are subsequently shuttled by either inter- or intra-molecular electron transfer chains involving prosthetic groups such as heme or iron-sulfur clusters. In all organisms studied so far, Moco is synthesized by a highly conserved multi-step biosynthetic pathway. A deficiency in the biosynthesis of Moco results in a pleitropic loss of all four human Mo-enzyme activities and in most cases in early childhood death. In this review we first introduce general aspects of molybdenum biochemistry before we focus on the functions and deficiencies of two Mo-enzymes, xanthine dehydrogenase and sulfite oxidase, caused either by deficiency of the apo-protein or a pleiotropic loss of Moco due to a genetic defect in its biosynthesis. The underlying molecular basis of Moco deficiency, possible treatment options and links to other diseases, such as neuropsychiatric disorders, will be discussed.
Collapse
Affiliation(s)
- Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine, University of Cologne, Zülpicher Strasse 47, D-50674, Köln, Germany,
| | | |
Collapse
|
27
|
Grings M, Moura AP, Amaral AU, Parmeggiani B, Gasparotto J, Moreira JCF, Gelain DP, Wyse ATS, Wajner M, Leipnitz G. Sulfite disrupts brain mitochondrial energy homeostasis and induces mitochondrial permeability transition pore opening via thiol group modification. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1413-22. [PMID: 24793416 DOI: 10.1016/j.bbadis.2014.04.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 11/16/2022]
Abstract
Sulfite oxidase (SO) deficiency is biochemically characterized by the accumulation of sulfite, thiosulfate and S-sulfocysteine in tissues and biological fluids of the affected patients. The main clinical symptoms include severe neurological dysfunction and brain abnormalities, whose pathophysiology is still unknown. The present study investigated the in vitro effects of sulfite and thiosulfate on mitochondrial homeostasis in rat brain mitochondria. It was verified that sulfite per se, but not thiosulfate, decreased state 3, CCCP-stimulated state and respiratory control ratio in mitochondria respiring with glutamate plus malate. In line with this, we found that sulfite inhibited the activities of glutamate and malate (MDH) dehydrogenases. In addition, sulfite decreased the activity of a commercial solution of MDH, that was prevented by antioxidants and dithiothreitol. Sulfite also induced mitochondrial swelling and reduced mitochondrial membrane potential, Ca(2+) retention capacity, NAD(P)H pool and cytochrome c immunocontent when Ca(2+) was present in the medium. These alterations were prevented by ruthenium red, cyclosporine A (CsA) and ADP, supporting the involvement of mitochondrial permeability transition (MPT) in these effects. We further observed that N-ethylmaleimide prevented the sulfite-elicited swelling and that sulfite decreased free thiol group content in brain mitochondria. These findings indicate that sulfite acts directly on MPT pore containing thiol groups. Finally, we verified that sulfite reduced cell viability in cerebral cortex slices and that this effect was prevented by CsA. Therefore, it may be presumed that disturbance of mitochondrial energy homeostasis and MPT induced by sulfite could be involved in the neuronal damage characteristic of SO deficiency.
Collapse
Affiliation(s)
- Mateus Grings
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Alana P Moura
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Alexandre U Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Belisa Parmeggiani
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Juciano Gasparotto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - José C F Moreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Daniel P Gelain
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, CEP 90035-903 Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil.
| |
Collapse
|
28
|
Noorafshan A, Asadi-Golshan R, Abdollahifar MA, Karbalay-Doust S. Protective role of curcumin against sulfite-induced structural changes in rats' medial prefrontal cortex. Nutr Neurosci 2014; 18:248-55. [PMID: 24694040 DOI: 10.1179/1476830514y.0000000123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Sodium metabisulfite as a food preservative can affect the central nervous system. Curcumin, the main ingredient of turmeric has neuroprotective activity. This study was designed to evaluate the effects of sulfite and curcumin on the medial prefrontal cortex (mPFC) using stereological methods. METHODS Thirty rats were randomly divided into five groups. The rats in groups I-V received distilled water, olive oil, curcumin (100 mg/kg/day), sodium metabisulfite (25 mg/kg/day), and sulfite + curcumin, respectively, for 8 weeks. The brains were subjected to the stereological methods. Cavalieri and optical disector techniques were used to estimate the total volume of mPFC and the number of neurons and glial cells. Intersections counting were applied on the thick vertical uniform random sections to estimate the dendrites length, and classify the spines. Non-parametric tests were used to analyze the data. RESULTS The mean mPFC volume, neurons number, glia number, dendritic length, and total spines per neuron were 3.7 mm(3), 365,000, 180,000, 1820 µm, and 1700 in distilled water group, respectively. A reduction was observed in the volume of mPFC (∼8%), number of neurons (∼15%), and number of glia (∼14%) in mPFC of the sulfite group compared to the control groups (P < 0.005). Beside, dendritic length per neuron (∼10%) and the total spines per neuron (mainly mushroom spines) (∼25%) were reduced in the sulfite group (P < 0.005). DISCUSSION The sulfite-induced structural changes in mPFC and curcumin had a protective role against the changes in the rats.
Collapse
|
29
|
Noorafshan A, Rashidiani-Rashidabadi A, Karbalay-Doust S, Poostpasand A, Abdollahifar MA, Asadi-Golshan R. Curcumin can prevent the changes in cerebellar structure and function induced by sodium metabisulfite in rat. Exp Neurobiol 2014; 22:258-67. [PMID: 24465141 PMCID: PMC3897687 DOI: 10.5607/en.2013.22.4.258] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 01/11/2023] Open
Abstract
Sulfites are used as anti-microbial and anti-oxidant agents in the food and pharmaceutical industries. Curcumin, a flavonoid, is an Asian spice that shows neuroprotective activities. The current study aimed to stereologically assess the rats' cerebellar cortex and rotarod performance following sulfite exposure and determine the possible neuroprotective potential of curcumin. The rats were divided into five groups: distilled water, olive oil, curcumin (100 mg/kg/day), sodium metabisulfite (25 mg/kg/day), and sodium metabisulfite+curcumin. At 56 days after treatment, rotarod performance was tested, and then the cerebellum was removed for stereological analysis. The study results revealed 31%, 36%, 19% and 24% decrease in the total volume of the cerebellum, cortex, the total number of the Purkinje cells and length of the nerve fibers in the cortex per Purkinje, respectively in the sodium metabisulfite-treated rats compared to the distilled water group (p<0.01). The pre-trained animals on the rotarod apparatus were tested first on the fixed speed rotarod protocol followed by the accelerating rotarod protocol two days later. The results showed a significant decrease in the latency to fall in both test in sulfite-treated rats. The sulfite effects on the structural parameters and rotarod performance were significantly protected by the concomitant curcumin treatment (p<0.001). Sulfite can induce structural and functional changes in the rats' cerebellum and concomitant curcumin prescription plays a neuroprotective role.
Collapse
Affiliation(s)
- Ali Noorafshan
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran. ; Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran
| | - Ali Rashidiani-Rashidabadi
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran. ; Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran
| | - Aghdas Poostpasand
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran
| | - Mohammad-Amin Abdollahifar
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran
| | - Reza Asadi-Golshan
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-45794, Iran
| |
Collapse
|
30
|
Vozdek R, Hnízda A, Krijt J, Será L, Kožich V. Biochemical properties of nematode O-acetylserine(thiol)lyase paralogs imply their distinct roles in hydrogen sulfide homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2691-701. [PMID: 24100226 DOI: 10.1016/j.bbapap.2013.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 01/08/2023]
Abstract
O-Acetylserine(thiol)lyases (OAS-TLs) play a pivotal role in a sulfur assimilation pathway incorporating sulfide into amino acids in microorganisms and plants, however, these enzymes have not been found in the animal kingdom. Interestingly, the genome of the roundworm Caenorhabditis elegans contains three expressed genes predicted to encode OAS-TL orthologs (cysl-1-cysl-3), and a related pseudogene (cysl-4); these genes play different roles in resistance to hypoxia, hydrogen sulfide and cyanide. To get an insight into the underlying molecular mechanisms we purified the three recombinant worm OAS-TL proteins, and we determined their enzymatic activities, substrate binding affinities, quaternary structures and the conformations of their active site shapes. We show that the nematode OAS-TL orthologs can bind O-acetylserine and catalyze the canonical reaction although this ligand may more likely serve as a competitive inhibitor to natural substrates instead of being a substrate for sulfur assimilation. In addition, we propose that S-sulfocysteine may be a novel endogenous substrate for these proteins. However, we observed that the three OAS-TL proteins are conformationally different and exhibit distinct substrate specificity. Based on the available evidences we propose the following model: CYSL-1 interacts with EGL-9 and activates HIF-1 that upregulates expression of genes detoxifying sulfide and cyanide, the CYSL-2 acts as a cyanoalanine synthase in the cyanide detoxification pathway and simultaneously produces hydrogen sulfide, while the role of CYSL-3 remains unclear although it exhibits sulfhydrylase activity in vitro. All these data indicate that C. elegans OAS-TL paralogs have distinct cellular functions and may play different roles in maintaining hydrogen sulfide homeostasis.
Collapse
Affiliation(s)
- Roman Vozdek
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, Prague 2, 128 08, Czech Republic
| | | | | | | | | |
Collapse
|
31
|
Belaidi AA, Schwarz G. Molybdenum Cofactor Deficiency: Metabolic Link Between Taurine and S-Sulfocysteine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 776:13-9. [DOI: 10.1007/978-1-4614-6093-0_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Sulfite leads to neuron loss in the hippocampus of both normal and SOX-deficient rats. Neurochem Int 2012; 61:341-6. [PMID: 22709673 DOI: 10.1016/j.neuint.2012.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/28/2012] [Accepted: 06/09/2012] [Indexed: 11/21/2022]
Abstract
Sulfites are compounds commonly used as preservatives in foods, beverages and pharmaceuticals. Sulfite is also endogenously generated during the metabolism of sulfur-containing amino acids and drugs. It has been shown that sulfite is a highly toxic molecule. Many studies have examined the effects of sulfite toxicity, but the effect of ingested sulfite on the number of neurons in the hippocampus has not yet been reported. The present study was undertaken to investigate the effect of ingested sulfite on pyramidal neurons by counting cells in CA1 and CA3-2 subdivisions of the rat hippocampus. For this purpose, rats were assigned to one of four groups (6 rats per group): control (C), sulfite (S), deficient (D) and deficient+sulfite (DS). Sulfite oxidase deficiency was established by feeding rats a low molybdenum diet and adding 200ppm tungsten (W) to their drinking water. Sulfite (70mg/kg) was also administered to the animals via their drinking water. At the end of the experimental period, the rats were sacrificed by exsanguination under anesthesia, and their brains and livers quickly removed. The livers were used for a SOX activity assay, and the brains were used for neuronal counts in a known fraction of the CA1 and CA3-2 subdivisions of the left hippocampus using the optical fractionator method, which is a stereological method. The results showed that sulfite treatment caused a significant decrease in the total number of pyramidal neurons in three subdivisions of the hippocampus (CA1 and CA3-2) in the S, D and DS groups compared with the control group. It is concluded that exogenous administration of sulfite causes loss of pyramidal neurons in CA1 and CA3-2 subdivisions in both normal and SOX deficient rat hippocampus. This finding provides supporting evidence that sulfite is a neurotoxic molecule.
Collapse
|
33
|
Stachowski EK, Schwarcz R. Regulation of quinolinic acid neosynthesis in mouse, rat and human brain by iron and iron chelators in vitro. J Neural Transm (Vienna) 2011; 119:123-31. [PMID: 21833493 DOI: 10.1007/s00702-011-0694-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/22/2011] [Indexed: 12/30/2022]
Abstract
Several lines of evidence indicate that excess iron may play an etiologically significant role in neurodegenerative disorders. This idea is supported, for example, by experimental studies in animals demonstrating significant neuroprotection by iron chelation. Here, we tested whether this effect might be related to a functional link between iron and the endogenous excitotoxin quinolinic acid (QUIN), a presumed pathogen in several neurological disorders. In particular, the present in vitro study was designed to examine the effects of Fe(2+), a known co-factor of oxygenases, on the activity of QUIN's immediate biosynthetic enzyme, 3-hydroxyanthranilic acid dioxygenase (3HAO), in the brain. In crude tissue homogenate, addition of Fe(2+) (2-40 μM) stimulated 3HAO activity 4- to 6-fold in all three species tested (mouse, rat and human). The slope of the iron curve was steepest in rat brain where an increase from 6 to 14 μM resulted in a more than fivefold higher enzyme activity. In all species, the Fe(2+)-induced increase in 3HAO activity was dose-dependently attenuated by the addition of ferritin, the main iron storage protein in the brain. The effect of iron was also readily prevented by N,N'-bis(2-hydroxybenzyl) ethylenediamine-N,N'-diacetic acid (HBED), a synthetic iron chelator with neuroprotective properties in vivo. All these effects were reproduced using neostriatal tissue obtained postmortem from normal individuals and patients with end-stage Huntington's disease. Our results suggest that QUIN levels and function in the mammalian brain might be tightly controlled by endogenous iron and proteins that regulate the bioavailability of iron.
Collapse
Affiliation(s)
- Erin K Stachowski
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, Maryland 21228, USA
| | | |
Collapse
|
34
|
Sass JO, Gunduz A, Araujo Rodrigues Funayama C, Korkmaz B, Dantas Pinto KG, Tuysuz B, Yanasse Dos Santos L, Taskiran E, de Fátima Turcato M, Lam CW, Reiss J, Walter M, Yalcinkaya C, Camelo Junior JS. Functional deficiencies of sulfite oxidase: Differential diagnoses in neonates presenting with intractable seizures and cystic encephalomalacia. Brain Dev 2010; 32:544-9. [PMID: 19793632 DOI: 10.1016/j.braindev.2009.09.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 07/28/2009] [Accepted: 09/05/2009] [Indexed: 11/30/2022]
Abstract
Sulfite oxidase is a mitochondrial enzyme encoded by the SUOX gene and essential for the detoxification of sulfite which results mainly from the catabolism of sulfur-containing amino acids. Decreased activity of this enzyme can either be due to mutations in the SUOX gene or secondary to defects in the synthesis of its cofactor, the molybdenum cofactor. Defects in the synthesis of the molybdenum cofactor are caused by mutations in one of the genes MOCS1, MOCS2, MOCS3 and GEPH and result in combined deficiencies of the enzymes sulfite oxidase, xanthine dehydrogenase and aldehyde oxidase. Although present in many ethnic groups, isolated sulfite oxidase deficiency and molybdenum cofactor deficiency are rare inborn errors of metabolism, which makes awareness of key clinical and laboratory features of affected individuals crucial for early diagnosis. We report clinical, radiologic, biochemical and genetic data on a Brazilian and on a Turkish child with sulfite oxidase deficiency due to the isolated defect and impaired synthesis of the molybdenum cofactor, respectively. Both patients presented with early onset seizures and neurological deterioration. They showed no sulfite oxidase activity in fibroblasts and were homozygous for the mutations c.1136A>G in the SUOX gene and c.667insCGA in the MOCS1 gene, respectively. Widely available routine laboratory tests such as assessment of total homocysteine and uric acid are indicated in children with a clinical presentation resembling that of hypoxic ischemic encephalopathy and may help in obtaining a tentative diagnosis locally, which requires confirmation by specialized laboratories.
Collapse
Affiliation(s)
- Jörn Oliver Sass
- Labor für Klinische Biochemie und Stoffwechsel, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Schwarcz R, Guidetti P, Sathyasaikumar KV, Muchowski PJ. Of mice, rats and men: Revisiting the quinolinic acid hypothesis of Huntington's disease. Prog Neurobiol 2010; 90:230-45. [PMID: 19394403 PMCID: PMC2829333 DOI: 10.1016/j.pneurobio.2009.04.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 04/17/2009] [Indexed: 12/31/2022]
Abstract
The neurodegenerative disease Huntington's disease (HD) is caused by an expanded polyglutamine (polyQ) tract in the protein huntingtin (htt). Although the gene encoding htt was identified and cloned more than 15 years ago, and in spite of impressive efforts to unravel the mechanism(s) by which mutant htt induces nerve cell death, these studies have so far not led to a good understanding of pathophysiology or an effective therapy. Set against a historical background, we review data supporting the idea that metabolites of the kynurenine pathway (KP) of tryptophan degradation provide a critical link between mutant htt and the pathophysiology of HD. New studies in HD brain and genetic model organisms suggest that the disease may in fact be causally related to early abnormalities in KP metabolism, favoring the formation of two neurotoxic metabolites, 3-hydroxykynurenine and quinolinic acid, over the related neuroprotective agent kynurenic acid. These findings not only link the excitotoxic hypothesis of HD pathology to an impairment of the KP but also define new drug targets and therefore have direct therapeutic implications. Thus, pharmacological normalization of the imbalance in brain KP metabolism may provide clinical benefits, which could be especially effective in early stages of the disease.
Collapse
Affiliation(s)
- Robert Schwarcz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
36
|
Kucukatay V, Ağar A, Gumuslu S, Yargiçoğlu P. EFFECT OF SULFUR DIOXIDE ON ACTIVE AND PASSIVE AVOIDANCE IN EXPERIMENTAL DIABETES MELLITUS: RELATION TO OXIDANT STRESS AND ANTIOXIDANT ENZYMES. Int J Neurosci 2009; 117:1091-107. [PMID: 17613116 DOI: 10.1080/00207450600934531] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The effect of sulfur dioxide (SO(2)) on hippocampus antioxidant status, lipid peroxidation and learning and memory was investigated in diabetic rats. A total of 40 rats were divided into four equal groups: Control (C), SO(2) + C (SO(2)), diabetic (DM) and SO(2) + D (DMSO(2)). Experimental diabetes mellitus (DM) was induced by i.v injection of alloxan with a dose of 50 mg/kg body weight. Ten ppm SO(2) was administered to the rats in the sulfur dioxide groups in an exposure chamber. Exposure occurred 1 h/d, 7 d/wk, for 6 wk; control rats were exposed to filtered air during the same time periods. SO(2) exposure, while markedly increasing Cu-Zn Superoxide dismutase activity, significantly decreased glutathione peroxidase activity in diabetic and non-diabetic groups compared with the C group; hippocampus catalase activity was unaltered. Hippocampus thiobarbituric acid reactive substances (TBARS) were found to be elevated in all experimental groups with respect to control group. The active avoidance training results indicated that diabetic condition has been associated with learning and memory impairment. SO(2) exposure caused deficits of learning and memory. Diabetes mellitus-induced impairment of learning and memory were potentiated by SO(2) exposure. These findings suggest that exposure to SO(2) by increasing lipid peroxidation, can change antioxidant enzyme activities and can elevated intensity of deficits of learning and memory in diabetic rats.
Collapse
Affiliation(s)
- Vural Kucukatay
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | | | | | | |
Collapse
|
37
|
Küçükatay V, Genç O, Kocamaz E, Emmungil G, Erken H, Bagci H. Spinal reflexes in normal and sulfite oxidase deficient rats: effect of sulfite exposure. Toxicol Ind Health 2009; 24:147-53. [PMID: 18842692 DOI: 10.1177/0748233708092225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sulfites, which are commonly used as food preservatives, are continuously formed in the body during metabolism of sulfur-containing amino acids. Sulfite is oxidized to sulfate ion by sulfite oxidase (SOX, EC. 1.8.3.1). Although sulfite treatment has been reported to increase the excitability of some neurons in vitro, the possible effects of sulfite on neuronal excitability in vivo remain unclear. The aim of this study was to investigate the possible effects of sulfite treatment on spinal reflexes in anesthetized SOX competent and deficient rats. For this purpose, male albino rats used in this study were divided into four groups such as control group (C), sulfite group (CS), SOX deficient group (D), and SOX deficient + sulfite group (DS). Rats in SOX deficient groups were made deficient in SOX by the administration of low molybdenum (Mo) diet (AIN 76, Research Dyets Inc., USA) with concurrent addition of 200-ppm tungsten (W) to their drinking water in the form of sodium tungstate (NaWO4). Sulfite in the form of sodium metabisulfite (Na2O5S2, 70 mg/kg) was given orally by adding to drinking water to the S and DS groups. Monosynaptic reflex potentials were recorded from the ipsilateral L5 ventral root. SOX deficient rats had an approximately 15-fold decrease in hepatic SOX activity compared with normal rats. This makes SOX activity of SOXD rats in the range of human SOX activity. The results of this study show that sulfite treatment significantly increases the amplitude of the monosynaptic reflex response in both S and DS groups with respect to their respective control groups (C and D). SOX deficient rats also had enhanced spinal reflexes when compared with control rats. In conclusion, sulfite has increasing effects on the excitability of spinal reflexes and we speculate that this compound may exhibit its effects on nervous system by affecting sodium channels.
Collapse
Affiliation(s)
- V Küçükatay
- Faculty of Medicine, Department of Physiology, Pamukkale University, Kinikli, Denizli, Turkey.
| | | | | | | | | | | |
Collapse
|
38
|
Herken EN, Kocamaz E, Erel O, Celik H, Kucukatay V. Effect of sulfite treatment on total antioxidant capacity, total oxidant status, lipid hydroperoxide, and total free sulfydryl groups contents in normal and sulfite oxidase-deficient rat plasma. Cell Biol Toxicol 2008; 25:355-62. [PMID: 18553142 DOI: 10.1007/s10565-008-9089-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 05/18/2008] [Indexed: 11/29/2022]
Abstract
Sulfites, which are commonly used as preservatives, are continuously formed in the body during the metabolism of sulfur-containing amino acids. Sulfite oxidase (SOX) is an essential enzyme in the pathway of the oxidative degradation of sulfite to sulfate protecting cells from sulfite toxicity. This article investigated the effect of sulfite on total antioxidant capacity (TAC), total oxidant status, lipid hydroperoxide (LOOH), and total free sulfydryl groups (-SH) levels in normal and SOX-deficient male albino rat plasma. For this purpose, rats were divided into four groups: control, sulfite-treated, SOX-deficient, and sulfite-treated SOX-deficient groups. SOX deficiency was established by feeding rats a low molybdenum diet and adding to their drinking water 200 ppm tungsten. Sulfite (70 mg/kg) was administered to the animals via their drinking water. SOX deficiency together with sulfite treatment caused a significant increase in the plasma LOOH and total oxidant status levels. -SH content of rat plasma significantly decreased by both sulfite treatment and SOX deficiency compared to the control. There was also a significant decrease in plasma TAC level by sulfite treatment. In conclusion, sulfite treatment affects the antioxidant/oxidant balance of the plasma cells of the rats toward oxidants in SOX-deficient groups.
Collapse
Affiliation(s)
- Emine Nur Herken
- Faculty of Engineering, Department of Food Engineering, Pamukkale University, Kinikli 20020, Denizli, Turkey.
| | | | | | | | | |
Collapse
|
39
|
Stone TW, Connick JH, Winn P, Hastings MH, English M. Endogenous excitotoxic agents. CIBA FOUNDATION SYMPOSIUM 2007; 126:204-20. [PMID: 2884085 DOI: 10.1002/9780470513422.ch13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although glutamate and aspartate are among the most likely compounds to function as central neurotransmitters, and both can produce cell death in neonatal animals, the efficient uptake systems for these amino acids mean that exceptionally high concentrations are required for toxicity in adults. A better candidate for an endogenous neurotoxin is quinolinic acid, which produces cell death via activation of the N-methyl-aspartate receptors. Several differences of detail between the activity of quinolinate and N-methyl-aspartate may indicate the existence of subpopulations of the N-methyl-aspartate receptor. Another compound in the same 'kynurenine' pathway as quinolinate, kynurenic acid, is an antagonist of the excitatory and neurotoxic actions of quinolinate, and the overall excitability of the central nervous system and the occurrence of cell death may therefore result from a balance between the concentrations of quinolinate and kynurenate.
Collapse
|
40
|
Abbas AK, Xia W, Tranberg M, Wigström H, Weber SG, Sandberg M. S-Sulfo-Cysteine is an Endogenous Amino Acid in Neonatal Rat Brain but an Unlikely Mediator of Cysteine Neurotoxicity. Neurochem Res 2007; 33:301-7. [PMID: 17764028 DOI: 10.1007/s11064-007-9441-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 07/10/2007] [Indexed: 11/25/2022]
Abstract
S-sulfo-cysteine (SSC) is an agonist of glutamate receptors which could be involved in cysteine-induced neurotoxicity. Here we analyzed SSC by HPLC and demonstrated that the concentration of SSC in cortex of cysteine-injected rats increased to 1.4 microM, about four times the value of control rats. The neurotoxic effect of SSC was evaluated in slice cultures of rat hippocampus and compared to NMDA and cysteine. The neurotoxicity threshold of SSC was well above the tissue concentration. Our results show that SSC increases in neonatal rat brain after cysteine injection but reaches a tissue concentration far below concentrations that induce neurotoxicity in vitro. Thus, even if all the tissue SSC after cysteine injection was extracellular it would be below the threshold for toxicity, indicating that SSC is not a main excitotoxin involved in cysteine toxicity.
Collapse
Affiliation(s)
- Abdul-Karim Abbas
- Institute of Neuroscience and Physiology, Goteborg University, Medicinerigatan 11, P.O. Box 433, Goteborg 40530, Sweden.
| | | | | | | | | | | |
Collapse
|
41
|
Misra CH, Olney JW. Synthesis of cysteine-35S-sulfate. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.2580130114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Oztürk OH, Küçükatay V, Yönden Z, Ağar A, Bağci H, Delibaş N. Expressions of N-methyl-d-aspartate receptors NR2A and NR2B subunit proteins in normal and sulfite-oxidase deficient rat’s hippocampus: effect of exogenous sulfite ingestion. Arch Toxicol 2006; 80:671-9. [PMID: 16858610 DOI: 10.1007/s00204-006-0125-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
Sulfites whether ingested or produced through the sulfur-containing amino acids metabolism of the animal are very active molecules and can cause cellular toxicity. Sulfite oxidase (SOX), a heme- and molybdenum containing mitochondrial enzyme, prevents mammalian cells from adverse effects of sulfite toxicity by metabolizing sulfite to sulfate. The present study was aimed to investigate effect of sulfite on the N-methyl-D-aspartate (NMDA) receptor (NMDAR) NR2A and NR2B subunits in hippocampus of normal and SOX-deficient rats. Rats were divided into four groups; (1) control group, which was given rat chow and tap water ad libitum (C), (2) sulfite group, treated with sulfite (25 mg/kg) in drinking water and commercial rat chow ad libitum (S), (3) SOX-deficient group, maintained on high-W/Mo-deficient regimen to produce SOX deficiency (D), and (4) SOX-deficient + sulfite group (DS), prepared as those in the third group and were afterwards given sulfite (25 mg/kg) additionally. Whole treatment schedule were continued for 6 weeks. Sulfite treatment caused a decrease of NR2A and NR2B subunits of the NMDAR in hippocampus of rats in S and DS groups. Interestingly, similar decrement was observed in D group, probably due to increased endogenous sulfite production. In summary, the results indicated that feeding sulfite to the rats may cause down-regulation of NMDARs by degrading NR2A and NR2B subunits of it, which may be considered as a neuro-compensatory mechanism.
Collapse
Affiliation(s)
- Oktay Hasan Oztürk
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | | | | | | | | | | |
Collapse
|
43
|
Teksam O, Yurdakok M, Coskun T. Molybdenum cofactor deficiency presenting with severe metabolic acidosis and intracranial hemorrhage. J Child Neurol 2005; 20:155-7. [PMID: 15794186 DOI: 10.1177/08830738050200021501] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Molybdenum cofactor deficiency leads to combined deficiency of sulfite oxidase, xanthine dehydrogenase, and aldehyde oxidase enzyme activities. The major clinic symptom is intractable seizures seen soon after birth. No definite therapy is available. We report here a newborn with molybdenum cofactor deficiency-associated Dandy-Walker malformation who presented with severe lactic acidosis and intracranial hemorrhage.
Collapse
Affiliation(s)
- Ozlem Teksam
- Department of Pediatrics, Hacettepe University School of Medicine, Ihsan Dogramaci Children's Hospital, Ankara, Turkey.
| | | | | |
Collapse
|
44
|
Küçükatay V, Savcioğlu F, Hacioğlu G, Yargiçoğlu P, Ağar A. Effect of sulfite on cognitive function in normal and sulfite oxidase deficient rats. Neurotoxicol Teratol 2005; 27:47-54. [PMID: 15681120 DOI: 10.1016/j.ntt.2004.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 10/14/2004] [Accepted: 10/18/2004] [Indexed: 10/26/2022]
Abstract
Sulfites, which are commonly used as preservatives, are continuously formed in the body during metabolism of sulfur-containing amino acids. Sulfite is oxidized to sulfate ion by sulfite oxidase (SOX, EC. 1.8.3.1). The aim of this study was to investigate the possible toxic effects of sulfite on neurons by measuring active avoidance learning in normal and SOX-deficient rats. For this purpose, male albino rats used in this study were divided into eight groups such as control group (C), sulfite group (25 mg/kg) (S), vitamin E group (50 mg/kg) (E), sulfite (25 mg/kg)+vitamin E group (50 mg/kg) (SE), SOX-deficient group (D), deficient+vitamin E group (50 mg/kg) (DE), deficient+sulfite group (25 mg/kg) (DS) and deficient+sulfite (25 mg/kg)+vitamin E group (50 mg/kg) (DSE). Sulfite-induced impairment of active avoidance learning in SOX-deficient rats but not in normal rats. Sulfite had no effect on hippocampus TBARS levels in SOX normal groups. In SOX-deficient rats, TBARS levels were found to be significantly increased with sulfite exposure. Vitamin E reversed the observed detrimental effects of sulfite in the SOX-deficient rats on their hippocampal TBARS but not on their active avoidance learning. In conclusion, sulfite has neurotoxic effects in sulfite oxidase deficient rats, but this effect may not depend on oxidative stress.
Collapse
Affiliation(s)
- Vural Küçükatay
- Pamukkale University, Faculty of Medicine, Department of Physiology, Kinikli, 20020, Denizli, Turkey.
| | | | | | | | | |
Collapse
|
45
|
Gillessen T, Budd SL, Lipton SA. Excitatory amino acid neurotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:3-40. [PMID: 12575816 DOI: 10.1007/978-1-4615-0123-7_1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Gillessen
- Institut fuer Pharmakologie und Toxikologie, Bereich Studien und Wissenachaft, Neuherbergstrasse 11, 80937 Muenchen, Germany
| | | | | |
Collapse
|
46
|
Heath PR, Shaw PJ. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 2002; 26:438-58. [PMID: 12362409 DOI: 10.1002/mus.10186] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Excitotoxicity may play a role in certain disorders of the motor system thought to be caused by environmentally acquired toxins, including lathyrism and domoic acid poisoning. Motor neurons appear to be particularly susceptible to toxicity mediated via alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-kainate receptors. There is a body of evidence implicating glutamatergic toxicity as a contributory factor in the selective neuronal injury occurring in amyotrophic lateral sclerosis (ALS). Interference with glutamate-mediated toxicity is so far the only neuroprotective therapeutic strategy that has shown benefit in terms of slowing disease progression in ALS patients. Biochemical studies have shown decreased glutamate levels in central nervous system (CNS) tissue and increased levels in the cerebrospinal fluid (CSF) of ALS patients. CSF from ALS patients is toxic to neurons in culture, apparently via a mechanism involving AMPA receptor activation. There is evidence for altered expression and function of glial glutamate transporters in ALS, particularly excitatory amino acid transporter 2 (EAAT2). Abnormal splice variants of EAAT2 have been detected in human CNS. Mitochondrial dysfunction may contribute to excitotoxicity in ALS. Induction of neuronal nitric oxide synthase and cyclooxygenase 2 in ALS may also lead to significant interactions with regulation of the glutamate transmitter system. Certain features of motor neurons may predispose them to the neurodegenerative process in ALS, such as the cell size, mitochondrial activity, neurofilament content, and relative lack of certain calcium-binding proteins and molecular chaperones. Motor neurons appear vulnerable to toxicity mediated by calcium-permeable AMPA receptors. The relatively low expression of the glutamate receptor 2 (GluR2) AMPA receptor subunit and the high current density caused by the large number and density of cell surface AMPA receptors are potentially important factors that may predispose to such toxicity.
Collapse
Affiliation(s)
- Paul R Heath
- Academic Neurology Unit, E Floor, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | | |
Collapse
|
47
|
Salman MS, Ackerley C, Senger C, Becker L. New insights into the neuropathogenesis of molybdenum cofactor deficiency. Can J Neurol Sci 2002; 29:91-6. [PMID: 11858544 DOI: 10.1017/s0317167100001803] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Molybdenum cofactor deficiency (MOCOD) is a rare, progressive neurodegenerative disorder caused by sulphite oxidase enzyme deficiency. The neuropathological findings are consistent with a toxic insult to the brain that causes severe neuronal loss, reactive astrogliosis and spongiosis. The mechanisms responsible for these changes are unknown. METHODS The case is a male infant with MOCOD who died at nine months of age from pneumonia. At autopsy, a complete neuropathological examination was performed including conventional immunohistochemical staining. In addition, brain sections were stained cytochemically with shikata and orcein which stain for disulphide bonds. The elemental composition of cortical cells was then analyzed in the scanning electron microscope using backscatter electron imaging and energy dispersive X-ray spectrometry. RESULTS Neurons demonstrated cytoplasmic staining with shikata and orcein cytochemically when compared to control sections. Energy dispersive X-ray spectrometry analysis of these neurons confirmed the presence of excess sulphur and unexpectedly revealed excess magnesium accumulation. None of these findings was found in an age-matched control. CONCLUSIONS In MOCOD we found abnormal accumulation of sulphur and magnesium in neurons. It is postulated that sulphur-containing compound(s) that are formed as a result of MOCOD cause excitotoxic neuronal injury in the presence of excess magnesium.
Collapse
Affiliation(s)
- Michael S Salman
- Department of Neurology, Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | |
Collapse
|
48
|
Abstract
Glutamate is the predominant excitatory neurotransmitter of the basal ganglia, where it acts on ionotropic and metabotropic receptors. In the best studied of the basal ganglia disorders, Parkinson's disease, there is compelling evidence that the activities of glutamatergic pathways are altered. Of particular importance, the glutamatergic subthalamic nucleus becomes overactive. Pharmacologic blockade of subthalamic neurotransmission has antiparkinsonian symptomatic effects and may also help to protect the remaining dopamine neurons of the substantia nigra from excitotoxic neurodegeneration. Development of drugs to manipulate the glutamatergic system with appropriate pharmacologic and anatomic selectivity is likely to dramatically improve our ability to treat disorders of the basal ganglia.
Collapse
Affiliation(s)
- J T Greenamyre
- Department of Neurology, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
49
|
Abstract
We review here the possible mechanisms of neuronal degeneration caused by L-cysteine, an odd excitotoxin. L-Cysteine lacks the omega carboxyl group required for excitotoxic actions via excitatory amino acid receptors, yet it evokes N-methyl-D-aspartate (NMDA) -like excitotoxic neuronal death and potentiates the Ca2+ influx evoked by NMDA. Both actions are prevented by NMDA antagonists. One target for cysteine effects is thus the NMDA receptor. The following mechanisms are discussed now: (1) possible increase in extracellular glutamate via release or inhibition of uptake/degradation, (2) generation of cysteine alpha-carbamate, a toxic analog of NMDA, (3) generation of toxic oxidized cysteine derivatives, (4) chelation of Zn2+ which blocks the NMDA receptor-ionophore, (5) direct interaction with the NMDA receptor redox site(s), (6) generation of free radicals, and (7) formation of S-nitrosocysteine. In addition to these, we describe another new alternative for cytotoxicity: (8) generation of the neurotoxic catecholamine derivative, 5-S-cysteinyl-3,4-dihydroxyphenylacetate (cysdopac).
Collapse
Affiliation(s)
- R Janáky
- Brain Research Center, Medical School, University of Tampere, Finland
| | | | | | | | | |
Collapse
|
50
|
Xia W, Sandberg M, Weber SG. Development of a liquid chromatographic method for picomole determination of S-sulfocysteine in trifluoroacetic acid extracts of neonatal rat brain. J Pharm Biomed Anal 1999; 19:261-8. [PMID: 10698587 DOI: 10.1016/s0731-7085(98)00197-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neonatal Sprague Dawley rat brain tissue was extracted with methanol, acetonitrile, acetic acid and trifluoroacetic acids (TFA). Among the extractants tested, 0.1 M TFA gave the highest recovery, 73.4 +/- 5.2% (slope of regression of 'added' vs. 'found' and standard error of the slope) of S-sulfocysteine (SSC). The poorest recovery of SSC was found with acetonitrile and 90% methanol extractions (less than 10%). Possible reasons for the low recoveries have been explored. The recovery of SSC from aqueous standards in 0.1 M TFA is 92 +/- 5%. Detection of picomole quantities of SSC has been demonstrated with a combination of the optimized extraction procedures and our previously developed detection system. Supernatant of rat brain homogenate (0.10 M TFA as extractant) was evaporated to dryness in a vacuum centrifuge. Residues were reconstituted with deionized water. Samples were separated on a reversed phase column. The mobile phase was 20 mM aqueous acetate buffer (pH 5.2) containing 0.40 mM cetyl trimethylammonium p-toluene sulfonate and 2 vol.% methanol. Electrochemical detection used dual series gold-mercury amalgam electrodes. For the first time, S-sulfocysteine was detected in normal neonatal rat brain. Its concentration is 0.99 +/- 0.25 pmol/mg brain tissue. The results indicate that TFA, rarely reported an an extractant, efficiently recovers SSC from rat brain tissues.
Collapse
Affiliation(s)
- W Xia
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|