1
|
Abenavoli L, Scarpellini E, Paravati MR, Scarlata GGM, Boccuto L, Tilocca B, Roncada P, Luzza F. Gut Microbiota and Critically Ill Patients: Immunity and Its Modulation via Probiotics and Immunonutrition. Nutrients 2023; 15:3569. [PMID: 37630759 PMCID: PMC10459644 DOI: 10.3390/nu15163569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Critically ill patients have a hyper-inflammatory response against various offending injuries that can result in tissue damage, organ failure, and fatal prognosis. The origin of this detrimental, uncontrolled inflammatory cascade can be found also within our gut. In detail, one of the main actors is our gut microbiota with its imbalance, namely gut dysbiosis: learning about the microbiota's dysfunction and pathophysiology in the frame of critical patients is of crucial and emerging importance in the management of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Multiple pieces of evidence indicate that the bacteria that populate our gut efficiently modulate the immune response. Treatment and pretreatment with probiotics have shown promising preliminary results to attenuate systemic inflammation, especially in postoperative infections and ventilation performance. Finally, it is emerging how immunonutrition may exert a possible impact on the health status of patients in intensive care. Thus, this manuscript reviews evidence from the literature on gut microbiota composition, its derangement in critically ill patients, its pathophysiological role, and the described and emerging opportunities arising from its modulation.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (G.G.M.S.); (B.T.); (P.R.); (F.L.)
| | - Emidio Scarpellini
- Translationeel Onderzoek van Gastro-Enterologische Aandoeningen (T.A.R.G.I.D.), Gasthuisberg University 11 Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | - Maria Rosaria Paravati
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (G.G.M.S.); (B.T.); (P.R.); (F.L.)
| | - Giuseppe Guido Maria Scarlata
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (G.G.M.S.); (B.T.); (P.R.); (F.L.)
| | - Luigi Boccuto
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC 29634, USA;
- School of Health Research, Clemson University, Clemson, SC 29634, USA
| | - Bruno Tilocca
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (G.G.M.S.); (B.T.); (P.R.); (F.L.)
| | - Paola Roncada
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (G.G.M.S.); (B.T.); (P.R.); (F.L.)
| | - Francesco Luzza
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (G.G.M.S.); (B.T.); (P.R.); (F.L.)
| |
Collapse
|
2
|
Cai L, Rodgers E, Schoenmann N, Raju RP. Advances in Rodent Experimental Models of Sepsis. Int J Mol Sci 2023; 24:9578. [PMID: 37298529 PMCID: PMC10253762 DOI: 10.3390/ijms24119578] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
In the development of therapeutic strategies for human diseases, preclinical experimental models have a key role. However, the preclinical immunomodulatory therapies developed using rodent sepsis were not successful in human clinical trials. Sepsis is characterized by a dysregulated inflammation and redox imbalance triggered by infection. Human sepsis is simulated in experimental models using methods that trigger inflammation or infection in the host animals, most often mice or rats. It remains unknown whether the characteristics of the host species, the methods used to induce sepsis, or the molecular processes focused upon need to be revisited in the development of treatment methods that will succeed in human clinical trials. Our goal in this review is to provide a survey of existing experimental models of sepsis, including the use of humanized mice and dirty mice, and to show how these models reflect the clinical course of sepsis. We will discuss the strengths and limitations of these models and present recent advances in this subject area. We maintain that rodent models continue to have an irreplaceable role in studies toward discovering treatment methods for human sepsis.
Collapse
Affiliation(s)
- Lun Cai
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Elizabeth Rodgers
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Nick Schoenmann
- Department of Emergency Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
3
|
Takahashi K, Higashizono K, Fukatsu K, Murakoshi S, Takayama H, Noguchi M, Matsumoto N, Seto Y. Prehabilitation Ameliorates Gut Ischemia Reperfusion Injury in Mice. J Surg Res 2023; 282:71-83. [PMID: 36257166 DOI: 10.1016/j.jss.2022.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/01/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION We previously demonstrated that prehabilitation by running on a treadmill leads to improved survival after gut ischemia reperfusion (I/R) in mice. The purpose of this research was to examine whether prehabilitation attenuates inflammatory responses after gut I/R in mice. MATERIALS AND METHODS Male C57BL/6J mice (n = 92) were assigned to the sedentary (n = 46) or the exercise (n = 46) group. The exercise group ran on a treadmill for 4 wk, while the sedentary mice did not exercise. After the 4-week pretreatment, all mice underwent gut I/R and the blood, urine, small intestine, lung, liver, and gastrocnemius were harvested prior to ischemia or at 0, 3, 6, or 24 h after reperfusion. Histologically demonstrated organ damage, cytokine levels in the blood, gut and gastrocnemius, myeloperoxidase activity in the gut, 8-hydroxy-2'-deoxyguanosine levels in urine and the gut, and adenosine triphosphate (ATP) and ATP + ADP + adenosine monophosphate levels in the gut and gastrocnemius were evaluated. RESULTS The treadmill exercise reduced gut and lung injuries at 3 h and liver injury at 6 h after reperfusion. Running on the treadmill also decreased proinflammatory cytokine levels in the blood at 6 h, gut at 3 h and gastrocnemius at 6 h after reperfusion, myeloperoxidase activity in the gut prior to ischemia, and 6 h after reperfusion and the urinary 8-hydroxy-2'-deoxyguanosine level at 24 h after reperfusion, while ATP levels in exercised mice prior to ischemia and 3 h after reperfusion were increased in the intestine as compared to the levels in sedentary mice. CONCLUSIONS Prehabilitation with treadmill exercise reduces inflammatory responses after gut I/R and may exert protective actions against gut I/R.
Collapse
Affiliation(s)
- Kazuya Takahashi
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuya Higashizono
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Fukatsu
- Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Surgical Center, The University of Tokyo Hospital, Tokyo, Japan.
| | - Satoshi Murakoshi
- Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Surgical Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Haruka Takayama
- Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Midori Noguchi
- Surgical Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Nana Matsumoto
- Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Shimizu K, Ojima M, Ogura H. Gut Microbiota and Probiotics/Synbiotics for Modulation of Immunity in Critically Ill Patients. Nutrients 2021; 13:nu13072439. [PMID: 34371948 PMCID: PMC8308693 DOI: 10.3390/nu13072439] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/24/2021] [Accepted: 07/10/2021] [Indexed: 12/26/2022] Open
Abstract
Patients suffering from critical illness have host inflammatory responses against injuries, such as infection and trauma, that can lead to tissue damage, organ failure, and death. Modulation of host immune response as well as infection and damage control are detrimental factors in the management of systemic inflammation. The gut is the motor of multiple organ failure following injury, and it is recognized that gut dysfunction is one of the causative factors of disease progression. The gut microbiota has a role in maintaining host immunity, and disruption of the gut microbiota might induce an immunosuppressive condition in critically ill patients. Treatment with probiotics and synbiotics has been reported to attenuate systemic inflammation by maintaining gut microbiota and to reduce postoperative infectious complications and ventilator-associated pneumonia. The administration of prophylactic probiotics/synbiotics could be an important treatment option for preventing infectious complications and modulating immunity. Further basic and clinical research is needed to promote intestinal therapies for critically ill patients.
Collapse
|
5
|
Oral zinc carnosine reduces multi-organ damage caused by gut ischemia/reperfusion in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
6
|
Clinical and Genetic Contributors to New-Onset Atrial Fibrillation in Critically Ill Adults. Crit Care Med 2020; 48:22-30. [PMID: 31599812 DOI: 10.1097/ccm.0000000000004034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES New-onset atrial fibrillation during critical illness is an independent risk factor for mortality. The ability to identify patients at high risk for new-onset atrial fibrillation is limited. We hypothesized that genetic susceptibility contributes to risk of new-onset atrial fibrillation in the ICU. DESIGN Retrospective sub-study of a prospective observational cohort study. SETTING Medical and general surgical ICUs in a tertiary academic medical center. PATIENTS One-thousand three-hundred sixty-nine critically ill patients admitted to the ICU for at least 2 days with no known history of atrial fibrillation who had DNA available for genotyping. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We genotyped 21 single-nucleotide polymorphisms associated with atrial fibrillation in ambulatory studies using a Sequenom platform (San Diego, CA). We collected demographics, medical history, and development of new-onset atrial fibrillation during the first four days of ICU admission. New-onset atrial fibrillation occurred in 98 patients (7.2%) and was associated with age, male sex, coronary artery disease, and vasopressor use. Single-nucleotide polymorphisms associated with new-onset atrial fibrillation were rs3853445 (near PITX2, p = 0.0002), rs6838973 (near PITX2, p = 0.01), and rs12415501 (in NEURL, p = 0.03) on univariate testing. When controlling for clinical factors, rs3853445 (odds ratio, 0.47; 95% CI, 0.30-0.73; p = 0.001) and rs12415501 (odds ratio, 1.72; 95% CI, 1.27-2.59; p = 0.01) remained significantly associated with new-onset atrial fibrillation. The addition of genetic variables to clinical factors improved new-onset atrial fibrillation discrimination in a multivariable logistic regression model (C-statistic 0.82 vs 0.78; p = 0.0009). CONCLUSIONS We identified several single-nucleotide polymorphisms associated with new-onset atrial fibrillation in a large cohort of critically ill ICU patients, suggesting there is genetic susceptibility underlying this common clinical condition. This finding may provide new targets for future mechanistic studies and additional insight into the application of genomic information to identify patients at elevated risk for a common and important condition in the ICU.
Collapse
|
7
|
Playford RJ, Marchbank T. Pancreatic secretory trypsin inhibitor reduces multi-organ injury caused by gut ischemia/reperfusion in mice. PLoS One 2020; 15:e0227059. [PMID: 31923181 PMCID: PMC6953855 DOI: 10.1371/journal.pone.0227059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022] Open
Abstract
Intestinal ischemia/reperfusion (I/R) injury occurs during transplantation, mesenteric arterial occlusion, trauma and shock, causing systemic inflammation, multiple organ dysfunction and high mortality. Pancreatic secretory trypsin inhibitor (PSTI), a serine protease inhibitor expressed in gut mucosa may function as a mucosal protective/repair peptide. We examined whether PSTI affected mesenteric I/R-induced injury. Hypoxia/normoxia (H/N) caused 50% drop in cell viability of AGS, RIE1 and Caco-2 cells but PSTI (10 μg/ml) given prior- or during-hypoxic period improved survival by 50% (p<0.01). Similarly, Caco-2 monolayers exposed to H/N had 300% increase in transepithelial permeability, PSTI truncated this by 50% (p<0.01). Mice underwent mesenteric I/R by clamping jejunum, causing severe mucosal injury, increased apoptotic markers and 3-fold increases in plasma IL-6, IL1β, TNFα, and tissue lipid peroxidation (MDA) and inflammatory infiltration (MPO) levels. Lungs showed similar significant injury and inflammatory infiltrate markers. Smaller increases in MDA and MPO were seen in kidney & liver. PSTI (20 mg/kg) reduced all injury markers by 50–80% (p<0.01). In vitro and in vivo studies showed PSTI reduced pro-apoptotic Caspase 3, 9 and Baxα levels, normalised Bcl2 and caused additional increases in HIF1α, VEGF and Hsp70 above rises caused by I/R alone (all p<0.01). PSTI also prevented reduction of tight junction molecules ZO1 and Claudin1 (all p<0.01) but did not affect increased ICAM-1 caused by I/R in gut or lung. PSTI may be a useful clinical target to prevent I/R injury.
Collapse
Affiliation(s)
- Raymond J. Playford
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, United Kingdom
| | - Tania Marchbank
- Centre of Immunobiology, Blizard Institute, Barts and The London School of Medicine, Queen Mary, University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Upregulation of proBDNF in the Mesenteric Lymph Nodes in Septic Mice. Neurotox Res 2019; 36:540-550. [PMID: 31278527 DOI: 10.1007/s12640-019-00081-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/27/2023]
Abstract
The immune status in the lymphatic system, especially mesenteric lymph nodes (MLNs), is critical to regulate the septic shock. Brain-derived neurotrophic factor (BDNF) in the enteric system has been reported to regulate enteric immunity. However, the role of its precursor, proBDNF, in the immune status of MLNs under sepsis condition is still unclear. This study aimed to characterize the expression pattern of proBDNF in MLNs after lipopolysaccharide (LPS) stimulation, and to investigate the association of pathogenesis of sepsis. LPS (20 mg/kg) was intraperitoneally injected to induce sepsis in mice. Survival curve analysis, routine blood tests, and liver and kidney function tests were performed to evaluate the severity of sepsis. QPCR and histological staining were performed to assess the mRNA levels of proinflammatory cytokines and degree of immune-inflammatory response in the MLNs. Furthermore, Western blotting, flow cytometry, and immunofluorescence were performed to examine the key molecules expression of proBDNF signaling. Intraperitoneal LPS injection significantly decreased the number of lymphocytes in blood but increased the number of T lymphocytes in MLNs. Serum alanine transaminase, aspartate transaminase, and blood urea nitrogen levels were increased in LPS-challenged mice compared to control mice. LPS administration upregulated proinflammatory cytokine gene expression and induced histological changes in the MLNs. LPS injection increased BDNF, proBDNF, and its receptor pan neutrophin receptor 75 (p75NTR) expression in MLNs. The increased proBDNF was mainly localized on CD3+ and CD4+ T cells in the medulla of MLNs. LPS-induced sepsis upregulated proBDNF expression in medulla T cells of MLNs. ProBDNF upregulation may be involved in the pathogenesis of septic shock.
Collapse
|
9
|
Mine Y, Fujita F, Murase T, Ito S, Takatsuki M, Ikematsu K, Eguchi S. Heat Shock Protein 70 Messenger RNA in Rat Leukocytes Elevates After Severe Intestinal Ischemia-Reperfusion. J Surg Res 2019; 242:342-348. [PMID: 31132625 DOI: 10.1016/j.jss.2019.04.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/07/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Heat shock protein 70 (HSP70) confers protection against heat shock, oxidative stress, infection, and inflammation in many cell types. A recent study reported that the induction of HSP70 was associated with morphologic protection against ischemia-reperfusion injury (IRI) in the rat small intestine. This study investigated the dynamics of HSP70 in leukocytes during intestinal IRI in a rat model. MATERIALS AND METHODS Serial blood samples were collected at 60-minute intervals up to 240 min from male Wistar rats (n = 15). The rats were divided into three groups of five each: the control group, the nonlethal IRI group, and the lethal IRI group. Rats belonging to the control group underwent a sham operation, and laparotomy was performed on rats in the lethal and nonlethal IRI groups. The nonlethal group experienced a 30-minute clamping of the superior mesenteric artery, and the lethal group experienced a 75-minute clamping of the superior mesenteric artery. The expression of HSP70 messenger RNA (mRNA) in leukocytes was measured by real-time quantitative polymerase chain reaction. Mixed-effects modeling of repeated measures was used to carry out the statistical analysis. The Bonferroni correction was applied to multiple comparisons. A P value < 0.0167 was considered to indicate statistical significance. RESULTS The expression of HSP70 mRNA in leukocytes increased 60 min after reperfusion in both IRI groups, and it was 12.8 times higher in the lethal group and 3.6 times higher in the nonlethal group compared with the control group. The expression of mRNA in the lethal group was significantly increased compared with the nonlethal group and the control group at 120 and 180 min after reperfusion. At 120 min after reperfusion, the expression of HSP70 mRNA was 6.1 times higher in the lethal group than in the nonlethal group (P = 0.0075) and 17.7 times higher than in the control group (P = 0.0011). At 180 min after reperfusion, the expression of HSP70 mRNA was 6.8 times higher in the lethal group than in the nonlethal group (P = 0.0007) and 4.3 times higher than in the control group (P = 0.0032). Although the expression of HSP70 mRNA in the nonlethal group was elevated in the early stages of reperfusion, there was no difference between the nonlethal group and the control group (P = 0.0212 at 60 min). CONCLUSIONS The expression of HSP70 mRNA in leukocytes may be a clinically useful indicator for evaluating pathologic conditions in intestinal IRI.
Collapse
Affiliation(s)
- Yuka Mine
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Fumihiko Fujita
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takehiko Murase
- Department of Forensic Pathology and Sciences, Nagasaki University Graduate School of Biochemical Sciences, Nagasaki, Japan
| | - Shinichiro Ito
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Mitsuhisa Takatsuki
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuya Ikematsu
- Department of Forensic Pathology and Sciences, Nagasaki University Graduate School of Biochemical Sciences, Nagasaki, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
10
|
Rivera ED, Coffey JC, Walsh D, Ehrenpreis ED. The Mesentery, Systemic Inflammation, and Crohn's Disease. Inflamm Bowel Dis 2019; 25:226-234. [PMID: 29920595 DOI: 10.1093/ibd/izy201] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Indexed: 12/11/2022]
Abstract
Initially thought to be a structure that only provided support to the abdominal contents, the mesentery has now gained special attention in the scientific community. The new approach of studying the mesentery as an individual organ has highlighted its importance in the development of local and systemic inflammatory diseases and its potential role in Crohn's disease. Its topographical relationship with the intestine in the setting of active inflammation and "creeping fat" is possibly one of the most important arguments for including the mesentery as an important factor in the pathogenesis of Crohn's disease. In this review, we discuss the importance of the mesentery from the anatomical and embryological standpoints. We also will summarize data on mesenteric inflammation in patients with Crohn's disease. The significance of the mesentery in systemic inflammatory syndromes will be discussed, and we provide an overview of primary inflammatory disorders of the mesentery. Finally, we discuss surgical approaches for patients requiring resection for Crohn's disease that incorporate mesenteric factors, pointing out recent data suggesting that these have the potential for improving outcomes and reducing disease recurrence. 10.1093/ibd/izy201_video1izy201.video15794169491001.
Collapse
Affiliation(s)
- Edgardo D Rivera
- Division of Gastroenterology, Hepatology and Nutrition, University of Miami Miller School of Medicine, Mailman Center for Child Development, Miami, Florida
| | - John Calvin Coffey
- FRCSI Surgery, Graduate Entry Medical School, University of Limerick, Limerick, Ireland
- Department of Surgery, University Hospital Limerick Group, Limerick, Ireland
| | - Dara Walsh
- Department of Surgery, University Hospital Limerick Group, Limerick, Ireland
| | - Eli D Ehrenpreis
- Rosalind Franklin University Medical School, North Chicago, Illinois
- Division of Gastroenterology, Hepatology and Nutrition, University of Miami Miller School of Medicine, Miami, Florida
- Advocate Lutheran General Hospital, Park Ridge, Illinois
| |
Collapse
|
11
|
Moore EE. Trauma research: Trials and tribulations of a triceratops. J Trauma Acute Care Surg 2018; 85:841-850. [PMID: 30359335 DOI: 10.1097/ta.0000000000002054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ernest E Moore
- From the Departments of Surgery (E.E.M.), Ernest E Moore Shock Trauma Center at Denver Health and University of Colorado Denver, Denver, Colorado
| |
Collapse
|
12
|
Lim S, Halandras PM, Bechara C, Aulivola B, Crisostomo P. Contemporary Management of Acute Mesenteric Ischemia in the Endovascular Era. Vasc Endovascular Surg 2018; 53:42-50. [DOI: 10.1177/1538574418805228] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Objective: Acute mesenteric ischemia is a rare disease entity associated with high morbidity and mortality. Disparate etiologies and nonspecific symptoms make the diagnosis challenging and often result in delayed diagnosis and intervention. Open laparotomy with mesenteric revascularization and resection of necrotic bowel has been considered the gold standard of care. With recent advances in percutaneous catheter-directed techniques, multiple retrospective studies have demonstrated the outcomes of endovascular therapy. Herein, we review the etiology, presentation, and diagnosis of acute mesenteric ischemia with contemporary outcomes associated with both open and endovascular treatments. Methods: The PubMed electronic database was queried in the English language using the search words mesenteric, acute ischemia, embolism, thromboembolism, thrombosis, revascularization, and endovascular in various combinations. Abstracts of the relevant titles were examined to confirm their relevance and the full articles then extracted. References from extracted articles were checked for any additional relevant articles. This systematic review encompassed literature for the past 5 years (between 2011 and 2016). Results: Early diagnosis and intervention improves acute mesenteric ischemia outcomes. Early restoration of mesenteric flow minimizes morbidity and mortality. In comparison to open laparotomy with mesenteric revascularization and resection of necrotic bowel, several retrospective studies using administrative data and single-center chart reviews demonstrate noninferior outcomes of an endovascular first approach in acute arterial mesenteric occlusion. Conclusions: For acute mesenteric arterial occlusive disease, both endovascular and open revascularization techniques are viable options. Although there is lack of level 1 evidence, single-center retrospective studies and administrative database studies demonstrated that an endovascular first approach may have improved outcomes in the immediate postoperative period. However, selection and other bias in these studies necessitate the need for definitive randomized prospective studies between endovascular and open mesenteric intervention. In contrast, mesenteric venous thrombosis may be treated with systemic anticoagulation without surgical revascularization. Catheter-directed thrombectomy and thrombolysis can be considered at the discretion of the clinician.
Collapse
Affiliation(s)
- Sungho Lim
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Pegge M. Halandras
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Carlos Bechara
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Bernadette Aulivola
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Paul Crisostomo
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| |
Collapse
|
13
|
Intravital imaging of neutrophil recruitment in intestinal ischemia-reperfusion injury. Biochem Biophys Res Commun 2017; 495:2296-2302. [PMID: 29287721 DOI: 10.1016/j.bbrc.2017.12.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neutrophils are known to be key players in innate immunity. Activated neutrophils induce local inflammation, which results in pathophysiologic changes during intestinal ischemia-reperfusion injury (IRI). However, most studies have been based on static assessments, and few have examined real-time intravital neutrophil recruitment. We herein report a method for imaging and evaluating dynamic changes in the neutrophil recruitment in intestinal IRI using two-photon laser scanning microscopy (TPLSM). METHODS LysM-eGFP mice were subjected to 45 min of warm intestinal ischemia followed by reperfusion. Mice received an intravenous injection of tetramethylrhodamine isothiocyanate-labeled albumin to visualize the microvasculature. Using a time-lapse TPLSM technique, we directly observed the behavior of neutrophils in intestinal IRI. RESULTS We were able to image all layers of the intestine without invasive surgical stress. At low-magnification, the number of neutrophils per field of view continued to increase for 4 h after reperfusion. High-magnification images revealed the presence or absence of blood circulation. At 0-2 h after reperfusion, rolling and adhesive neutrophils increased along the vasculature. At 2-4 h after reperfusion, the irregularity of crypt architecture and transmigration of neutrophils were observed in the lamina propria. Furthermore, TPLSM imaging revealed the villus height, the diameters of the crypt, and the number of infiltrating neutrophils in the crypt. In the IRI group, the villus height 4 h after reperfusion was significantly shorter than in the control group. CONCLUSIONS TPLSM imaging revealed the real-time neutrophil recruitment in intestinal IRI. Z-stack imaging was useful for evaluating pathophysiological changes in the intestinal wall.
Collapse
|
14
|
Windsor JA, Escott A, Brown L, Phillips AR. Novel strategies for the treatment of acute pancreatitis based on the determinants of severity. J Gastroenterol Hepatol 2017; 32:1796-1803. [PMID: 28294403 DOI: 10.1111/jgh.13784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/04/2017] [Accepted: 03/05/2017] [Indexed: 02/06/2023]
Abstract
Acute pancreatitis (AP) is a common disease for which a specific treatment remains elusive. The key determinants of the outcome from AP are persistent organ failure and infected pancreatic necrosis. The prevention and treatment of these determinants provides a framework for the development of specific treatment strategies. The gut-lymph concept provides a common mechanism for systemic inflammation and organ dysfunction. Acute and critical illness, including AP, is associated with intestinal ischemia and drastic changes in the composition of gut lymph, which bypasses the liver to drain into the systemic circulation immediately proximal to the major organ systems which fail. The external diversion of gut lymph and the targeting of treatments to counter the toxic elements in gut lymph offers novel approaches to the prevention and treatment of persistent organ failure. Infected pancreatic necrosis is increasingly treated with less invasive techniques, the mainstay of which is drainage, both endoscopic and percutaneous. Further improvements will occur with the strategies to accelerate liquefaction and through a fundamental re-design of drains, both of which will increase drainage efficacy. The determinants of severity and outcome in patients admitted with AP provide the basis for innovative treatment strategies. The priorities are to translate the gut-lymph concept to clinical practice and to improve the design and active use of drains for infected complications of AP.
Collapse
Affiliation(s)
- John A Windsor
- Pancreas Research Group, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Alistair Escott
- Pancreas Research Group, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lisa Brown
- Pancreas Research Group, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony Rj Phillips
- Pancreas Research Group, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Moghaddas A, Dashti-Khavidaki S. L-Carnitine and Potential Protective Effects Against Ischemia-Reperfusion Injury in Noncardiac Organs: From Experimental Data to Potential Clinical Applications. J Diet Suppl 2017; 15:740-756. [PMID: 29053424 DOI: 10.1080/19390211.2017.1359221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mechanism of ischemia-reperfusion (I/R) injury is complex and multifactorial. In this condition, systemic event results in morbidity and mortality in several pathologies, including myocardial infarction, ischemic stroke, acute kidney injury, trauma, and circulatory arrest. Hypoxia over ischemia phase leads to energy imbalance and changes of cellular homeostasis and functional or structural alterations. In addition, during the reperfusion period, some events, including calcium influx, release of intracellular enzymes, and cell membrane integrity breakdown, cause cell death. L-carnitine (LC) and its derivatives have been suggested to improve tolerance against I/R injury in various tissues. The favorable effects of LC are possibly mediated by its antioxidant and anti-inflammatory effects or by other capability due to increase in the intracellular carnitine content. In this article, anti-ischemic properties of LC and its derivative in noncardiac organs are reviewed using relative animal and human research. Although most of the studies on noncardiac internal organs have shown protective effects of LC administration against I/R injury, more clinical trials are needed to clarify the clinical importance of LC as a treatment option for I/R-induced injury.
Collapse
Affiliation(s)
- Azadeh Moghaddas
- a Assistant Professor of Clinical Pharmacy, Department of Clinical Pharmacy, Faculty of Pharmacy , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Simin Dashti-Khavidaki
- b Professor of Clinical Pharmacy Department of Clinical Pharmacy, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran.,c Nephrology Research Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
16
|
The role of NIGMS P50 sponsored team science in our understanding of multiple organ failure. J Trauma Acute Care Surg 2017; 83:520-531. [PMID: 28538636 DOI: 10.1097/ta.0000000000001587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The history of the National Institute of General Medical Sciences (NIGMS) Research Centers in Peri-operative Sciences (RCIPS) is the history of clinical, translational, and basic science research into the etiology and treatment of posttraumatic multiple organ failure (MOF). Born out of the activism of trauma and burn surgeons after the Viet Nam War, the P50 trauma research centers have been a nidus of research advances in the field and the training of future academic physician-scientists in the fields of trauma, burns, sepsis, and critical illness. For over 40 years, research conducted under the aegis of this funding program has led to numerous contributions at both the bedside and at the bench. In fact, it has been this requirement for team science with a clinician-scientist working closely with basic scientists from multiple disciplines that has led the RCIPS to its unrivaled success in the field. This review will briefly highlight some of the major accomplishments of the RCIPS program since its inception, how they have both led and evolved as the field moved steadily forward, and how they are responsible for much of our current understanding of the etiology and pathology of MOF. This review is not intended to be all encompassing nor a historical reference. Rather, it serves as recognition to the foresight and support of many past and present individuals at the NIGMS and at academic institutions who have understood the cost of critical illness and MOF to the individual and to society.
Collapse
|
17
|
Glutamine metabolism drives succinate accumulation in plasma and the lung during hemorrhagic shock. J Trauma Acute Care Surg 2017; 81:1012-1019. [PMID: 27602903 DOI: 10.1097/ta.0000000000001256] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Metabolomic investigations have consistently reported succinate accumulation in plasma after critical injury. Succinate receptors have been identified on numerous tissues, and succinate has been directly implicated in postischemic inflammation, organ dysfunction, platelet activation, and the generation of reactive oxygen species, which may potentiate morbidity and mortality risk to patients. Metabolic flux (heavy-isotope labeling) studies demonstrate that glycolysis is not the primary source of increased plasma succinate during protracted shock. Glutamine is an alternative parent substrate for ATP generation during anaerobic conditions, a biochemical mechanism that ultimately supports cellular survival but produces succinate as a catabolite. We hypothesize that succinate accumulation during hemorrhagic shock is driven by glutaminolysis. METHODS Sprague-Dawley rats were subjected to hemorrhagic shock for 45 minutes (shock, n = 8) and compared with normotensive shams (sham, n = 8). At 15 minutes, animals received intravenous injection of C5-N2-glutamine solution (iLG). Blood, brain, heart, lung, and liver tissues were harvested at defined time points. Labeling distribution in samples was determined by ultrahigh-pressure liquid chromatography-mass spectrometry metabolomic analysis. Repeated-measures analysis of variance with Tukey comparison determined significance of relative fold change in metabolite level from baseline. RESULTS Hemorrhagic shock instigated succinate accumulation in plasma and lungs tissues (8.5- vs. 1.1-fold increase plasma succinate level from baseline, shock vs. sham, p = 0.001; 3.2-fold higher succinate level in lung tissue, shock vs. sham, p = 0.006). Metabolomic analysis identified labeled glutamine and labeled succinate in plasma (p = 0.002) and lung tissue (p = 0.013), confirming glutamine as the parent substrate. Kinetic analyses in shams showed constant total levels of all metabolites without significant change due to iLG. CONCLUSION Glutamine metabolism contributes to increased succinate concentration in plasma during hemorrhagic shock. The glutaminolytic pathway is implicated as a therapeutic target to prevent the contribution of succinate accumulation in plasma and the lung-to-postshock pathogenesis.
Collapse
|
18
|
Abstract
BACKGROUND How vagotomy affects host responses to gut ischemia-reperfusion (I/R) is unclear. MATERIALS AND METHODS Experiment 1: male Institute of Cancer Research mice (n = 22) were assigned to the I/R or the vago-I/R group. The I/R mice underwent 45-min superior mesenteric artery (SMA) occlusion. The vago-I/R mice received vagotomy before SMA occlusion. Survival was observed for 48 h.Experiment 2: mice (n = 55) were divided into four groups (Sham, vago, I/R, vago-I/R). Sham and vago groups did not undergo gut I/R. Mice were killed at 3 or 6 h after reperfusion, and cytokine levels in the plasma, jejunum, and ileum were evaluated. In addition, gut histology at 6 h was examined.Experiment 3: mice (n = 24) were divided into four groups as in Experiment 2. The small intestine was harvested at 3 h after reperfusion and the tissue was cultured ex vivo for 3 h. Cytokine levels of the culture supernatant were then measured. RESULTS Experiment 1: survival was significantly worse with vago-I/R than I/R.Experiment 2: along with severe gut injury, vago-I/R increased IL-6 and monocyte chemoattractant protein-1 (MCP-1) in plasma, IFN-γ in the jejunum and MCP-1 in the ileum, as compared with I/R. Significant positive correlations were noted between plasma and intestinal levels of pro-inflammatory cytokines (IL-6, MCP-1, and TNF-α).Experiment 3: MCP-1 in the jejunal culture medium was higher in the vago-I/R than in the I/R group. CONCLUSIONS Vagotomy worsens survival after gut I/R, together with increases in pro-inflammatory cytokines in both plasma and the gut in association with severe intestinal tissue damage.
Collapse
|
19
|
Ueno C, Fukatsu K, Kang W, Maeshima Y, Nagayoshi H, Omata J, Saito H, Hiraide H, Mochizuki H. Lack of Enteral Nutrition Delays Nuclear Factor Kappa B Activation in Peritoneal Exudative Cells in a Murine Glycogen-Induced Peritonitis Model. JPEN J Parenter Enteral Nutr 2017; 30:179-85. [PMID: 16639063 DOI: 10.1177/0148607106030003179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Early enteral nutrition is associated with a lower incidence of intraabdominal abscess in severely injured patients than parenteral nutrition (PN). We explored the underlying mechanisms by examining the influence of nutrition route on nuclear factor kappaB (NFkappaB) activation in peritoneal exudative cells (PECs) and peritoneal cytokine levels. METHODS Thirty male Institute Cancer Research mice were randomized to chow (n = 10), IV PN (n = 10), or intragastric (IG) PN (n = 10) and fed for 5 days. PECs were harvested at 2 or 4 hours after intraperitoneal injection of 2 mL of 1% glycogen. Intranuclear NFkappaB activity in PECs was examined by laser scanning cytometry. Cytokine (tumor necrosis factor-alpha [TNF-alpha], macrophage inflammatory protein-2 [MIP-2], interleukin-10 [IL-10]) levels in peritoneal lavaged fluid were determined by enzyme-linked immunosorbent assay. RESULTS Intranuclear NFkappaB at 2 hours was significantly higher in the chow and IG-PN groups than in the IV-PN group. TNF-alpha and IL-10 levels of the chow group were significantly higher than those of IV-PN mice at 2 hours, whereas those of IG-PN mice were midway between those of the chow and IV-PN groups. MIP-2 was significantly higher in the chow group than in the IG-PN and IV-PN mice at 2 hours. TNF-alpha levels correlated positively with intranuclear NFkappaB activity in PECs. CONCLUSIONS Enteral nutrition may improve peritoneal defense by preserving early NFkappaB activation in PECs and cytokine responses.
Collapse
Affiliation(s)
- Chikara Ueno
- Department of Surgery I, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Somberg LB, Gutterman DD, Miura H, Nirula R, Hatoum OA. Shock associated with endothelial dysfunction in omental microvessels. Eur J Clin Invest 2017; 47:30-37. [PMID: 27809354 DOI: 10.1111/eci.12697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/30/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Impaired microvascular function leads to a poor outcome in a variety of medical conditions. Our aim was to determine whether vasodilator responses to acetylcholine (Ach) are impaired in human omental arterioles from patients with severe trauma. MATERIALS AND METHODS Patients with massive blood loss and severe shock requiring damage control procedures were included. Tissues were collected at the first (FEL) and the second explorative laparotomy (SEL). Control tissues were collected from nontrauma patients. Freshly isolated 50-200-μm-diameter omental arterioles were analysed using videomicroscopy. Dihydroethidine and DCF-DA fluorescence were used to assess reactive oxygen species (ROS) production. MnTBAP was used to determine the contribution of excess vascular superoxide contribution to endothelial dysfunction. RESULTS After constriction (30-50%) with endothelin-1, dilation to graded doses of Ach (10-9 -10-4 M) was greater in control vessels compared to FEL and SEL (max dilation at 10-4 M (MD) = 25 ± 3%, n = 8; and 59 ± 8%, n = 8, respectively, and controls MD = 93 ± 10%, n = 6, P < 0·05). Fluorescence imaging of ROS production showed significant increases in superoxide (225·46 ± 12·86; 215·77 ± 10·75 vs. 133·75 ± 7·26, arbitrary units; P < 0·05) and peroxide-related ROS (240·8 ± 20·42; 234·59 ± 28·86, vs. 150·78 ± 15·65, arbitrary units; P < 0·05), in FEL and SEL microvessels compared to control, respectively. FEL pretreated with MnTBAP demonstrated significant improvement in Ach-induced vasodilation (25·5 ± 3·0% vs. 79·5 ± 8·2%; P < 0·05). CONCLUSIONS Severe shock associated with microvascular endothelial dysfunction enhances production of ROS in human omental tissues. The altered flow regulation may contribute to a mismatch between local blood supply and demand, exacerbating abnormal tissue perfusion and function.
Collapse
Affiliation(s)
- Lewis B Somberg
- Division of Trauma/Critical Care, Departments of Medicine and Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David D Gutterman
- Division of Cardiovascular Medicine, Departments of Medicine and Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hiroto Miura
- Division of Cardiovascular Medicine, Departments of Medicine and Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Raminder Nirula
- Division of Trauma/Critical Care, Departments of Medicine and Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ossama A Hatoum
- Department of Surgery B, HaEmek Medical Center, Afula, Israel.,Faculty of Medicine, Technion-Israel Institute of Technology, Afula, Israel
| |
Collapse
|
21
|
Langness S, Costantini TW, Morishita K, Eliceiri BP, Coimbra R. Modulating the Biologic Activity of Mesenteric Lymph after Traumatic Shock Decreases Systemic Inflammation and End Organ Injury. PLoS One 2016; 11:e0168322. [PMID: 27977787 PMCID: PMC5158049 DOI: 10.1371/journal.pone.0168322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022] Open
Abstract
Introduction Trauma/hemorrhagic shock (T/HS) causes the release of pro-inflammatory mediators into the mesenteric lymph (ML), triggering a systemic inflammatory response and acute lung injury (ALI). Direct and pharmacologic vagal nerve stimulation prevents gut barrier failure and alters the biologic activity of ML after injury. We hypothesize that treatment with a pharmacologic vagal agonist after T/HS would attenuate the biologic activity of ML and prevent ALI. Methods ML was collected from male Sprague-Dawley rats after T/HS, trauma-sham shock (T/SS) or T/HS with administration of the pharmacologic vagal agonist CPSI-121. ML samples from each experimental group were injected into naïve mice to assess biologic activity. Blood samples were analyzed for changes in STAT3 phosphorylation (pSTAT3). Lung injury was characterized by histology, permeability and immune cell recruitment. Results T/HS lymph injected in naïve mice caused a systemic inflammatory response characterized by hypotension and increased circulating monocyte pSTAT3 activity. Injection of T/HS lymph also resulted in ALI, confirmed by histology, lung permeability and increased recruitment of pulmonary macrophages and neutrophils to lung parenchyma. CPSI-121 attenuated T/HS lymph-induced systemic inflammatory response and ALI with stable hemodynamics and similar monocyte pSTAT3 levels, lung histology, lung permeability and lung immune cell recruitment compared to animals injected with lymph from T/SS. Conclusion Treatment with CPSI-121 after T/HS attenuated the biologic activity of the ML and decreased ALI. Given the superior clinical feasibility of utilizing a pharmacologic approach to vagal nerve stimulation, CPSI-121 is a potential treatment strategy to limit end organ dysfunction after injury.
Collapse
MESH Headings
- Acute Lung Injury/metabolism
- Acute Lung Injury/pathology
- Acute Lung Injury/prevention & control
- Animals
- Disease Models, Animal
- Hydrazones/therapeutic use
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/prevention & control
- Inflammation Mediators/metabolism
- Lymph/drug effects
- Lymph/immunology
- Lymph/metabolism
- Lymphatic Vessels/drug effects
- Lymphatic Vessels/metabolism
- Male
- Mesentery/drug effects
- Mesentery/immunology
- Mesentery/metabolism
- Mesentery/pathology
- Mice
- Mice, Inbred C57BL
- Rats
- Rats, Sprague-Dawley
- Shock, Hemorrhagic/complications
- Shock, Hemorrhagic/drug therapy
- Shock, Hemorrhagic/immunology
- Shock, Hemorrhagic/metabolism
- Shock, Traumatic/complications
- Shock, Traumatic/drug therapy
- Shock, Traumatic/immunology
- Shock, Traumatic/metabolism
Collapse
Affiliation(s)
- Simone Langness
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California, San Diego Health Sciences, San Diego, California, United States of America
| | - Todd W. Costantini
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California, San Diego Health Sciences, San Diego, California, United States of America
| | - Koji Morishita
- Division of Acute Critical Care and Disaster Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Brian P. Eliceiri
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California, San Diego Health Sciences, San Diego, California, United States of America
| | - Raul Coimbra
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California, San Diego Health Sciences, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
OBJECTIVE To evaluate the prevalence and time course of systemic endotoxemia following severe multiple trauma, to define its risk factors, and to explore the correlation between post-trauma endotoxemia and organ dysfunction. DESIGN Prospective single-center cohort study. SETTING Emergency department and ICU of adult tertiary care level I trauma center. PATIENTS Forty-eight severely injured (Injury Severity Score ≥ 16) patients, admitted to ICU within 24 hours of injury. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Endotoxemia was not evident on initial presentation, but developed subsequently in 75% of patients, even in the absence of Gram-negative infection. Nonsurviving patients had higher endotoxin levels than survivors on day 1 (endotoxemia, 0.48 vs 0.28; p = 0.048). Shock at admission, or surgery within the first 48 hours after trauma, was associated with higher endotoxin levels and predicted subsequent maximal endotoxemia, after adjusting for other significant covariates. Maximal endotoxemia levels were higher in patients who developed organ dysfunction, reflected in a cumulative Multiple Organ Dysfunction Score greater than 25, and patients with an intermediate endotoxemia level (≥ 0.4) had more cardiovascular dysfunction. CONCLUSIONS It is the first study to detect increasing levels of endotoxemia following multiple trauma. Shock and early surgery predict the development of endotoxemia; endotoxemia is particularly associated with cardiovascular dysfunction. However, Gram-negative infections are uncommon in these patients, suggesting that the gastrointestinal tract is the dominant reservoir of endotoxin. Endotoxin may be an appropriate therapeutic target in patients who have sustained severe multiple trauma.
Collapse
|
23
|
Kahlow BS, Nery RA, Skare TL, Ribas CAPM, Ramos GP, Petisco RD. ON VASCULAR STENOSIS, RESTENOSIS AND MANNOSE BINDING LECTIN. ABCD-ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA 2016; 29:57-9. [PMID: 27120743 PMCID: PMC4851154 DOI: 10.1590/0102-6720201600010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/03/2015] [Indexed: 11/22/2022]
Abstract
Mannose binding lectin is a lectin instrumental in the innate immunity. It recognizes
carbohydrate patterns found on the surface of a large number of pathogenic
micro-organisms, activating the complement system. However, this protein seems to
increase the tissue damage after ischemia. In this paper is reviewed some aspects of
harmful role of the mannose binding lectin in ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Barbara Stadler Kahlow
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| | - Rodrigo Araldi Nery
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| | - Thelma L Skare
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| | | | - Gabriela Piovezani Ramos
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| | - Roberta Dombroski Petisco
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
24
|
Novel role of group VIB Ca2+-independent phospholipase A2γ in leukocyte-endothelial cell interactions: An intravital microscopic study in rat mesentery. J Trauma Acute Care Surg 2016; 79:782-9. [PMID: 26496102 DOI: 10.1097/ta.0000000000000845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Phospholipase A2 (PLA2) is associated with a variety of inflammatory processes related to polymorphonuclear neutrophil (PMN)-endothelial cell interactions. However, the cellular and molecular mechanisms underlying the interactions and the causative isoform(s) of PLA2 remain elusive. In addition, we recently showed that calcium-independent PLA2γ (iPLA2γ), but not cytosolic PLA2 (cPLA2), is responsible for the cytotoxic functions of human PMN including respiratory bursts, degranulation, and chemotaxis. We therefore hypothesized that iPLA2γ is a prerequisite for the PMN recruitment cascade into the site of inflammation. The aim of this study was to elucidate the roles of the three major phospholipases A2, iPLA2, cPLA2 and secretory PLA2, in leukocyte rolling and adherence and in the surface expression of β2-integrins in vivo and in vitro in response to well-defined stimuli. METHODS Male Wistar rats were pretreated with PLA2 inhibitors selective for iPLA2β, iPLA2γ, cPLA2, or secretory PLA2. Leukocyte rolling/adherence in the mesenteric venules superfused with platelet-activating factor (PAF) were quantified by intravital microscopy. Furthermore, isolated human PMNs or whole blood were incubated with each PLA2 inhibitor and then activated with formyl-methionyl-leucyl-phenylalanine (fMLP) or PAF. PMN adherence was assessed by counting cells bound to purified fibrinogen, and the surface expression of lymphocyte function-associated antigen 1 and macrophage antigen 1 (Mac-1) was measured by flow cytometry. RESULTS The iPLA2γ-specific inhibitor almost completely inhibited the fMLP/PAF-induced leukocyte adherence in vivo and in vitro and also decreased the fMLP/PAF-stimulated surface expression of Mac-1 by 60% and 95%, respectively. In contrast, the other inhibitors did not affect these cellular functions. CONCLUSION iPLA2γ seems to be involved in leukocyte/PMN adherence in vivo and in vitro as well as in the up-regulation of Mac-1 in vitro in response to PAF/fMLP. This enzyme is therefore likely to be a major regulator in the PMN recruitment cascade.
Collapse
|
25
|
Taşkınlar H, Naycı A, Çömelekoğlu Ü, Polat G, Zorludemir S, Avlan D. Intestinal ischemia-reperfusion induced diaphragm contractility dysfunction: Electrophysiological and ultrastructural study in a neonatal rat model. J Pediatr Surg 2016; 51:354-9. [PMID: 26411723 DOI: 10.1016/j.jpedsurg.2015.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/20/2015] [Accepted: 08/15/2015] [Indexed: 11/19/2022]
Abstract
AIM To evaluate the remote effect of intestinal ischemia reperfusion (IR) injury mediated by tumor necrosis factor alpha (TNF-α) on diaphragm contractility functions and whether administration of NAC may counteract the possible detrimental effects in an experimental neonatal rat model. METHODS 40 Wistar rat pups were randomized into four groups; ten animals in each. Intestinal ischemia was conducted by obstructing mesentery of intestines by a silk loop. In the control group; only laparotomy was performed. After 1h ischemia, reperfusion was conducted for 1h in 1h group, 24h for 24h group and 24h for 24h+NAC group but administration of NAC (150mg/kg/day) intraperitoneally twice a day was performed. Inflammatory response was evaluated by tissue TNF-α level and contractility functions by mechanic activity studies of the diaphragm. Electrophysiology of the diaphragm and the phrenic nerve was conducted to determine neuropathy or myopathy and transmission electron microscopy was performed to evaluate ultrastructural changes in the phrenic nerve. RESULTS Diaphragm tissue TNF-α level significantly increased in 1h and 24h groups (P=0.004, P=0.0001; respectively). Diaphragm mechanic activation force and duration significantly decreased at 1h and 24h (P=0.004, P=0.02 and P=0.0001, P=0.0001; respectively). NAC administration significantly prevented decrease in the maximal contraction and the duration (P<0.001). Phrenic nerve compound action potential (CMAP) amplitude significantly decreased in 1h group (P<0.0001) and NAC administration significantly prevented this decrease when compared with 24h group (P<0.001). In diaphragmatic needle electromyography, the duration of motor unit potentials (MUP) was prolonged significantly when compared with control group. Contractility and electrophysiological studies were indicating primarily neuropathy in diaphragm dysfunction. Histopathology revealed axonal and myelin degeneration in the 1h and 24h group, but less injury in the NAC administered group. CONCLUSIONS Intestinal IR induced elevation of TNF-α level in the diaphragm. Impairment in the diaphragm contractility and neuropathic changes in the phrenic nerve occurred even in the first hour of reperfusion. NAC administration prevented these detrimental effects.
Collapse
Affiliation(s)
- Hakan Taşkınlar
- Mersin University, School of Medicine, Department of Pediatric Surgery, Mersin, Turkey.
| | - Ali Naycı
- Mersin University, School of Medicine, Department of Pediatric Surgery, Mersin, Turkey
| | - Ülkü Çömelekoğlu
- Mersin University, School of Medicine, Department of Biophysics, Mersin, Turkey
| | - Gürbüz Polat
- Mersin University, School of Medicine, Department of Biochemistry, Mersin, Turkey
| | - Suzan Zorludemir
- Çukurova University, School of Medicine, Department of Pathology, Adana, Turkey
| | - Dinçer Avlan
- Mersin University, School of Medicine, Department of Pediatric Surgery, Mersin, Turkey
| |
Collapse
|
26
|
Rosenthal MD, Moore FA. Persistent Inflammation, Immunosuppression, and Catabolism: Evolution of Multiple Organ Dysfunction. Surg Infect (Larchmt) 2015; 17:167-72. [PMID: 26689501 DOI: 10.1089/sur.2015.184] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Multiple organ dysfunction (MOD) has plagued intensive care units (ICUs) for more than four decades, and its epidemiology has evolved because more patients are surviving previously lethal insults. Over the years, different predominant phenotypes of MOD have been described, all of which have consumed tremendous healthcare resources and have been associated with prolonged ICU stays and prohibitive mortality rates. METHODS Review of the English-language literature. RESULTS By the 1990s, it became widely accepted that MOD could ensue after both infectious and non-infectious insults by what appeared to be a similar auto-destructive systemic inflammatory response. A 1996 analysis recognized that MOD was a bimodal phenomenon. As a result of years of implementation efforts, fewer patients died of early fulminant sepsis, and those who developed MOD survived hospitalization. Unfortunately, a substantial portion of these patients enter a state of persistent inflammation, immunosuppression, and catabolism (PICS) marked by persistent loss of lean body mass with failure to rehabilitate, sepsis recidivism necessitating re-hospitalization, increasing functional dependence, and an indolent path to death. CONCLUSION Unfortunately, as our population ages and peri-operative care improves, PICS will become an insurmountable epidemic. We believe PICS is the next horizon in surgical critical care and have developed a program to study the pathogenesis and novel therapies for this vexing problem.
Collapse
Affiliation(s)
- Martin D Rosenthal
- Department of Surgery, Division of Acute Care Surgery, and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine , Gainesville, Florida
| | - Frederick A Moore
- Department of Surgery, Division of Acute Care Surgery, and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine , Gainesville, Florida
| |
Collapse
|
27
|
Akinrinmade JF, Akinrinde SA, Odejobi A, Oyagbemi AA. Evidence of attenuation of intestinal ischemia-reperfusion injury following pre-treatment with methanolic extracts from Chromolena odorata in rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2015; 12:23-32. [PMID: 25324461 DOI: 10.1515/jcim-2014-0034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/08/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Chromolena odorata is a tropical species of flowering shrub in the family Asteraceae, leaves of it have been reported to be widely used as herbal remedy for the treatment of various ailments. It is particularly reported to be useful in the healing of wounds. METHODS We investigated the possibility of amelioration of intestinal ischemia-reperfusion (IR) injury in rats treated with methanolic extract of C. odorata (MECO). Wistar albino rats were divided randomly into five groups of six animals each as control, IR-treated, IR+200 mg/kg MECO, IR+400 mg/kg MECO, and IR+200 mg/kg vitamin C. Pre-treatment with MECO or vitamin C was for 7 days. RESULTS The contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) were significantly reduced by MECO and vitamin C, while there were significant enhancements of the activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT), as well as the content of reduced glutathione (GSH) in pre-treated rats compared to IR-treated rats. Glutathione S-transferase (GST) activity was not significantly affected in all the groups. Histopathological examination of small intestinal mucosa revealed significant attenuation of intestinal pathology in animals pre-treated with MECO, while IR injury produced severe villi erosion, necrosis, and inflammatory cell infiltrations. CONCLUSIONS The present study highlights the antioxidant activities of MECO and its ability to inhibit inflammatory cell infiltration as mechanisms involved in its protection against IR injury in the intestine of rats, an effect that was largely comparable to that of vitamin C.
Collapse
|
28
|
Wojda TR, Mohammed O, Evans DC. Perioperative Nutrition Support for Surgical Patients: Aspects and Commentary. CURRENT SURGERY REPORTS 2015. [DOI: 10.1007/s40137-015-0106-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Şen LS, Karakoyun B, Yeğen C, Akkiprik M, Yüksel M, Ercan F, Özer A, Yeğen BÇ. Treatment with either obestatin or ghrelin attenuates mesenteric ischemia-reperfusion-induced oxidative injury of the ileum and the remote organ lung. Peptides 2015; 71:8-19. [PMID: 26032330 DOI: 10.1016/j.peptides.2015.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/06/2015] [Accepted: 04/14/2015] [Indexed: 12/14/2022]
Abstract
To evaluate the effects of exogenous ghrelin or obestatin on intestinal injury and accompanying pulmonary injury, intestinal ischemia-reperfusion (I/R) was induced in rats by obstructing the superior mesenteric artery for 60min, whereas laparotomy was performed in the sham group. At the beginning of the 90-min reperfusion period, the rats were injected with obestatin (100μg/kg), ghrelin (10ng/kg), or saline intravenously (iv). At the end of reperfusion, the blood, ileum, and lung samples were taken for the histological and biochemical assays. In the saline-treated I/R group, the increased serum interleukin (IL)-1β level, high damage scores, and elevated tissue malondialdehyde level and collagen content in both tissues were significantly reduced by obestatin or ghrelin. Increased ileal myeloperoxidase activity of the saline-treated I/R group was reduced by treatment with obestatin or ghrelin, whereas increased pulmonary myeloperoxidase activity was reduced with administration of obestatin. Increased DNA fragmentation in the ileum of the saline-treated I/R group was reduced by both peptides. Elevated luminol-lucigenin chemiluminescence levels and nuclear factor kappa B (NF-κB) messenger RNA (mRNA) expression in the ileum of the saline-treated-I/R group were significantly decreased by obestatin or ghrelin treatment. I/R-induced depletion of the antioxidant glutathione in both ileal and pulmonary tissues was prevented with either obestatin or ghrelin treatment. Administration of either obestatin or ghrelin exerts similar protective effects against I/R-induced ileal and pulmonary injury, thus warranting further investigation for their possible use against ischemic intestinal injury.
Collapse
Affiliation(s)
- Leyla Semiha Şen
- Marmara University School of Medicine, Department of General Surgery, Istanbul, Turkey
| | - Berna Karakoyun
- Marmara University Faculty of Health Sciences, Department of Basic Health Sciences, Istanbul, Turkey
| | - Cumhur Yeğen
- Marmara University School of Medicine, Department of General Surgery, Istanbul, Turkey
| | - Mustafa Akkiprik
- Marmara University School of Medicine, Department of Medical Biology, Istanbul, Turkey
| | - Meral Yüksel
- Marmara University Vocational School of Health Related Professions, Department of Medical Laboratory, Istanbul, Turkey
| | - Feriha Ercan
- Marmara University School of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | - Ayşe Özer
- Marmara University School of Medicine, Department of Medical Biology, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Marmara University School of Medicine, Department of Physiology, Istanbul, Turkey.
| |
Collapse
|
30
|
Affiliation(s)
- Cori E Russell
- From Department of Medicine (C.E.R., R.K.W.) and Cardiovascular Division, Department of Medicine (G.P.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rishi K Wadhera
- From Department of Medicine (C.E.R., R.K.W.) and Cardiovascular Division, Department of Medicine (G.P.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Gregory Piazza
- From Department of Medicine (C.E.R., R.K.W.) and Cardiovascular Division, Department of Medicine (G.P.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
31
|
Dynamic changes in rat mesenteric lymph proteins following trauma using label-free mass spectrometry. Shock 2015; 42:509-17. [PMID: 25243424 DOI: 10.1097/shk.0000000000000259] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Early events triggered by posttrauma/hemorrhagic shock currently represent a leading cause of morbidity and mortality in these patients. The causative agents of these events have been associated with increased neutrophil priming secondary to shock-dependent alterations of mesenteric lymph. Previous studies have suggested that unknown soluble components of the postshock mesenteric lymph are main drivers of these events. In the present study, we applied a label-free proteomics approach to further delve into the early proteome changes of the mesenteric lymph in response to hemorrhagic shock. Time-course analyses were performed by sampling the lymph every 30 min after shock up until 3 h (the time window within which a climax in neutrophil priming was observed). There are novel, transient early post-hemorrhagic shock alterations to the proteome and previously undocumented postshock protein alterations. These results underlie the triggering of coagulation and proinflammatory responses secondary to trauma/hemorrhagic shock, metabolic deregulation and apoptosis, and alterations to proteases/antiproteases homeostasis, which are suggestive of the potential implication of extracellular matrix proteases in priming neutrophil activation. Finally, there is a likely correlation between early postshock mesenteric lymph-mediated neutrophil priming and proteomics changes, above all protease/antiproteases impaired homeostasis (especially of serine proteases and metalloproteases).
Collapse
|
32
|
Rosenthal MD, Vanzant EL, Martindale RG, Moore FA. Evolving paradigms in the nutritional support of critically ill surgical patients. Curr Probl Surg 2015; 52:147-82. [PMID: 25946621 DOI: 10.1067/j.cpsurg.2015.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 12/12/2022]
|
33
|
Coskun AK, Gunal A, Halici Z, Oral A, Seyrek M, Bayir Y, Kilic C, Yigit T, Ozer T, Uzar AI. The effects of amlodipine on the biochemical and histopathological changes in the rabbit ileum subjected to ischemia-reperfusion. Eurasian J Med 2015; 43:33-8. [PMID: 25610157 DOI: 10.5152/eajm.2011.07] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 12/13/2010] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine the potential, protective effects of amlodipine in an experimental, ischemia-reperfusion (I/R) model in the rabbit small intestine. MATERIALS AND METHODS The rabbits were divided into four groups: sham-operated, amlodipine (10 mg/kg) + sham-operated, I/R, and I/R + amlodipine (10 mg/kg) groups. An intestinal I/R model was applied to the rabbits. The superior mesenteric artery was occluded for 1 h with an atraumatic vascular clamp and then was reperfused for 2 h. Animals in the amlodipine and I/R + amlodipine groups received the amlodipine by oral gavage. At the end of the 2-h-reperfusion period, the animals were sacrificed. RESULTS Pretreatment with amlodipine significantly increased SOD activity and GSH levels to values close to those found in the serum from the I/R group. Rabbits in the I/R group showed high levels of serum MDA. Amlodipine pretreatment significantly reduced the serum MDA levels compared to the I/R group, although the MDA levels in the I/R + amlodipine group were still higher than in the sham-operated group. The I/R damage was ameliorated by amlodipine pretreatment, as evidenced by histopathological analysis. CONCLUSION The present study is the first to report an attenuation of I/R-induced intestinal injury by the systemic administration of amlodipine.
Collapse
Affiliation(s)
- A Kagan Coskun
- Department of General Surgery, Gulhane Military Medical Academy, Ankara, Turkey
| | - Armagan Gunal
- Department of Pathology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Zekai Halici
- Department of Pharmacology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Akgun Oral
- Department of Pediatric surgery, Gulhane Military Medical Academy, Ankara, Turkey
| | - Melik Seyrek
- Department of Pharmacology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Yasin Bayir
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Cenk Kilic
- Department of Anatomy, Gulhane Military Medical Academy, Ankara, Turkey
| | - Taner Yigit
- Department of General Surgery, Gulhane Military Medical Academy, Ankara, Turkey
| | - Tahir Ozer
- Department of General Surgery, Gulhane Military Medical Academy, Ankara, Turkey
| | - A Ihsan Uzar
- Department of General Surgery, Gulhane Military Medical Academy, Ankara, Turkey
| |
Collapse
|
34
|
Zabot GP, Carvalhal GF, Marroni NP, Hartmann RM, Silva VDD, Fillmann HS. Glutamine prevents oxidative stress in a model of mesenteric ischemia and reperfusion. World J Gastroenterol 2014; 20:11406-11414. [PMID: 25170229 PMCID: PMC4145783 DOI: 10.3748/wjg.v20.i32.11406] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/04/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate preventative effects of glutamine in an animal model of gut ischemia/reperfusion (I/R).
METHODS: Male Wistar rats were housed in a controlled environment and allowed access to food and water ad libitum. Twenty male Wistar rats were divided into four experimental groups: (1) control group (control) - rats underwent exploratory laparotomy; (2) control + glutamine group (control-GLU) - rats were subjected to laparotomy and treated intraperitoneally with glutamine 24 and 48 h prior to surgery; (3) I/R group - rats were subjected to occlusion of the superior mesenteric artery for 30 min followed by 15 min of reperfusion; and (4) ischemia/reperfusion + glutamine group (G + I/R) - rats were treated intraperitoneally with glutamine 24 and 48 h before I/R. Local and systemic injuries were determined by evaluating intestinal and lung segments for oxidative stress using lipid peroxidation and the activity of superoxide dismutase (SOD), interleukin-6 (IL-6) and nuclear factor kappa beta (NF-κB) after mesenteric I/R.
RESULTS: Lipid peroxidation of the membrane was increased in the animals subjected to I/R (P < 0.05). However, the group that received glutamine 24 and 48 h before the I/R procedure showed levels of lipid peroxidation similar to the control groups (P < 0.05). The activity of the antioxidant enzyme SOD was decreased in the gut of animals subjected to I/R when compared with the control group of animals not subjected to I/R (P < 0.05). However, the group that received glutamine 24 and 48 h before I/R showed similar SOD activity to both control groups not subjected to I/R (P < 0.05). The mean area of NF-κB staining for each of the control groups was similar. The I/R group showed the largest area of staining for NF-κB. The G + I/R group had the second highest amount of staining, but the mean value was much lower than that of the I/R group (P < 0.05). For IL-6, control and control-GLU groups showed similar areas of staining. The I/R group contained the largest area of IL-6 staining, followed by the G + I/R animals; however, this area was significantly lower than that of the group that underwent I/R without glutamine (P < 0.05).
CONCLUSION: These results demonstrate that pretreatment with glutamine prevents mucosal injury and improves gut and lung recovery after I/R injury in rats.
Collapse
|
35
|
Easton R, Balogh ZJ. Peri-operative changes in serum immune markers after trauma: a systematic review. Injury 2014; 45:934-41. [PMID: 24388280 DOI: 10.1016/j.injury.2013.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Surgery is a posttraumatic immune stimulus which contributes to the systemic inflammatory response syndrome and multiple organ failure (MOF). Serum markers may facilitate post-injury immune monitoring, predict complications and guide the timing of surgery. AIM To evaluate whether immune markers increase after surgery in trauma patients, if this is affected by the timing of surgery, and whether immune markers correlate with clinical outcomes. PATIENTS AND METHODS Systematic review of MEDLINE, Cochrane and EMBASE using a combination of keywords including trauma, biological markers, immune monitoring, and surgical procedures. The last search was performed on 26/11/13. The search considered English language studies enrolling adult trauma patients. Outcomes were perioperative immune markers plus clinical outcomes including mortality, MOF, sepsis. RESULTS 1612 Articles were identified using the search strategy. 1548 Articles were excluded by title and 40 excluded by abstract, leaving 24 articles for full text review. Of these articles, fifteen studies were eligible for study inclusion. The disparity in interventions and outcome measures precluded combined statistical analysis. The surgical intervention studied was mostly intramedullary nailing of long bone fractures. All articles described a postoperative increase in at least one marker. Interleukin (IL)-6 and IL-10 were consistently elevated and tested in the greatest number of patients. Many studies did not correlate markers with clinical outcomes and few significant associations were demonstrated. Two studies considered the timing of surgery and showed greater increase in IL-6 after "early" surgery, though definitions of timing were dissimilar. DISCUSSION An increase in posttraumatic serum cytokines has been demonstrated after surgery, but without consistent clinical associations. The timing of surgery may modulate this increase. Future research directions include confirmation of findings in larger populations, clarifying clinical associations, and evaluation of other surgical interventions.
Collapse
Affiliation(s)
- Ruth Easton
- Trauma Service, Division of Surgery, John Hunter Hospital, Newcastle, NSW, Australia
| | - Zsolt J Balogh
- Trauma Service, Division of Surgery, John Hunter Hospital, Newcastle, NSW, Australia.
| |
Collapse
|
36
|
Skott M, Nørregaard R, Birke-Sørensen H, Palmfeldt J, Kwon TH, Jonassen T, Frøkiær J, Nielsen S. Development of intestinal ischemia/reperfusion-induced acute kidney injury in rats with or without chronic kidney disease: Cytokine/chemokine response and effect of α-melanocyte-stimulating hormone. Kidney Res Clin Pract 2014; 33:79-88. [PMID: 26877955 PMCID: PMC4714152 DOI: 10.1016/j.krcp.2014.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/04/2014] [Accepted: 02/10/2014] [Indexed: 01/11/2023] Open
Abstract
Background The primary aim of the study was to investigate the cytokine/chemokine response in the kidney, lung, and liver following acute kidney injury (AKI). The secondary aim was to test whether α-melanocyte-stimulating hormone (α-MSH) could prevent a reduction in organ function, and attenuate the inflammatory cytokine/chemokine response within the kidney, lung, and liver following AKI in rats with or without preexisting chronic kidney disease (CKD). Methods A two-stage animal model, in which AKI was induced in rats with preexisting CKD, induced by 5/6 nephrectomy (Nx), was used. Six weeks later, AKI was induced by intestinal ischemia and reperfusion (IIR). Sham procedures [S(Nx) and S(IIR)] were also performed. Results Increasing levels of serum creatinine (sCr) demonstrated progressive development of CKD in response to Nx, and following IIR sCr levels increased further significantly, except in the S(Nx) group treated with α-MSH. However, no significant differences in the fractional increase in sCr were observed between any of the groups exposed to IIR. In kidney, lung, and liver tissue the levels of interleukin (IL)-1β were significantly higher in rats undergoing IIR when compared to the S(IIR) and control rats. The same pattern was observed for the chemokine monocyte chemoattractant protein (MCP)-1 in lung and liver tissue. Furthermore, kidney IL-1β and RANTES levels were significantly increased after IIR in the Nx rats compared to the S(Nx) rats. Conclusion Both the functional parameters and the cytokine/chemokine response are as dramatic when AKI is superimposed onto CKD as onto non-CKD. No convincing protective effect of α-MSH was detected.
Collapse
Affiliation(s)
- Martin Skott
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark; The Water and Salt Research Center, University of Aarhus, Aarhus, Denmark
| | - Rikke Nørregaard
- The Water and Salt Research Center, University of Aarhus, Aarhus, Denmark; Institute of Clinical Medicine, University of Aarhus, Aarhus, Denmark
| | | | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Aarhus University Hospital, Skejby, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Thomas Jonassen
- Department of Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Frøkiær
- The Water and Salt Research Center, University of Aarhus, Aarhus, Denmark; Institute of Clinical Medicine, University of Aarhus, Aarhus, Denmark
| | - Søren Nielsen
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark; The Water and Salt Research Center, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
37
|
|
38
|
Group VIB Ca(2+)-independent phospholipase A(2γ) is associated with acute lung injury following trauma and hemorrhagic shock. J Trauma Acute Care Surg 2014; 75:767-74. [PMID: 24158193 DOI: 10.1097/ta.0b013e3182a924f2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Gut-derived mediators are carried via mesenteric lymph duct into systemic circulation after trauma/hemorrhagic shock (T/HS), thus leading to acute lung injury (ALI)/multiple-organ dysfunction syndrome. Phospholipase A2 (PLA(2)) is a key enzyme for the production of lipid mediators in posthemorrhagic shock mesenteric lymph (PHSML). However, the precise functions of PLA(2) subtype, such as cytosolic PLA(2), secretory PLA(2), and Ca-independent PLA(2), in the acute phase of inflammation have remained unclear. Our previous study has suggested that the activation of Group VIB Ca-independent PLA(2γ) (PLA(2γ)) may be associated with increased lyso-phosphatidylcholines (LPCs) in the PHSML. Therefore, our purpose was to verify the role of iPLA(2γ) on the production of 2-polyunsaturated LPC species and the pathogenesis of T/HS-induced ALI using an iPLA(2γ)-specific inhibitor, R-(E)-6-(bromoethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one (R-BEL). METHODS Male Sprague-Dawley rats were anesthetized and cannulated in blood vessels and mesenteric lymph duct. Animals in the T/HS group underwent a midline laparotomy plus hemorrhagic shock (mean arterial pressure, 35 mm Hg, 30 minutes) and 2-hour resuscitation with shed blood and 2× normal saline. Trauma/sham shock rats were performed the identical procedure without hemorrhage. R-BEL or DMSO was administered 30 minutes before T/HS or trauma/sham shock. Polyunsaturated LPCs and arachidonic acid in the PHSML were analyzed with a liquid chromatography/electrospray ionization-mass spectrometry. Furthermore, ALI was assessed by lung vascular permeability, myeloperoxidase activity, and histology. RESULTS T/HS increased 2-polyunsaturated LPCs and arachidonic acid in the PHSML. The R-BEL pretreatment significantly decreased these lipids and also inhibited ALI. CONCLUSION The iPLA(2γ) enzyme is possibly involved in the pathogenesis of ALI following T/HS through the mesenteric lymph pathway.
Collapse
|
39
|
Shen J, Fu G, Jiang L, Xu J, Li L, Fu G. Effect of dexmedetomidine pretreatment on lung injury following intestinal ischemia-reperfusion. Exp Ther Med 2013; 6:1359-1364. [PMID: 24255662 PMCID: PMC3829760 DOI: 10.3892/etm.2013.1317] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/16/2013] [Indexed: 11/05/2022] Open
Abstract
Reperfusion injury is tissue damage caused by the re-supply of blood following a period of ischemia in tissues. Intestinal ischemia-reperfusion injury (IRI) is an extremely common clinical event associated with distant organ injury. The intestine serves as the initial organ of multi-system organ dysfunction syndrome. It is extremely important to identify a method to protect against IRI, as it is a key factor associated with morbidity and mortality in patients. In the present study, the protective effects of pretreatment with dexmedetomidine hydrochloride were investigated. Rats were divided into six groups and models of intestinal ischemia were created in the five groups. Certain groups were pretreated with dexmedetomidine hydrochloride. The levels of TNF-α and IL-6 were measured by enzyme-linked immunosorbent assay in order to evaluate the injury. Tissue sections were stained with hematoxylin and eosin to visualize the damage. qPCR and western blotting were performed to examine the inflammatory status. Pretreatment with various doses of dexmedetomidine hydrochloride significantly reduced the pathological scores and the inflammatory reaction. The levels of TNF-α, IL-6, TLR4 and MyD88 were decreased in the dexmedetomidine hydrochloride treatment groups compared with those in the sham control and untreated ischemia reperfusion groups. The results of the present study indicate that pretreatment with dexmedetomidine hydrochloride may be a useful method of reducing the damage caused by IRI.
Collapse
Affiliation(s)
- Jinmei Shen
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | | | | | | | | | | |
Collapse
|
40
|
Sapalidis K, Papavramidis TS, Gialamas E, Deligiannidis N, Tzioufa V, Papavramidis S. The role of allopurinol's timing in the ischemia reperfusion injury of small intestine. J Emerg Trauma Shock 2013; 6:203-8. [PMID: 23960379 PMCID: PMC3746444 DOI: 10.4103/0974-2700.115346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 05/30/2013] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION Allopurinol acts protectively in the ischemia reperfusion injury of the small intestine. The aim of this experimental study is to define the ideal time of administration of allopurinol, in experimental models of ischemia/reperfusion. MATERIALS AND METHODS We used 46 rabbits that were divided into four groups. Group A was the control. In Group B allopurinol was administered 10 min before ischemia and in Group C 2 min before reperfusion. In Group D, allopurinol was administered before ischemia and before reperfusion in half doses. Blood samples were collected at three different moments: (t1) prior to ischemia, (t2) prior to reperfusion, and (t3) after the end of the reperfusion, in order to determine superoxide dismutase (SOD) and neopterin values. Specimens of the intestine were obtained for histological analysis and determination of malondialdehyde (MDA). RESULTS In Group A, mucosal lesions were more extensive compared to those of the other three groups. Similarly, MDA, SOD and neopterin values were significantly higher. On the contrary, Group D showed the mildest mucosal lesions, as well as the lowest MDA, SOD and neopterin values. Finally, the lesions and the above mentioned values were bigger in Group C than in Group D. CONCLUSIONS The administration of allopurinol attenuates the production and damage effect of free oxygen radicals during ischemia reperfusion of the small intestine, thus protecting the intestinal mucosa. Its maximum beneficial action is achieved when administered both before ischemia and before reperfusion of the small intestine.
Collapse
Affiliation(s)
- Konstantinos Sapalidis
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodossis S Papavramidis
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Gialamas
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Deligiannidis
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Valentini Tzioufa
- Department of Pathology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Spiros Papavramidis
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
41
|
Kim SI, Kim YB, Koh KM, Youn YK, Suh GJ, Cho ES, Leem DH, Baek JA, Shin HK, Ko SO. Activation of NF-κB pathway in oral buccal mucosa during small intestinal ischemia-reperfusion injury. J Surg Res 2013; 179:99-105. [DOI: 10.1016/j.jss.2012.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
|
42
|
de Lima FM, Albertini R, Dantas Y, Maia-Filho AL, Santana CDL, Castro-Faria-Neto HC, França C, Villaverde AB, Aimbire F. Low-level laser therapy restores the oxidative stress balance in acute lung injury induced by gut ischemia and reperfusion. Photochem Photobiol 2012; 89:179-88. [PMID: 22882462 DOI: 10.1111/j.1751-1097.2012.01214.x] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/13/2012] [Indexed: 11/30/2022]
Abstract
It remains unknown if the oxidative stress can be regulated by low-level laser therapy (LLLT) in lung inflammation induced by intestinal reperfusion (i-I/R). A study was developed in which rats were irradiated (660 nm, 30 mW, 5.4 J) on the skin over the bronchus and euthanized 2 h after the initial of intestinal reperfusion. Lung edema and bronchoalveolar lavage fluid neutrophils were measured by the Evans blue extravasation and myeloperoxidase (MPO) activity respectively. Lung histology was used for analyzing the injury score. Reactive oxygen species (ROS) was measured by fluorescence. Both expression intercellular adhesion molecule 1 (ICAM-1) and peroxisome proliferator-activated receptor-y (PPARy) were measured by RT-PCR. The lung immunohistochemical localization of ICAM-1 was visualized as a brown stain. Both lung HSP70 and glutathione protein were evaluated by ELISA. LLLT reduced neatly the edema, neutrophils influx, MPO activity and ICAM-1 mRNA expression. LLLT also reduced the ROS formation and oppositely increased GSH concentration in lung from i-I/R groups. Both HSP70 and PPARy expression also were elevated after laser irradiation. Results indicate that laser effect in attenuating the acute lung inflammation is driven to restore the balance between the pro- and antioxidants mediators rising of PPARy expression and consequently the HSP70 production.
Collapse
Affiliation(s)
- Flávia Mafra de Lima
- Department of Rehabilitation Sciences, Universidade Nove de Julho-UNINOVE, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Activation of toll-like receptor 4 is necessary for trauma hemorrhagic shock-induced gut injury and polymorphonuclear neutrophil priming. Shock 2012; 38:107-14. [PMID: 22575992 DOI: 10.1097/shk.0b013e318257123a] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Interactions of toll-like receptors (TLRs) with nonmicrobial factors play a major role in the pathogenesis of early trauma-hemorrhagic shock (T/HS)-induced organ injury and inflammation. Thus, we tested the hypothesis that TLR4 mutant (TLR4 mut) mice would be more resistant to T/HS-induced gut injury and polymorphonuclear neutrophil (PMN) priming than their wild-type littermates and found that both were significantly reduced in the TLR4 mut mice. In addition, the in vivo and ex vivo PMN priming effect of T/HS intestinal lymph observed in the wild-type mice was abrogated in TLR4 mut mice as well the TRIF mut-deficient mice and partially attenuated in Myd88 mice, suggesting that TRIF activation played a more predominant role than MyD88 in T/HS lymph-induced PMN priming. Polymorphonuclear neutrophil depletion studies showed that T/HS lymph-induced acute lung injury was PMN dependent, because lung injury was totally abrogated in PMN-depleted animals. Because the lymph samples were sterile and devoid of endotoxin or bacterial DNA, we investigated whether the effects of T/HS lymph was related to endogenous nonmicrobial TLR4 ligands. High-mobility group box 1 protein 1, heat shock protein 70, heat shock protein 27, and hyaluronic acid all have been implicated in ischemia-reperfusion-induced tissue injury. None of these "danger" proteins appeared to be involved, because their levels were similar between the sham and shock lymph samples. In conclusion, TLR4 activation is important in T/HS-induced gut injury and in T/HS lymph-induced PMN priming and lung injury. However, the T/HS-associated effects of TLR4 on gut barrier dysfunction can be uncoupled from the T/HS lymph-associated effects of TLR4 on PMN priming.
Collapse
|
44
|
Abstract
The cellular and biochemical mechanisms leading to acute lung injury (ALI) and subsequent multiple organ failure are only partially understood. To study the potential role of eicosanoids, particularly leukotrienes, as possible mediators of ALI, we used a murine experimental model of ALI induced by hemorrhagic shock after blood removal via cardiac puncture. Neutrophil sequestration, as shown by immunofluorescence and protein leakage into the alveolar space were measured as markers of injury. We used liquid chromatography coupled to tandem mass spectrometry to unequivocally identify several eicosanoids in the bronchoalveolar lavage fluid of experimental animals. MK886, a specific inhibitor of the 5-lipoxygenase (5-LO) pathway, and transgenic mice deficient in 5-LO were used to determine the role of this enzymatic pathway in this model. Leukotriene B4 and leukotriene C4 were consistently elevated in shock-treated mice compared with sham-treated mice. MK886 attenuated neutrophil infiltration and protein extravasation induced by hemorrhagic shock. 5-Lipoxygenase-deficient mice showed reduced neutrophil infiltration and protein extravasation after shock treatment, indicating greatly reduced lung injury. These results support the hypothesis that 5-LO, most likely through the generation of leukotrienes, plays an important role in the pathogenesis of ALI induced by hemorrhagic shock in mice. This pathway could represent a new target for pharmacological intervention to reduce lung damage following severe primary injury.
Collapse
|
45
|
Mansfield C. Pathophysiology of acute pancreatitis: potential application from experimental models and human medicine to dogs. J Vet Intern Med 2012; 26:875-87. [PMID: 22676262 DOI: 10.1111/j.1939-1676.2012.00949.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/05/2012] [Accepted: 04/24/2012] [Indexed: 12/18/2022] Open
Abstract
The cellular events leading to pancreatitis have been studied extensively in experimental models. Understanding the cellular events and inciting causes of the multisystem inflammatory cascades that are activated with this disease is of vital importance to advance diagnosis and treatment of this condition. Unfortunately, the pathophysiology of pancreatitis in dogs is not well understood, and extrapolation from experimental and human medicine is necessary. The interplay of the inflammatory cascades (kinin, complement, cytokine) is extremely complex in both initiating leukocyte migration and perpetuating disease. Recently, nitric oxide (NO) and altered microcirculation of the pancreas have been proposed as major initiators of inflammation. In addition, the role of the gut is becoming increasingly explored as a cause of oxidative stress and potentiation of systemic inflammation in pancreatitis.
Collapse
Affiliation(s)
- Caroline Mansfield
- Faculty of Veterinary Science, The University of Melbourne, Werribee, Vic., Australia.
| |
Collapse
|
46
|
Tóth S, Jonecová Z, Varga J, Staško P, Kovavalčinová B, Maretta M, Veselá J. Mesenteric ischemia-reperfusion injury: specific impact on different cell populations within the jejunal wall in rats. Acta Histochem 2012; 114:276-84. [PMID: 21719076 DOI: 10.1016/j.acthis.2011.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/23/2011] [Accepted: 06/01/2011] [Indexed: 12/19/2022]
Abstract
The progress of jejunal damage and recovery in the course of mesenteric ischemia-reperfusion injury in rats at different time periods was investigated. Mesenteric ischemia lasting 1h followed by 1h of reperfusion caused a significant disintegration of the mucosa, reduction of the muscular layer and diminution of the wall thickness. The loss of epithelium included enterocytes, goblet cells and Paneth cells. Paradoxically, increasing numbers of serotonin-producing cells and the beginning of regenerative processes, expressed by significantly higher proliferation, were recorded in the epithelium during this period. Disintegration of connective tissue and massive degranulation of serotonin-positive cells were found in the lamina propria. After 24h of reperfusion, restitution of the mucosa was found, expressed by normal villous morphology and re-epithelialization. However, some parameters were still significantly affected even more than in the acute phase of reperfusion. In the epithelium, decreased numbers of Paneth cells and increased population of serotonin-producing cells were found. The greatest proliferation of connective tissue cells and intensified reduction of the muscular layer were also detected in this reperfusion period. After 30 days of reperfusion, moderate damage remained, but only the increased number of Paneth cells and decreased number of serotonin-producing cells in the lamina propria were significant.
Collapse
Affiliation(s)
- Stefan Tóth
- Department of Histology and Embryology, Pavol Jozef Śafárik University, Košice, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
The beneficial effect of direct peritoneal resuscitation on septic shock in rats. J Biomed Biotechnol 2011; 2011:743763. [PMID: 22190858 PMCID: PMC3228683 DOI: 10.1155/2011/743763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 08/24/2011] [Indexed: 01/08/2023] Open
Abstract
The high mortality associated with conventionally resuscitated septic shock and the subsequent multiple-organ failure remain a very significant and costly clinical problem. Conventional simple intravenous resuscitation (CR) from septic shock often fails to restore the progressive splanchnic vasoconstriction and hypoperfusion, and fails to reverse gut-derived systemic inflammatory response and fluid sequestration. Numerous interventions have been used to protect organ systems and cellular viability from the lethal injury accompanying hypoperfusion and ischemia but none of these efforts have been sufficient to halt or reverse the main course of the pathophysiology noted with conventional resuscitated shock. Recently, some studies have found that in hemorrhagic shock, direct peritoneal resuscitation (DPR) not only produces sustained hyperperfusion in viscera but also has immunomodulatory and anti-fluid sequestration effects. Although the etiology and pathogenesis of septic shock and hemorrhagic shock differ, both kinds of shock result in hypoperfusion of the intestines and other internal organs. In this paper, we seek to determine whether DPR has a similar therapeutic effect on septic shock/resuscitation.
Collapse
|
49
|
Wohlauer M, Moore E, Harr J, Eun J, Fragoso M, Banerjee A, Silliman CC. Cross-transfusion of postshock mesenteric lymph provokes acute lung injury. J Surg Res 2011; 170:314-8. [PMID: 21550053 PMCID: PMC3154326 DOI: 10.1016/j.jss.2011.03.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 02/24/2011] [Accepted: 03/17/2011] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Substantial investigation has implicated mesenteric lymph as the mechanistic link between gut ischemia/reperfusion (I/R) and distant organ injury. Specifically, lymph diversion prevents acute lung injury (ALI) in vitro, and bioactive lipids and proteins isolated from postshock mesenteric lymph (PSML) maintain bioactivity in vitro. However, Koch's postulates remain to be satisfied via direct cross-transfusion into a naïve animal. We therefore hypothesized that real time cross-transfusion of postshock mesenteric lymph provokes acute lung injury. METHODS One set of Sprague-Dawley rats (lymph donors) was anesthetized, with the mesenteric lymph ducts cannulated and exteriorized to drain freely into a siliconates plastic cup; concurrently, a second group of rats ( lymph recipients) was anesthetized, with a cannula inserted into the animal's right internal jugular vein. Blood was removed from the donor rats to induce hemorrhagic shock (MAP of 35 mmHg × 45 min). The recipient rats were positioned 10 cm below the plastic cup, which emptied into the jugular vein cannula. Thus, mesenteric lymph from the shocked donor rat was delivered to the recipient rat at the rate generated during shock and the subsequent 3 h of resuscitation. RESULTS Neutrophil (PMN) accumulation in the lungs was substantially elevated in the postshock lymph cross-transfusion group compared to both sham lymph cross-transfusion and instrumented control (MPO: 9.42 ± 1.55 versus 2.81 ± 0.82 U/mg lung tissue in postshock versus sham lymph cross-transfusion, n = 6 in each group, P = 0.02). Additionally, cross-transfusion of PSML induced oxidative stress in the lung (0.21 ± 0.03 versus 0.10 ± 0.01 micromoles MDA per mg lung tissue in lymph cross-transfusion versus instrumented control, n = 6 in each group, P = 0.046). Furthermore, transfusion of PSML provoked lung injury (BAL protein 0.77 ± 0.18 versus 0.15 ± 0.02 mg/mL protein in BALF, postshock versus sham lymph cross-transfusion, n = 6 in each group, P = 0.004). CONCLUSION Cross-transfusion of PSML into a naïve animal leads to PMN accumulation and provokes ALI. These data provide evidence that postshock agents released into mesenteric lymph are capable of provoking distant organ injury.
Collapse
Affiliation(s)
- M. Wohlauer
- Department of Surgery, University of Colorado Denver, Denver, CO
| | - E. Moore
- Department of Surgery, University of Colorado Denver, Denver, CO
- Department of Surgery, Denver Health Medical Center, Denver, CO
| | - J. Harr
- Department of Surgery, University of Colorado Denver, Denver, CO
| | - J. Eun
- Department of Surgery, University of Colorado Denver, Denver, CO
| | - M. Fragoso
- Department of Surgery, University of Colorado Denver, Denver, CO
| | - A. Banerjee
- Department of Surgery, Denver Health Medical Center, Denver, CO
| | - CC Silliman
- Department of Pediatrics, University of Colorado Denver, Denver, CO
- Research Department, Bonfils Blood Center, Denver, CO
| |
Collapse
|
50
|
Nakao A, Kaczorowski DJ, Sugimoto R, Billiar TR, McCurry KR. Application of heme oxygenase-1, carbon monoxide and biliverdin for the prevention of intestinal ischemia/reperfusion injury. J Clin Biochem Nutr 2011; 42:78-88. [PMID: 18385824 PMCID: PMC2266059 DOI: 10.3164/jcbn.2008013] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 12/19/2007] [Indexed: 12/31/2022] Open
Abstract
Intestinal ischemia/reperfusion (I/R) injury occurs frequently in a variety of clinical settings, including mesenteric artery occlusion, abdominal aneurism surgery, trauma, shock, and small intestinal transplantation, and is associated with substantial morbidity and mortality. Although the exact mechanisms involved in the pathogenesis of intestinal I/R injury have not been fully elucidated, it is generally believed that polymorphonuclear neutrophils, pro-inflammatory cytokines, and mediators generated in the setting of oxidative stress, such as reactive oxygen species (ROS), play important roles. Heme oxygenase (HO) is the rate-limiting enzyme that catalyzes the degradation of heme into equimolar quantities of biliverdin and carbon monoxide (CO), while the central iron is released. An inducible form of HO (HO-1), biliverdin, and CO, have been shown to possess generalized endogenous anti-inflammatory activities and provide protection against intestinal I/R injury. Further, recent observations have demonstrated that exogenous HO-1 expression, as well as exogenously administered CO and biliverdin, have potent cytoprotective effects on intestinal I/R injury as well. Here, we summarize the currently available data regarding the role of the HO system in the prevention intestinal I/R injury.
Collapse
Affiliation(s)
- Atsunori Nakao
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|