1
|
Zhang X, Cao R, Li C, Zhao H, Zhang R, Che J, Xie J, Tang N, Wang Y, Liu X, Zheng Q. Caffeine Ameliorates Age-Related Hearing Loss by Downregulating the Inflammatory Pathway in Mice. Otol Neurotol 2024; 45:227-237. [PMID: 38320571 PMCID: PMC10922330 DOI: 10.1097/mao.0000000000004098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
OBJECTIVE Age-related hearing loss (ARHL), also known as presbycusis, is a debilitating sensory impairment that affects the elderly population. There is currently no ideal treatment for ARHL. Long-term caffeine intake was reported to have anti-aging effects in many diseases. This study is to identify whether caffeine could ameliorate ARHL in mice and analyze its mechanism. METHODS Caffeine was administered in drinking water to C57BL/6J mice from the age of 3 months to 12 months. The body weight, food intake and water intake of the mice were monitored during the experiment. The metabolic indicators of serum were detected by ELISA. The function of the hearing system was evaluated by ABR and hematoxylin and eosin staining of the cochlea. Genes' expression were detected by Q-PCR, immunofluorescencee and Western blot. RESULTS The results showed that the ARHL mice exhibited impaired hearing and cochlear tissue compared with the young mice. However, the caffeine-treated ARHL mice showed improved hearing and cochlear tissue morphology. The expression of inflammation-related genes, such as TLR4, Myd88, NF-κB, and IL-1β, was significantly increased in the cochleae of ARHL mice compared with young mice but was down-regulated in the caffeine-treated cochleae. CONCLUSIONS Inflammation is involved in ARHL of mice, and long-term caffeine supplementation could ameliorate ARHL through the down-regulation of the TLR4/NF-κB inflammation pathway. Our findings provide a new idea for preventing ARHL and suggest new drug targets for ARHL treatment.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Ruijuan Cao
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Changye Li
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Hongchun Zhao
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Ruyi Zhang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Juan Che
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Jinwen Xie
- Shandong Binzhou Animal science and veterinary Medicine Academy, Binzhou, China, 256600
| | - Na Tang
- Shandong Binzhou Animal science and veterinary Medicine Academy, Binzhou, China, 256600
| | - Yanfei Wang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Binzhou Medical University Hospital, Binzhou, China
| | - Xiuzhen Liu
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, China
| | - Qingyin Zheng
- Department of Otolaryngology-HNS, Case Western Reserve University
| |
Collapse
|
2
|
Zhang C, Ye M, Bush P, Hu BH. Heterogeneity in macrophages along the cochlear spiral in mice: insights from SEM and functional analyses. Front Cell Neurosci 2023; 17:1222074. [PMID: 37692550 PMCID: PMC10485373 DOI: 10.3389/fncel.2023.1222074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
The susceptibility of sensory cells to pathological conditions differs between the apical and basal regions of the cochlea, and the cochlear immune system may contribute to this location-dependent variability. Our previous study found morphological differences in basilar membrane macrophages between the apical and basal regions of the cochlea. However, the details of this site-dependent difference and its underlying structural and biological basis are not fully understood. In this study, we utilized scanning electron microscopy to examine the ultrastructure of macrophages and their surrounding supporting structures. Additionally, we examined the phagocytic activities of macrophages and the expression of immune molecules in both apical and basal regions of the cochlea. We employed two mouse strains (C57BL/6J and B6.129P-Cx3cr1tm1Litt/J) and evaluated three experimental conditions: young normal (1-4 months), aging (11-19 months), and noise-induced damage (120 dB SPL for 1 h). Using scanning electron microscopy, we revealed location-specific differences in basilar membrane macrophage morphology and surface texture, architecture in mesothelial cell layers, and spatial correlation between macrophages and mesothelial cells in both young and older mice. Observations of macrophage phagocytic activities demonstrated that basal macrophages exhibited greater phagocytic activities in aging and noise-damaged ears. Furthermore, we identified differences in the expression of immune molecules between the apical and basal cochlear tissues of young mice. Finally, our study demonstrated that as the cochlea ages, macrophages in the apical and basal regions undergo a transformation in their morphologies, with apical macrophages acquiring certain basal macrophage features and vice versa. Overall, our findings demonstrate apical and basal differences in macrophage phenotypes and functionality, which are related to distinct immune and structural differences in the macrophage surrounding tissues.
Collapse
Affiliation(s)
- Celia Zhang
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, United States
- Department of Audiology, University of the Pacific, San Francisco, CA, United States
| | - Mengxiao Ye
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, United States
| | - Peter Bush
- South Campus Instrument Center, University at Buffalo, Buffalo, NY, United States
| | - Bo Hua Hu
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
3
|
Oh EH, Lee JO, Kim HS, Park JY, Choi SY, Choi KD, Kim JS, Choi JH. Gene expression analysis in recurrent benign paroxysmal positional vertigo: a preliminary study. Front Neurol 2023; 14:1223996. [PMID: 37475735 PMCID: PMC10354243 DOI: 10.3389/fneur.2023.1223996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
Objectives This study aimed to determine the pathophysiology of recurrent benign paroxysmal positional vertigo (BPPV) in young patients using gene expression profiling combined with bioinformatics analysis. Methods Total RNA was extracted from the whole blood of four young patients with recurrent BPPV and four controls. The differentially expressed genes (DEGs) between the groups were screened using a microarray analysis based on the cutoff criteria of |log2 fold change| > 1 and an adjusted p-value of < 0.05. Functional enrichment analysis of DEGs was performed using Gene Ontology analysis, and the protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of the Interacting Genes database. Results A total of 39 DEGs were detected between the BPPV and control samples, comprising 33 upregulated DEGs and six downregulated DEGs in the BPPV group. Functional enrichment analysis indicated that the upregulated DEGs were significantly enriched in terms related to metabolic processes and the immune system. Two main pathways were extracted from the PPI network: one was associated with oxidative phosphorylation and stress and the other with the adaptive immune system and extracellular matrix degradation. Conclusion The findings of our bioinformatics analysis indicated that oxidative stress or extracellular matrix degradation due to immune-mediated inflammatory responses may contribute to the development of recurrent BPPV in young patients.
Collapse
Affiliation(s)
- Eun Hye Oh
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Jin-Ok Lee
- Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Hyun Sung Kim
- Department of Neurology, Gyeongsang National University School of Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Ji-Yun Park
- Department of Neurology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Seo Young Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine, Biomedical Research Institute, Busan, Republic of Korea
| | - Kwang-Dong Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine, Biomedical Research Institute, Busan, Republic of Korea
| | - Ji-Soo Kim
- Dizziness Center, Clinical Neuroscience Center, Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jae-Hwan Choi
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
4
|
Huang KH, Lin HC, Lin CD, Wu PC. Relapsing autoimmune inner ear disease with significant response to methotrexate and azathioprine combination therapy: A case report and mini literature review. Medicine (Baltimore) 2023; 102:e33889. [PMID: 37335659 DOI: 10.1097/md.0000000000033889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
RATIONALE Autoimmune inner ear disease typically presents with bilateral hearing loss that progresses over weeks or months though its mechanisms are unknown. Corticosteroids are the first-line treatment, but their responses are variable and relapses are frequent. Thus, many experts have sought to replace corticosteroids with immunosuppressive agents. PATIENT CONCERNS A 35-year-old woman experienced a progressive hearing impairment, initially on the left side and later becoming bilateral. Her response to corticosteroid monotherapy was temporary, and there have been two relapse episodes over several months. DIAGNOSES Autoimmune inner ear disease was considered due to evidence of autoimmunity combined with a clinical course of bilateral and recurrent sensorineural hearing loss and a partial response to corticosteroid therapy. INTERVENTIONS The patient received a 3-day mini-pulse of methylprednisolone at 250 mg/d, followed by 12 mg/d maintenance, and concurrently began an azathioprine regimen gradually increasing to 100 mg/day as a corticosteroid-sparing agent. OUTCOMES Three weeks after immunosuppressive therapy, hearing and pure-tone audiometry improved, and after 7 weeks, methylprednisolone was tapered to 8 mg/d. The dosage was further reduced by adding methotrexate at 7.5 mg/week, resulting in a reduction to 4 mg/d as maintenance therapy after 4 weeks. LESSONS For patients who are unresponsive to corticosteroids or experience difficulty tolerating them, a combination therapy of methotrexate and azathioprine is recommended as a viable alternative as this regimen is well-tolerated and yields positive outcomes.
Collapse
Affiliation(s)
- Kuan-Hsuan Huang
- Department of Education, Shin Kong Wu Ho Su Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Ching Lin
- Department of Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chia-Der Lin
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Otolaryngology Head and Neck Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Po-Chang Wu
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
5
|
Natarajan N, Batts S, Stankovic KM. Noise-Induced Hearing Loss. J Clin Med 2023; 12:2347. [PMID: 36983347 PMCID: PMC10059082 DOI: 10.3390/jcm12062347] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Noise-induced hearing loss (NIHL) is the second most common cause of sensorineural hearing loss, after age-related hearing loss, and affects approximately 5% of the world's population. NIHL is associated with substantial physical, mental, social, and economic impacts at the patient and societal levels. Stress and social isolation in patients' workplace and personal lives contribute to quality-of-life decrements which may often go undetected. The pathophysiology of NIHL is multifactorial and complex, encompassing genetic and environmental factors with substantial occupational contributions. The diagnosis and screening of NIHL are conducted by reviewing a patient's history of noise exposure, audiograms, speech-in-noise test results, and measurements of distortion product otoacoustic emissions and auditory brainstem response. Essential aspects of decreasing the burden of NIHL are prevention and early detection, such as implementation of educational and screening programs in routine primary care and specialty clinics. Additionally, current research on the pharmacological treatment of NIHL includes anti-inflammatory, antioxidant, anti-excitatory, and anti-apoptotic agents. Although there have been substantial advances in understanding the pathophysiology of NIHL, there remain low levels of evidence for effective pharmacotherapeutic interventions. Future directions should include personalized prevention and targeted treatment strategies based on a holistic view of an individual's occupation, genetics, and pathology.
Collapse
Affiliation(s)
- Nirvikalpa Natarajan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Shelley Batts
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Li P, Qian T, Sun S. Spatial architecture of the cochlear immune microenvironment in noise-induced and age-related sensorineural hearing loss. Int Immunopharmacol 2023; 114:109488. [PMID: 36470117 DOI: 10.1016/j.intimp.2022.109488] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
The cochlea encodes sound stimuli and transmits them to the central nervous system, and damage to sensory cells and synapses in the cochlea leads to hearing loss. The inner ear was previously considered to be an immune privileged organ to protect the auditory organ from reactions with the immune system. However, recent studies have revealed the presence of resident macrophages in the cochlea, especially in the spiral ligament, spiral ganglion, and stria vascularis. The tissue-resident macrophages are responsible for the detection, phagocytosis, and clearance of cellular debris and pathogens from the tissues, and they initiate inflammation and influence tissue repair by producing inflammatory cytokines and chemokines. Insult to the cochlea can activate the cochlear macrophages to initiate immune responses. In this review, we describe the distribution and functions of cochlear macrophages in noise-induced hearing impairment and age-related hearing disabilities. We also focus on potential therapeutic interventions concerning hearing loss by modulating local immune responses.
Collapse
Affiliation(s)
- Peifan Li
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Tingting Qian
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Shan Sun
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
7
|
Balouch B, Meehan R, Suresh A, Zaheer HA, Jabir AR, Qatanani AM, Suresh V, Kaleem SZ, McKinnon BJ. Use of biologics for treatment of autoimmune inner ear disease. Am J Otolaryngol 2022; 43:103576. [DOI: 10.1016/j.amjoto.2022.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 11/01/2022]
|
8
|
Huang C, Wang Q, Pan X, Li W, Liu W, Jiang W, Huang L, Peng A, Zhang Z. Up-Regulated Expression of Interferon-Gamma, Interleukin-6 and Tumor Necrosis Factor-Alpha in the Endolymphatic Sac of Meniere's Disease Suggesting the Local Inflammatory Response Underlies the Mechanism of This Disease. Front Neurol 2022; 13:781031. [PMID: 35280304 PMCID: PMC8904419 DOI: 10.3389/fneur.2022.781031] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
Background Immune mediated inflammatory changes affecting the endolymphatic sac (ES) may underlie the pathology of Meniere's disease (MD). The aim of the present study was to explore the differentially expressed cytokines in ES luminal fluid (ELF) of patients with MD, and the correlation between the expression of cytokines in the ELF with that in the serum was determined by quantitatively analyzing the cytokines in human ELF and serum. Methods Human ELF, serum and ES tissues were collected from patients with unilateral MD and patients with acoustic neuroma (AN) during surgery. The Simoa Cytokine 6-Plex Panel kit was used to analyze the levels of cytokines in the ELF and blood samples of the patients. Immunohistochemistry and immunofluorescence were subsequently used to validate the relative expression levels of the cytokines in MD. Results Significant differences were identified in the expression levels of interferon-γ (IFN-γ) (P < 0.001), interleukin (IL)-6 (P = 0.008) and tumor necrosis factor-α (TNF-α) (P = 0.036) in the luminal fluid of the ES comparing between the MD and AN groups. By contrast, the levels of IFN-γ, IL-10, IL-12p70, IL-17A, IL-6 and TNF-α in the serum of the MD group were not significantly different from those of either the AN group or healthy control subjects. In addition, no significant correlations in the expression levels of cytokines compared between the ELF and serum were found for the patients in either the MD or the AN group. Finally, the detection of positive expression of TNF-α, IL-6 and IFN-γ in the epithelial cells of the majority of ES specimens from patients with MD confirmed the up-regulated expression of these cytokines in the ES of patients with MD. Conclusions The identification of up-regulated expression levels of TNF-α, IL-6 and IFN-γ in the ELF in the present study has provided direct evidence for an increased immunologic activity in the microenvironment of the ES in patients with unilateral MD, may suggest the local inflammatory response underlies the mechanism of this disease.
Collapse
Affiliation(s)
- Chao Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xueying Pan
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenqi Jiang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Anquan Peng
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiwen Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Yang CH, Hwang CF, Chuang JH, Lian WS, Wang FS, Yang MY. Systemic toll-like receptor 9 agonist CpG oligodeoxynucleotides exacerbates aminoglycoside ototoxicity. Hear Res 2021; 411:108368. [PMID: 34678647 DOI: 10.1016/j.heares.2021.108368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 02/08/2023]
Abstract
The Toll-like receptor (TLR) signaling pathway is the key regulator of the innate immune system in response to systemic infection. Several studies have reported that the systemic TLR4 agonist lipopolysaccharide exacerbates aminoglycoside ototoxicity, but the influence of virus-associated TLR7 and TLR9 signaling cascades on the cochlea is unclear. The present study aimed to investigate the auditory effects of systemic TLR7 and TLR9 agonists during chronic kanamycin treatment. CBA/CaJ mice received the TLR7 agonist gardiquimod or TLR9 agonist CpG oligodeoxynucleotides (ODN) one day before kanamycin injection and on the 5th and 10th days during a 14-day course of kanamycin treatment. We observed that systemic gardiquimod or CpG ODN alone did not affect the baseline auditory brainstem response (ABR) threshold. Three weeks after kanamycin treatment, gardiquimod did not significantly change ABR threshold shifts, whereas CpG ODN significantly increased kanamycin-induced ABR threshold shifts. Furthermore, outer hair cell (OHC) evaluation revealed that CpG ODN reduced distortion product otoacoustic emission amplitudes and increased kanamycin-induced OHC loss. CpG ODN significantly elevated cochlear Irf-7, Tnf-α, Il-1, and Il-6 transcript levels. In addition, an increased number of Iba-1+ cells, which represented activated macrophages, was observed in the cochlea treated with CpG ODN. Our results indicated that systemic CpG ODN exacerbated kanamycin-induced ototoxicity and increased cochlear inflammation. This study implies that patients with underlying virus infection may experience more severe aminoglycoside-induced hearing loss if it occurs.
Collapse
Affiliation(s)
- Chao-Hui Yang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chung-Feng Hwang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jiin-Haur Chuang
- Division of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Wei-Shiung Lian
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Feng-Sheng Wang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Ming-Yu Yang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan.
| |
Collapse
|
10
|
Zhang Y, Li Y, Fu X, Wang P, Wang Q, Meng W, Wang T, Yang J, Chai R. The Detrimental and Beneficial Functions of Macrophages After Cochlear Injury. Front Cell Dev Biol 2021; 9:631904. [PMID: 34458249 PMCID: PMC8385413 DOI: 10.3389/fcell.2021.631904] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Macrophages are the main intrinsic immune cells in the cochlea; they can be activated and play a complicated role after cochlear injury. Many studies have shown that the number of macrophages and their morphological characteristics within the major cochlear partitions undergo significant changes under various pathological conditions including acoustic trauma, ototoxic drug treatment, age-related cochlear degeneration, selective hair cell (HC) and spiral ganglion neuron (SGN) elimination, and surgery. However, the exact role of these macrophages after cochlear injury is still unclear. Regulating the migration and activity of macrophages may be a therapeutic approach to reduce the risk or magnitude of trauma-induced hearing loss, and this review highlights the role of macrophages on the peripheral auditory structures of the cochlea and elucidate the mechanisms of macrophage injury and the strategies to reduce the injury by regulating macrophage.
Collapse
Affiliation(s)
- Yuan Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China.,Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yiyuan Li
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Xiaolong Fu
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Pengjun Wang
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Meng
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianming Yang
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Mao H, Chen Y. Noise-Induced Hearing Loss: Updates on Molecular Targets and Potential Interventions. Neural Plast 2021; 2021:4784385. [PMID: 34306060 PMCID: PMC8279877 DOI: 10.1155/2021/4784385] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022] Open
Abstract
Noise overexposure leads to hair cell loss, synaptic ribbon reduction, and auditory nerve deterioration, resulting in transient or permanent hearing loss depending on the exposure severity. Oxidative stress, inflammation, calcium overload, glutamate excitotoxicity, and energy metabolism disturbance are the main contributors to noise-induced hearing loss (NIHL) up to now. Gene variations are also identified as NIHL related. Glucocorticoid is the only approved medication for NIHL treatment. New pharmaceuticals targeting oxidative stress, inflammation, or noise-induced neuropathy are emerging, highlighted by the nanoparticle-based drug delivery system. Given the complexity of the pathogenesis behind NIHL, deeper and more comprehensive studies still need to be fulfilled.
Collapse
Affiliation(s)
- Huanyu Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| |
Collapse
|
12
|
Vambutas A, Davia DV. Biologics for Immune-Mediated Sensorineural Hearing Loss. Otolaryngol Clin North Am 2021; 54:803-813. [PMID: 34119332 DOI: 10.1016/j.otc.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immune-mediated hearing losses include autoimmune inner ear disease, sudden sensorineural hearing loss, and Meniere's disease. Standard therapy for an acute decline in hearing is timely use of corticosteroids. Although 60% to 70% of patients are initially corticosteroid-responsive, that responsiveness is lost over time. In corticosteroid-resistant patients, increased expression of interleukin (IL)-1 is observed, and these patients may benefit from IL-1 inhibition. Autoinflammatory diseases are characterized by dysregulation of the innate immune response, clinically include sensorineural hearing loss, and benefit from IL-1 inhibition, thereby further establishing the relationship of IL-1 with immune-mediated sensorineural hearing loss.
Collapse
Affiliation(s)
- Andrea Vambutas
- Department of Otolaryngology, Zucker School of Medicine at Hofstra-Northwell, Hearing and Speech Center, 430 Lakeville Road, New Hyde Park, NY 11040, USA.
| | - Daniella V Davia
- Department of Otolaryngology, Zucker School of Medicine at Hofstra-Northwell, Hearing and Speech Center, 430 Lakeville Road, New Hyde Park, NY 11040, USA
| |
Collapse
|
13
|
Chen X, Feng H, Liu H, Xu X, Wang J, Jin Z. Carotid imaging changes and serum IL-1β, sICAM-1, and sVAP-1 levels in benign paroxysmal positional vertigo. Sci Rep 2020; 10:21494. [PMID: 33299063 PMCID: PMC7725769 DOI: 10.1038/s41598-020-78516-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/22/2020] [Indexed: 12/14/2022] Open
Abstract
Benign paroxysmal positional vertigo (BPPV) is the most common cause of vertigo. This study was performed to evaluate serum levels of inflammatory factors and changes in B-mode carotid ultrasound findings in patients with BPPV. The study population consisted of 90 BPPV patients and 90 age- and sex-matched controls. ELISA was used to compare the levels of inflammatory factors, such as interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), soluble intercellular adhesion molecule-1 (sICAM-1), prostaglandin-E2 (PG-E2), and soluble vascular adhesion protein-1 (sVAP-1), between BPPV patients and controls. In addition, the results of ultrasonographic imaging to determine carotid intima-media thickness (C-IMT), carotid atheromatous plaque, and vertebral artery stenosis were also compared between the BPPV and control groups. Serum levels of IL-1β, sICAM-1, and sVAP-1 were significantly higher in BPPV patients than controls (P < 0.001, P < 0.05, and P < 0.001, respectively). C-IMT and vertebral artery stenosis were significantly different in BPPV patients compared to controls (both P < 0.05). There were no significant relations between other parameters and BPPV. IL-1β, sICAM-1, and sVAP-1 are potentially associated with the pathogenesis of BPPV, and C-ITM and carotid vertebral stenosis may be useful reference imaging findings for the diagnosis of BPPV.
Collapse
Affiliation(s)
- Xiaoxu Chen
- Aerospace Balance Medical Center, Chinese PLA Air Force Medical Center, Beijing, 100142, China.,People's Liberation Army Troops of 95935 Unit, Changchun, 130000, China
| | - Huimin Feng
- Aerospace Balance Medical Center, Chinese PLA Air Force Medical Center, Beijing, 100142, China.,Hebei North University, Zhangjiakou, 075000, China
| | - Hongjin Liu
- Aerospace Balance Medical Center, Chinese PLA Air Force Medical Center, Beijing, 100142, China.,Department of Medical Identification, Chinese PLA Air Force Medical Center, Beijing, 100142, China
| | - Xianrong Xu
- Aerospace Balance Medical Center, Chinese PLA Air Force Medical Center, Beijing, 100142, China
| | - Jianchang Wang
- Chinese PLA Air Force Medical Center, Beijing, 100142, China
| | - Zhanguo Jin
- Aerospace Balance Medical Center, Chinese PLA Air Force Medical Center, Beijing, 100142, China. .,Aviation Physiology Identification and Training Laboratory, Chinese PLA Air Force Medical Center, Beijing, 100142, China.
| |
Collapse
|
14
|
Biocompatibility of Bone Marrow-Derived Mesenchymal Stem Cells in the Rat Inner Ear following Trans-Tympanic Administration. J Clin Med 2020; 9:jcm9061711. [PMID: 32498432 PMCID: PMC7355977 DOI: 10.3390/jcm9061711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Recent advancements in stem cell therapy have led to an increased interest within the auditory community in exploring the potential of mesenchymal stem cells (MSCs) in the treatment of inner ear disorders. However, the biocompatibility of MSCs with the inner ear, especially when delivered non-surgically and in the immunocompetent cochlea, is not completely understood. In this study, we determined the effect of intratympanic administration of rodent bone marrow MSCs (BM-MSCs) on the inner ear in an immunocompetent rat model. The administration of MSCs did not lead to the generation of any oxidative stress in the rat inner ear. There was no significant production of proinflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-12, due to BM-MSCs administration into the rat cochlea. BM-MSCs do not activate caspase 3 pathway, which plays a central role in sensory cell damage. Additionally, transferase dUTP nick end labeling (TUNEL) staining determined that there was no significant cell death associated with the administration of BM-MSCs. The results of the present study suggest that trans-tympanic administration of BM-MSCs does not result in oxidative stress or inflammatory response in the immunocompetent rat cochlea.
Collapse
|
15
|
Katsumi S, Sahin MI, Lewis RM, Iyer JS, Landegger LD, Stankovic KM. Intracochlear Perfusion of Tumor Necrosis Factor-Alpha Induces Sensorineural Hearing Loss and Synaptic Degeneration in Guinea Pigs. Front Neurol 2020; 10:1353. [PMID: 32116980 PMCID: PMC7025643 DOI: 10.3389/fneur.2019.01353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a proinflammatory cytokine that plays a prominent role in the nervous system, mediating a range of physiologic and pathologic functions. In the auditory system, elevated levels of TNF-α have been implicated in several types of sensorineural hearing loss, including sensorineural hearing loss induced by vestibular schwannoma, a potentially fatal intracranial tumor that originates from the eighth cranial nerve; however, the mechanisms underlying the tumor's deleterious effects on hearing are not well-understood. Here, we investigated the effect of acute elevations of TNF-α in the inner ear on cochlear function and morphology by perfusing the cochlea with TNF-α in vivo in guinea pigs. TNF-α perfusion did not significantly change thresholds for compound action potential (CAP) responses, which reflect cochlear nerve activity, or distortion product otoacoustic emissions, which reflect outer hair cell integrity. However, intracochlear TNF-α perfusion reduced CAP amplitudes and increased the number of inner hair cell synapses without paired post-synaptic terminals, suggesting a pattern of synaptic degeneration that resembles that observed in primary cochlear neuropathy. Additionally, etanercept, a TNF-α blocker, protected against TNF-α-induced synaptopathy when administered systemically prior to intracochlear TNF-α perfusion. Findings motivate further investigation into the harmful effects of chronically elevated intracochlear levels of TNF-α, and the potential for etanercept to counter these effects.
Collapse
Affiliation(s)
- Sachiyo Katsumi
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Mehmet I Sahin
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Rebecca M Lewis
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Janani S Iyer
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States
| | - Lukas D Landegger
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States.,Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Frye MD, Ryan AF, Kurabi A. Inflammation associated with noise-induced hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4020. [PMID: 31795714 PMCID: PMC7480080 DOI: 10.1121/1.5132545] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 05/22/2023]
Abstract
Inflammation is a complex biological response to harmful stimuli including infection, tissue damage, and toxins. Thus, it is not surprising that cochlear damage by noise includes an inflammatory component. One mechanism by which inflammation is generated by tissue damage is the activation of damage-associated molecular patterns (DAMPs). Many of the cellular receptors for DAMPS, including Toll-like receptors, NOD-like receptors, and DNA receptors, are also receptors for pathogens, and function in the innate immune system. DAMP receptors are known to be expressed by cochlear cells, and binding of molecules released by damaged cells to these receptors result in the activation of cell stress pathways. This leads to the generation of pro-inflammatory cytokines and chemokines that recruit pro-inflammatory leukocytes. Extensive evidence indicates pro-inflammatory cytokines including TNF alpha and interleukin 1 beta, and chemokines including CCL2, are induced in the cochlea after noise exposure. The recruitment of macrophages into the cochlea has also been demonstrated. These provide substrates for noise damage to be enhanced by inflammation. Evidence is provided by the effectiveness of anti-inflammatory drugs in ameliorating noise-induced hearing loss. Involvement of inflammation provides a wide variety of additional anti-inflammatory and pro-resolution agents as potential pharmacological interventions in noise-induced hearing loss.
Collapse
Affiliation(s)
- Mitchell D Frye
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Allen F Ryan
- Department of Surgery/Otolaryngology, University of California San Diego, School of Medicine, and Veterans Administration Medical Center, La Jolla, California 92093, USA
| | - Arwa Kurabi
- Department of Surgery/Otolaryngology, University of California San Diego, School of Medicine, and Veterans Administration Medical Center, La Jolla, California 92093, USA
| |
Collapse
|
17
|
Sahley TL, Anderson DJ, Hammonds MD, Chandu K, Musiek FE. Evidence for a dynorphin-mediated inner ear immune/inflammatory response and glutamate-induced neural excitotoxicity: an updated analysis. J Neurophysiol 2019; 122:1421-1460. [DOI: 10.1152/jn.00595.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acoustic overstimulation (AOS) is defined as the stressful overexposure to high-intensity sounds. AOS is a precipitating factor that leads to a glutamate (GLU)-induced Type I auditory neural excitotoxicity and an activation of an immune/inflammatory/oxidative stress response within the inner ear, often resulting in cochlear hearing loss. The dendrites of the Type I auditory neural neurons that innervate the inner hair cells (IHCs), and respond to the IHC release of the excitatory neurotransmitter GLU, are themselves directly innervated by the dynorphin (DYN)-bearing axon terminals of the descending brain stem lateral olivocochlear (LOC) system. DYNs are known to increase GLU availability, potentiate GLU excitotoxicity, and induce superoxide production. DYNs also increase the production of proinflammatory cytokines by modulating immune/inflammatory signal transduction pathways. Evidence is provided supporting the possibility that the GLU-mediated Type I auditory neural dendritic swelling, inflammation, excitotoxicity, and cochlear hearing loss that follow AOS may be part of a brain stem-activated, DYN-mediated cascade of inflammatory events subsequent to a LOC release of DYNs into the cochlea. In support of a DYN-mediated cascade of events are established investigations linking DYNs to the immune/inflammatory/excitotoxic response in other neural systems.
Collapse
Affiliation(s)
- Tony L. Sahley
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- School of Health Sciences, Cleveland State University, Cleveland, Ohio
| | - David J. Anderson
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | | | - Karthik Chandu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Frank E. Musiek
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
18
|
Elevated serum macrophage migration inhibitory factor levels correlate with benign paroxysmal positional vertigo and recurrence events. Biosci Rep 2019; 39:BSR20191831. [PMID: 31406010 PMCID: PMC6706593 DOI: 10.1042/bsr20191831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/22/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022] Open
Abstract
Objective: We aimed to assess the possible relations between serum levels of macrophage migration inhibitory factor (MIF), a central cytokine of the innate immunity and inflammatory response, and benign paroxysmal positional vertigo (BPPV) risk and BPPV recurrence events. Methods: In the present study, 154 patients with BPPV, and 100 age-and sex-matched control subjects were enrolled in the study. All the patients and controls underwent a complete audio‐vestibular test battery including the Dix–Hallpike maneuver and supine roll test. In the BPPV group, measurements of MIF levels were repeated 1 month after the vertigo attack. The patients were also divided into the recurrence group and the nonrecurrence group in the 1-year follow-up. Results: The serum levels of MIF in patients with BPPV were higher than in those controls (13.9[interquartile range {IQR}, 8.9–18.4] ng/ml vs. 9.8[7.8–11.8]; P<0.001). As a continuous variable, MIF was associated with increased risk of BPPV (odds ratio [OR] 1.21, 95% confidence interval [CI]: 1.11–1.39; P=0.004) in multiple regression analyses. Recurrent attacks of BPPV were reported in 35 patients, and those patients had higher levels of MIF than those patients were not recurrence (18.0[IQR, 13.6–22.2] ng/ml vs. 12.6[9.3–16.8] ng/ml). In multivariate models comparing the second (Q2), third (Q3) and fourth(Q4) quartiles against the first (Q1) quartile of MIF, levels of MIF in Q4 were associated with recurrent BPPV, and the odds were increased by approximately 305% (OR = 4.05; 95%CI: 1.65–15.44; P=0.009). Conclusions: Elevated MIF is positively correlated with BPPV risk and BPPV recurrence events, requiring further efforts to clarify the exact mechanism.
Collapse
|
19
|
Wang W, Zhang LS, Zinsmaier AK, Patterson G, Leptich EJ, Shoemaker SL, Yatskievych TA, Gibboni R, Pace E, Luo H, Zhang J, Yang S, Bao S. Neuroinflammation mediates noise-induced synaptic imbalance and tinnitus in rodent models. PLoS Biol 2019; 17:e3000307. [PMID: 31211773 PMCID: PMC6581239 DOI: 10.1371/journal.pbio.3000307] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/16/2019] [Indexed: 12/20/2022] Open
Abstract
Hearing loss is a major risk factor for tinnitus, hyperacusis, and central auditory processing disorder. Although recent studies indicate that hearing loss causes neuroinflammation in the auditory pathway, the mechanisms underlying hearing loss–related pathologies are still poorly understood. We examined neuroinflammation in the auditory cortex following noise-induced hearing loss (NIHL) and its role in tinnitus in rodent models. Our results indicate that NIHL is associated with elevated expression of proinflammatory cytokines and microglial activation—two defining features of neuroinflammatory responses—in the primary auditory cortex (AI). Genetic knockout of tumor necrosis factor alpha (TNF-α) or pharmacologically blocking TNF-α expression prevented neuroinflammation and ameliorated the behavioral phenotype associated with tinnitus in mice with NIHL. Conversely, infusion of TNF-α into AI resulted in behavioral signs of tinnitus in both wild-type and TNF-α knockout mice with normal hearing. Pharmacological depletion of microglia also prevented tinnitus in mice with NIHL. At the synaptic level, the frequency of miniature excitatory synaptic currents (mEPSCs) increased and that of miniature inhibitory synaptic currents (mIPSCs) decreased in AI pyramidal neurons in animals with NIHL. This excitatory-to-inhibitory synaptic imbalance was completely prevented by pharmacological blockade of TNF-α expression. These results implicate neuroinflammation as a therapeutic target for treating tinnitus and other hearing loss–related disorders. Prolonged exposure to loud noises causes neuronal hyperexcitability and increases the risk of tinnitus. This study reveals that this type of tinnitus is mediated by noise-induced neuroinflammation; blockade of neuroinflammatory responses prevents noise-induced neuronal excitation/inhibition imbalance and tinnitus.
Collapse
Affiliation(s)
- Weihua Wang
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Li. S. Zhang
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Alexander K. Zinsmaier
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Genevieve Patterson
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Emily Jean Leptich
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Savannah L. Shoemaker
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Tatiana A. Yatskievych
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Robert Gibboni
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Edward Pace
- Department of Otolaryngology, Wayne State University, Detroit, Michigan, United States of America
| | - Hao Luo
- Department of Otolaryngology, Wayne State University, Detroit, Michigan, United States of America
| | - Jinsheng Zhang
- Department of Otolaryngology, Wayne State University, Detroit, Michigan, United States of America
- Department of Communication Sciences and Disorders, Wayne State University, Detroit, Michigan, United States of America
| | - Sungchil Yang
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
- Department of Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Shaowen Bao
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Köles L, Szepesy J, Berekméri E, Zelles T. Purinergic Signaling and Cochlear Injury-Targeting the Immune System? Int J Mol Sci 2019; 20:ijms20122979. [PMID: 31216722 PMCID: PMC6627352 DOI: 10.3390/ijms20122979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Hearing impairment is the most common sensory deficit, affecting more than 400 million people worldwide. Sensorineural hearing losses currently lack any specific or efficient pharmacotherapy largely due to the insufficient knowledge of the pathomechanism. Purinergic signaling plays a substantial role in cochlear (patho)physiology. P2 (ionotropic P2X and the metabotropic P2Y) as well as adenosine receptors expressed on cochlear sensory and non-sensory cells are involved mostly in protective mechanisms of the cochlea. They are implicated in the sensitivity adjustment of the receptor cells by a K+ shunt and can attenuate the cochlear amplification by modifying cochlear micromechanics. Cochlear blood flow is also regulated by purines. Here, we propose to comprehend this field with the purine-immune interactions in the cochlea. The role of harmful immune mechanisms in sensorineural hearing losses has been emerging in the horizon of cochlear pathologies. In addition to decreasing hearing sensitivity and increasing cochlear blood supply, influencing the immune system can be the additional avenue for pharmacological targeting of purinergic signaling in the cochlea. Elucidating this complexity of purinergic effects on cochlear functions is necessary and it can result in development of new therapeutic approaches in hearing disabilities, especially in the noise-induced ones.
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Ecology, University of Veterinary Medicine, H-1078 Budapest, Hungary.
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary.
| |
Collapse
|
21
|
Sarlus H, Fontana JM, Tserga E, Meltser I, Cederroth CR, Canlon B. Circadian integration of inflammation and glucocorticoid actions: Implications for the cochlea. Hear Res 2019; 377:53-60. [PMID: 30908966 DOI: 10.1016/j.heares.2019.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/05/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Auditory function has been shown to be influenced by the circadian system. Increasing evidence point towards the regulation of inflammation and glucocorticoid actions by circadian rhythms in the cochlea. Yet, how these three systems (circadian, immune and endocrine) converge to control auditory function remains to be established. Here we review the knowledge on immune and glucocorticoid actions, and how they interact with the circadian and the auditory system, with a particular emphasis on cochlear responses to noise trauma. We propose a multimodal approach to understand the mechanisms of noise-induced hearing loss by integrating the circadian, immune and endocrine systems into the bearings of the cochlea. Considering the well-established positive impact of chronotherapeutic approaches in the treatment of cardiovascular, asthma and cancer, an increased knowledge on the mechanisms where circadian, immune and glucocorticoids meet in the cochlea may improve current treatments against hearing disorders.
Collapse
Affiliation(s)
- Heela Sarlus
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden.
| | - Jacopo Maria Fontana
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Evangelia Tserga
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Inna Meltser
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | | | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| |
Collapse
|
22
|
Sakano H, Harris JP. Emerging options in immune-mediated hearing loss. Laryngoscope Investig Otolaryngol 2018; 4:102-108. [PMID: 30828626 PMCID: PMC6383306 DOI: 10.1002/lio2.205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/27/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022] Open
Abstract
Objective AIED (autoimmune inner ear disease) is an autoimmune process that leads to the dysfunction of the inner ear, resulting in fluctuating, audiovestibular symptoms. Although the pathogenesis is likely heterogeneous, immune processes within the inner ear ultimately lead to histopathologic changes and sensorineural hearing loss. This review will discuss the latest evidence on treatment options. Methods A literature search on articles pertaining to the treatment of autoimmune inner ear disease was performed on PubMed. Results Corticosteroid treatment continues to remain as first line therapy for AIED but long-term responsiveness is poor. Cytotoxic chemotherapies can be effective alternatives for steroid nonresponsive patients, but significant side effects may limit their use. Intratympanic steroid injections are beneficial and although there is not enough evidence currently to supplant oral steroid trial they may be a useful adjunct if steroid toxicity is an issue. The efficacy of biologic agents has been variable. Compared to placebo, etanercept does not improve the hearing improvement already attained by steroids alone. However, open pilot studies of other biologic agents show hearing improvements, improvements in tinnitus/aural fullness/vertigo, ability to wean steroid dependency, or benefits in steroid-resistant AIED. Conclusion There is currently not enough evidence that alternative treatments supersede the use of initial steroid treatment. Biologic agents and intratympanic steroid injections are relatively well tolerated and should be considered as adjunctive therapy. More studies on the efficacy of various biologics and more studies on the treatment of steroid resistant disease especially after initial benefit are still needed. For those who eventually lose their hearing, cochlear implantation remains as a viable option. Level of Evidence expert opinion.
Collapse
Affiliation(s)
- Hitomi Sakano
- Department of Otolaryngology-Head and Neck Surgery University of California, San Diego San Diego California U.S.A
| | - Jeffrey P Harris
- Department of Otolaryngology-Head and Neck Surgery University of California, San Diego San Diego California U.S.A
| |
Collapse
|
23
|
Paciello F, Fetoni AR, Rolesi R, Wright MB, Grassi C, Troiani D, Paludetti G. Pioglitazone Represents an Effective Therapeutic Target in Preventing Oxidative/Inflammatory Cochlear Damage Induced by Noise Exposure. Front Pharmacol 2018; 9:1103. [PMID: 30349478 PMCID: PMC6187064 DOI: 10.3389/fphar.2018.01103] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
Recent progress in hearing loss research has provided strong evidence for the imbalance of cellular redox status and inflammation as common predominant mechanisms of damage affecting the organ of Corti including noise induced hearing loss. The discovery of a protective molecule acting on both mechanisms is challenging. The thiazolidinediones, a class of antidiabetic drugs including pioglitazone and rosiglitazone, have demonstrated diverse pleiotrophic effects in many tissues where they exhibit anti-inflammatory, anti-proliferative, tissue protective effects and regulators of redox balance acting as agonist of peroxisome proliferator-activated receptors (PPARs). They are members of the family of ligand regulated nuclear hormone receptors that are also expressed in several cochlear cell types, including the outer hair cells. In this study, we investigated the protective capacity of pioglitazone in a model of noise-induced hearing loss in Wistar rats and the molecular mechanisms underlying this protective effects. Specifically, we employed a formulation of pioglitazone in a biocompatible thermogel providing rapid, uniform and sustained inner ear drug delivery via transtympanic injection. Following noise exposure (120 dB, 10 kHz, 1 h), different time schedules of treatment were employed: we explored the efficacy of pioglitazone given immediately (1 h) or at delayed time points (24 and 48 h) after noise exposure and the time course and extent of hearing recovery were assessed. We found that pioglitazone was able to protect auditory function at the mid-high frequencies and to limit cell death in the cochlear basal/middle turn, damaged by noise exposure. Immunofluorescence and western blot analysis provided evidence that pioglitazone mediates both anti-inflammatory and anti-oxidant effects by decreasing NF-κB and IL-1β expression in the cochlea and opposing the oxidative damage induced by noise insult. These results suggest that intratympanic pioglitazone can be considered a valid therapeutic strategy for attenuating noise-induced hearing loss and cochlear damage, reducing inflammatory signaling and restoring cochlear redox balance.
Collapse
Affiliation(s)
- Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy.,Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy.,Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Diana Troiani
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
24
|
Inner Ear Hair Cell Protection in Mammals against the Noise-Induced Cochlear Damage. Neural Plast 2018; 2018:3170801. [PMID: 30123244 PMCID: PMC6079343 DOI: 10.1155/2018/3170801] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/11/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Inner ear hair cells are mechanosensory receptors that perceive mechanical sound and help to decode the sound in order to understand spoken language. Exposure to intense noise may result in the damage to the inner ear hair cells, causing noise-induced hearing loss (NIHL). Particularly, the outer hair cells are the first and the most affected cells in NIHL. After acoustic trauma, hair cells lose their structural integrity and initiate a self-deterioration process due to the oxidative stress. The activation of different cellular death pathways leads to complete hair cell death. This review specifically presents the current understanding of the mechanism exists behind the loss of inner ear hair cell in the auditory portion after noise-induced trauma. The article also explains the recent hair cell protection strategies to prevent the damage and restore hearing function in mammals.
Collapse
|
25
|
The Role of Autoimmunity in the Pathogenesis of Sudden Sensorineural Hearing Loss. Neural Plast 2018; 2018:7691473. [PMID: 30008743 PMCID: PMC6020465 DOI: 10.1155/2018/7691473] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/10/2018] [Indexed: 12/20/2022] Open
Abstract
Sudden sensorineural hearing loss (SSHL) is a clinically common acute symptom in otolaryngology. Although the incidence of SSHL has increased around the world in recent years, the etiology of the disease is still unclear. It has been reported that infections, ototoxic drugs, membrane labyrinth rupture, carcinomas, circulatory system diseases, autoimmune diseases, brain lesions, mental diseases, congenital or inherited diseases, and so on, are all risk factors for SSHL. Here, we discuss the autoimmune mechanisms behind SSHL, which might be induced by type II–IV allergic reactions. We also introduce the main immunosuppressive medications that have been used to treat SSHL, which will help us to identify potential targets for immune therapy.
Collapse
|
26
|
Hu BH, Zhang C, Frye MD. Immune cells and non-immune cells with immune function in mammalian cochleae. Hear Res 2018; 362:14-24. [PMID: 29310977 PMCID: PMC5911222 DOI: 10.1016/j.heares.2017.12.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/21/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
The cochlea has an immune environment dominated by macrophages under resting conditions. When stressed, circulating monocytes enter the cochlea. These immune mediators, along with cochlear resident cells, organize a complex defense response against pathological challenges. Since the cochlea has minimal exposure to pathogens, most inflammatory conditions in the cochlea are sterile. Although the immune response is initiated for the protection of the cochlea, off-target effects can cause collateral damage to cochlear cells. A better understanding of cochlear immune capacity and regulation would therefore lead to development of new therapeutic treatments. Over the past decade, there have been many advances in our understanding of cochlear immune capacity. In this review, we provide an update and overview of the cellular components of cochlear immune capacity with a focus on macrophages in mammalian cochleae. We describe the composition and distribution of immune cells in the cochlea and suggest that phenotypic and functional characteristics of macrophages have site-specific diversity. We also highlight the response of immune cells to acute and chronic stresses and comment on the potential function of immune cells in cochlear homeostasis and disease development. Finally, we briefly review potential roles for cochlear resident cells in immune activities of the cochlea.
Collapse
Affiliation(s)
- Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Celia Zhang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Mitchell D Frye
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| |
Collapse
|
27
|
Proinflammatory cytokines and response to molds in mononuclear cells of patients with Meniere disease. Sci Rep 2018; 8:5974. [PMID: 29654306 PMCID: PMC5899176 DOI: 10.1038/s41598-018-23911-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/23/2018] [Indexed: 12/20/2022] Open
Abstract
Epidemiological studies have found a higher prevalence of allergic symptoms and positive prick tests in patients with Meniere’s disease (MD); however the effect of allergenic extracts in MD has not been established. Thus, this study aims to determine the effect of Aspergillus and Penicillium stimulation in cytokine release and gene expression profile in MD. Patients with MD showed higher basal levels of IL-1β, IL-1RA, IL-6 and TNF-α when compared to healthy controls. We observed that IL-1β levels had a bimodal distribution suggesting two different subgroups of patients, with low and high basal levels of cytokines. Gene expression profile in peripheral blood mononuclear cells (PBMC) showed significant differences in patients with high and low basal levels of IL-1β. We found that both mold extracts triggered a significant release of TNF-α in MD patients, which were not found in controls. Moreover, after mold stimulation, MD patients showed a different gene expression profile in PBMC, according to the basal levels of IL-1β. The results indicate that a subset of MD patients have higher basal levels of proinflammatory cytokines and the exposure to Aspergillus and Penicillium extracts may trigger additional TNF-α release and contribute to exacerbate inflammation.
Collapse
|
28
|
Ren Y, Stankovic KM. The Role of Tumor Necrosis Factor Alpha (TNFα)in Hearing Loss and Vestibular Schwannomas. CURRENT OTORHINOLARYNGOLOGY REPORTS 2018; 6:15-23. [PMID: 31485383 DOI: 10.1007/s40136-018-0186-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of review The aim of this review is to highlight relevant literature on the role of tumor necrosis factor alpha (TNFα) in sensorineural hearing loss (SNHL) and vestibular schwannomas (VS). Recent Findings A comprehensive review of publically available databases including PubMed was performed. The mechanism by which hearing loss occurs in VS is still unknown and likely multifactorial. Genetic differences between VSs and tumor secreted proteins may be responsible, at least in part, for VS-associated SNHL. TNFα has pleotropic roles in promoting inflammation, maintaining cellular homeostasis, inducing apoptosis, and mediating ototoxicity in patients with sporadic VS. TNFα-targeted therapies have shown efficacy in both animal models of sensorineural hearing loss and clinical trials in patients with immune-mediated hearing loss. Efforts are underway to develop novel nanotechnology-based methods to target TNFα and other pathogenic molecules in VS. Summary Development of molecularly targeted therapies against TNFα represents an important area of research in ameliorating VS-associated hearing loss.
Collapse
Affiliation(s)
- Yin Ren
- Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Konstantina M Stankovic
- Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.,Eaton Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA.,Harvard Program in Speech and Hearing Bioscience and Technology, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
29
|
Jiang M, Karasawa T, Steyger PS. Aminoglycoside-Induced Cochleotoxicity: A Review. Front Cell Neurosci 2017; 11:308. [PMID: 29062271 PMCID: PMC5640705 DOI: 10.3389/fncel.2017.00308] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics are used as prophylaxis, or urgent treatment, for many life-threatening bacterial infections, including tuberculosis, sepsis, respiratory infections in cystic fibrosis, complex urinary tract infections and endocarditis. Although aminoglycosides are clinically-essential antibiotics, the mechanisms underlying their selective toxicity to the kidney and inner ear continue to be unraveled despite more than 70 years of investigation. The following mechanisms each contribute to aminoglycoside-induced toxicity after systemic administration: (1) drug trafficking across endothelial and epithelial barrier layers; (2) sensory cell uptake of these drugs; and (3) disruption of intracellular physiological pathways. Specific factors can increase the risk of drug-induced toxicity, including sustained exposure to higher levels of ambient sound, and selected therapeutic agents such as loop diuretics and glycopeptides. Serious bacterial infections (requiring life-saving aminoglycoside treatment) induce systemic inflammatory responses that also potentiate the degree of ototoxicity and permanent hearing loss. We discuss prospective clinical strategies to protect auditory and vestibular function from aminoglycoside ototoxicity, including reduced cochlear or sensory cell uptake of aminoglycosides, and otoprotection by ameliorating intracellular cytotoxicity.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, Portland VA Medical Center (VHA), Portland, OR, United States
| |
Collapse
|
30
|
The Effect of Systemic Steroid on Hearing Preservation After Cochlear Implantation via Round Window Approach: A Guinea Pig Model. Otol Neurotol 2017; 38:962-969. [DOI: 10.1097/mao.0000000000001453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Tumor Necrosis Factor-induced Decrease of Cochlear Blood Flow Can Be Reversed by Etanercept or JTE-013. Otol Neurotol 2017; 37:e203-8. [PMID: 27295443 DOI: 10.1097/mao.0000000000001095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS This study aimed to quantify the effects of tumor necrosis factor (TNF) inhibitor Etanercept and sphingosine-1-phosphate receptor 2 antagonist JTE-013 on cochlear blood flow in guinea pigs after TNF-induced decrease. BACKGROUND Sudden sensorineural hearing loss is a common cause for disability and reduced quality of life. Good understanding of the pathophysiology and strong evidence-based therapy concepts are still missing. In various inner ear disorders, inflammation and impairment of cochlear blood flow (CBF) have been considered factors in the pathophysiology. A central mediator of inflammation and microcirculation in the cochlea is TNF. S1P acts downstream in one TNF pathway. METHODS Cochlea lateral wall vessels were exposed surgically and assessed by intravital microscopy in guinea pigs in vivo. Twenty-eight animals were randomly distributed into four groups of seven each. Exposed vessels were superfused by TNF (5.0 ng/ml) and afterward repeatedly either by Etanercept (1.0 μg/ml), JTE-013 (10 μmol/L), or vehicle (0.9 % NaCl solution or ethanol: phosphate-buffered saline buffer, respectively). RESULTS After decreasing CBF with TNF (p <0.001, two-way RM ANOVA), both treatments reversed CBF, compared with vehicle (p <0.001, two-way RM ANOVA). The comparison of the vehicle groups showed no difference (p = 0.969, two-way RM ANOVA), while there was also no difference between the treatment groups (p = 0.850, two-way RM ANOVA). CONCLUSION Both Etanercept and JTE-013 reverse the decreasing effect of TNF on cochlear blood flow and, therefore, TNF and the S1P-signalling pathway might be targets for treatment of microcirculation-related hearing loss.
Collapse
|
32
|
Kosyakov SY, Kirdeeva AI. [The etiopathogenetic aspects of idiopathic sensorineural impairment of hearing]. Vestn Otorinolaringol 2017; 82:95-101. [PMID: 28514375 DOI: 10.17116/otorino201681695-101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The objectives of the present work were the overview of the results of the modern investigations concerning etiology of idiopathic sensorineural impairment of hearing as well as the analysis of the theory of microthrombus formation and its role in pathogenesis of hearing impairment.
Collapse
Affiliation(s)
- S Ya Kosyakov
- Russian Medical Academy for Post-Graduate Education, Moscow, Russia, 125993
| | - A I Kirdeeva
- Russian Medical Academy for Post-Graduate Education, Moscow, Russia, 125993
| |
Collapse
|
33
|
Vambutas A, Pathak S. AAO: Autoimmune and Autoinflammatory (Disease) in Otology: What is New in Immune-Mediated Hearing Loss. Laryngoscope Investig Otolaryngol 2016; 1:110-115. [PMID: 27917401 PMCID: PMC5113311 DOI: 10.1002/lio2.28] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Autoinflammatory diseases are a family of immune-mediated, rare diseases, some of which, exhibit sensorineural hearing loss (SNHL), suggesting potentially similar mechanisms of molecular pathogenesis between autoinflammatory-mediated hearing loss and autoimmune inner ear disease (AIED) may exist. The purpose of this review is to compare the clinical features of autoimmune and autoinflammatory diseases that affect hearing, discuss the limitations of our knowledge, and highlight potential new disease mechanisms and therapeutics. DATA SOURCES Pubmed Literature Review; Google Scholar Literature review. REVIEW METHODS A focused comparison of AIED with a number of autoinflammatory diseases that manifest with sensorineural hearing loss was performed. The pathogenesis of these diseases is reviewed in the context of the innate and adaptive immune system, cytokine expression and genetic polymorphisms. RESULTS AIED, since first described by Cogan and Lehnhardt and first clinically characterized by McCabe, has remained an enigmatic disease, with limited advances in both new diagnostics and new therapeutics. Since the discovery of autoinflammatory diseases, a number of systemic autoimmune diseases have either been re-classed as autoinflammatory diseases or identified to have features of autoinflammatory disease. CONCLUSION AIED has clinical features of both autoimmune and autoinflammatory disease. It is critical that autoinflammatory diseases be correctly identified, as failure to do so may result in systemic amyloidosis and kidney damage.
Collapse
Affiliation(s)
- Andrea Vambutas
- Department of OtolaryngologyHofstra‐Northwell School of Medicine, Feinstein Institute for Medical ResearchManhasset
- Department of Molecular Medicine, Hofstra‐Northwell School of MedicineFeinstein Institute for Medical ResearchManhasset
- Department of OtorhinolaryngologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Shresh Pathak
- Department of OtolaryngologyHofstra‐Northwell School of Medicine, Feinstein Institute for Medical ResearchManhasset
- Department of OtorhinolaryngologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| |
Collapse
|
34
|
Vethanayagam RR, Yang W, Dong Y, Hu BH. Toll-like receptor 4 modulates the cochlear immune response to acoustic injury. Cell Death Dis 2016; 7:e2245. [PMID: 27253409 PMCID: PMC5143385 DOI: 10.1038/cddis.2016.156] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/13/2022]
Abstract
Acoustic overstimulation traumatizes the cochlea, resulting in auditory dysfunction. As a consequence of acoustic injury, the immune system in the cochlea is activated, leading to the production of inflammatory mediators and the infiltration of immune cells. However, the molecular mechanisms responsible for initiating these immune responses remain unclear. Here, we investigate the functional role of Toll-like receptor 4 (Tlr4), a cellular receptor that activates the innate immune system, in the regulation of cochlear responses to acoustic overstimulation. Using a Tlr4 knockout mouse model, we examined how Tlr4 deficiency affects sensory cell pathogenesis, auditory dysfunction and cochlear immune activity. We demonstrate that Tlr4 knockout does not affect sensory cell viability under physiological conditions, but reduces the level of sensory cell damage and cochlear dysfunction after acoustic injury. Together, these findings suggest that Tlr4 promotes sensory cell degeneration and cochlear dysfunction after acoustic injury. Acoustic injury provokes a site-dependent inflammatory response in both the organ of Corti and the tissues of the lateral wall and basilar membrane. Tlr4 deficiency affects these inflammatory responses in a site-dependent manner. In the organ of Corti, loss of Tlr4 function suppresses the production of interleukin 6 (Il6), a pro-inflammatory molecule, after acoustic injury. By contrast, the production of inflammatory mediators, including Il6, persists in the lateral wall and basilar membrane. In addition to immune molecules, Tlr4 knockout inhibits the expression of major histocompatibility complex class II, an antigen-presenting molecule, in macrophages, suggesting that Tlr4 participates in the antigen-presenting function of macrophages after acoustic trauma. Together, these results suggest that Tlr4 regulates multiple aspects of the immune response in the cochlea and contributes to cochlear pathogenesis after acoustic injury.
Collapse
Affiliation(s)
- R R Vethanayagam
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - W Yang
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Y Dong
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - B H Hu
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| |
Collapse
|
35
|
Characterisation of cochlear inflammation in mice following acute and chronic noise exposure. Histochem Cell Biol 2016; 146:219-30. [PMID: 27109494 DOI: 10.1007/s00418-016-1436-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
Abstract
Oxidative stress has been established as the key mechanism of the cochlear damage underlying noise-induced hearing loss, however, emerging evidence suggests that cochlear inflammation may also be a major contributor. This study aimed to improve our understanding of the cochlear inflammatory response associated with acute and chronic noise exposure. C57BL/6 mice were exposed to acute traumatic noise (100 dBSPL, 8-16 kHz for 24 h) and their cochleae collected at various intervals thereafter, up to 7 days. Using quantitative RT-PCR and immunohistochemistry, changes in expression levels of proinflammatory cytokines (TNF-α, IL-1β), chemokines (CCL2) and cell adhesion molecules (ICAM-1) were studied. All gene transcripts displayed similar dynamics of expression, with an early upregulation at 6 h post-exposure, followed by a second peak at 7 days. ICAM-1 immunoexpression increased significantly in the inferior region of the spiral ligament, peaking 24 h post-exposure. The early expression of proinflammatory mediators likely mediates the recruitment and extravasation of inflammatory cells into the noise-exposed cochlea. The occurrence of the latter expression peak is not clear, but it may be associated with reparative processes initiated in response to cochlear damage. Chronic exposure to moderate noise (90 dBSPL, 8-16 kHz, 2 h/day, up to 4 weeks) also elicited an inflammatory response, reaching a maximum after 2 weeks, suggesting that cochlear damage and hearing loss associated with chronic environmental noise exposure may be linked to inflammatory processes in the cochlea. This study thus provides further insight into the dynamics of the cochlear inflammatory response induced by exposure to acute and chronic noise.
Collapse
|
36
|
Tsinaslanidou Z, Tsaligopoulos M, Angouridakis N, Vital V, Kekes G, Constantinidis J. The Expression of TNFα, IL-6, IL-2 and IL-8 in the Serum of Patients with Idiopathic Sudden Sensorineural Hearing Loss: Possible Prognostic Factors of Response to Corticosteroid Treatment. AUDIOLOGY AND NEUROTOLOGY EXTRA 2016. [DOI: 10.1159/000442016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Introduction: Idiopathic sudden sensorineural hearing loss (ISSNHL) remains one of the major unsolved otologic emergencies. A viral infection, a systemic inflammatory disorder, as well as physical, mental and metabolic stress can trigger an innate immune response in the inner ear resulting in ISSNHL. Proinflammatory cytokines play a central role in this cochlear immunological cascade. Objective: To examine the expression of proinflammatory cytokines in the serum of patients with ISSNHL in correlation with the therapeutic outcome of intravenous administration of corticosteroids. Method: Forty-three patients primarily diagnosed with ISSNHL underwent intravenous corticosteroid treatment for 8 days. The expression of tumor necrosis factor-α (TNFα), interleukin-6 (IL-6), interleukin-2 (IL-2) and interleukin-8 (IL-8) was detected with the use of enzyme-linked immunosorbent assay in serum specimens on the 1st and 8th day of treatment and it was correlated with the treatment outcome. Results: TNFα reduction and IL-6 increase strongly correlate with a good therapeutic result [χ2(2) = 13.12, p = 0.001 and χ2(2) = 16.78, p = 0.0001]. IL-8 increase reflects negatively on the outcome, however, not in a statistically significant way. No association was established between IL-2 variations and the therapeutic outcome. Conclusions: TNFα and IL-6 can be used as prognostic factors for the treatment outcome, whereas the prognostic value of IL-8 requires further statistical confirmation.
Collapse
|
37
|
Impedance Changes and Fibrous Tissue Growth after Cochlear Implantation Are Correlated and Can Be Reduced Using a Dexamethasone Eluting Electrode. PLoS One 2016; 11:e0147552. [PMID: 26840740 PMCID: PMC4739581 DOI: 10.1371/journal.pone.0147552] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The efficiency of cochlear implants (CIs) is affected by postoperative connective tissue growth around the electrode array. This tissue formation is thought to be the cause behind post-operative increases in impedance. Dexamethasone (DEX) eluting CIs may reduce fibrous tissue growth around the electrode array subsequently moderating elevations in impedance of the electrode contacts. METHODS For this study, DEX was incorporated into the silicone of the CI electrode arrays at 1% and 10% (w/w) concentration. Electrodes prepared by the same process but without dexamethasone served as controls. All electrodes were implanted into guinea pig cochleae though the round window membrane approach. Potential additive or synergistic effects of electrical stimulation (60 minutes) were investigated by measuring impedances before and after stimulation (days 0, 7, 28, 56 and 91). Acoustically evoked auditory brainstem responses were recorded before and after CI insertion as well as on experimental days 7, 28, 56, and 91. Additionally, histology performed on epoxy embedded samples enabled measurement of the area of scala tympani occupied with fibrous tissue. RESULTS In all experimental groups, the highest levels of fibrous tissue were detected in the basal region of the cochlea in vicinity to the round window niche. Both DEX concentrations, 10% and 1% (w/w), significantly reduced fibrosis around the electrode array of the CI. Following 3 months of implantation impedance levels in both DEX-eluting groups were significantly lower compared to the control group, the 10% group producing a greater effect. The same effects were observed before and after electrical stimulation. CONCLUSION To our knowledge, this is the first study to demonstrate a correlation between the extent of new tissue growth around the electrode and impedance changes after cochlear implantation. We conclude that DEX-eluting CIs are a means to reduce this tissue reaction and improve the functional benefits of the implant by attenuating electrode impedance.
Collapse
|
38
|
Jia H, François F, Bourien J, Eybalin M, Lloyd RV, Van De Water TR, Puel JL, Venail F. Prevention of trauma-induced cochlear fibrosis using intracochlear application of anti-inflammatory and antiproliferative drugs. Neuroscience 2015; 316:261-78. [PMID: 26718602 DOI: 10.1016/j.neuroscience.2015.12.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022]
Abstract
Cochlear fibrosis is a common finding following cochlear implantation. Evidence suggests that cochlear fibrosis could be triggered by inflammation and epithelial-to-mesenchymal cell transition (EMT). In this study, we investigate the mechanisms of cochlear fibrosis and the risk/benefit ratio of local administration of the anti-inflammatory drug dexamethasone (DEX) and antimitotic drug aracytine (Ara-C). Cochlear fibrosis was evaluated in cochlear fibrosis models of rat cochlear slices in vitro and in KLH-induced immune labyrinthitis and platinum wire cochlear implantation-induced fibrosis in vivo. Cochleae were invaded with tissue containing fibroblastic cells expressing α-SMA (alpha smooth muscle actin), which along with collagen I, fibronectin, and laminin in the extracellular matrix, suggests the involvement of a fibrotic process triggered by EMT in vitro and in vivo. After perilymphatic injection of an adenoviral vector expressing GFP in vivo, we demonstrated that the fibroblastic cells derived from the mesothelial cells of the scalae tympani and vestibuli. Activation of inflammatory and EMT pathways was further assessed by ELISA analysis of the expression of IL-1β and TGF-β1. Both markers were elevated in vitro and in vivo, and DEX and Ara-C were able to reduce IL-1β and TGF-β1 production. After 5days of culture in vitro, quantification of calcein-positive cells revealed that Ara-C was 30-fold more efficient in preventing fibrosis, and provoked less sensory hair cell loss, than DEX. In KLH-induced immune labyrinthitis and platinum wire-implanted models, Ara-C was more efficient in preventing proliferation of fibrosis with less side effects on hair cells and neurons than DEX. In conclusion, DEX and Ara-C both prevent fibrosis in the cochlea. Analysis of the risk/benefit ratio favors the use of Ara-C for preventing cochlear fibrosis.
Collapse
Affiliation(s)
- H Jia
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University Montpellier 1 & 2, Montpellier, France; Department of ORL H&N Surgery, Xinhua Hospital - Ear Institute, Shanghai Jiaotong University School of Medicine, China.
| | - F François
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University Montpellier 1 & 2, Montpellier, France.
| | - J Bourien
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University Montpellier 1 & 2, Montpellier, France.
| | - M Eybalin
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University Montpellier 1 & 2, Montpellier, France.
| | - R V Lloyd
- ENT Department, The Tunbridge Wells Hospital, Tunbridge Wells, UK.
| | - T R Van De Water
- Department of Otolaryngology, University of Miami Ear Institute, Miami, FL, USA.
| | - J-L Puel
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University Montpellier 1 & 2, Montpellier, France.
| | - F Venail
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University Montpellier 1 & 2, Montpellier, France; ENT Department, University Hospital Gui de Chauliac, Montpellier, France.
| |
Collapse
|
39
|
|
40
|
An open label study to evaluate the safety and efficacy of intratympanic golimumab therapy in patients with autoimmune inner ear disease. Otol Neurotol 2015; 35:1515-21. [PMID: 25203561 DOI: 10.1097/mao.0000000000000566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To evaluate the safety and efficacy of intratympanically injected golimumab (GLM), a TNF-α inhibitor, as a steroid-sparing agent for patients with steroid-dependent autoimmune inner ear disease (AIED). STUDY DESIGN Open label. SETTING Tertiary referral center. PATIENTS Ten patients with steroid-dependent AIED were enrolled in Stage 2. The average patient age at enrollment was 59, with an average of 12.5 years from the start of bilateral hearing loss symptoms. The average dose of daily prednisone at the start of injections was 18 mg. INTERVENTION Intratympanic injection of GLM. MAIN OUTCOME MEASURE Hearing loss progression (treatment failure) was defined as either an increase in pure-tone thresholds by frequency or a decrease in word recognition score. RESULTS There were no serious adverse events. Five of seven per-protocol subjects experienced stable pure-tone thresholds in the injected ear, whereas 4 had stable word recognition scores. Two subjects experienced an improvement in word recognition scores. The results support the hypothesis that GLM may be a promising treatment. CONCLUSIONS The TNF-α inhibitor GLM stabilized hearing in 3 of 7 per-protocol subjects with AIED and allowed a complete tapering off of prednisone in those 7 subjects. Studies with larger samples sizes are warranted.
Collapse
|
41
|
Ihler F, Pelz S, Coors M, Matthias C, Canis M. Application of a TNF-alpha-inhibitor into the scala tympany after cochlear electrode insertion trauma in guinea pigs: preliminary audiologic results. Int J Audiol 2015; 53:810-6. [PMID: 25311100 DOI: 10.3109/14992027.2014.938369] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Cochlear implantation trauma causes both macroscopic and inflammatory trauma. The aim of the present study was to evaluate the effectiveness of the TNF-alpha inhibitor etanercept applied after cochlear implantation trauma on the preservation of acoustic hearing. DESIGN Guinea pigs were randomly assigned to three groups receiving cochlear implantation trauma by cochleostomy. In one group, the site was sealed by bone cement with no further treatment. A second group was additionally implanted with an osmotic minipump delivering artificial perilymph into the scala tympani for seven days. In the third group, etanercept 1 mg/ml was added to artificial perilymph. Hearing was assessed by auditory brainstem responses at 2, 4, 6, and 8 kHz prior to and after surgery and on days 3, 5, 7, 14, 28. STUDY SAMPLE Fifteen healthy guinea pigs. RESULTS The trauma led to threshold shifts from 50.3 dB ± 16.3 dB to 68.0 dB ± 19.3 dB. Hearing thresholds were significantly lower in etanercept-treated animals compared to controls on day 28 at 8 kHz and from day 3 onwards at 4 and 2 kHz (p < 0.01; two-way RM ANOVA / Bonferroni t-test). CONCLUSION The application of etanercept led to preservation of acoustic hearing after cochlear implantation trauma.
Collapse
Affiliation(s)
- Friedrich Ihler
- * Department of Otorhinolaryngology, University Medical Center Göttingen , Germany
| | | | | | | | | |
Collapse
|
42
|
Dinh CT, Goncalves S, Bas E, Van De Water TR, Zine A. Molecular regulation of auditory hair cell death and approaches to protect sensory receptor cells and/or stimulate repair following acoustic trauma. Front Cell Neurosci 2015; 9:96. [PMID: 25873860 PMCID: PMC4379916 DOI: 10.3389/fncel.2015.00096] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
Loss of auditory sensory hair cells (HCs) is the most common cause of hearing loss. This review addresses the signaling pathways that are involved in the programmed and necrotic cell death of auditory HCs that occur in response to ototoxic and traumatic stressor events. The roles of inflammatory processes, oxidative stress, mitochondrial damage, cell death receptors, members of the mitogen-activated protein kinase (MAPK) signal pathway and pro- and anti-cell death members of the Bcl-2 family are explored. The molecular interaction of these signal pathways that initiates the loss of auditory HCs following acoustic trauma is covered and possible therapeutic interventions that may protect these sensory HCs from loss via apoptotic or non-apoptotic cell death are explored.
Collapse
Affiliation(s)
- Christine T Dinh
- University of Miami Ear Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Stefania Goncalves
- University of Miami Ear Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Esperanza Bas
- University of Miami Ear Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Thomas R Van De Water
- University of Miami Ear Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Azel Zine
- Integrative and Adaptive Neurosciences, Aix-Marseille Université, CNRS, UMR 7260 Marseille, France ; Faculty of Pharmacy, Biophysics Department, University of Montpellier Montpellier, France
| |
Collapse
|
43
|
Murillo-Cuesta S, Rodríguez-de la Rosa L, Contreras J, Celaya AM, Camarero G, Rivera T, Varela-Nieto I. Transforming growth factor β1 inhibition protects from noise-induced hearing loss. Front Aging Neurosci 2015; 7:32. [PMID: 25852546 PMCID: PMC4367183 DOI: 10.3389/fnagi.2015.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/28/2015] [Indexed: 12/20/2022] Open
Abstract
Excessive exposure to noise damages the principal cochlear structures leading to hearing impairment. Inflammatory and immune responses are central mechanisms in cochlear defensive response to noise but, if unregulated, they contribute to inner ear damage and hearing loss. Transforming growth factor β (TGF-β) is a key regulator of both responses and high levels of this factor have been associated with cochlear injury in hearing loss animal models. To evaluate the potential of targeting TGF-β as a therapeutic strategy for preventing or ameliorating noise-induced hearing loss (NIHL), we studied the auditory function, cochlear morphology, gene expression and oxidative stress markers in mice exposed to noise and treated with TGF-β1 peptidic inhibitors P17 and P144, just before or immediately after noise insult. Our results indicate that systemic administration of both peptides significantly improved both the evolution of hearing thresholds and the degenerative changes induced by noise-exposure in lateral wall structures. Moreover, treatments ameliorated the inflammatory state and redox balance. These therapeutic effects were dose-dependent and more effective if the TGF-β1 inhibitors were administered prior to inducing the injury. In conclusion, inhibition of TGF-β1 actions with antagonistic peptides represents a new, promising therapeutic strategy for the prevention and repair of noise-induced cochlear damage.
Collapse
Affiliation(s)
- Silvia Murillo-Cuesta
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Hospital La Paz Institute for Health Research (IdiPAZ) Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Hospital La Paz Institute for Health Research (IdiPAZ) Madrid, Spain
| | - Julio Contreras
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Veterinary Faculty, Complutense University of Madrid Madrid, Spain
| | - Adelaida M Celaya
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain
| | - Guadalupe Camarero
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Hospital La Paz Institute for Health Research (IdiPAZ) Madrid, Spain
| | - Teresa Rivera
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Príncipe de Asturias University Hospital, University of Alcalá, Alcalá de Henares Madrid, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Hospital La Paz Institute for Health Research (IdiPAZ) Madrid, Spain
| |
Collapse
|
44
|
Uchida Y, Sugiura S, Ueda H, Nakashima T, Ando F, Shimokata H. The association between hearing impairment and polymorphisms of genes encoding inflammatory mediators in Japanese aged population. IMMUNITY & AGEING 2014; 11:18. [PMID: 25469152 PMCID: PMC4252019 DOI: 10.1186/s12979-014-0018-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 11/07/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Aging process is accompanied by a chronic sub-clinical systemic inflammation. This study aimed to assess the association between hearing impairment and polymorphisms of genes encoding cytokines deeply-committed to the inflammatory response and immune homeostasis in an elderly Japanese population. Data were collected in the Longitudinal Study of Aging surveyed biennially between 1997 and 2010. The participants without any missing information at baseline were 1,957 individuals, and the gross accumulated number of 8,675 subjects (40-89 years of age) was analyzed. Two hearing impairment criteria were taken as the better ear pure-tone average (PTABE) greater than 25 dB and greater than 40 dB. We analyzed cumulative data using generalized estimating equations to investigate the effect of 9 polymorphisms, namely, tumor necrosis factor (TNF) α, rs1800630; TNF receptor super family (TNFRSF) 1B, rs1061624; interleukin (IL)-1A, rs1800587; IL-1B, rs16944; IL-4R, rs1801275; IL-6, rs1800796; IL-10, rs1800872; IL-1 receptor-associated kinase 1 (IRAK1), rs1059702; C reactive protein (CRP), rs1130864. RESULTS The odds ratios for the hearing impairment (PTABE >25 dB) risk under additive genetic model were significant in TNF-α rs1800630 and TNFRSF1B rs1061624, which were respectively 1.172 (confidence interval [CI]: 1.005-1.367), 1.211 (CI: 1.053-1.392) in model after adjustment for possible confounders. Using the criterion of PTABE >40 dB as disabling hearing impairment, the association remains significant in TNFRSF1B rs1061624, but not in TNF-α rs1800630. No other polymorphisms showed a significant association. CONCLUSIONS The present population-based cohort study demonstrated that TNF-α rs1800630 and TNFRSF1B rs1061624 contributed to the incremental risk of hearing impairment in the elderly. TNF-α and TNF receptor interactions play a pivotal role in the pathogenesis of the inflammatory response, and also cause programmed cell death and cell proliferation. The present observation implied the signalling cascades of TNF were involved in ear aging.
Collapse
Affiliation(s)
- Yasue Uchida
- Department of Otorhinolaryngology, Aichi Medical University, Nagakute, Aichi prefecture Japan ; Department of Otorhinolaryngology, National Center for Geriatrics and Gerontology, Obu City, Aichi prefecture Japan
| | - Saiko Sugiura
- Department of Otorhinolaryngology, National Center for Geriatrics and Gerontology, Obu City, Aichi prefecture Japan
| | - Hiromi Ueda
- Department of Otorhinolaryngology, Aichi Medical University, Nagakute, Aichi prefecture Japan
| | - Tsutomu Nakashima
- Department of Otorhinolaryngology, National Center for Geriatrics and Gerontology, Obu City, Aichi prefecture Japan ; Department of Otorhinolaryngology Cognitive and Speech Medicine, Nagoya University School of Medicine, Nagoya City, Aichi prefecture Japan
| | - Fujiko Ando
- Department of Health and Medical Sciences, Aichi Shukutoku University, Aichi prefecture, Japan
| | - Hiroshi Shimokata
- Department for Development of Preventive Medicine, National Center for Geriatrics and Gerontology, Obu City, Aichi prefecture Japan ; Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Japan
| |
Collapse
|
45
|
Cai Q, Vethanayagam RR, Yang S, Bard J, Jamison J, Cartwright D, Dong Y, Hu BH. Molecular profile of cochlear immunity in the resident cells of the organ of Corti. J Neuroinflammation 2014; 11:173. [PMID: 25311735 PMCID: PMC4198756 DOI: 10.1186/s12974-014-0173-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/25/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The cochlea is the sensory organ of hearing. In the cochlea, the organ of Corti houses sensory cells that are susceptible to pathological insults. While the organ of Corti lacks immune cells, it does have the capacity for immune activity. We hypothesized that resident cells in the organ of Corti were responsible for the stress-induced immune response of the organ of Corti. This study profiled the molecular composition of the immune system in the organ of Corti and examined the immune response of non-immune epithelial cells to acoustic overstimulation. METHODS Using high-throughput RNA-sequencing and qRT-PCR arrays, we identified immune- and inflammation-related genes in both the cochlear sensory epithelium and the organ of Corti. Using bioinformatics analyses, we cataloged the immune genes expressed. We then examined the response of these genes to acoustic overstimulation and determined how changes in immune gene expression were related to sensory cell damage. RESULTS The RNA-sequencing analysis reveals robust expression of immune-related genes in the cochlear sensory epithelium. The qRT-PCR array analysis confirms that many of these genes are constitutively expressed in the resident cells of the organ of Corti. Bioinformatics analyses reveal that the genes expressed are linked to the Toll-like receptor signaling pathway. We demonstrate that expression of Toll-like receptor signaling genes is predominantly from the supporting cells in the organ of Corti cells. Importantly, our data demonstrate that these Toll-like receptor pathway genes are able to respond to acoustic trauma and that their expression changes are associated with sensory cell damage. CONCLUSION The cochlear resident cells in the organ of Corti have immune capacity and participate in the cochlear immune response to acoustic overstimulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Hua Hu
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo 14214, NY, USA.
| |
Collapse
|
46
|
Braga MP, Maciel SM, Marchiori LLDM, Poli-Frederico RC. Association between interleukin-6 polymorphism in the −174 G/C region and hearing loss in the elderly with a history of occupational noise exposure. Braz J Otorhinolaryngol 2014; 80:373-8. [PMID: 25303810 PMCID: PMC9444601 DOI: 10.1016/j.bjorl.2014.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/01/2014] [Indexed: 12/20/2022] Open
Abstract
Introduction Objective Methods Results Conclusion
Collapse
|
47
|
Abstract
OBJECTIVE To perform comprehensive network and pathway analyses of the genes known to cause genetic hearing loss. STUDY DESIGN In silico analysis of deafness genes using ingenuity pathway analysis (IPA). METHODS Genes relevant for hearing and deafness were identified through PubMed literature searches and the Hereditary Hearing Loss Homepage. The genes were assembled into 3 groups: 63 genes that cause nonsyndromic deafness, 107 genes that cause nonsyndromic or syndromic sensorineural deafness, and 112 genes associated with otic capsule development and malformations. Each group of genes was analyzed using IPA to discover the most interconnected, that is, "nodal" molecules, within the most statistically significant networks (p < 10). RESULTS The number of networks that met our criterion for significance was 1 for Group 1 and 2 for Groups 2 and 3. Nodal molecules of these networks were as follows: transforming growth factor beta1 (TGFB1) for Group 1, MAPK3/MAPK1 MAP kinase (ERK 1/2) and the G protein coupled receptors (GPCR) for Group 2, and TGFB1 and hepatocyte nuclear factor 4 alpha (HNF4A) for Group 3. The nodal molecules included not only those known to be associated with deafness (GPCR), or with predisposition to otosclerosis (TGFB1), but also novel genes that have not been described in the cochlea (HNF4A) and signaling kinases (ERK 1/2). CONCLUSION A number of molecules that are likely to be key mediators of genetic hearing loss were identified through three different network and pathway analyses. The molecules included new candidate genes for deafness. Therapies targeting these molecules may be useful to treat deafness.
Collapse
|
48
|
Infliximab for autoimmune inner ear disease: case report and literature review. The Journal of Laryngology & Otology 2013; 127:1145-7. [PMID: 24125068 DOI: 10.1017/s002221511300217x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES This study aimed (1) to report the long-term effects of infliximab, a murine monoclonal antibody directed against tumour necrosis factor-α, on autoimmune inner ear disease, and (2) to discuss dilemmas surrounding the long-term management of autoimmune inner ear disease. CASE REPORT A 49-year-old man presented with sudden-onset, left-sided, sensorineural hearing loss, tinnitus and vertigo. He was prescribed oral prednisolone, with benefit. Over several subsequent months, he experienced frequent relapses and progressive deterioration of high-frequency hearing bilaterally. Multiple agents failed to stabilise his condition. Following infliximab treatment, there was a documented and sustained improvement in his hearing and tinnitus. He stopped the treatment after 46 weeks, with rapid relapse of his condition. His hearing recovered quickly again after recommencing infliximab. CONCLUSION The benefits of prolonged infliximab use and potential side effects must be balanced against allowing the disease to take its course, with progressive deafness. Randomised controlled trials are required to assess infliximab's optimal duration of use, long-term efficacy and safety in the treatment of autoimmune inner ear disease.
Collapse
|
49
|
Tan WJT, Thorne PR, Vlajkovic SM. Noise-induced cochlear inflammation. World J Otorhinolaryngol 2013; 3:89-99. [DOI: 10.5319/wjo.v3.i3.89] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/08/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is the most common sensory disability with considerable social and economic implications. According to recent World Health Organization estimates, 360 million people worldwide suffer from moderate to profound hearing loss. Exposure to excessive noise is one of the major causes of sensorineural hearing loss, secondary only to age-related hearing loss (presbyacusis). Since cochlear tissues have limited abilities of repair and regeneration, this damage can be irreversible, leading to cochlear dysfunction and permanent hearing loss. Recent studies have shown that cochlear inflammation can be induced by noise exposure and contribute to the overall pathogenesis of cochlear injury and hearing loss. The cochlea is separated from the systemic circulation by the blood-labyrinth barrier, which is physiologically similar to the blood-brain barrier of the central nervous system. Because of this feature, the cochlea was originally considered an immunologically privileged organ. However, this postulate has been challenged by the evidence of an inflammatory response in the cochlea in the presence of bacterial or viral pathogens or antigens that can cause labyrinthitis. Although the main purpose of the inflammatory reaction is to protect against invading pathogens, the inflammatory response can also cause significant bystander injury to the delicate structures of the cochlea. The cochlear inflammatory response is characterised by the generation of proinflammatory mediators (cytokines, chemokines and adhesion molecules), and the recruitment of inflammatory cells (leukocytes). Here, we present an overview of the current research on cochlear inflammation, with particular emphasis on noise-induced cochlear inflammation. We also discuss treatment strategies aimed at the suppression of inflammation, which may potentially lead to mitigation of hearing loss.
Collapse
|
50
|
Pathak S, Hatam LJ, Bonagura V, Vambutas A. Innate immune recognition of molds and homology to the inner ear protein, cochlin, in patients with autoimmune inner ear disease. J Clin Immunol 2013; 33:1204-15. [PMID: 23912888 DOI: 10.1007/s10875-013-9926-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/09/2013] [Indexed: 12/20/2022]
Abstract
Autoimmune Inner Ear Disease (AIED) is characterized by bilateral, fluctuating sensorineural hearing loss with periods of hearing decline triggered by unknown stimuli. Here we examined whether an environmental exposure to mold in these AIED patients is sufficient to generate a pro-inflammatory response that may, in part, explain periods of acute exacerbation of disease. We hypothesized that molds may stimulate an aberrant immune response in these patients as both several Aspergillus species and penecillium share homology with the LCCL domain of the inner ear protein, cochlin. We showed the presence of higher levels of anti-mold IgG in plasma of AIED patients at dilution of 1:256 (p = 0.032) and anti-cochlin IgG 1:256 (p = 0.0094 and at 1:512 p = 0.024) as compared with controls. Exposure of peripheral blood mononuclear cells (PBMC) of AIED patients to mold resulted in an up-regulation of IL-1β mRNA expression, enhanced IL-1β and IL-6 secretion, and generation of IL-17 expressing cells in mold-sensitive AIED patients, suggesting mold acts as a PAMP in a subset of these patients. Naïve B cells secreted IgM when stimulated with conditioned supernatant from AIED patients' monocytes treated with mold extract. In conclusion, the present studies indicate that fungal exposure can trigger autoimmunity in a subset of susceptible AIED patients.
Collapse
Affiliation(s)
- Shresh Pathak
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | | | | | | |
Collapse
|