1
|
Proppe CE, Rivera PM, Gonzalez-Rojas DH, Fukuda DH, Wilson AT, Mansy HA, Hill EC. Muscle Swelling and Neuromuscular Responses Following Blood Flow Restricted Exercise in Untrained Women. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2025; 96:248-258. [PMID: 39231592 DOI: 10.1080/02701367.2024.2391422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
Purpose: There is conflicting evidence related to the prevalence and magnitude of exercise-induced muscle damage (EIMD) following four sets to volitional failure with BFR (BFR-F) or 75 total repetitions with BFR (1 × 30, 3 × 15, BFR-75). The purpose of this investigation was to examine muscle swelling, peak torque, and neuromuscular responses following BFR-75 and BFR-F. Methods: Thirteen untrained women completed unilateral isokinetic (120°s-1) leg extensions concentric-eccentric at 30% of their maximal voluntary isometric contraction (MVIC) using BFR-75 and BFR-F protocols, separated by 15 minutes. Ultrasound was used to assess muscle thickness, cross sectional area, and echo intensity of the rectus femoris and vastus lateralis before, 0-, 24-, 48-, 72-, and 96-hours post-exercise. Peak torque and surface electromyography (sEMG) were recorded during MVICs before, 24-, 48-, 72-, and 96-hours post-exercise to determine sEMG amplitude, frequency, and neuromuscular efficiency. Results: There were no differences between conditions. Collapsed across conditions, muscle thickness and cross-sectional area increased at 0-hours for the rectus femoris (2.5 ± 0.4, 2.8 ± 0.4 cm, 10.6 ± 1.8, 12.1 ± 1.8 cm2, respectively) and vastus lateralis (2.1 ± 0.5, 2.5 ± 0.7 cm; 22.2 ± 3.9, 25.1 ± 4.5 cm2, respectively), but returned to baseline at 24-hours. There were no changes in echo intensity, sEMG amplitude, sEMG frequency, or neuromuscular efficiency. MVIC peak torque increased relative to pre-exercise at 24-, 48-, 72-, and 96-hours (159.9 ± 34.9, 171.4 ± 30.1-179.1 ± 35.6 Nm). Conclusion: These results suggest that BFR-75 and BFR-F did not cause EIMD but caused an acute increase in muscle swelling that returned to baseline 24-hours post-exercise.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ethan C Hill
- University of Central Florida
- Florida Space Institute
| |
Collapse
|
2
|
Yamaguchi S, Inami T, Nishioka T, Morito A, Ishiyama K, Murayama M. The Effects of Creatine Monohydrate Supplementation on Recovery from Eccentric Exercise-Induced Muscle Damage: A Double-Blind, Randomized, Placebo-Controlled Trial Considering Sex and Age Differences. Nutrients 2025; 17:1772. [PMID: 40507040 PMCID: PMC12157024 DOI: 10.3390/nu17111772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/19/2025] [Accepted: 05/22/2025] [Indexed: 06/16/2025] Open
Abstract
Background/Objectives: In this study, we aimed to examine the effect of creatine monohydrate (CrM) supplementation on recovery from eccentric exercise-induced muscle damage (EIMD) in diverse populations, including different sexes and age groups. EIMD decreases maximal voluntary contraction (MVC), restricts the range of motion (ROM), and increases muscle stiffness and delayed-onset muscle soreness, all of which negatively impact athletic performance. Therefore, developing effective recovery strategies is essential. Methods: A double-blind, randomized, placebo-controlled trial was conducted with 40 healthy male and female participants. After 33 days of supplementation with either CrM or placebo (crystalline cellulose), the participants performed eccentric exercises. Recovery indices, including MVC, muscle stiffness, subjective muscle extensive soreness, fatigue, and upper arm circumference, were measured at baseline, immediately after exercise, 48 h post-exercise, and 96 h post-exercise. Results: The creatine supplementation group (CRE) demonstrated a significantly quicker recovery of MVC than the placebo group (PLA). Furthermore, reductions in shear modulus and muscle fatigue were observed in the CRE group. Notably, females in the CRE group exhibited a significant suppression of post-exercise edema, suggesting a sex-specific response. Conclusions: These findings indicate that CrM supplementation may enhance recovery from EIMD, contributing to the maintenance of muscle function and the reduction of discomfort after exercise. CrM has the potential to serve as a practical nutritional strategy to promote recovery, not only for athletes, but also for a broader population.
Collapse
Affiliation(s)
- Shota Yamaguchi
- Institute of Physical Education, Keio University, Yokohama 223-8521, Kanagawa, Japan; (S.Y.); (T.N.); (M.M.)
| | - Takayuki Inami
- Institute of Physical Education, Keio University, Yokohama 223-8521, Kanagawa, Japan; (S.Y.); (T.N.); (M.M.)
- The Graduate School of Health Management, Keio University, Yokohama 223-8521, Kanagawa, Japan
| | - Takuya Nishioka
- Institute of Physical Education, Keio University, Yokohama 223-8521, Kanagawa, Japan; (S.Y.); (T.N.); (M.M.)
| | - Akihisa Morito
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Saitama, Japan; (A.M.); (K.I.)
| | - Kaho Ishiyama
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Saitama, Japan; (A.M.); (K.I.)
| | - Mitsuyoshi Murayama
- Institute of Physical Education, Keio University, Yokohama 223-8521, Kanagawa, Japan; (S.Y.); (T.N.); (M.M.)
| |
Collapse
|
3
|
Ren L, He R. Review of the effects of far infrared radiation on muscle injury caused by centrifugal exercise. J Tissue Viability 2025; 34:100900. [PMID: 40250153 DOI: 10.1016/j.jtv.2025.100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/04/2025] [Accepted: 04/02/2025] [Indexed: 04/20/2025]
Abstract
OBJECTIVE Explore the recovery effect of FIR on high-intensity centrifugal contraction or lower limb muscle fiber injury caused by long-term endurance exercise. METHODS Collect and organize relevant literature on FIR, and explore the recovery effect and possible mechanism of FIR intervention on subtle muscle fiber damage caused by exercise. RESULT FIR can reduce COX-2, inhibit PGE2, accelerate hydrogen peroxide clearance, alleviate pain caused by various conditions, promote cell proliferation, and increase blood flow; Among the two main processing tools of FIR, FIR lighting fixtures that are exposed to radiation for 30 min a day after exercise can effectively alleviate the human induced DOMS condition, while FIR clothing needs to be worn for 9 h a day to have the effect of slowing down DOMS. CONCLUSION FIR may be developed into one of the auxiliary strategies for warm-up before competitions and after intermission in the future.
Collapse
Affiliation(s)
- Lin Ren
- Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Ran He
- Office of Development and Supervision, China West Normal University, Nanchong, 637000, China
| |
Collapse
|
4
|
Jeon S, Sontag SA, Richardson LD, Olmos AA, Trevino MA. Neuromuscular electrical stimulation producing low evoked force elicits the repeated bout effect on muscle damage markers of the elbow flexors. SPORTS MEDICINE AND HEALTH SCIENCE 2025; 7:124-131. [PMID: 39811410 PMCID: PMC11726036 DOI: 10.1016/j.smhs.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 01/16/2025] Open
Abstract
This study examined the repeated bout effect (RBE) on muscle damage markers following two bouts of neuromuscular electrical stimulation (NMES) in untrained individuals. Following familiarization, participants received 45 consecutive NMES to the biceps brachii at an intensity that produced low evoked force for the elbow flexors. Muscle damage markers (maximal voluntary isometric contraction [MVIC], elbow range of motion [ROM], muscle soreness via visual analogue scale [VAS] scores, pressure pain threshold [PPT], and muscle thickness) were measured before (PRE), after (POST), 1 day after (24 POST), and 2 days after (48 POST) NMES. Following 1 week of rest, procedures were replicated. Separate repeated measures two-way ANOVAs examined each measure. There were no interactions or bout main effects for MVIC or ROM. Time main effects indicated PRE MVIC was greater than POST (p = 0.002) and 24-POST (p = 0.024), and PRE ROM was greater than POST (p = 0.036). There was no interaction for muscle thickness. Respective time and bout main effects indicated muscle thickness at PRE was less than POST (p = 0.017), and second-bout muscle thickness (p = 0.050) was less compared to the initial-bout. For PPT, there was an interaction (p = 0.019). Initial-bout PRE PPT was less than POST (p = 0.033). Initial-bout 48-POST PPT was less than second-bout 48-POST (p = 0.037). There was a significant interaction for VAS (p = 0.009). Initial-bout PRE VAS was less than POST (p = 0.033) and 24-POST (p = 0.015). Initial-bout POST and 24-POST VAS were greater than second-bout POST (p = 0.023) and 24-POST (p = 0.006), respectively. The results support RBE on muscle damage markers related to inflammation, but not MVIC and ROM.
Collapse
Affiliation(s)
- Sunggun Jeon
- Applied Neuromuscular Physiology Laboratory, Department of Health and Human Performance, Northwestern State University, Natchitoches, LA, 71497, USA
| | - Stephanie A. Sontag
- Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, 74075, USA
| | - Lyric D. Richardson
- Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, 74075, USA
| | - Alex A. Olmos
- Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, 74075, USA
| | - Michael A. Trevino
- Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, 74075, USA
| |
Collapse
|
5
|
Nery NM, Ferreira E Ferreira AA, Santana HM, Serrath SN, Reis VP, Paloschi MV, Silva MDS, Magalhães JGS, Cruz LF, Shibayama TY, Setubal SS, Zuliani JP. Bone marrow-derived dendritic cells play a role in attenuating inflammation on Bothrops jararacussu venom muscle damage. J Biotechnol 2025; 398:29-40. [PMID: 39615791 DOI: 10.1016/j.jbiotec.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 10/17/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
The immune system is regulated by dendritic cells (DCs), which are highly specialized cells for presenting antigens. They are thought of as natural sentinels that start the immune response triggered by naive T cells against invasive infections. DCs participate in the initial stage of muscle damage in conjunction with monocytes, macrophages, and myogenic cells. The goal of this study was to determine whether DCs might mitigate tissue damage and aid in the regeneration of the gastrocnemius muscle following envenomation with Bothrops jararacussu venom (BjV). Mature bone marrow dendritic cells (BMDCs) were used to treat mice in an experimental envenomation model with BjV by activation with lipopolysaccharide (LPS). BMDCs were injected into the gastrocnemius muscle at the same site of the BjV injury, in a single dose, 3 h after envenomation, and envenoming effects were observed at different periods for 7 days. In both untreated (NT) and treated (T) groups tissue necrosis, leukocyte influx, and hemorrhage at the injury site were observed. Results showed an increase in serum and tissue CK as well as IL-6, TNF-α, and IL-1β release in the first hours after envenoming. In contrast, after treatment with BMDCs results obtained demonstrated an attenuated local effect with a small leukocyte influx, decreased or non-existent necrosis and hemorrhage, as well as a reduction in both serum and tissue CK levels as well as cytokine release and, consequently, the onset of a moderate regenerative process. The present study's findings concluded that BjV causes a severe inflammatory reaction at the site of injury and that treating envenoming with BMDCs in the muscle was crucial for minimizing damage to the muscle and the inflammatory reaction and promoting the early onset of the tissue repair process.
Collapse
Affiliation(s)
- N M Nery
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - A A Ferreira E Ferreira
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - H M Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - S N Serrath
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - V P Reis
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - M V Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - M D S Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - J G S Magalhães
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - L F Cruz
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - T Y Shibayama
- Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - S S Setubal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - J P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
6
|
Kouzaki K, Nakazato K. Pulsed electromagnetic fields attenuate human musculocutaneous nerve damage induced by biceps eccentric contractions. Bioelectromagnetics 2025; 46:e22525. [PMID: 39315588 DOI: 10.1002/bem.22525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Pulsed electromagnetic field (PEMF) therapy, a noninvasive treatment, has shown promise in mitigating nerve damage. However, unaccustomed exercises, such as eccentric contractions (ECCs), can damage both muscle and nerve tissue. This study investigated whether magnetic stimulation (MS) with PEMF could aid in nerve recovery after ECCs in the elbow flexors. Twenty participants were randomly assigned to either a control (CNT) or an MS group. Following ECCs, we measured the latency of the M-wave in the musculocutaneous nerve as an indicator of nerve function. Additionally, isometric torque, range of motion, and muscle pain were assessed for muscle function. Interestingly, only the CNT group exhibited a significant increase in latency on Day 2 (p < 0.05). The MS group, on the other hand, displayed an earlier recovery trend in isometric torque, range of motion, and muscle soreness. Notably, muscle soreness significantly decreased immediately after MS treatment compared to pretreatment levels. These findings suggest that MS treatment can effectively attenuate nerve damage induced by ECCs exercise.
Collapse
Affiliation(s)
- Karina Kouzaki
- Graduate School of Health and Sport Science, Nippon Sport Science University, Setagaya, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Setagaya, Japan
| |
Collapse
|
7
|
Dos Reis TMP, Aguiar GG, de Azevedo LP, Silva Lima E, André Dellagrana R, Rossato M. Effects of acai supplementation (Euterpe precatoria Mart) on muscle recovery markers after jump protocol. Res Sports Med 2024; 32:580-596. [PMID: 36924018 DOI: 10.1080/15438627.2023.2189114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
The objective was to evaluate the effects of acai supplementation (AS) on markers of muscle damage. Twelve men participated in the 21-day study. All performed the damage protocol (DP) in two moments, separated by 7 days. The DP consisted of 10 sets of 10 CMJs, with a recovery of 1 min between sets. The AS was performed for 7 days with 40 g/day of dehydrated acai (GA) or placebo (GP). Blood parameters (CK, LDH and Trolox-equivalent antioxidant capacity - TEAC) were evaluated at 0 h and 24 h. Ultrasound images (VL, RF and GM), DOMS in lower limbs and isometric peak torque (IPT) of knee extensors and flexors were evaluated at 0 h, 24 h, 48 h and 72 h after DP. A time-treatment interaction was observed for TEAC (p = 0.01), in which the GA presented increases of 11% after 24 h. Similarly, time-treatment interaction was observed for knee flexors IPT (p = 0.02), where GA showed superior recovery after 24 h (GA = 108 ± 23 vs. GP = 92 ± 24 N∙m) and 72 h (GA = 113 ± 31 vs. GP = 98 ± 26 N∙m). No significance was observed in the fatigue index for knee extensors (p = 0.75) and flexors (p = 0.89), indicating similar fatigue in both situations. We concluded that AS increased the TEAC and promoted faster recovery of the knee flexors IPT when compared to GP.
Collapse
Affiliation(s)
| | - Gabriel Gomes Aguiar
- Faculty of Physical Education and Physiotherapy, Federal University of Amazonas, Manaus, Brazil
| | - Luma Palheta de Azevedo
- Faculty of Physical Education and Physiotherapy, Federal University of Amazonas, Manaus, Brazil
| | - Emerson Silva Lima
- Faculty of Pharmacy of Amazonas, FederalUniversity of Amazonas, Manaus, Brazil
| | | | - Mateus Rossato
- Faculty of Physical Education and Physiotherapy, Federal University of Amazonas, Manaus, Brazil
| |
Collapse
|
8
|
Jo HD, Kim MK. Identification of EIMD Level Differences Between Long- and Short Head of Biceps Brachii Using Echo Intensity and GLCM Texture Features. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:441-449. [PMID: 37698509 DOI: 10.1080/02701367.2023.2250832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 08/14/2023] [Indexed: 09/13/2023]
Abstract
Purpose: This study aimed to compare the time-course changes of exercise-induced muscle damage (EIMD) levels in the long head of biceps brachii (LHB) and short head of the biceps brachii (SHB) using echo intensity (EI) and to determine the efficiency of the gray level co-occurrence matrix (GLCM) texture parameters. Methods: The participants performed 30 maximal eccentric contractions of the elbow flexor. Along with muscle damage indicators, including circumference, range of motion, muscle soreness, and maximal voluntary isometric contraction (MVIC), the EI and GLCM texture features of the LHB and SHB was also assessed using B-mode ultrasonography. All measurements were assessed pre- and immediately post-exercise and after 24, 48, 72, and 96 h. Results: The muscle damage indicators indicated significant changes after the eccentric contractions (p < 0.01 for circumference, range of motion, muscle soreness, and MVIC). The EI of LHB significantly increased following the contractions (p < 0.01), but that of SHB did not (p > 0.05). In contrast, for the GLCM texture parameters, there were significant changes in the SHB (p < 0.01 for homogeneity, energy, and entropy). Conclusion: Thus, this study demonstrated that EIMD severity is different between LHB and SHB even within the same muscle. In the GLCM features, the time course of SHB after eccentric contraction revealed different patterns compared with those of LHB. Therefore, even if there are no changes in EI within a target muscle following muscle contractions, new information on muscle quality can be obtained through GLCM analysis.
Collapse
|
9
|
Girts RM, Harmon KK, Rodriguez G, Beausejour JP, Pagan JI, Carr JC, Garcia J, Stout JR, Fukuda DH, Stock MS. Sex differences in muscle-quality recovery following one week of knee joint immobilization and subsequent retraining. Appl Physiol Nutr Metab 2024; 49:805-817. [PMID: 38382056 DOI: 10.1139/apnm-2023-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
This manuscript represents the second phase of a clinical trial designed to examine the effects of knee joint immobilization and retraining on muscle strength and mass. In Phase 2, we examined sex differences in the recovery of multiple indices of muscle quality after a resistance training-based rehabilitation program. Following 1 week of immobilization, 27 participants (16 males, 11 females) exhibiting weakness underwent twice weekly resistance training sessions designed to re-strengthen their left knee. Unilateral retraining sessions utilizing leg press, extension, and curl exercises were conducted until participants could reproduce their pre-immobilization knee extension isometric maximal voluntary contraction (MVC) peak torque. Post-immobilization, both sexes demonstrated impaired MVC peak torque (males = -10.8%, females = -15.2%), specific torque (-9.8% vs. -13.1%), echo intensity of the vastus lateralis (+6.9% vs. +5.9%) and rectus femoris (+5.9% vs. +2.1), and extracellular water/intracellular water ratio (+7.8% vs. +9.0%). The number of retraining sessions for peak torque to return to baseline for males (median = 1, mean = 2.13) versus females (median = 2, mean = 2.91) was not significantly different, though the disparity in recovery times may be clinically relevant. Following retraining, specific torque was the only muscle-quality indicator that improved along with MVC peak torque (males = 20.1%, females = 22.4%). Our findings indicate that measures of muscle quality demonstrate divergent recovery rates following immobilization, with muscle mass lagging behind improvements in strength. Greater immobilization-induced strength loss among females suggests that sex-specific rehabilitation efforts may be justified.
Collapse
Affiliation(s)
- Ryan M Girts
- Department of Natural and Health Sciences, Pfeiffer University, Misenheimer, NC, USA
| | - Kylie K Harmon
- Department of Exercise ScienceSyracuse University, Syracuse, NY, USA
| | - Gabriela Rodriguez
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Jonathan P Beausejour
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Jason I Pagan
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Joshua C Carr
- Department of Kinesiology, Texas Christian University, Fort Worth, TX, USA
- Department of Medical Education, Anne Burnett Marion School of Medicine at Texas Christian University, Fort Worth, TX, USA
| | - Jeanette Garcia
- School of Sport Sciences West Virginia University, Morgantown, WV, USA
| | - Jeffrey R Stout
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - David H Fukuda
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Matt S Stock
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
10
|
Rodden J, Ortega DG, Costa PB. Sitting Less, Recovering Faster: Investigating the Relationship between Daily Sitting Time and Muscle Recovery following Intense Exercise: A Pilot Study. J Funct Morphol Kinesiol 2024; 9:24. [PMID: 38390924 PMCID: PMC10885058 DOI: 10.3390/jfmk9010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
(1) There is growing concern surrounding the adverse effects of prolonged sitting on health, yet its impact on post-exercise recovery remains relatively unexplored. This study aimed to better understand the potential influence of habitual prolonged sitting on recovery time and the unfavorable impact prolonged sitting may have on time to recovery, as assessed by muscle damage and inflammatory markers and an isokinetic dynamometer. (2) Nine college-age men (mean age ± SD = 22.1 ± 3.1 years, body mass = 80.9 ± 15.7 kg, height = 171 ± 9.0 cm, Body Mass Index (BMI) = 27.6 ± 4.9 kg·m2) participated in an exhaustive exercise protocol. Creatine Kinase (CK), Myoglobin (Mb), C-Reactive Protein (CRP), White Blood Cell Count (WBC), Peak Torque (PT), and muscle soreness were measured at baseline and 0, 24, 48, and 72 h post-exercise. Dietary and exercise logs were maintained during the 5-day testing procedure. (3) No significant differences were observed in muscle damage markers (CK [p = 0.068] and Mb [p = 0.128]), inflammatory markers (CRP [p = 0.814] and WBC [p = 0.140]), or PT [p = 0.255]) at any time point. However, a significant positive correlation was found between daily sitting time and the percent increase in CK concentration from 0 h to 72 h (r = 0.738, p = 0.023). Strong correlations were also noted between prolonged sitting and percent change in Mb concentration at 48 h (r = 0.71, p = 0.033) and 72 h (r = 0.889, p = 0.001). There was a significant two-way interaction for time × velocity (p = 0.043) for PT with a simple main effect for time at 60°·s-1 (p = 0.038). No significant associations were detected between daily carbohydrate or protein intake and recovery markers (p > 0.05). (4) The findings suggest minimizing daily sitting time may expedite and potentially aid muscle recovery after an intense exercise bout, although further research is warranted to validate these findings.
Collapse
Affiliation(s)
- Jaime Rodden
- Exercise Physiology Laboratory, Department of Kinesiology, California State University, Fullerton, CA 92831, USA
| | - Dolores G Ortega
- Exercise Physiology Laboratory, Department of Kinesiology, California State University, Fullerton, CA 92831, USA
| | - Pablo B Costa
- Exercise Physiology Laboratory, Department of Kinesiology, California State University, Fullerton, CA 92831, USA
| |
Collapse
|
11
|
Coehoorn CJ, Cruz D, Mueller S, Kamberov LAD, Danzy J, Bouchereau-Lal N, Poole D, Adams A. A single rapid heat stress episode does not result in prolonged elevations in salivary cortisol and C-reactive protein production in firefighters. J Therm Biol 2024; 119:103805. [PMID: 38335849 DOI: 10.1016/j.jtherbio.2024.103805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
In the present experiment, we evaluated the impact of rapid heat stress (RHS) on salivary cortisol and C-reactive protein production pre-RHS, post-RHS, and 24 and 48 h post-RHS exposure among firefighters. Previous research has demonstrated that RHS increases salivary cortisol during RHS and immediately post-RHS exposure. However, no research has evaluated the duration necessary to return to baseline cortisol levels following RHS. Additionally, no studies have analyzed the impact of RHS on inflammatory biomarkers, such as C-reactive protein. This study hypothesized that salivary cortisol and C-reactive protein levels would increase following RHS and then return to pre-RHS levels within 24 h post-exposure. Twenty-four participants performed a steady-state treadmill protocol in an environmental chamber (35 °C; 45% humidity) in full firefighter personal protective equipment until reaching either a core temperature (Tc) of 39 °C or a volitional maximum. The subjects had their saliva collected via the passive drool protocol pre-RHS, post-RHS, and 24 and 48 h post-RHS. Pre-RHS of 0.23 ± 0.03 μg/dL increased post-RHS to 0.51 ± 0.06 μg/dL (p < 0.001). This finding supports previous literature demonstrating the immediate impact of RHS. There were no changes in C-reactive protein. The novel finding of this study is that salivary cortisol levels return to baseline in the 24 h post-RHS exposure. This indicates that 24 h is recommended to recover from RHS and should be applied to prevent the chronic stress response.
Collapse
Affiliation(s)
| | - Diana Cruz
- Louisiana State University Health Shreveport United States
| | | | | | - Jillian Danzy
- Louisiana State University Health Shreveport United States
| | | | - Daniel Poole
- Louisiana State University Health Shreveport United States
| | - Aaron Adams
- Louisiana State University - Shreveport United States
| |
Collapse
|
12
|
Nakahama-Matsushima M, Kamijyo YI, Umemoto Y, Hashizaki T, Nishimura Y, Furusawa K, Furotani Y, Tajima F, Kouda K. Increase in Serum Interleukin-1 Receptor Antagonist (IL-1ra) Levels after Wheelchair Half Marathon Race in Male Athletes with Spinal Cord Injury. J Clin Med 2023; 12:7098. [PMID: 38002710 PMCID: PMC10672277 DOI: 10.3390/jcm12227098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Exercise increases the serum level of interleukin-6 (IL-6), which in turn stimulates the production of various inflammatory cytokine antagonists, such as interleukin-1 receptor antagonist (IL-1ra). Individuals with cervical spinal cord injury (CSCI) are at high risk of inflammatory conditions. This study compared the effects of wheelchair half marathon on the immune system of male athletes with CSCI and those with thoracic/lumber spinal cord injury (SCI). Neutrophil count, IL-1ra, IL-6, and various endocrine parameters were measured before, immediately and 1 h after the race in five CSCI and six SCI who completed the wheelchair marathon race. The percentage of neutrophils was significantly higher in CSCI immediately and 1 h after the race, compared with the baseline, and significantly higher in SCI at 1 h after the race. IL-6 was significantly higher immediately and 1 h after the race in SCI, whereas no such changes were noted in IL-6 in CSCI. IL-1ra was significantly higher at 1 h after the race in both SCI and CSCI. The race was associated with an increase in IL-1ra in both CSCI and SCI. These findings suggest wheelchair half marathon race increases IL-1ra even under stable IL-6 status in male CSCI individuals, and that such post-race increase in IL-1ra is probably mediated through circulatory neutrophils.
Collapse
Affiliation(s)
- Masumi Nakahama-Matsushima
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.N.-M.)
| | - Yoshi-ichiro Kamijyo
- Department of Rehabilitation Medicine, School of Medicine, Dokkyo Medical University, Mibu 321-0293, Japan
| | - Yasunori Umemoto
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.N.-M.)
| | - Takamasa Hashizaki
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.N.-M.)
| | - Yukihide Nishimura
- Department of Rehabilitation Medicine, School of Medicine, Iwate Medical University, Yahaba 028-3695, Japan
| | - Kazunari Furusawa
- Department of Rehabilitation Medicine, Kibikogen Rehabilitation Center for Employment Injuries, Okayama 716-1241, Japan
| | - Yohei Furotani
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.N.-M.)
| | - Fumihiro Tajima
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.N.-M.)
| | - Ken Kouda
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.N.-M.)
| |
Collapse
|
13
|
Athanasiou N, Bogdanis GC, Mastorakos G. Endocrine responses of the stress system to different types of exercise. Rev Endocr Metab Disord 2023; 24:251-266. [PMID: 36242699 PMCID: PMC10023776 DOI: 10.1007/s11154-022-09758-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 10/17/2022]
Abstract
Physical activity is an important part of human lifestyle although a large percentage of the population remains sedentary. Exercise represents a stress paradigm in which many regulatory endocrine systems are involved to achieve homeostasis. These endocrine adaptive responses may be either beneficial or harmful in case they exceed a certain threshold. The aim of this review is to examine the adaptive endocrine responses of hypothalamic-pituitary-adrenal axis (HPA), catecholamines, cytokines, growth hormone (GH) and prolactin (PRL) to a single bout or regular exercise of three distinct types of exercise, namely endurance, high-intensity interval (HIIE) and resistance exercise. In summary, a single bout of endurance exercise induces cortisol increase, while regular endurance exercise-induced activation of the HPA axis results to relatively increased basal cortisolemia; single bout or regular exercise induce similar GH peak responses; regular HIIE training lowers basal cortisol concentrations, while catecholamine response is reduced in regular HIIE compared with a single bout of HIIE. HPA axis response to resistance exercise depends on the intensity and volume of the exercise. A single bout of resistance exercise is characterized by mild HPA axis stimulation while regular resistance training in elderly results in attenuated inflammatory response and decreased resting cytokine concentrations. In conclusion, it is important to consider which type of exercise and what threshold is suitable for different target groups of exercising people. This approach intends to suggest types of exercise appropriate for different target groups in health and disease and subsequently to introduce them as medical prescription models.
Collapse
Affiliation(s)
- Nikolaos Athanasiou
- grid.5216.00000 0001 2155 0800Unit of Endocrinology, Diabetes mellitus and Metabolism, School of medicine, ARETAIEION hospital, National and Kapodistrian University of Athens, Neofytou Vamva str 10674, Athens, Greece
- grid.414655.70000 0004 4670 4329Dermatology Department, Evangelismos General hospital, Athens, Greece Ipsilantou 45-47, 10676
| | - Gregory C. Bogdanis
- grid.5216.00000 0001 2155 0800School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 17237 Dafne, Greece
| | - George Mastorakos
- grid.5216.00000 0001 2155 0800Unit of Endocrinology, Diabetes mellitus and Metabolism, School of medicine, ARETAIEION hospital, National and Kapodistrian University of Athens, Neofytou Vamva str 10674, Athens, Greece
| |
Collapse
|
14
|
Ueda H, Saegusa R, Tsuchiya Y, Ochi E. Pedal cadence does not affect muscle damage to eccentric cycling performed at similar mechanical work. Front Physiol 2023; 14:1140359. [PMID: 36969610 PMCID: PMC10036782 DOI: 10.3389/fphys.2023.1140359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Purpose: This study aimed to investigate muscle damage when performing equal mechanical work of fast and slow pedaling speed by eccentric muscle actions (ECCs) cycling.Methods: Nineteen young men [mean ± standard deviation (SD) age: 21.0 ± 2.2 years; height: 172.7 ± 5.9 cm; and body mass: 70.2 ± 10.5 kg] performed maximal effort of ECCs cycling exercise with fast speed (Fast) and slow speed trials (Slow). First, subjects performed the Fast for 5 min by one leg. Second, Slow performed until the total mechanical work was equal to that generated during Fast other one leg. Changes in maximal voluntary isometric contraction (MVC) torque of knee extension, isokinetic pedaling peak torque (IPT), range of motion (ROM), muscle soreness, thigh circumference, muscle echo intensity, and muscle stiffness were assessed before exercise, and immediately after exercise, and 1 and 4 days after exercise.Results: Exercise time was observed in the Slow (1422.0 ± 330.0 s) longer than Fast (300.0 ± 0.0 s). However, a significant difference was not observed in total work (Fast:214.8 ± 42.4 J/kg, Slow: 214.3 ± 42.2 J/kg). A significant interaction effect was not observed in peak values of MVC torque (Fast:1.7 ± 0.4 Nm/kg, Slow: 1.8 ± 0.5 Nm/kg), IPT, muscle soreness (Fast:4.3 ± 1.6 cm, Slow: 4.7 ± 2.9 cm). In addition, ROM, circumference, muscle thickness, muscle echo intensity, and muscle stiffness also showed no significant interaction.Conclusion: The magnitude of muscle damage is similar for ECCs cycling with equal work regardless of velocity.
Collapse
Affiliation(s)
- Hisashi Ueda
- Faculty of Healthcare and Medical Sports, Teikyo Heisei University, Chiba, Japan
| | - Riki Saegusa
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Yosuke Tsuchiya
- Center for Liberal Arts, Laboratory of Health and Sports Sciences, Meiji Gakuin University, Yokohama, Japan
| | - Eisuke Ochi
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
- Graduate School of Sports and Health Studies, Hosei University, Tokyo, Japan
- *Correspondence: Eisuke Ochi,
| |
Collapse
|
15
|
Tsuchiya Y, Yanagimoto K, Sunagawa N, Ueda H, Tsuji K, Ochi E. Omega-3 fatty acids enhance the beneficial effect of BCAA supplementation on muscle function following eccentric contractions. J Int Soc Sports Nutr 2022; 19:565-579. [PMID: 36105122 PMCID: PMC9467596 DOI: 10.1080/15502783.2022.2117994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- Yosuke Tsuchiya
- Meiji Gakuin University, Center for Liberal Arts, Laboratory of Health and Sports Sciences, Kanagawa, Japan
| | | | | | - Hisashi Ueda
- Teikyo Heisei University, Faculty of Health and Medical Science, Chiba, Japan
| | - Katsunori Tsuji
- Hosei University, Faculty of Bioscience and Applied Chemistry, Tokyo, Japan
| | - Eisuke Ochi
- Hosei University, Faculty of Bioscience and Applied Chemistry, Tokyo, Japan
- Hosei University, Graduate School of Sports and Health Studies, Tokyo, Japan
| |
Collapse
|
16
|
The Effect of Single Bout Treatment of Heat or Cold Intervention on Delayed Onset Muscle Soreness Induced by Eccentric Contraction. Healthcare (Basel) 2022; 10:healthcare10122556. [PMID: 36554079 PMCID: PMC9778753 DOI: 10.3390/healthcare10122556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
We studied the preventive effects of heat or cold therapy after repeated eccentric contraction against torque reduction, muscle soreness, and range of motion (ROM) due to delayed-onset muscle soreness (DOMS). A total of 42 healthy male subjects were randomly allocated into three groups: the HEAT group received heat therapy using an ultra-short-wave device; the ICE group received ice therapy using an ice pack; the Control group received no intervention. The measurements included maximal voluntary isometric, concentric, and eccentric elbow flexion torque, elbow extension ROM, pressure pain threshold, and muscle soreness with stretching muscle thickness and echo intensity. The measurements were taken before (pre), after (post), after (t-post), one-four days after, and seven days after the muscle damage protocol. The results showed the main effect of time on all measurements, but no significant interactions were observed. The results of this study suggest that heat or cold therapy in the first 30 min after intense eccentric exercise is insufficient to exert a preventive effect against DOMS.
Collapse
|
17
|
Yoshida R, Sato S, Kasahara K, Murakami Y, Murakoshi F, Aizawa K, Koizumi R, Nosaka K, Nakamura M. Greater effects by performing a small number of eccentric contractions daily than a larger number of them once a week. Scand J Med Sci Sports 2022; 32:1602-1614. [PMID: 35908200 DOI: 10.1111/sms.14220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/25/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022]
Abstract
Our previous study found that one maximal voluntary eccentric contraction (MVC-ECC) performed daily for five days a week for four weeks increased MVC-ECC, isometric (MVC-ISO), and concentric contraction (MVC-CON) torque of the elbow flexors more than 10%. The present study investigated the effects of six maximal voluntary eccentric contractions on the MVC torques and biceps brachii and brachialis muscle thickness (MT). Thirty-six healthy young adults were placed to one of the three groups (N=12 per group); the 6×1 group that performed one set of six contractions once a week, the 6×5 group that performed one set of six contractions a day for 5 days a week, and the 30×1 group that performed five sets of six contractions a day in a week. The training duration was 4 weeks for all groups, and changes in MVC-ECC, MVC-CON and MVC-ISO torque, and MT before and after the 4-week training were compared among the groups. The 6×1 group did not show significant changes in muscle strength and MT. Significant (p>0.05) increases in MVC-ECC (13.5±11.5%), MVC-ISO (9.3±5.5%), MVC-CON torque (11.1±7.4%) were evident for the 6×5 group only, and increases in MT were found for the 6×5 (10.4±4.4%) and 30×1 (8.0±5.8%) groups without a significant difference. These results suggest that performing a small number of eccentric contractions five days a week is more effective for increasing muscle strength than performing a larger volume of eccentric contractions once a week. However, it appears that training volume is a factor for muscle hypertrophy in a short-term training.
Collapse
Affiliation(s)
- Riku Yoshida
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, 950-3198, Japan
| | - Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, 950-3198, Japan.,Department of Rehabilitation, Matsumura General Hospital, 1-1 Kotaroumachi, Taira, Iwaki City, 970-8026, Fukushima, Japan
| | - Kazuki Kasahara
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, 950-3198, Japan
| | - Yuta Murakami
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, 950-3198, Japan
| | - Fu Murakoshi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, 950-3198, Japan
| | - Kodai Aizawa
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, 950-3198, Japan
| | - Ryoma Koizumi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, 950-3198, Japan
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027, Australia
| | - Masatoshi Nakamura
- Faculty of Rehabilitation Sciences, Nishi Kyushu University, 4490-9 Ozaki, Kanzaki, Saga, 842-8585, Japan
| |
Collapse
|
18
|
Ormsbee MJ, Saracino PG, Morrissey MC, Donaldson J, Rentería LI, McKune AJ. Pre-sleep protein supplementation after an acute bout of evening resistance exercise does not improve next day performance or recovery in resistance trained men. J Int Soc Sports Nutr 2022; 19:164-178. [PMID: 35599912 PMCID: PMC9116400 DOI: 10.1080/15502783.2022.2036451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background To evaluate the effect of pre-sleep protein supplementation after an acute bout of evening resistance training on next day performance and recovery the following day in physically active men. Methods Eighteen resistance trained men performed a single bout of resistance exercise then received either a pre-sleep protein (PRO) supplement containing 40 g of casein protein (PRO; n = 10; mean ± SD; age = 24 ± 4 yrs; height = 1.81 ± 0.08 m; weight = 84.9 ± 9.5 kg) or a non-caloric, flavor matched placebo (PLA; n = 8; age = 28 ± 10 yrs; height = 1.81 ± 0.07 m; weight = 86.7 ± 11.0 kg) 30 min before sleep (1 h after a standard recovery drink). Blood samples were obtained pre-exercise and the following morning (+12-h) to measure creatine kinase and C-reactive protein. Visual analog scales were utilized to assess perceived pain, hunger, and recovery. One-repetition maximum (1RM) tests for barbell bench press and squat were performed pre-exercise and the following morning (+12-h). Statistical analysis was performed using SPSS (V.23) and p ≤ 0.05 was considered statistically significant. Results There were no significant differences between the groups in next morning performance or muscle damage biomarkers. However, pre-sleep PRO resulted in a lower perception of hunger that approached significance the following morning when compared to PLA (PRO:43.6 ± 31.2, PLA: 69.4 ± 2.22; 95% C.I. = −53.6, 2.0; p = 0.07; d = 0.95). Conclusions Following an evening bout of exercise, pre-sleep PRO did not further improve next morning muscle damage biomarkers or maximal strength performance in resistance trained men compared to a non-caloric PLA. However, there may be implications for lower perceived hunger the next morning with pre-sleep PRO consumption compared to PLA.
Collapse
Affiliation(s)
- Michael J. Ormsbee
- Institute of Sports Science and Medicine, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, USA
- School of Health Sciences, Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Patrick G. Saracino
- Institute of Sports Science and Medicine, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, USA
| | | | - Jaymie Donaldson
- School of Health Sciences, Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Liliana I. Rentería
- Institute of Sports Science and Medicine, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, USA
| | - Andrew J. McKune
- Institute of Sports Science and Medicine, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, USA
- School of Health Sciences, Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban, South Africa
- Research Institute for Sport and Exercise Science, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
19
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Zhao L, Wang X. Myokines: Novel therapeutic targets for diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:1014581. [PMID: 36387916 PMCID: PMC9640471 DOI: 10.3389/fendo.2022.1014581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
With the increasing incidence of diabetic nephropathy (DN), there is an urgent need to find effective DN preventive and therapeutic modalities. It is widely believed that effective exercise is good for health. However, the beneficial role of exercise in kidney disease, especially in DN, and the underlying molecular mechanisms have rarely been reported. Muscle is not only an important motor organ but also an important endocrine organ, secreting a group of proteins called "myokines" into the blood circulation. Circulating myokines then move to various target organs to play different biological roles. In this review, we summarize the currently known myokines and the progress in research relating them to DN and discuss its potential as a therapeutic target for DN.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xi Wang,
| |
Collapse
|
20
|
Cheshier BC, Jacobson BH, Diehl C. Effect of White Willow Bark on Delayed Onset Muscle Soreness Following Resistance Training: A Pilot Study. THE ASIAN JOURNAL OF KINESIOLOGY 2021. [DOI: 10.15758/ajk.2021.23.4.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Delayed onset muscle soreness (DOMS) is discomfort that occurs within 8-24hrs following an unaccustomed bout of physical activity that peaks within 24-27hrs and slowly resolves on its own. White willow bark (WWB) is a nutritional supplement that is believed to have anti-inflammatory and analgesic properties like aspirin but without the risk of GI adverse effects. The purpose of this investigation is to determine the effectiveness of WWB on alleviating the symptoms of DOMS following exercise.METHODS Twenty-five individuals volunteered to participate and were randomly assigned to take WWB (798mg salicin) or placebo for 5 days following a lower body resistance training session which consisted of 5X10 lunges at 40% body weight (BW) and 3X fatigue leg press at 75%BW. Test procedures included visual analog scale (VAS), mid-thigh circumference and pressure pain threshold. VAS was measured pre, all five days of the supplementation period and day 6 (post-supplementation). All other variables were measured at pre, immediate, day 3(72hrs), and day 6 (post-supplementation).RESULTS No condition X time interaction was observed (p > 0.05) for any variable. However, VAS scores were lower in the WWB compared to the placebo for all time frames. There was a significant main effect of time for VAS scores indicating muscle soreness for hamstrings (p < 0.001), gluteal (p < 0.001), gastrocnemius (p < 0.001) and quadriceps (p < 0.001). In addition, there was a significant main effect of time for right midthigh pressure pain threshold (p = 0.02), mid-right (p < 0.001) and mid-left (p < 0.001) thigh circumference.CONCLUSIONS WWB may reduce subjective feelings of muscle soreness and appears to have analgesic properties.
Collapse
|
21
|
Weber MG, Dias SS, de Angelis TR, Fernandes EV, Bernardes AG, Milanez VF, Jussiani EI, de Paula Ramos S. The use of BCAA to decrease delayed-onset muscle soreness after a single bout of exercise: a systematic review and meta-analysis. Amino Acids 2021; 53:1663-1678. [PMID: 34669012 DOI: 10.1007/s00726-021-03089-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
Branched-chain amino acids (BCAA) are used as a recovery method after exercise-induced muscle damage (EIMD). Although data suggest that BCAA may alleviate the delayed-onset muscle soreness (DOMS) evoked by EIMD, there is no consensus about the most effective supplementation protocol. To investigate the effects of BCAA on DOMS after a single exercise session that caused EIMD, a systematic review and meta-analysis were conducted on the effectiveness of BCAA supplementation to reduce DOMS symptoms in healthy subjects after a single session of EIMD. Randomized clinical trials (RCT) were searched in Medline, Cochrane Library, Science Direct, SciELO, LILACS, SciVerse Scopus, Springer Link journals, Wiley Online Library, and Scholar Google, until May 2021. Ten RCTs were included in the systematic review and nine in the meta-analysis. Seven studies demonstrated that BCAA reduced DOMS after 24 to 72 h. BCAA doses of up to 255 mg/kg/day, or in trained subjects, for mild to moderate EIMD, could blunt DOMS symptoms. However, high variability between studies due to training status, different doses, time of treatment, and severity of EIMD do not allow us to conclude whether BCAA supplementation is efficient in untrained subjects, applied acutely or during a period of pre to post days of EIMD, and at higher doses (> 255 mg/kg/day). The overall effects of BCAA on DOMS after a single session of exercise were considered useful for improving muscle recovery by reducing DOMS in trained subjects, at low doses, in mild to moderate EIMD, and should not be administered only after the EIMD protocol.
Collapse
Affiliation(s)
- Martim Gomes Weber
- Research Group in Tissue Regeneration, Adaptation and Repair, State University of Londrina, Londrina, Brazil
| | - Silas Seolin Dias
- Research Group in Tissue Regeneration, Adaptation and Repair, State University of Londrina, Londrina, Brazil
| | - Tarlyson Regioli de Angelis
- Research Group in Tissue Regeneration, Adaptation and Repair, State University of Londrina, Londrina, Brazil
| | - Eduardo Vignoto Fernandes
- Research Group in Tissue Regeneration, Adaptation and Repair, Federal University of Jataí, Jataí, Brazil
| | - Andrea Gomes Bernardes
- Research Group in Tissue Regeneration, Adaptation and Repair, State University of Londrina, Londrina, Brazil
| | | | | | - Solange de Paula Ramos
- Research Group in Tissue Regeneration, Adaptation and Repair, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid PR 445 km380, Londrina, Paraná, CEP: 89067-900, Brazil.
| |
Collapse
|
22
|
Effect of Resonant Frequency Vibration on Delayed Onset Muscle Soreness and Resulting Stiffness as Measured by Shear-Wave Elastography. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157853. [PMID: 34360146 PMCID: PMC8345543 DOI: 10.3390/ijerph18157853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/31/2022]
Abstract
This study utilized resonant frequency vibration to the upper body to determine changes in pain, stiffness and isometric strength of the biceps brachii after eccentric damage. Thirty-one participants without recent resistance training were randomized into three groups: a Control (C) group and two eccentric exercise groups (No vibration (NV) and Vibration (V)). After muscle damage, participants in the V group received upper body vibration (UBV) therapy for 5 min on days 1-4. All participants completed a visual analog scale (VAS), maximum voluntary isometric contraction (MVIC), and shear wave elastography (SWE) of the bicep at baseline (pre-exercise), 24 h, 48 h, and 1-week post exercise. There was a significant difference between V and NV at 24 h for VAS (p = 0.0051), at 24 h and 1-week for MVIC (p = 0.0017 and p = 0.0016, respectively). There was a significant decrease in SWE for the V group from 24-48 h (p = 0.0003), while there was no significant change in the NV group (p = 0.9341). The use of UBV resonant vibration decreased MVIC decrement and reduced VAS pain ratings at 24 h post eccentric damage. SWE was strongly negatively correlated with MVIC and may function as a predictor of intrinsic muscle state in the time course of recovery of the biceps brachii.
Collapse
|
23
|
Trivisonno AJ, Laffan MR, Giuliani HK, Mota JA, Gerstner GR, Smith-Ryan AE, Ryan ED. The influence of age on the recovery from worksite resistance exercise in career firefighters. Exp Gerontol 2021; 152:111467. [PMID: 34237392 DOI: 10.1016/j.exger.2021.111467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
Resistance exercise is an important strategy to reduce injuries and improve performance in the fire service. However, given the large age range of firefighters, it is important to determine if age influences their recovery following an acute bout of resistance exercise. PURPOSE To examine the changes in indirect markers of muscle damage in young and older firefighters following a feasible worksite resistance exercise routine. METHODS Nineteen young (25.5 ± 3.4 years) and 19 older male career firefighters (50.3 ± 3.5 years) completed pre-testing, an acute bout of resistance exercise, and post-testing at 24, 48, and 72 h post-exercise at their fire station. Prior to all testing, firefighters completed a work-related fatigue (WRF) questionnaire to account for potential unanticipated differences in previous shift workloads. Testing included perceived muscle soreness, ultrasonography to quantify muscle size and echo intensity (EI) of the vastus lateralis (VL) and biceps brachii (BB), countermovement jump (CMJ) height and velocity, upper body (UB) peak force (PF), lower body (LB) PF and rapid force, and electromyographic (EMG) amplitude of the VL. The resistance training session included 3 sets of 8-10 repetitions of a deadlift, shoulder press, lunge, and upright row exercise at 80% 1-RM. All recovery variables were analyzed using a linear mixed model, controlling for WRF. RESULTS There was no interaction (age × time) for any of the variables and a similar training volume were completed between groups (P ≥ 0.171). Muscle soreness, CMJ height and velocity, UB PF, LB rapid force and EMG amplitude at later time intervals (100-200 ms), and VL and BB muscle size were altered from baseline (P ≤ 0.044) for 48, 24, 48, 72, and 72 h post-exercise, respectively. Young firefighters exhibited greater CMJ height and velocity, LB PF, LB rapid force (200 ms), and lower VL EI values than the older firefighters (P ≤ 0.047). CONCLUSIONS Age did not influence the recovery from an acute bout of worksite resistance exercise in firefighters. However, UB muscle strength, CMJ performance, and LB rapid force production were reduced 24-72 h post-exercise. Appropriately scheduled and chronic on-duty resistance training may mitigate these decrements.
Collapse
Affiliation(s)
- Abigail J Trivisonno
- Neuromuscular Assessment Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Megan R Laffan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hayden K Giuliani
- Neuromuscular Assessment Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacob A Mota
- Department of Kinesiology, University of Alabama, Tuscaloosa, AL, USA
| | - Gena R Gerstner
- Neuromechanics Laboratory, Department of Human Movement Sciences, Old Dominion University, Norfolk, VA, USA; North Carolina Occupational Safety and Health Education and Research Center, Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abbie E Smith-Ryan
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric D Ryan
- Neuromuscular Assessment Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
24
|
Merrigan JJ, Jones MT. Acute Inflammatory, Cortisol, and Soreness Responses to Supramaximal Accentuated Eccentric Loading. J Strength Cond Res 2021; 35:S107-S113. [PMID: 33666595 DOI: 10.1519/jsc.0000000000003764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Merrigan, JJ and Jones, MT. Acute inflammatory, cortisol, and soreness responses to supramaximal accentuated eccentric loading. J Strength Cond Res 35(2S): S107-S113, 2021-The purpose was to determine differences in time under tension, cortisol, inflammation, and perceived soreness between accentuated eccentric (AEL) and traditional loading (TRA) resistance exercise protocols. Resistance-trained men (n = 21) completed the AEL and TRA protocols in a random order, separated by 48 hours (sets × reps at eccentric/concentric) as follows: AEL65, 3 × 5 at 120/65% 1 repetition maximum (RM); AEL80, 3 × 3 at 120/80% 1RM; TRA65, 3 × 5 at 65/65% 1RM; and TRA80, 3 × 3 at 80/80% 1RM. Four linear position transducers measured eccentric time under tension (ETUT) and total time under tension (TTUT). Ultrasonography measured vastus lateralis muscle thickness and echo intensity at baseline and immediately post-exercise. Salivary cortisol was assessed at baseline, 0-, 15-, 30-, and 60-minute post-exercise. Perceived soreness was assessed at baseline, 24-, and 48-hours post-exercise. During rep 1, AEL65 and AEL80 had longer ETUT and TTUT than TRA65 (p ≤ 0.002) and TRA80 (p ≤ 0.008), respectively. However, AEL65 had shorter ETUT (reps 3-5) and TTUT (reps 3-5) than TRA65 (p ≤ 0.043). Similarly, ETUT (reps 2-3) and TTUT (rep 3) was shorter in AEL80 than TRA80 (p ≤ 0.045). However, there was no protocol effect for ETUT and TTUT (p > 0.05). Muscle thickness changes were trivial after each protocol (AEL80, d = 0.19; TRA80, d = 0.15; AEL65, d = 0.24; TRA65, d = 0.23), but changes in echo intensity were moderate (AEL80, d = 0.61; TRA80, d = 0.61; AEL65, d = 0.61; TRA65, d = 0.76). Salivary cortisol decreased below baseline at 30- and 60-minute post-exercise (p ≤ 0.006). Perceived soreness elevated from baseline to 24 hours for AEL80 (p = 0.006). The inflammatory, cortisol, and soreness responses after AEL were either low or similar to TRA, indicating similar recovery patterns between protocols.
Collapse
|
25
|
Tsuchiya Y, Ueda H, Yanagimoto K, Kato A, Ochi E. 4-week eicosapentaenoic acid-rich fish oil supplementation partially protects muscular damage following eccentric contractions. J Int Soc Sports Nutr 2021; 18:18. [PMID: 33648546 PMCID: PMC7923476 DOI: 10.1186/s12970-021-00411-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/26/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND We previously showed 8-week of fish oil supplementation attenuated muscle damage. However, the effect of a shorter period of fish oil supplementation is unclear. The present study investigated the effect of fish oil, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for 4 weeks on muscular damage caused by eccentric contractions (ECCs) of the elbow flexors. METHODS Twenty-two untrained men were recruited in this double-blind, placebo-controlled, parallel design study and the subjects were randomly assigned to the EPA and DHA group (EPA and DHA, n = 11) and placebo group (PL, n = 11). They consumed either EPA 600 mg and DHA 260 mg per day or placebo supplement for 4 weeks prior to exercise. Subjects performed 60 ECCs at 100 % maximal voluntary contraction (MVC) using a dumbbell. Changes in MVC torque, range of motion (ROM), upper arm circumference, muscle soreness, echo intensity, muscle thickness, serum creatine kinase (CK), and interleukin-6 (IL-6) were assessed before exercise; immediately after exercise; and 1, 2, 3, and 5 days after exercise. RESULTS ROM was significantly higher in the EPA and DHA group than in the PL group immediately after performing ECCs (p < 0.05). No differences between groups were observed in terms of MVC torque, upper arm circumference, muscle soreness, echo intensity, and thickness. A significant difference was observed in serum CK 3 days after ECCs (p < 0.05). CONCLUSIONS We concluded that shorter period EPA and DHA supplementation benefits joint flexibility and protection of muscle fiber following ECCs.
Collapse
Affiliation(s)
- Yosuke Tsuchiya
- Laboratory of Health and Sports Sciences, Meiji Gakuin University, Kanagawa, Japan
| | - Hisashi Ueda
- Faculty of Health and Medical Science, Teikyo Heisei University, Chiba, Japan
| | | | - Ayaka Kato
- Food Function R&D Center, Nippon Suisan Kaisha, Ltd, Tokyo, Japan
| | - Eisuke Ochi
- Faculty of Bioscience and Applied Chemistry, Hosei University, 3-7-2, Kajino, Koganei, 184-8584, Tokyo, Japan.
- Graduate School of Sports and Health Studies, Hosei University, Tokyo, Japan.
| |
Collapse
|
26
|
Ueda H, Tsuchiya Y, Ochi E. Fast-Velocity Eccentric Cycling Exercise Causes Greater Muscle Damage Than Slow Eccentric Cycling. Front Physiol 2020; 11:596640. [PMID: 33381052 PMCID: PMC7767822 DOI: 10.3389/fphys.2020.596640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
This study aims to investigate muscle damage occurring in the early and recovery phases after fast-velocity and slow-velocity eccentric cycling. Eleven untrained men (age, 20.0 ± 1.7 years; height, 171.3 ± 6.8 cm; weight, 61.8 ± 7.7 kg; and %body fat, 13.2 ± 2.9%) performed slow-velocity maximal isokinetic eccentric cycling (slow-velocity; 30°/s) with one leg and fast-velocity (fast-velocity; 210°/s) isokinetic eccentric cycling with the other leg. Changes in maximal voluntary isokinetic concentric contraction (MVCC) torque at velocities of 30 and 210°/s, range of motion (ROM), and muscle soreness were assessed by pressure using a digital muscle stiffness instrument; thigh circumference, muscle echo intensity, and muscle stiffness were assessed before exercise, and immediately after exercise, 1 day, and 4 days after exercise. Comparing with the results obtained for slow-velocity cycling (post: 215.9 ± 32.3 Nm, day 1: 192.9 ± 47.4 Nm, day 4: 184.3 ± 47.2 Nm) and before exercise, MVCC after fast-velocity cycling significantly decreased at immediately (160.4 ± 43.5 Nm), 1 day (143.6 ± 54.1 Nm), and 4 days (150.1 ± 44.5 Nm) after exercise (p < 0.05). Significant increase in muscle soreness for vastus lateralis was observed after fast-velocity cycling (41.2 ± 16.9 mm) compared with slow-velocity cycling (23.7 ± 12.2 mm) 4 days after exercise (p < 0.05). However, no significant difference in muscle soreness was observed for rectus femoris and vastus medialis at any time points after exercise. In addition, no significant differences were observed in the ROM, thigh circumference, muscle echo intensity, and muscle stiffness. In conclusion, fast-velocity eccentric cycling causes a decrease in muscle strength and an increase in soreness as compared to slow-velocity eccentric cycling.
Collapse
Affiliation(s)
- Hisashi Ueda
- Faculty of Health and Medical Science, Teikyo Heisei University, Tokyo, Japan
| | - Yosuke Tsuchiya
- Laboratory of Health and Sports Sciences, Meiji Gakuin University, Kanagawa, Japan
| | - Eisuke Ochi
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan.,Graduate School of Sports and Health Studies, Hosei University, Tokyo, Japan
| |
Collapse
|
27
|
Maeda H, Saito M, Ishida K, Akima H. Relationships between resting blood flow and the indices of muscle damage after eccentric contractions. Eur J Appl Physiol 2020; 120:2183-2192. [PMID: 32712700 DOI: 10.1007/s00421-020-04442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/16/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of the study is to examine the relationships between increments in resting blood flow and isometric maximal voluntary contraction (MVC) force reduction, muscle soreness, and swelling after eccentric contractions (ECs). METHODS Twenty-one young healthy men (age 20.8 ± 1.6 years; height 172.0 ± 5.3 cm; weight 64.9 ± 7.7 kg) were recruited for this study. All participants performed right arm ECs in five sets of 20 repetitions with 3 min of rest between the sets. The dumbbell weight corresponded to 60% MVC force of isometric contraction of elbow flexors with 90° elbow joint angle. Resting forearm blood flow (FBF), the MVC force, the muscle thickness (MT), and muscle soreness of elbow flexors, heart rate (HR), and blood pressure (BP) of brachial artery were measured before, 24 and 48 h after ECs. RESULTS Average and peak resting FBF after ECs significantly changed from the average values before ECs (21% and 39% increase, respectively, P < 0.01). However, resting HR and BP were not significantly different after ECs. Average increase in resting FBF showed a significant relationship with average isometric MVC force reduction (r = - 0.45, P < 0.05), peak isometric MVC force reduction (r = - 0.48, P < 0.05), average muscle soreness (r = 0.49, P < 0.05), and peak muscle soreness (r = 0.49, P < 0.05). Moreover, stepwise multiple regression analysis revealed that average increased resting FBF was explained by isometric MVC force reduction and muscle soreness (adjusted R2 = 0.33). CONCLUSIONS These results suggested that increments in resting blood flow reflect muscle damage, and increased resting blood flow may be a result of acute inflammatory response induced by muscle damage.
Collapse
Affiliation(s)
- Hisashi Maeda
- Graduate School of Medicine, Nagoya University, Tsurumai 65, Showa, Nagoya, Aichi, 466-8560, Japan.
| | - Mitsuru Saito
- Applied Physiology Laboratory, Toyota Technological Institute, Hisakata 2-12-1, Tenpaku, Nagoya, Aichi, 468-0034, Japan
| | - Koji Ishida
- Graduate School of Medicine, Nagoya University, Tsurumai 65, Showa, Nagoya, Aichi, 466-8560, Japan.,Research Center of Health, Physical Fitness and Sports, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-0814, Japan
| | - Hiroshi Akima
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-0814, Japan.,Graduate School of Education and Human Development, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-0814, Japan
| |
Collapse
|
28
|
Tsuchiya Y, Ueda H, Sugita N, Ochi E. Low Dose of β-Hydroxy-β-Methylbutyrate (HMB) Alleviates Muscle Strength Loss and Limited Joint Flexibility following Eccentric Contractions. J Am Coll Nutr 2020; 40:211-218. [PMID: 32281915 DOI: 10.1080/07315724.2020.1752330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: The optimal dose of β-hydroxy-β-methylbutyrate (HMB) required for decreasing muscle damage remains unknown. Therefore, this study investigated the supplemental effect of low-dose HMB on muscle damage following eccentric contractions (ECCs) of human elbow flexors.Methods: Twenty untrained men (aged 20-26; height, 169.4 ± 5.7 cm; weight, 68.2 ± 11.3 kg; body mass index, 23.7 ± 3.3) completed the double-blind, placebo-controlled, parallel design study. The subjects were randomly assigned to the ingestion of HMB supplement (HMB, n = 10) or placebo group (PL, n = 10). After the subjects of 1.5 g HMB or placebo pills per day for 2 weeks, they performed six sets of 10 ECCs at 100% maximal voluntary contraction (MVC) using dumbbell. Changes in MVC torque, range of motion (ROM), upper arm circumference, muscle soreness, and muscle stiffness were assessed before, immediately after, 1, 2, 3, 5 days after exercise.Results: MVC torque was significantly higher in the HMB group than in the PL group immediately after (HMB, -56.8%; PL, -67.1%) as well as 3 (HMB: -25.5%, PL: -48.7%) and 5 (HMB: -22.5%, PL: -44.0%) days after performing ECCs (p < 0.05). Additionally, ROM was significantly higher in the HMB group than in the PL group immediately after (HMB, -29.8%; PL, -50.5%) and 5 (HMB: -26.1%, PL: -43.3%) days after performing ECCs (p < 0.05). No between-group differences were observed in other muscle damage markers.Conclusion: The low-dose HMB supplementation demonstrated a moderate overall impact and played a beneficial role in muscle dysfunction and joint flexibility following ECCs.
Collapse
Affiliation(s)
- Yosuke Tsuchiya
- Faculty of Modern Life, Teikyo Heisei University, Tokyo, Japan
| | - Hisashi Ueda
- Faculty of Health and Medical Science, Teikyo Heisei University, Chiba, Japan
| | - Naoki Sugita
- Fine Chemical Research & Development Section, Kobayashi Perfumery Co., Ltd, Tokyo, Japan
| | - Eisuke Ochi
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| |
Collapse
|
29
|
Wernbom M, Schoenfeld BJ, Paulsen G, Bjørnsen T, Cumming KT, Aagaard P, Clark BC, Raastad T. Commentary: Can Blood Flow Restricted Exercise Cause Muscle Damage? Commentary on Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front Physiol 2020; 11:243. [PMID: 32265737 PMCID: PMC7098946 DOI: 10.3389/fphys.2020.00243] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/02/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Mathias Wernbom
- Center for Health and Performance, Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
- Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Brad J. Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, NY, United States
| | - Gøran Paulsen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Thomas Bjørnsen
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - Kristoffer T. Cumming
- Department of Sports, Physical Education and Outdoor Studies, Faculty of Humanities, Sports and Educational Science, University of South-Eastern Norway, Notodden, Norway
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Brian C. Clark
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
30
|
Lanferdini FJ, Manganelli BF, Lopez P, Klein KD, Cadore EL, Vaz MA. Echo Intensity Reliability for the Analysis of Different Muscle Areas in Athletes. J Strength Cond Res 2020; 33:3353-3360. [PMID: 31765345 DOI: 10.1519/jsc.0000000000003063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lanferdini, FJ, Manganelli, BF, Lopez, P, Klein, KD, Cadore, EL, and Vaz, MA. Echo intensity reliability for the analysis of different muscle areas in athletes. J Strength Cond Res 33(12): 3353-3360, 2019-Skeletal muscles' echo intensity (EI) is used as a parameter to evaluate muscle damage and muscle quality after exercise or training. However, recent muscle EI studies have used regions of interest (ROIs) of different sizes for assessing muscle damage and muscle quality, which may lead to different results if the different ROIs from the same muscle are not reliable. Although a maximum rectangular ROI (RET-ROI), included in the muscles' anatomical cross-sectional area, can be used to represent the maximum muscle ROI (MAX-ROI), no studies were found that investigated the reliability of the evaluations of different ROIs for the EI of superficial vs. deep muscles of the thigh. In addition, no studies have evaluated different ROIs in cyclists, at different days and analyzed by different raters. The aim of this study was to evaluate the EI reliability of rectus femoris (RF) and vastus intermedius (VI) muscles of cyclists. Twenty cyclists visited the laboratory 4 times for the evaluation of RF and VI muscles transversal ultrasound images. Echo intensity was determined from grayscale mean values by 2 examiners who performed the analysis with 3 different ROIs: MAX-ROI, RET-ROI, and 1-cm ROI (1CM-ROI). The between-ROI EI data reliability showed a strong correlation in both RF (r ≥ 0.79) and VI (r ≥ 0.87) muscles. Bland-Altman tests demonstrated high agreement among RF ROI muscle areas (p > 0.05), with no agreement between the VI areas (p < 0.05). Only the RF muscle MAX-ROI, RET-ROI, and 1CM-ROI areas are similar for EI analysis, with no similarities for the same VI muscle areas.
Collapse
Affiliation(s)
- Fábio J Lanferdini
- Laboratory of Exercise Research, School of Physical Education, Physiotherapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | |
Collapse
|
31
|
Cheng AJ, Jude B, Lanner JT. Intramuscular mechanisms of overtraining. Redox Biol 2020; 35:101480. [PMID: 32179050 PMCID: PMC7284919 DOI: 10.1016/j.redox.2020.101480] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/08/2020] [Accepted: 02/24/2020] [Indexed: 01/04/2023] Open
Abstract
Strenuous exercise is a potent stimulus to induce beneficial skeletal muscle adaptations, ranging from increased endurance due to mitochondrial biogenesis and angiogenesis, to increased strength from hypertrophy. While exercise is necessary to trigger and stimulate muscle adaptations, the post-exercise recovery period is equally critical in providing sufficient time for metabolic and structural adaptations to occur within skeletal muscle. These cyclical periods between exhausting exercise and recovery form the basis of any effective exercise training prescription to improve muscle endurance and strength. However, imbalance between the fatigue induced from intense training/competitions, and inadequate post-exercise/competition recovery periods can lead to a decline in physical performance. In fact, prolonged periods of this imbalance may eventually lead to extended periods of performance impairment, referred to as the state of overreaching that may progress into overtraining syndrome (OTS). OTS may have devastating implications on an athlete's career and the purpose of this review is to discuss potential underlying mechanisms that may contribute to exercise-induced OTS in skeletal muscle. First, we discuss the conditions that lead to OTS, and their potential contributions to impaired skeletal muscle function. Then we assess the evidence to support or refute the major proposed mechanisms underlying skeletal muscle weakness in OTS: 1) glycogen depletion hypothesis, 2) muscle damage hypothesis, 3) inflammation hypothesis, and 4) the oxidative stress hypothesis. Current data implicates reactive oxygen and nitrogen species (ROS) and inflammatory pathways as the most likely mechanisms contributing to OTS in skeletal muscle. Finally, we allude to potential interventions that can mitigate OTS in skeletal muscle.
Collapse
Affiliation(s)
- Arthur J Cheng
- York University, Faculty of Health/ School of Kinesiology and Health Sciences, Muscle Health Research Centre/ Muscle Calcium Dynamics Lab, 351 Farquharson Life Sciences Building, Toronto, M3J 1P3, Canada
| | - Baptiste Jude
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology laboratory, Biomedicum C5, 17177, Stockholm, Sweden
| | - Johanna T Lanner
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology laboratory, Biomedicum C5, 17177, Stockholm, Sweden.
| |
Collapse
|
32
|
Exercise induced changes in echo intensity within the muscle: a brief review. J Ultrasound 2020; 23:457-472. [PMID: 31925731 DOI: 10.1007/s40477-019-00424-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
Echo intensity is the mean pixel intensity of a specific region of interest from an ultrasound image. This variable has been increasingly used in the literature as a physiological marker. Although there has been an increased interest in reporting changes in echo intensity in response to exercise, little consensus exists as to what a change in echo intensity represents physiologically. The purpose of this paper is to review some of the earliest, as well as the most up to date literature regarding the changes in echo intensity in response to exercise. Echo intensity has been used to measure muscle quality, muscle damage, acute swelling, and intramuscular glycogen. The changes in echo intensity, however, are not consistent throughout the literature and often times lead to conclusions that seem contrary to the physiologic effects of exercise. For example, echo intensity increases in conjunction with increases in strength, contrary to what would be expected if echo intensity was a marker of muscle quality/muscle damage. It is conceivable that a change in echo intensity represents a range of physiologic effects at different time points. We recommend that these effects should be determined experimentally in order to rule out what echo intensity might and might not represent. Until this is done, caution should be employed when interpreting changes in echo intensity with acute and chronic exercise.
Collapse
|
33
|
Muscle alterations induced by electrostimulation are lower at short quadriceps femoris length. Eur J Appl Physiol 2019; 120:325-335. [DOI: 10.1007/s00421-019-04277-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
|
34
|
Sanchis-Gomar F, Lopez-Lopez S, Romero-Morales C, Maffulli N, Lippi G, Pareja-Galeano H. Neuromuscular Electrical Stimulation: A New Therapeutic Option for Chronic Diseases Based on Contraction-Induced Myokine Secretion. Front Physiol 2019; 10:1463. [PMID: 31849710 PMCID: PMC6894042 DOI: 10.3389/fphys.2019.01463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/13/2019] [Indexed: 11/13/2022] Open
Abstract
Myokines are peptides known to modulate brain neuroplasticity, adipocyte metabolism, bone mineralization, endothelium repair and cell growth arrest in colon and breast cancer, among other processes. Repeated skeletal muscle contraction induces the production and secretion of myokines, which have a wide range of functions in different tissues and organs. This new role of skeletal muscle as a secretory organ means skeletal muscle contraction could be a key player in the prevention and/or management of chronic disease. However, some individuals are not capable of optimal physical exercise in terms of adequate duration, intensity or muscles involved, and therefore they may be virtually deprived of at least some of the physiological benefits induced by exercise. Neuromuscular electrical stimulation (NMES) is emerging as an effective physical exercise substitute for myokine induction. NMES is safe and efficient and has been shown to improve muscle strength, functional capacity, and quality of life. This alternative exercise modality elicits hypertrophy and neuromuscular adaptations of skeletal muscles. NMES stimulates circulating myokine secretion, promoting a cascade of endocrine, paracrine, and autocrine effects. We review the current evidence supporting NMES as an effective physical exercise substitute for inducing myokine production and its potential applications in health and disease.
Collapse
Affiliation(s)
- Fabian Sanchis-Gomar
- Department of Physiology, Faculty of Medicine, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Sergio Lopez-Lopez
- Facultad de Ciencias del Deporte, Universidad Europea de Madrid, Madrid, Spain
| | | | - Nicola Maffulli
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Baronissi, Italy
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, United Kingdom
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | | |
Collapse
|
35
|
Ochi E, Ueda H, Tsuchiya Y, Kouzaki K, Nakazato K. Eccentric contraction-induced muscle damage in human flexor pollicis brevis is accompanied by impairment of motor nerve. Scand J Med Sci Sports 2019; 30:462-471. [PMID: 31663641 DOI: 10.1111/sms.13589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/11/2019] [Accepted: 10/28/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Eccentric contractions (ECCs) cause muscle damage. In addition, we showed that ECCs induce nerve dysfunction and damage with rats and human. PURPOSE We aimed to evaluate motor nerve conduction velocity (MCV) for flexor pollicis brevis muscle (FPBM) after ECCs. METHODS Twelve men (years, 19.8 ± 1.7 years; height, 172.4 ± 7.0 cm; weight, 64.0 ± 8.6 kg) performed maximal 100 ECCs on their FPBM of non-dominant hands with torque dynamometer. The dominant hands were control (CON). Maximal voluntary contraction (MVC), range of motion (ROM), DOMS, and MCV were assessed before, immediately post, and 1, 2, and 5 days after ECCs. MCV was calculated as the distance by stimulation divided by the latencies of the waveforms generated. Values were statistically analyzed by two-way ANOVA, and the significance level was set at P < .05. RESULTS Decreases in MVC immediately (-32.9%) to 5 days after ECCs were significantly greater (P < .05) than for the CON group. ROM showed a significant decrease immediately (-21.6%) after ECCs compared with before ECCs and CON group (P < .05). DOMS after ECCs increased at 1 and 2 days (5.0 cm) after ECCs compared with before ECCs and CON (P < .05). Also, MCV after ECCs delayed significantly from immediately (-36.4%), 1, 2, and 5 days after ECCs compared with CON (P < .05), while no significant change in M-wave amplitude was observed over time for both ECCs and CON. CONCLUSION The present study showed that ECCs of the FPBM cause a significant delay in MCV of median nerve.
Collapse
Affiliation(s)
- Eisuke Ochi
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Hisashi Ueda
- Faculty of Health Care and Medical Sports, Teikyo Heisei University, Chiba, Japan
| | - Yosuke Tsuchiya
- Faculty of Modern Life, Teikyo Heisei University, Tokyo, Japan
| | - Karina Kouzaki
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
36
|
Eccentric exercise results in a prolonged increase in interleukin-6 and tumor necrosis factor-α levels in rat skeletal muscle. J Muscle Res Cell Motil 2019; 40:379-387. [PMID: 31520264 DOI: 10.1007/s10974-019-09554-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) are well-known cytokines with pro-inflammatory capabilities, and have been shown to be involved in adaptation to exercise as multifaceted myokines. However, the precise role of IL-6 and TNF-α during exercise-induced skeletal muscle injury and subsequent repair processes is not fully understood. In this study, IL-6 and TNF-α were examined in soleus muscles at the gene and protein levels using in situ hybridization and immunohistochemical staining, respectively, and serum levels of IL-6 and TNF-α were determined before and after a 90-min downhill running session in rats. There were no changes in serum levels of IL-6 and TNF-α after exercise, but IL-6 and TNF-α mRNA increased and maintained high expression in muscles for 1-2 weeks after exercise. IL-6 and TNF-a mRNAs were identified in both the cytoplasm and the nuclei of myocytes, as well as in invading inflammatory cells. IL-6 and TNF-α protein mainly distributed in cytoplasm unevenly and had a prolonged expression until 2 weeks after eccentric exercise. Our results demonstrate that there is increased IL-6 and TNF-α expression in skeletal muscle that is induced by eccentric exercise and that the high expression of IL-6 and TNF-α in the long-term phase after eccentric exercise may be more involved in the subsequent recovery of damaged muscle.
Collapse
|
37
|
Chlíbková D, Žákovská A, Rosemann T, Knechtle B, Bednář J. Body Composition Changes During a 24-h Winter Mountain Running Race Under Extremely Cold Conditions. Front Physiol 2019; 10:585. [PMID: 31139095 PMCID: PMC6527803 DOI: 10.3389/fphys.2019.00585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background: To date, no study has focused on body composition characteristics and on parameters associated with skeletal muscle damage and renal function in runners participating in a 24-h winter race held under extremely cold environmental conditions (average temperature of -14.3°C). Methods: Anthropometric characteristics, plasma urea (PU), plasma creatinine (Pcr), creatine kinase (CK), plasma volume (PV) and total body water (TBW) were assessed pre- and post-race in 20 finishers (14 men and 6 women). Results: In male runners, body mass (BM) (p = 0.003) and body fat (BF) (p = 0.001) decreased [-1.1 kg (-1.4%) and -1.1 kg (-13.4%), respectively]; skeletal muscle mass (SM) and TBW remained stable (p > 0.05). In female runners, BF decreased (p = 0.036) [-1.3 kg (-7.8%)] while BM, SM and TBW remained stable (p > 0.05). The change (Δ) in BM was not related to Δ BF; however, Δ BM was related to Δ SM [r = 0.58, p = 0.007] and Δ TBW (r = 0.59, p = 0.007). Δ SM correlated with Δ TBW (r = 0.51, p = 0.021). Moreover, Δ BF was negatively associated with Δ SM (r = -0.65, p = 0.002). PV (p < 0.001), CK (p < 0.001), Pcr (p = 0.004) and PU (p < 0.001) increased and creatinine clearance (CrCl) decreased (p = 0.002). The decrease in BM was negatively related to the increase in CK (r = -0.71, p < 0.001). Δ Pcr was positively related to Δ PU (r = 0.64, p = 0.002). The decrease in CrCl was negatively associated with the increase in both PU (r = -0.72, p < 0.001) and CK (r = -0.48, p = 0.032). Conclusion: The 24-h running race under extremely cold conditions led to a significant BF decrease, whereas SM and TBW remained stable in both males and females. Nevertheless, the increase in CK, Pcr and PU was related to the damage of SM with transient impaired renal function.
Collapse
Affiliation(s)
- Daniela Chlíbková
- Centre of Sports Activities, Brno University of Technology, Brno, Czechia
| | - Alena Žákovská
- Institute of Experimental Biology, Masaryk University, Brno, Czechia
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland.,Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland
| | - Josef Bednář
- Institute of Mathematics, Brno University of Technology, Brno, Czechia
| |
Collapse
|
38
|
Rowe GS, Blazevich AJ, Haff GG. pQCT- and Ultrasound-based Muscle and Fat Estimate Errors after Resistance Exercise. Med Sci Sports Exerc 2019; 51:1022-1031. [PMID: 30986813 DOI: 10.1249/mss.0000000000001873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Resistance exercise increases blood flow, induces osmotic and hydrostatic fluid shifts during and immediately after exercise, and may trigger inflammatory responses for several days in the working muscle. The resultant muscle swelling can subsequently affect muscle size and quality assessments. However, the effects of muscle swelling on x-ray attenuation of adipose estimate errors are unknown. METHODS Peripheral quantitative computed tomography (pQCT) and ultrasonography were used to assess muscle and adipose tissue properties of both upper arms before, 24, 48, and 72 h after unilateral resistance exercise. Recreationally active participants (n = 17) completed the exercise while their contralateral limb served as a control. RESULTS Resistance exercise resulted in a significant increase in pQCT-derived muscle cross-sectional area (includes intermuscular adipose tissue [IMAT] area), muscle area (excludes IMAT area) and IMAT area, and ultrasound-derived muscle thickness at 24, 48, and 72 h. A significant decrease in pQCT-derived muscle density was also detected as well as an increase in ultrasound-derived echo intensity at 48 and 72 h. The changes in muscle area, IMAT area, and muscle density were significantly correlated with changes in echo intensity, whereas the changes in muscle cross-sectional area and IMAT area were significantly correlated with changes in muscle thickness. CONCLUSION Unaccustomed resistance exercise can cause errors in pQCT- and ultrasound-based muscle and adipose estimates for at least 72 h. These errors are the result of muscle swelling likely caused by muscle blood flow and inflammation-dependent fluid shifts in muscle. These findings may have implications for measurements in other inflammatory conditions.
Collapse
Affiliation(s)
- Grant Simon Rowe
- Centre for Exercise and Sports Science Research, Edith Cowan University, AUSTRALIA
| | | | | |
Collapse
|
39
|
Tsuchiya Y, Yanagimoto K, Ueda H, Ochi E. Supplementation of eicosapentaenoic acid-rich fish oil attenuates muscle stiffness after eccentric contractions of human elbow flexors. J Int Soc Sports Nutr 2019; 16:19. [PMID: 30987668 PMCID: PMC6466674 DOI: 10.1186/s12970-019-0283-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/22/2019] [Indexed: 11/19/2022] Open
Abstract
Background This study aimed to investigate the effect of supplementation of fish oil rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the damage of the biceps brachii after eccentric contractions (ECCs) of the elbow flexors, particularly focusing on muscle stiffness. Methods Sixteen men were included in this double-blind, placebo-controlled, parallel design study and the participants were randomly assigned to the EPA and DHA supplement group (EPA, n = 8) and placebo group (PL, n = 8). They consumed either EPA 600 mg and DHA 260 mg per day or placebo supplement for 8 weeks prior to exercise. Moreover, they performed six sets of 10 ECCs at 100% maximal voluntary contraction (MVC) using a dumbbell. Changes in MVC torque, range of motion (ROM), upper arm circumference, muscle soreness, muscle echo intensity, and muscle stiffness were assessed before exercise; immediately after exercise; and 1, 2, and 5 days after exercise. Results MVC torque and ROM were significantly higher in the EPA group than in the PL group after ECCs (p < 0.05). Muscle soreness, upper arm circumference, and muscle echo intensity were significantly higher in the PL group than in the EPA group after ECCs (p < 0.05). In addition, muscle stiffness at 150° was significantly higher in the PL group than in the EPA group immediately after ECCs (p < 0.05). Conclusion The present study showed that EPA and DHA supplementation has a positive role in inhibiting muscle stiffness after ECCs. Trial registration This trial (UMIN000028165) was registered on 10th/July/2017.
Collapse
Affiliation(s)
- Yosuke Tsuchiya
- Faculty of Modern life, Teikyo Heisei University, Tokyo, Japan
| | | | - Hisashi Ueda
- Faculty of Health and Medical Science, Teikyo Heisei University, Chiba, Japan
| | - Eisuke Ochi
- Faculty of Bioscience and Applied Chemistry, Hosei University, 3-7-2, Kajino, Koganei, Tokyo, Japan.
| |
Collapse
|
40
|
Morgan PT, Vanhatalo A, Bowtell JL, Jones AM, Bailey SJ. Acetaminophen ingestion improves muscle activation and performance during a 3-min all-out cycling test. Appl Physiol Nutr Metab 2019; 44:434-442. [DOI: 10.1139/apnm-2018-0506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Acute acetaminophen (ACT) ingestion has been shown to enhance cycling time-trial performance. The purpose of this study was to assess whether ACT ingestion enhances muscle activation and critical power (CP) during maximal cycling exercise. Sixteen active male participants completed two 3-min all-out tests against a fixed resistance on an electronically braked cycle ergometer 60 min after ingestion of 1 g of ACT or placebo (maltodextrin, PL). CP was estimated as the mean power output over the final 30 s of the test and W′ (the curvature constant of the power–duration relationship) was estimated as the work done above CP. The femoral nerve was stimulated every 30 s to measure membrane excitability (M-wave) and surface electromyography (EMGRMS) was recorded continuously to infer muscle activation. Compared with PL, ACT ingestion increased CP (ACT: 297 ± 32 W vs. PL: 288 ± 31 W, P < 0.001) and total work done (ACT: 66.4 ± 6.5 kJ vs. PL: 65.4 ± 6.4 kJ, P = 0.03) without impacting W′ (ACT: 13.1 ± 2.9 kJ vs. PL: 13.6 ± 2.4 kJ, P = 0.19) or the M-wave amplitude (P = 0.66) during the 3-min all-out cycling test. Normalised EMGRMS amplitude declined throughout the 3-min protocol in both PL and ACT conditions; however, the decline in EMGRMS amplitude was attenuated in the ACT condition, such that the EMGRMS amplitude was greater in ACT compared with PL over the last 60 s of the test (P = 0.04). These findings indicate that acute ACT ingestion might increase performance and CP during maximal cycling exercise by enhancing muscle activation.
Collapse
Affiliation(s)
- Paul T. Morgan
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Heavitree Road, Exeter EX1 2LU, UK
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Heavitree Road, Exeter EX1 2LU, UK
| | - Anni Vanhatalo
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Heavitree Road, Exeter EX1 2LU, UK
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Heavitree Road, Exeter EX1 2LU, UK
| | - Joanna L. Bowtell
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Heavitree Road, Exeter EX1 2LU, UK
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Heavitree Road, Exeter EX1 2LU, UK
| | - Andrew M. Jones
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Heavitree Road, Exeter EX1 2LU, UK
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Heavitree Road, Exeter EX1 2LU, UK
| | - Stephen J. Bailey
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Heavitree Road, Exeter EX1 2LU, UK
| |
Collapse
|
41
|
Chen CH, Ye X, Wang YT, Chen YS, Tseng WC. Differential Effects of Different Warm-up Protocols on Repeated Sprints-Induced Muscle Damage. J Strength Cond Res 2019; 32:3276-3284. [PMID: 29084097 DOI: 10.1519/jsc.0000000000002310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chen, CH, Ye, X, Wang, YT, Chen, YS, and Tseng, WC. Differential effects of different warm-up protocols on repeated sprints-induced muscle damage. J Strength Cond Res 32(11): 3276-3284, 2018-The purpose of this investigation was to examine whether adding a set of hamstring resistance exercise or dynamic stretching to a regular running-based warm-up before a bout of repeated sprints provides protective effects against the sprinting-induced muscle damage. Twelve elite tennis players participated in this study. After the familiarization, subjects completed 3 separate randomly sequenced experimental visits, during which 3 different warm-up interventions were performed before the muscle-damaging protocol (12 sets of 30-m maximal repeated sprints): 5 minutes of running (control); control with single leg slide curl (SLC); and control with active hamstring stretching (AHS). Before, immediately (POST0), 1 day (POST1), and 2 days after (POST2) the sprints, hip flexion passive range of motion, hamstring muscle thickness and pennation angle, muscle stiffness, and knee flexion concentric peak torque were measured. Repeated sprints have induced muscle damage in all 3 visits. For AHS, the muscle thickness and stiffness values at POST2 were significantly lower than those of other 2 protocols. In addition, the decrements of concentric strength at POST0, POST1, and POST2 for AHS were also significantly less than those of control and SLC. Therefore, adding a set of dynamic hamstrings stretching to a regular warm-up protocol before repeated sprints has protective effect on the sprinting-induced muscle damage. Athletes whose competitions are densely scheduled (e.g., tennis player in a tournament) may take advantage of this strategy to facilitate muscle recovery from the potential muscle damage, thus, to get maximal recovery for the subsequent competitions.
Collapse
Affiliation(s)
- Che-Hsiu Chen
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan
| | - Xin Ye
- Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, University, Mississippi
| | - Yi-Tse Wang
- Graduate Institute of Sports Training, University of Taipei, Taipei, Taiwan
| | - Yung-Sheng Chen
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan
| | - Wei-Chin Tseng
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan
| |
Collapse
|
42
|
Morgan PT, Vanhatalo A, Bowtell JL, Jones AM, Bailey SJ. Acute ibuprofen ingestion does not attenuate fatigue during maximal intermittent knee extensor or all-out cycling exercise. Appl Physiol Nutr Metab 2019; 44:208-215. [DOI: 10.1139/apnm-2018-0432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent research suggests that acute consumption of pharmacological analgesics can improve exercise performance, but the ergogenic potential of ibuprofen (IBP) administration is poorly understood. This study tested the hypothesis that IBP administration would enhance maximal exercise performance. In one study, 13 physically active males completed 60 × 3-s maximal voluntary contractions (MVCs) of the knee extensors interspersed with 2-s passive recovery periods, on 2 occasions, with the critical torque (CT) estimated as the mean torque over the last 12 contractions (part A). In another study, 16 active males completed two 3-min all-out tests against a fixed resistance on an electronically braked cycle ergometer, with the critical power estimated from the mean power output over the final 30 s of the test (part B). All tests were completed 60 min after ingestion of maltodextrin (placebo, PL) or 400 mg of IBP. Peripheral nerve stimulation was administered at regular intervals and electromyography was measured throughout. For part A, mean torque (IBP: 60% ± 13% of pre-exercise MVC; PL: 58% ± 14% of pre-exercise MVC) and CT (IBP: 41% ± 16% of pre-exercise MVC; PL: 40% ± 15% of pre-exercise MVC) were not different between conditions (P > 0.05). For part B, end-test power output (IBP: 292 ± 28 W; PL: 288 ± 31 W) and work done (IBP: 65.9 ± 5.9 kJ; PL: 65.4 ± 6.4 kJ) during the 3-min all-out cycling tests were not different between conditions (all P > 0.05). For both studies, neuromuscular fatigue declined at a similar rate in both conditions (P > 0.05). In conclusion, acute ingestion of 400 mg of IBP does not improve single-leg or maximal cycling performance in healthy humans.
Collapse
Affiliation(s)
- Paul T. Morgan
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Heavitree Road, Exeter, EX1 2LU, UK
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Anni Vanhatalo
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Heavitree Road, Exeter, EX1 2LU, UK
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Joanna L. Bowtell
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Heavitree Road, Exeter, EX1 2LU, UK
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Andrew M. Jones
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Heavitree Road, Exeter, EX1 2LU, UK
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Stephen J. Bailey
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Heavitree Road, Exeter, EX1 2LU, UK
| |
Collapse
|
43
|
Suzuki T, Ikebukuro T, Kubo K. Effects of repeated eccentric and isometric contractions with relatively low loading dose on joint stiffness. J Sports Med Phys Fitness 2018; 59:1273-1280. [PMID: 30543273 DOI: 10.23736/s0022-4707.18.08842-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The purpose of the present study was to compare changes in joint stiffness after repeated eccentric (ECC; leading to muscle fatigue) and isometric (ISO; leading to tendon fatigue) contractions and to elucidate the mechanisms responsible for decline in joint stiffness after repeated stretch-shortening cycle exercises reported previously. METHODS Ankle joint stiffness (change in joint torque divided by change in joint angle during braking phase) and electromyographic activity (mEMG) of the plantar flexor muscles during drop jump using the ankle joint were measured before and after ECC, ISO, and control conditions. RESULTS Peak ankle joint torque, range of motion, and joint stiffness during drop jump did not change after ECC or ISO. However, relative changes in joint stiffness correlated with those in range of motion, but not peak torque. In ECC and ISO, mEMG during pre-landing, braking, and push-off phases did not change after endurance tests, except for braking phase in ISO. Furthermore, relative change in joint stiffness correlated with that in mEMG during braking phase in ISO, but not in ECC. Under control conditions, no significant changes were noted in the measured variables. CONCLUSIONS These results suggest that relative changes in joint stiffness (but not decrease in average values) after ECC and ISO were related to change in range of motion, but not exerted force levels. Furthermore, changes in range of motion after repeated contractions were relevant to those in muscle activation in ISO and other factors (probably muscle stiffness under passive and active conditions) in ECC.
Collapse
Affiliation(s)
- Takayuki Suzuki
- Department of Life Science, University of Tokyo, Meguro, Tokyo, Japan
| | | | - Keitaro Kubo
- Department of Life Science, University of Tokyo, Meguro, Tokyo, Japan -
| |
Collapse
|
44
|
Implications of Impaired Endurance Performance following Single Bouts of Resistance Training: An Alternate Concurrent Training Perspective. Sports Med 2018; 47:2187-2200. [PMID: 28702901 DOI: 10.1007/s40279-017-0758-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A single bout of resistance training induces residual fatigue, which may impair performance during subsequent endurance training if inadequate recovery is allowed. From a concurrent training standpoint, such carry-over effects of fatigue from a resistance training session may impair the quality of a subsequent endurance training session for several hours to days with inadequate recovery. The proposed mechanisms of this phenomenon include: (1) impaired neural recruitment patterns; (2) reduced movement efficiency due to alteration in kinematics during endurance exercise and increased energy expenditure; (3) increased muscle soreness; and (4) reduced muscle glycogen. If endurance training quality is consistently compromised during the course of a specific concurrent training program, optimal endurance development may be limited. Whilst the link between acute responses of training and subsequent training adaptation has not been fully established, there is some evidence suggesting that cumulative effects of fatigue may contribute to limiting optimal endurance development. Thus, the current review will (1) explore cross-sectional studies that have reported impaired endurance performance following a single, or multiple bouts, of resistance training; (2) identify the potential impact of fatigue on chronic endurance development; (3) describe the implications of fatigue on the quality of endurance training sessions during concurrent training, and (4) explain the mechanisms contributing to resistance training-induced attenuation on endurance performance from neurological, biomechanical and metabolic standpoints. Increasing the awareness of resistance training-induced fatigue may encourage coaches to consider modulating concurrent training variables (e.g., order of training mode, between-mode recovery period, training intensity, etc.) to limit the carry-over effects of fatigue from resistance to endurance training sessions.
Collapse
|
45
|
Tsuchiya Y, Ueda H, Ochi E. Muscular recruitment is associated with muscular function and swelling following eccentric contractions of human elbow flexors. J Sports Med Phys Fitness 2018; 59:1097-1101. [PMID: 30411600 DOI: 10.23736/s0022-4707.18.09102-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND This study investigated the relationship between muscle fiber recruitment and the magnitude of muscle damage by isotonic eccentric contractions (ECCs). METHODS Ten healthy men (age: 27.2±6.0 y, height: 174. 0±5.3 cm, body mass 70.1±2.1 kg) were recruited in this study. Subjects performed 30 ECCs of the elbow flexors using a dumbbell adjusted to 40% and 80% one repetition maximum of each individual. The dependent variables maximal voluntary isometric contraction (MVC) torque, Range of Motion (ROM), delayed onset muscle soreness (DOMS), cross-sectional area (CSA) and transverse relaxation time (T2) of magnetic resonance imaging (MRI) were measured immediately before, immediately after and 1, 3, and 5 days after each exercise. RESULTS The decreased MVC and limited ROM were significantly greater for 80% than that 40% (P<0.05) at immediately after ECCs. However, no significant difference between 40% and 80% was found for DOMS. CSA at 5 days after ECCs was significantly higher 80% (P<0.05) than 40% (P<0.05). No significant changes in post T2 (acute T2) was found for 40%, but an increased acute T2 was observed in 80% (P<0.05). We found a significant correlation between the change in T2 at immediately after and MVC at immediately after (r=0.77, P<0.05). In addition, a significant correlation between the change in T2 at immediately after and change in CSA at 3 days after (r=-0.83, P<0.05) was found. CONCLUSIONS We conclude that the muscle strength loss and swelling following ECCs are related to the muscle fiber recruitment.
Collapse
Affiliation(s)
- Yosuke Tsuchiya
- Faculty of Modern Life, Teikyo Heisei University, Nakano, Tokyo, Japan
| | - Hisashi Ueda
- Faculty of Health and Medical Science, Teikyo Heisei University, Uruidominami, Ichihara, Chiba, Japan
| | - Eisuke Ochi
- Faculty of Bioscience and Applied Chemistry, Hosei University, Kajino, Koganei, Tokyo, Japan -
| |
Collapse
|
46
|
Wackerhage H, Schoenfeld BJ, Hamilton DL, Lehti M, Hulmi JJ. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol (1985) 2018; 126:30-43. [PMID: 30335577 DOI: 10.1152/japplphysiol.00685.2018] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the most striking adaptations to exercise is the skeletal muscle hypertrophy that occurs in response to resistance exercise. A large body of work shows that a mammalian target of rapamycin complex 1 (mTORC1)-mediated increase of muscle protein synthesis is the key, but not sole, mechanism by which resistance exercise causes muscle hypertrophy. While much of the hypertrophy signaling cascade has been identified, the initiating, resistance exercise-induced and hypertrophy-stimulating stimuli have remained elusive. For the purpose of this review, we define an initiating, resistance exercise-induced and hypertrophy-stimulating signal as "hypertrophy stimulus," and the sensor of such a signal as "hypertrophy sensor." In this review we discuss our current knowledge of specific mechanical stimuli, damage/injury-associated and metabolic stress-associated triggers, as potential hypertrophy stimuli. Mechanical signals are the prime hypertrophy stimuli candidates, and a filamin-C-BAG3-dependent regulation of mTORC1, Hippo, and autophagy signaling is a plausible albeit still incompletely characterized hypertrophy sensor. Other candidate mechanosensing mechanisms are nuclear deformation-initiated signaling or several mechanisms related to costameres, which are the functional equivalents of focal adhesions in other cells. While exercise-induced muscle damage is probably not essential for hypertrophy, it is still unclear whether and how such muscle damage could augment a hypertrophic response. Interventions that combine blood flow restriction and especially low load resistance exercise suggest that resistance exercise-regulated metabolites could be hypertrophy stimuli, but this is based on indirect evidence and metabolite candidates are poorly characterized.
Collapse
Affiliation(s)
- Henning Wackerhage
- Department of Sport and Exercise Sciences, Technical University of Munich , Munich , Germany
| | | | - D Lee Hamilton
- Faculty of Health, School of Exercise and Nutrition Sciences, Deakin University , Victoria , Australia
| | - Maarit Lehti
- LIKES Research Centre for Physical Activity and Health , Jyväskylä , Finland
| | - Juha J Hulmi
- Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä , Jyväskylä , Finland
| |
Collapse
|
47
|
Ochi E, Yanagimoto K, Morishima T, Tsuchiya Y. Eicosapentaenoic Acid-Rich Fish Oil Supplementation Inhibits the Decrease in Concentric Work Output and Muscle Swelling of the Elbow Flexors. J Am Coll Nutr 2018; 38:125-131. [DOI: 10.1080/07315724.2018.1470042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Eisuke Ochi
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
- Sports Research Center, Hosei University, Tokyo, Japan
| | | | | | - Yosuke Tsuchiya
- Faculty of Modern Life, Teikyo Heisei University, Tokyo, Japan
| |
Collapse
|
48
|
Effects of preconditioning hamstring resistance exercises on repeated sprinting-induced muscle damage in female soccer players. Biol Sport 2018; 35:269-275. [PMID: 30449945 PMCID: PMC6224846 DOI: 10.5114/biolsport.2018.77827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/25/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022] Open
Abstract
To examine whether adding preconditioning hamstring resistance exercises to a regular warm-up prior to a repeated sprinting exercise provides protection against the sprinting-induced muscle damage. Ten female soccer players (mean ± SD age: 21.3 ± 4.5yrs; height: 171.34 ± 8.29 cm; weight: 68.53 ± 11.27 kg) participated in this study. After the familiarization visit, the subjects completed three separate randomly sequenced experimental visits, during which three different warm-up interventions were performed before the muscle-damaging protocol (12 sets of 30-m maximal repeated sprints): 1. Regular running and static stretching (Control); 2. Control with hyperextensions (HE); 3. Control with single leg Romanian deadlift (SLRD). Before (Pre), immediately (Post0), 24 hours (24hr), and 48 hours after (48hr) the sprints, hamstring muscle thickness, muscle stiffness, knee flexion eccentric peak torque, knee extension concentric peak torque, and functional hamstring to quadriceps ratios were measured. Repeated sprints have induced muscle damage (e.g., an average of 42% knee flexion eccentric strength reduction) in all three conditions. After the SLRD, hamstring muscle thickness decreased from 24hr to 48hr (p < 0.001). Additionally, muscle stiffness and eccentric strength for the SLRD showed no difference from baseline at 24hr and 48hr, respectively. When compared with the SLRD at 48hr, the muscle stiffness and the eccentric strength were greater and lower, respectively, in other protocols. The SLRD protocol had protective effect on sprinting-induced muscle damage markers than other protocols. Athletes whose competitions/training are densely scheduled may take advantage of this strategy to facilitate muscle recovery.
Collapse
|
49
|
Tsuchiya Y, Nakazato K, Ochi E. Contralateral repeated bout effect after eccentric exercise on muscular activation. Eur J Appl Physiol 2018; 118:1997-2005. [PMID: 29987366 DOI: 10.1007/s00421-018-3933-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/02/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to investigate the contralateral and ipsilateral repeated bout effects of eccentric contractions (ECCs) on muscle fiber activation using transverse relaxation time (T2) of magnetic resonance imaging (MRI). METHODS Eleven men (22.3 ± 2.9 years) performed two bouts of 30 maximal ECCs of the elbow flexors spaced 2 weeks apart. Initially, all subjects performed 30 ECCs for one arm (ECC1). After 2 weeks, they performed 30 ECCs for both ipsilateral arm (IL-RBE) and contralateral arm (CL-RBE). Measurements were maximal voluntary isometric contraction (MVC) torque, range of motion (ROM), muscle soreness, cross-sectional area (CSA), and T2 at before, immediately after, 1, 2, 3, and 5 days after ECCs. RESULTS The loss of MVC torque, limited ROM, and developed muscle soreness and CSA were inhibited for IL-RBE and CL-RBE compared with ECC1 (p < 0.05). The acute T2, which is an indicator of the activation of muscle fibers, was longer for IL-RBE and CL-RBE than ECC1 (p < 0.05). Otherwise, no significant difference between IL-RBE and CL-RBE was observed in other measurements. CONCLUSION Our results suggest that one of the mechanisms for CL-RBE of ECCs is the increase in muscle fiber activation. In addition, the magnitude of protective effect for CL-RBE was similar to the IL-RBE in untrained young men.
Collapse
Affiliation(s)
- Yosuke Tsuchiya
- Faculty of Modern life, Teikyo Heisei University, Tokyo, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Nippon Sport Science University, Tokyo, Japan
| | - Eisuke Ochi
- Faculty of Bioscience and Applied Chemistry, Hosei University, 3-7-2, Kajino, Koganei, Tokyo, 184-8584, Japan.
| |
Collapse
|
50
|
Heales LJ, Badya R, Ziegenfuss B, Hug F, Coombes JS, van den Hoorn W, Tucker K, Coombes BK. Shear-wave velocity of the patellar tendon and quadriceps muscle is increased immediately after maximal eccentric exercise. Eur J Appl Physiol 2018; 118:1715-1724. [DOI: 10.1007/s00421-018-3903-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/25/2018] [Indexed: 10/14/2022]
|