1
|
Mascia L, Fanelli V, Mistretta A, Filippini M, Zanin M, Berardino M, Mazzeo AT, Caricato A, Antonelli M, Della Corte F, Grossi F, Munari M, Caravello M, Alessandri F, Cavalli I, Mezzapesa M, Silvestri L, Casartelli Liviero M, Zanatta P, Pelosi P, Citerio G, Filippini C, Rucci P, Rasulo FA, Tonetti T. Lung-Protective Mechanical Ventilation in Patients with Severe Acute Brain Injury: A Multicenter Randomized Clinical Trial (PROLABI). Am J Respir Crit Care Med 2024; 210:1123-1131. [PMID: 39288368 DOI: 10.1164/rccm.202402-0375oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024] Open
Abstract
Rationale: Lung-protective strategies using low Vt and moderate positive end-expiratory pressure (PEEP) are considered best practice in critical care, but interventional trials have never been conducted in patients with acute brain injuries because of concerns about carbon dioxide control and the effect of PEEP on cerebral hemodynamics. Objectives: To test the hypothesis that ventilation with lower VT and higher PEEP compared to conventional ventilation would improve clinical outcomes in patients with acute brain injury. Methods: In this multicenter, open-label, controlled clinical trial, 190 adult patients with acute brain injury were assigned to receive either a lung-protective or a conventional ventilatory strategy. The primary outcome was a composite endpoint of death, ventilator dependency, and acute respiratory distress syndrome (ARDS) at Day 28. Neurological outcome was assessed at ICU discharge by the Oxford Handicap Scale and at 6 months by the Glasgow Outcome Scale. Measurements and Main Results: The two study arms had similar characteristics at baseline. In the lung-protective and conventional strategy groups, using an intention-to-treat approach, the composite outcome at 28 days was 61.5% and 45.3% (relative risk [RR], 1.35; 95% confidence interval [CI], 1.03-1.79; P = 0.025). Mortality was 28.9% and 15.1% (RR, 1.91; 95% CI, 1.06-3.42; P = 0.02), ventilator dependency was 42.3% and 27.9% (RR, 1.52; 95% CI, 1.01-2.28; P = 0.039), and incidence of ARDS was 30.8% and 22.1% (RR, 1.39; 95% CI, 0.85-2.27; P = 0.179), respectively. The trial was stopped after enrolling 190 subjects because of termination of funding. Conclusions: In patients with acute brain injury without ARDS, a lung-protective ventilatory strategy, as compared with a conventional strategy, did not reduce mortality, percentage of patients weaned from mechanical ventilation, or incidence of ARDS and was not beneficial in terms of neurological outcomes. Because of the early termination, these preliminary results require confirmation in larger trials. Clinical trial registered with www.clinicaltrials.gov (NCT01690819).
Collapse
Affiliation(s)
- Luciana Mascia
- Department of Experimental Medicine (DIMES), Campus Ecotekne, University of Salento, Lecce, Italy
| | - Vito Fanelli
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Anaesthesia, Critical Care, and Emergency, Città della Salute e della Scienza di Torino University Hospital - Molinette Hospital, Turin, Italy
| | - Alice Mistretta
- Department of Anesthesia and Intensive Care Unit, Città della Salute e della Scienza di Torino University Hospital - Orthopedic and Trauma Center, Turin, Italy
| | - Matteo Filippini
- Department of Anesthesiology, Intensive Care, and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Mattia Zanin
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Maurizio Berardino
- Department of Anesthesia and Intensive Care Unit, Città della Salute e della Scienza di Torino University Hospital - Orthopedic and Trauma Center, Turin, Italy
| | - Anna Teresa Mazzeo
- Department of Adult and Pediatric Pathology, University of Messina, Messina, Italy
| | | | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Institute of Anesthesiology and Critical Care, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Della Corte
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Anesthesiology and Intensive Care Medicine, Maggiore della Carità University Hospital, Novara, Italy
| | - Francesca Grossi
- Anesthesiology and Intensive Care Medicine, Maggiore della Carità University Hospital, Novara, Italy
| | - Marina Munari
- Institute of Anesthesia and Intensive Care, University Hospital of Padua, Padua, Italy
| | | | - Francesco Alessandri
- Department of General Surgery and Organ Transplantation Unit, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Irene Cavalli
- Department of Medical and Surgical Sciences (DIMEC) and
| | - Mario Mezzapesa
- Department of General Surgery and Organ Transplantation Unit, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Lucia Silvestri
- Department of General Surgery and Organ Transplantation Unit, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | | | - Paolo Zanatta
- Department of Anesthesia and Intensive Care, Integrated University Hospital of Verona, Verona, Italy
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department Neuroscience, Neurointensive Care, ASST-Monza, Monza, Italy; and
| | | | - Paola Rucci
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Frank A Rasulo
- Department of Anesthesiology, Intensive Care, and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Tommaso Tonetti
- Department of Medical and Surgical Sciences (DIMEC) and
- Anesthesiology and General Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Kim JT, Song K, Han SW, Youn DH, Jung H, Kim KS, Lee HJ, Hong JY, Cho YJ, Kang SM, Jeon JP. Modeling of the brain-lung axis using organoids in traumatic brain injury: an updated review. Cell Biosci 2024; 14:83. [PMID: 38909262 PMCID: PMC11193205 DOI: 10.1186/s13578-024-01252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Clinical outcome after traumatic brain injury (TBI) is closely associated conditions of other organs, especially lungs as well as degree of brain injury. Even if there is no direct lung damage, severe brain injury can enhance sympathetic tones on blood vessels and vascular resistance, resulting in neurogenic pulmonary edema. Conversely, lung damage can worsen brain damage by dysregulating immunity. These findings suggest the importance of brain-lung axis interactions in TBI. However, little research has been conducted on the topic. An advanced disease model using stem cell technology may be an alternative for investigating the brain and lungs simultaneously but separately, as they can be potential candidates for improving the clinical outcomes of TBI.In this review, we describe the importance of brain-lung axis interactions in TBI by focusing on the concepts and reproducibility of brain and lung organoids in vitro. We also summarize recent research using pluripotent stem cell-derived brain organoids and their preclinical applications in various brain disease conditions and explore how they mimic the brain-lung axis. Reviewing the current status and discussing the limitations and potential perspectives in organoid research may offer a better understanding of pathophysiological interactions between the brain and lung after TBI.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Kang Song
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Keun-Suh Kim
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Ji Young Hong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Sung-Min Kang
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea.
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
3
|
Ho JW, Dawood ZS, Taylor ME, Liggett MR, Jin G, Jaishankar D, Nadig SN, Bharat A, Alam HB. THE NEUROENDOTHELIAL AXIS IN TRAUMATIC BRAIN INJURY: MECHANISMS OF MULTIORGAN DYSFUNCTION, NOVEL THERAPIES, AND FUTURE DIRECTIONS. Shock 2024; 61:346-359. [PMID: 38517237 DOI: 10.1097/shk.0000000000002307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Severe traumatic brain injury (TBI) often initiates a systemic inflammatory response syndrome, which can potentially culminate into multiorgan dysfunction. A central player in this cascade is endotheliopathy, caused by perturbations in homeostatic mechanisms governed by endothelial cells due to injury-induced coagulopathy, heightened sympathoadrenal response, complement activation, and proinflammatory cytokine release. Unique to TBI is the potential disruption of the blood-brain barrier, which may expose neuronal antigens to the peripheral immune system and permit neuroinflammatory mediators to enter systemic circulation, propagating endotheliopathy systemically. This review aims to provide comprehensive insights into the "neuroendothelial axis" underlying endothelial dysfunction after TBI, identify potential diagnostic and prognostic biomarkers, and explore therapeutic strategies targeting these interactions, with the ultimate goal of improving patient outcomes after severe TBI.
Collapse
Affiliation(s)
- Jessie W Ho
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Zaiba Shafik Dawood
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Meredith E Taylor
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Marjorie R Liggett
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Guang Jin
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dinesh Jaishankar
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Satish N Nadig
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Ankit Bharat
- Department of Surgery, Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hasan B Alam
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
4
|
Taran S, Stevens RD, Perrot B, McCredie VA, Cinotti R, Asehnoune K, Pelosi P, Robba C. Incidence and Outcomes of Acute Respiratory Distress Syndrome in Brain-Injured Patients Receiving Invasive Ventilation: A Secondary Analysis of the ENIO Study. J Intensive Care Med 2024; 39:136-145. [PMID: 37563968 PMCID: PMC10771027 DOI: 10.1177/08850666231194532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Background: Acute respiratory distress syndrome (ARDS) is an important pulmonary complication in brain-injured patients receiving invasive mechanical ventilation (IMV). We aimed to evaluate the incidence and association between ARDS and clinical outcomes in patients with different forms of acute brain injury requiring IMV in the intensive care unit (ICU). Methods: This was a preplanned secondary analysis of a prospective, multicenter, international cohort study (NCT03400904). We included brain-injured patients receiving IMV for ≥ 24 h. ARDS was the main exposure of interest and was identified during index ICU admission using the Berlin definition. We examined the incidence and adjusted association of ARDS with ICU mortality, ICU length of stay, duration of IMV, and extubation failure. Outcomes were evaluated using mixed-effect logistic regression and cause-specific Cox proportional hazards models. Results: 1492 patients from 67 hospitals and 16 countries were included in the analysis, of whom 137 individuals developed ARDS (9.2% of overall cohort). Across countries, the median ARDS incidence was 5.1% (interquartile range [IQR] 0-10; range 0-27.3). ARDS was associated with increased ICU mortality (adjusted odds ratio (OR) 2.66; 95% confidence interval [CI], 1.29-5.48), longer ICU length of stay (adjusted hazard ratio [HR] 0.59; 95% CI, 0.48-0.73), and longer duration of IMV (adjusted HR 0.54; 95% CI, 0.44-0.67). The association between ARDS and extubation failure approached statistical significance (adjusted HR 1.48; 95% CI 0.99-2.21). Higher ARDS severity was associated with incrementally longer ICU length of stay and longer cumulative duration of IMV. Findings remained robust in a sensitivity analysis evaluating the magnitude of unmeasured confounding. Conclusions: In this cohort of acutely brain-injured patients, the incidence of ARDS was similar to that reported in other mixed cohorts of critically ill patients. Development of ARDS was associated with worse outcomes.
Collapse
Affiliation(s)
- Shaurya Taran
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert D. Stevens
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bastien Perrot
- UMR 1246 MethodS in Patient-centered outcomes and HEalth REsearch, SPHERE, Nantes Université, Tours Université, Nantes, France
| | - Victoria A. McCredie
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Raphael Cinotti
- UMR 1246 MethodS in Patient-centered outcomes and HEalth REsearch, SPHERE, Nantes Université, Tours Université, Nantes, France
- Department of Anaesthesia and Critical Care, CHU Nantes, Nantes Université, Hôtel-Dieu, Nantes, France
| | - Karim Asehnoune
- Department of Anaesthesia and Critical Care, CHU Nantes, Nantes Université, Hôtel-Dieu, Nantes, France
| | - Paolo Pelosi
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | | |
Collapse
|
5
|
Ergezen S, Wiegers EJ, Klijn E, van der Jagt M. Fluid therapy in the acute brain injured patient. Minerva Anestesiol 2023; 89:936-944. [PMID: 37822149 DOI: 10.23736/s0375-9393.23.17328-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Adequate fluid therapy in the acute brain injured (ABI) patient is essential for maintaining an adequate brain and systemic physiology and preventing intra- and extracranial complications. The target of euvolemia, implying avoidance of both hypovolemia and fluid overloading (or "hypervolemia," by definition associated with fluid extravasation leading to tissue edema) is of key importance. Primary brain injury can be aggravated by secondary brain injury and systemic deterioration through diverse pathways which can challenge appropriate fluid management, e.g. neuroendocrine and electrolyte disorders, stress cardiomyopathy (also known as cardiac stunning) and neurogenic pulmonary edema. This is an updated expert opinion aiming to provide a practical overview on fluid therapy in the ABI patient, partly based on more recent work and stressing the fact that intravenous fluids should be regarded as drugs, with their inherent potential for both benefit and (unintended) harm.
Collapse
Affiliation(s)
- Saliha Ergezen
- Department of Adults Intensive Care, Erasmus Medical Center, Rotterdam, the Netherlands -
- Department of Neurosurgery, Erasmus Medical Center, Rotterdam, the Netherlands -
| | - Eveline J Wiegers
- Department of Adults Intensive Care, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Public Health, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Eva Klijn
- Department of Adults Intensive Care, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mathieu van der Jagt
- Department of Adults Intensive Care, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Taran S, Hamad DM, von Düring S, Malhotra AK, Veroniki AA, McCredie VA, Singh JM, Hansen B, Englesakis M, Adhikari NKJ. Factors associated with acute respiratory distress syndrome in brain-injured patients: A systematic review and meta-analysis. J Crit Care 2023; 77:154341. [PMID: 37235919 DOI: 10.1016/j.jcrc.2023.154341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/29/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
PURPOSE Acute respiratory distress syndrome (ARDS) is common in patients with acute brain injury admitted to the ICU. We aimed to identify factors associated with ARDS in this population. METHODS We searched MEDLINE, Embase, Cochrane Central, Scopus, and Web of Science from inception to January 14, 2022. Three reviewers independently screened articles and selected English-language studies reporting risk factors for ARDS in brain-injured adult patients. Data were extracted on ARDS incidence, adjusted and unadjusted risk factors, and clinical outcomes. Risk of bias was reported using the Quality in Prognostic Studies tool. Certainty of evidence was assessed using GRADE. RESULTS We selected 23 studies involving 6,961,284 patients with acute brain injury. The pooled cumulative incidence of ARDS after brain injury was 17.0% (95%CI 10.7-25.8). In adjusted analysis, factors associated with ARDS included sepsis (odds ratio (OR) 4.38, 95%CI 2.37-8.10; high certainty), history of hypertension (OR 3.11, 95%CI 2.31-4.19; high certainty), pneumonia (OR 2.69, 95%CI 2.35-3.10; high certainty), acute kidney injury (OR 1.44, 95%CI 1.30-1.59; moderate certainty), admission hypoxemia (OR 1.67, 95%CI 1.29-2.17; moderate certainty), male sex (OR 1.30, 95%CI 1.06-1.58; moderate certainty), and chronic obstructive pulmonary disease (OR 1.27, 95%CI 1.13-1.44; moderate certainty). Development of ARDS was independently associated with increased odds of in-hospital mortality (OR 3.12, 95% CI 1.39-7.00). CONCLUSIONS Multiple risk factors are associated with ARDS in brain-injured patients. These findings could be used to develop prognostic models for ARDS or as prognostic enrichment strategies for patient enrolment in future clinical trials.
Collapse
Affiliation(s)
- Shaurya Taran
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Neurology, Massachusetts General Hospital, Harvard University, Boston, MA, USA.
| | - Doulia M Hamad
- Department of Surgery, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
| | - Stephan von Düring
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Intensive Care Division, Geneva University Hospitals (HUG) and Faculty of Medicine, University of Geneva, Switzerland
| | - Armaan K Malhotra
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Areti Angeliki Veroniki
- Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada; Knowledge Translation Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Victoria A McCredie
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Jeffrey M Singh
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Bettina Hansen
- Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada; Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, ON, Canada; Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Marina Englesakis
- Library and Health Information Services, University Health Network, Toronto, ON, Canada
| | - Neill K J Adhikari
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Greve HJ, Dunbar AL, Lombo CG, Ahmed C, Thang M, Messenger EJ, Mumaw CL, Johnson JA, Kodavanti UP, Oblak AL, Block ML. The bidirectional lung brain-axis of amyloid-β pathology: ozone dysregulates the peri-plaque microenvironment. Brain 2023; 146:991-1005. [PMID: 35348636 PMCID: PMC10169526 DOI: 10.1093/brain/awac113] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/07/2022] [Accepted: 02/27/2022] [Indexed: 11/14/2022] Open
Abstract
The mechanisms underlying how urban air pollution affects Alzheimer's disease (AD) are largely unknown. Ozone (O3) is a reactive gas component of air pollution linked to increased AD risk, but is confined to the respiratory tract after inhalation, implicating the peripheral immune response to air pollution in AD neuropathology. Here, we demonstrate that O3 exposure impaired the ability of microglia, the brain's parenchymal immune cells, to associate with and form a protective barrier around Aβ plaques, leading to augmented dystrophic neurites and increased Aβ plaque load. Spatial proteomic profiling analysis of peri-plaque proteins revealed a microenvironment-specific signature of dysregulated disease-associated microglia protein expression and increased pathogenic molecule levels with O3 exposure. Unexpectedly, 5xFAD mice exhibited an augmented pulmonary cell and humoral immune response to O3, supporting that ongoing neuropathology may regulate the peripheral O3 response. Circulating HMGB1 was one factor upregulated in only 5xFAD mice, and peripheral HMGB1 was separately shown to regulate brain Trem2 mRNA expression. These findings demonstrate a bidirectional lung-brain axis regulating the central and peripheral AD immune response and highlight this interaction as a potential novel therapeutic target in AD.
Collapse
Affiliation(s)
- Hendrik J Greve
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - August L Dunbar
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carla Garza Lombo
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chandrama Ahmed
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Morrent Thang
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Evan J Messenger
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christen L Mumaw
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James A Johnson
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Urmila P Kodavanti
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Adrian L Oblak
- Department of Radiology and Imaging Sciences, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michelle L Block
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| |
Collapse
|
8
|
Humayun M, Premraj L, Shah V, Cho SM. Mechanical ventilation in acute brain injury patients with acute respiratory distress syndrome. Front Med (Lausanne) 2022; 9:999885. [PMID: 36275802 PMCID: PMC9582443 DOI: 10.3389/fmed.2022.999885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is commonly seen in patients with acute brain injury (ABI), with prevalence being as high as 35%. These patients often have additional risk factors for ARDS compared to general critical care patients. Lung injury in ABI occurs secondary to catecholamine surge and neuro-inflammatory processes. ARDS patients benefit from lung protective ventilation using low tidal volumes, permissive hypercapnia, high PEEP, and lower PO2 goals. These strategies can often be detrimental in ABI given the risk of brain hypoxia and elevation of intracranial pressure (ICP). While lung protective ventilation is not contraindicated in ABI, special consideration is warranted to make sure it does not interfere with neurological recovery. Permissive hypercapnia with low lung volumes can be utilized in patients without any ICP issues but those with ICP elevations can benefit from continuous ICP monitoring to personalize PCO2 goals. Hypoxia leads to poor outcomes in ABI, hence the ARDSnet protocol of lower PO2 target (55-80 mmHg) might not be the best practice in patients with concomitant ARDS and ABI. High-normal PO2 levels are reasonable in target in severe ABI with ARDS. Studies have shown that PEEP up to 12 mmHg does not cause significant elevations in ICP and is safe to use in ABI though mean arterial pressure, respiratory system compliance, and cerebral perfusion pressure should be closely monitored. Given most trials investigating therapeutics in ARDS have excluded ABI patients, focused research is needed in the field to advance the care of these patients using evidence-based medicine.
Collapse
Affiliation(s)
- Mariyam Humayun
- Division of Neuroscience Critical Care, Department of Neurology, Neurosurgery, Surgery, Anesthesiology, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lavienraj Premraj
- School of Medicine, Griffith University, Gold Coast, QLD, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Vishank Shah
- Division of Neuroscience Critical Care, Department of Neurology, Neurosurgery, Surgery, Anesthesiology, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sung-Min Cho
- Division of Neuroscience Critical Care, Department of Neurology, Neurosurgery, Surgery, Anesthesiology, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Toro C, Hatfield J, Temkin N, Barber J, Manley G, Ohnuma T, Komisarow J, Foreman B, Korley FK, Vavilala MS, Laskowitz DT, Mathew JP, Hernandez A, Sampson J, James ML, Raghunathan K, Goldstein BA, Markowitz AJ, Krishnamoorthy V. Risk Factors and Neurological Outcomes Associated With Circulatory Shock After Moderate-Severe Traumatic Brain Injury: A TRACK-TBI Study. Neurosurgery 2022; 91:427-436. [PMID: 35593705 PMCID: PMC10553078 DOI: 10.1227/neu.0000000000002042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/03/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Extracranial multisystem organ failure is a common sequela of severe traumatic brain injury (TBI). Risk factors for developing circulatory shock and long-term functional outcomes of this patient subset are poorly understood. OBJECTIVE To identify emergency department predictors of circulatory shock after moderate-severe TBI and examine long-term functional outcomes in patients with moderate-severe TBI who developed circulatory shock. METHODS We conducted a retrospective cohort study using the Transforming Clinical Research and Knowledge in TBI database for adult patients with moderate-severe TBI, defined as a Glasgow Coma Scale (GCS) score of <13 and stratified by the development of circulatory shock within 72 hours of hospital admission (Sequential Organ Failure Assessment score ≥2). Demographic and clinical data were assessed with descriptive statistics. A forward selection regression model examined risk factors for the development of circulatory shock. Functional outcomes were examined using multivariable regression models. RESULTS Of our moderate-severe TBI population (n = 407), 168 (41.2%) developed circulatory shock. Our predictive model suggested that race, computed tomography Rotterdam scores <3, GCS in the emergency department, and development of hypotension in the emergency department were associated with developing circulatory shock. Those who developed shock had less favorable 6-month functional outcomes measured by the 6-month GCS-Extended (odds ratio 0.36, P = .002) and 6-month Disability Rating Scale score (Diff. in means 3.86, P = .002) and a longer length of hospital stay (Diff. in means 11.0 days, P < .001). CONCLUSION We report potential risk factors for circulatory shock after moderate-severe TBI. Our study suggests that developing circulatory shock after moderate-severe TBI is associated with poor long-term functional outcomes.
Collapse
Affiliation(s)
- Camilo Toro
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Population Health Sciences, Duke University, Durham, North Carolina, USA
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Jordan Hatfield
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Population Health Sciences, Duke University, Durham, North Carolina, USA
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Nancy Temkin
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Jason Barber
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Geoffrey Manley
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, California, USA
| | - Tetsu Ohnuma
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Anesthesiology, Duke University, Durham, North Carolina, USA
| | - Jordan Komisarow
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Frederick K. Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Monica S. Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Daniel T. Laskowitz
- Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Department of Neurology, Duke University, Durham, North Carolina, USA
| | - Joseph P. Mathew
- Department of Anesthesiology, Duke University, Durham, North Carolina, USA
| | - Adrian Hernandez
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - John Sampson
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Michael L. James
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Neurology, Duke University, Durham, North Carolina, USA
| | - Karthik Raghunathan
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Population Health Sciences, Duke University, Durham, North Carolina, USA
- Duke University School of Medicine, Durham, North Carolina, USA
- Department of Anesthesiology, Duke University, Durham, North Carolina, USA
| | - Benjamin A. Goldstein
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Amy J. Markowitz
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, California, USA
| | - Vijay Krishnamoorthy
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Population Health Sciences, Duke University, Durham, North Carolina, USA
- Duke University School of Medicine, Durham, North Carolina, USA
- Department of Anesthesiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
10
|
Matin N, Sarhadi K, Crooks CP, Lele AV, Srinivasan V, Johnson NJ, Robba C, Town JA, Wahlster S. Brain-Lung Crosstalk: Management of Concomitant Severe Acute Brain Injury and Acute Respiratory Distress Syndrome. Curr Treat Options Neurol 2022; 24:383-408. [PMID: 35965956 PMCID: PMC9363869 DOI: 10.1007/s11940-022-00726-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 12/15/2022]
Abstract
Purpose of Review To summarize pathophysiology, key conflicts, and therapeutic approaches in managing concomitant severe acute brain injury (SABI) and acute respiratory distress syndrome (ARDS). Recent Findings ARDS is common in SABI and independently associated with worse outcomes in all SABI subtypes. Most landmark ARDS trials excluded patients with SABI, and evidence to guide decisions is limited in this population. Potential areas of conflict in the management of patients with both SABI and ARDS are (1) risk of intracranial pressure (ICP) elevation with high levels of positive end-expiratory pressure (PEEP), permissive hypercapnia due to lung protective ventilation (LPV), or prone ventilation; (2) balancing a conservative fluid management strategy with ensuring adequate cerebral perfusion, particularly in patients with symptomatic vasospasm or impaired cerebrovascular blood flow; and (3) uncertainty about the benefit and harm of corticosteroids in this population, with a mortality benefit in ARDS, increased mortality shown in TBI, and conflicting data in other SABI subtypes. Also, the widely adapted partial pressure of oxygen (PaO2) target of > 55 mmHg for ARDS may exacerbate secondary brain injury, and recent guidelines recommend higher goals of 80-120 mmHg in SABI. Distinct pathophysiology and trajectories among different SABI subtypes need to be considered. Summary The management of SABI with ARDS is highly complex, and conventional ARDS management strategies may result in increased ICP and decreased cerebral perfusion. A crucial aspect of concurrent management is to recognize the risk of secondary brain injury in the individual patient, monitor with vigilance, and adjust management during critical time windows. The care of these patients requires meticulous attention to oxygenation and ventilation, hemodynamics, temperature management, and the neurological exam. LPV and prone ventilation should be utilized, and supplemented with invasive ICP monitoring if there is concern for cerebral edema and increased ICP. PEEP titration should be deliberate, involving measures of hemodynamic, pulmonary, and brain physiology. Serial volume status assessments should be performed in SABI and ARDS, and fluid management should be individualized based on measures of brain perfusion, the neurological exam, and cardiopulmonary status. More research is needed to define risks and benefits in corticosteroids in this population.
Collapse
Affiliation(s)
- Nassim Matin
- Department of Neurology, University of Washington, Seattle, WA USA
| | - Kasra Sarhadi
- Department of Neurology, University of Washington, Seattle, WA USA
| | | | - Abhijit V. Lele
- Department of Anesthesiology, University of Washington, Seattle, WA USA
- Department of Neurological Surgery, University of Washington, Seattle, WA USA
| | - Vasisht Srinivasan
- Department of Emergency Medicine, University of Washington, Seattle, WA USA
| | - Nicholas J. Johnson
- Department of Emergency Medicine, University of Washington, Seattle, WA USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA USA
| | - Chiara Robba
- Departments of Anesthesia and Intensive Care, Policlinico San Martino IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Genoa, Italy
| | - James A. Town
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA USA
| | - Sarah Wahlster
- Department of Neurology, University of Washington, Seattle, WA USA
- Department of Anesthesiology, University of Washington, Seattle, WA USA
- Department of Neurological Surgery, University of Washington, Seattle, WA USA
| |
Collapse
|
11
|
Association between Traumatic Subarachnoid Hemorrhage and Acute Respiratory Failure in Moderate-to-Severe Traumatic Brain Injury Patients. J Clin Med 2022; 11:jcm11143995. [PMID: 35887760 PMCID: PMC9318973 DOI: 10.3390/jcm11143995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 01/25/2023] Open
Abstract
Acute respiratory failure (ARF) with a high incidence among moderate-to-severe traumatic brain injury (M-STBI) patients plays a pivotal role in worsening neurological outcomes. Traumatic subarachnoid hemorrhage (tSAH) is highly prevalent in M-STBI, which is associated with significant adverse outcomes. In this retrospective cohort study, we aimed to explore the association between the severity of the tSAH and ARF in the M-STBI population. A total of 771 subjects were reviewed. Clinical and neuroimaging data of M-STBI patients were retrospectively collected, and ARF was ascertained retrospectively based on their electronic medical record. The degree of tSAH was classified according to Fisher’s criteria, and the grade of tSAH was dichotomized to a low Fisher grade (Fisher grade 1–2) and a high Fisher grade (Fisher grade 3–4). After exclusion procedures, the data of 695 M-STBI patients were analyzed. A total of 284 (30.8%) had a high Fisher grade on admission. The overall rate of ARF within 48 h upon admission was 34.4% (239/695); it was 29.5% (142/481) and 46.3% (99/214) for the low and high Fisher groups, respectively. In a full cohort, a high Fisher grade was associated with ARF after adjusting for age, gender, GCS, smoking history, comorbidities, multiple injuries, characteristics of TBI, and pulmonary factors (OR 1.78; 95% CI, 1.11–2.85, p = 0.016). This result remained robust in the comparisons after PSM (71/132, 42.8% vs. 53/132, 31.9%; OR, 1.59; 95% CI, 1.02–2.49, p = 0.042). A high Fisher SAH grade exposure on admission is associated with ARF in M-STBI patients.
Collapse
|
12
|
Yang A, Liu B, Inoue T. Role of autonomic system imbalance in neurogenic pulmonary oedema. Eur J Neurosci 2022; 55:1645-1657. [PMID: 35277906 DOI: 10.1111/ejn.15648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023]
Abstract
Neurogenic pulmonary oedema (NPE) is a life-threatening complication that develops rapidly and dramatically after an injury to the central nervous system (CNS). The autonomic system imbalance produced by severe brain damage may play an important role in the development of NPE. Activation of the sympathetic nervous system and inhibition of the vagus nerve system are essential prerequisites for autonomic system imbalance. The more severe the damage, the more pronounced the phenomenon. Sympathetic hyperactivity is associated with increased release of catecholamines from peripheral sympathetic nerve endings, which can cause dramatic changes in haemodynamics and cause pulmonary oedema. On the other hand, the abnormal inflammatory response caused by vagus nerve inhibition may also play an important role in the pathogenesis of NPE. The perspective of autonomic system imbalance seems to perfectly integrate the existing pathogenesis of NPE and can explain the entire development progression of NPE.
Collapse
Affiliation(s)
- Aobing Yang
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Bin Liu
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
13
|
Chacón-Aponte AA, Durán-Vargas ÉA, Arévalo-Carrillo JA, Lozada-Martínez ID, Bolaño-Romero MP, Moscote-Salazar LR, Grille P, Janjua T. Brain-lung interaction: a vicious cycle in traumatic brain injury. Acute Crit Care 2022; 37:35-44. [PMID: 35172526 PMCID: PMC8918716 DOI: 10.4266/acc.2021.01193] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
The brain-lung interaction can seriously affect patients with traumatic brain injury, triggering a vicious cycle that worsens patient prognosis. Although the mechanisms of the interaction are not fully elucidated, several hypotheses, notably the "blast injury" theory or "double hit" model, have been proposed and constitute the basis of its development and progression. The brain and lungs strongly interact via complex pathways from the brain to the lungs but also from the lungs to the brain. The main pulmonary disorders that occur after brain injuries are neurogenic pulmonary edema, acute respiratory distress syndrome, and ventilator-associated pneumonia, and the principal brain disorders after lung injuries include brain hypoxia and intracranial hypertension. All of these conditions are key considerations for management therapies after traumatic brain injury and need exceptional case-by-case monitoring to avoid neurological or pulmonary complications. This review aims to describe the history, pathophysiology, risk factors, characteristics, and complications of brain-lung and lung-brain interactions and the impact of different old and recent modalities of treatment in the context of traumatic brain injury.
Collapse
Affiliation(s)
| | | | | | - Iván David Lozada-Martínez
- Colombian Clinical Research Group in Neurocritical Care, University of Cartagena, Cartagena, Colombia
- Latin American Council of Neurocritical Care (CLaNi), Cartagena, Colombia
- Global Neurosurgery Committee, World Federation of Neurosurgical Societies, Cartagena, Colombia
- Medical and Surgical Research Center, Cartagena, Colombia
| | | | - Luis Rafael Moscote-Salazar
- Colombian Clinical Research Group in Neurocritical Care, University of Cartagena, Cartagena, Colombia
- Latin American Council of Neurocritical Care (CLaNi), Cartagena, Colombia
- Medical and Surgical Research Center, Cartagena, Colombia
| | - Pedro Grille
- Department of Intensive Care, Hospital Maciel, Montevideo, Uruguay
| | - Tariq Janjua
- Department of Intensive Care, Regions Hospital, St. Paul, MN, USA
| |
Collapse
|
14
|
WANG FD, LI J, ZHAI X, CHEN R, WANG F. Methane-rich saline restores brain SOD activity and alleviates cognitive impairment in rats with traumatic brain injury. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.54921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Jie LI
- Xi'an Jiaotong University, China
| | - Xu ZHAI
- Xi'an Jiaotong University, China
| | - Rui CHEN
- Xi'an Jiaotong University, China
| | | |
Collapse
|
15
|
Fan TH, Huang M, Gedansky A, Price C, Robba C, Hernandez AV, Cho SM. Prevalence and Outcome of Acute Respiratory Distress Syndrome in Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Lung 2021; 199:603-610. [PMID: 34779897 PMCID: PMC8590970 DOI: 10.1007/s00408-021-00491-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/26/2021] [Indexed: 11/01/2022]
Abstract
OBJECTIVES Acute respiratory distress syndrome (ARDS) in patients with traumatic brain injury (TBI) is associated with increased mortality. Information on the prevalence of ARDS and its neurological outcome after TBI is sparse. We aimed to systematically review the prevalence, risk factors, and outcome of ARDS in TBI population. DATA SOURCES PubMed and four other databases (Embase, Cochrane Library, Web of Science Core Collection, and Scopus) from inception to July 6, 2020. STUDY SELECTION Randomized controlled trials (RCTs) and observational studies in patients older than 18 years old. DATA EXTRACTION Two independent reviewers extracted the data. Study quality was assessed by the Cochrane Risk of Bias tool for RCTs, the Newcastle-Ottawa Scale for cohort and case-control studies. Good neurological outcome was defined as Glasgow Outcome Scale ≥ 4. Random-effects meta-analyses were conducted to estimate pooled outcome prevalence and their 95% confidence intervals (CI). DATA SYNTHESIS We included 20 studies (n = 2830) with median age of 44 years (interquartile range [IQR] = 35-47, 64% male) and 79% (n = 2237) suffered severe TBI. In meta-analysis, 19% patients (95% CI = 0.13-0.27, I2 = 93%) had ARDS after TBI. The median time from TBI to ARDS was 3 days (IQR = 2-5). Overall survival at discharge for the TBI cohort was 70% (95% CI = 0.64-0.75; I2 = 85%) and good neurological outcome at any time was achieved in 31% of TBI patients (95% CI = 0.23-0.40; I2 = 88%). TBI cohort without ARDS had higher survival (67% vs. 57%, p = 0.01) and good neurological outcomes (34% vs. 23%, p = 0.02) compared to those with ARDS. We did not find any specific risk factors for developing ARDS. CONCLUSION In this meta-analysis, approximately one in five patients had ARDS shortly after TBI with the median time of 3 days. The presence of ARDS was associated with worse neurological outcome and mortality in TBI. Further research on prevention and intervention strategy of TBI-associated ARDS is warranted.
Collapse
Affiliation(s)
- Tracey H Fan
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Merry Huang
- Department of Neurology, Cleveland Clinic, Neurological Institute, Cleveland, OH, USA
| | - Aron Gedansky
- Department of Neurology, Cleveland Clinic, Neurological Institute, Cleveland, OH, USA
| | - Carrie Price
- Albert S. Cook Library, Towson University, Towson, MD, USA
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Adrian V Hernandez
- Health Outcomes, Policy, and Evidence Synthesis (HOPES) Group, Department of Pharmacy Practice, University of Connecticut School of Pharmacy, Storrs, Mansfield, CT, USA
- Unidad de Revisiones Sistemáticas y Meta-Análisis (URSIGET), Vicerrectorado de Investigación, Universidad San Ignacio de Loyola (USIL), Lima, Peru
| | - Sung-Min Cho
- Division of Neuroscience Critical Care, Departments of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Johns Hopkins University, 600 N. Wolfe Street, Phipps 455, Baltimore, MD, 21287, USA.
| |
Collapse
|
16
|
Zhang CN, Li FJ, Zhao ZL, Zhang JN. The role of extracellular vesicles in traumatic brain injury-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2021; 321:L885-L891. [PMID: 34549593 DOI: 10.1152/ajplung.00023.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acute lung injury (ALI), a common complication after traumatic brain injury (TBI), can evolve into acute respiratory distress syndrome (ARDS) and has a mortality rate of 30%-40%. Secondary ALI after TBI exhibits the following typical pathological features: infiltration of neutrophils into the alveolar and interstitial space, alveolar septal thickening, alveolar edema, and hemorrhage. Extracellular vesicles (EVs) were recently identified as key mediators in TBI-induced ALI. Due to their small size and lipid bilayer, they can pass through the disrupted blood-brain barrier (BBB) into the peripheral circulation and deliver their contents, such as genetic material and proteins, to target cells through processes such as fusion, receptor-mediated interactions, and uptake. Acting as messengers, EVs contribute to mediating brain-lung cross talk after TBI. In this review, we aim to summarize the mechanism of EVs in TBI-induced ALI, which may provide new ideas for clinical treatment.
Collapse
Affiliation(s)
- Chao-Nan Zhang
- Department of Neurosurgery, Tianjin Institute of Neurology, grid.412645.0Tianjin Medical University General Hospital, Tianjin, China
| | - Fan-Jian Li
- Department of Neurosurgery, Tianjin Institute of Neurology, grid.412645.0Tianjin Medical University General Hospital, Tianjin, China
| | - Zi-Long Zhao
- Department of Neurosurgery, Tianjin Institute of Neurology, grid.412645.0Tianjin Medical University General Hospital, Tianjin, China
| | - Jian-Ning Zhang
- Department of Neurosurgery, Tianjin Institute of Neurology, grid.412645.0Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
17
|
Ziaka M, Exadaktylos A. Brain-lung interactions and mechanical ventilation in patients with isolated brain injury. Crit Care 2021; 25:358. [PMID: 34645485 PMCID: PMC8512596 DOI: 10.1186/s13054-021-03778-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022] Open
Abstract
During the last decade, experimental and clinical studies have demonstrated that isolated acute brain injury (ABI) may cause severe dysfunction of peripheral extracranial organs and systems. Of all potential target organs and systems, the lung appears to be the most vulnerable to damage after brain injury (BI). The pathophysiology of these brain–lung interactions are complex and involve neurogenic pulmonary oedema, inflammation, neurodegeneration, neurotransmitters, immune suppression and dysfunction of the autonomic system. The systemic effects of inflammatory mediators in patients with BI create a systemic inflammatory environment that makes extracranial organs vulnerable to secondary procedures that enhance inflammation, such as mechanical ventilation (MV), surgery and infections. Indeed, previous studies have shown that in the presence of a systemic inflammatory environment, specific neurointensive care interventions—such as MV—may significantly contribute to the development of lung injury, regardless of the underlying mechanisms. Although current knowledge supports protective ventilation in patients with BI, it must be born in mind that ABI-related lung injury has distinct mechanisms that involve complex interactions between the brain and lungs. In this context, the role of extracerebral pathophysiology, especially in the lungs, has often been overlooked, as most physicians focus on intracranial injury and cerebral dysfunction. The present review aims to fill this gap by describing the pathophysiology of complications due to lung injuries in patients with a single ABI, and discusses the possible impact of MV in neurocritical care patients with normal lungs.
Collapse
Affiliation(s)
- Mairi Ziaka
- Department of Internal Medicine, Thun General Hospital, Thun, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Shin SS, Hwang M, Diaz-Arrastia R, Kilbaugh TJ. Inhalational Gases for Neuroprotection in Traumatic Brain Injury. J Neurotrauma 2021; 38:2634-2651. [PMID: 33940933 PMCID: PMC8820834 DOI: 10.1089/neu.2021.0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite multiple prior pharmacological trials in traumatic brain injury (TBI), the search for an effective, safe, and practical treatment of these patients remains ongoing. Given the ease of delivery and rapid absorption into the systemic circulation, inhalational gases that have neuroprotective properties will be an invaluable resource in the clinical management of TBI patients. In this review, we perform a systematic review of both pre-clinical and clinical reports describing inhalational gas therapy in the setting of TBI. Hyperbaric oxygen, which has been investigated for many years, and some of the newest developments are reviewed. Also, promising new therapies such as hydrogen gas, hydrogen sulfide gas, and nitric oxide are discussed. Moreover, novel therapies such as xenon and argon gases and delivery methods using microbubbles are explored.
Collapse
Affiliation(s)
- Samuel S. Shin
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Misun Hwang
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Krishnamoorthy V, Komisarow JM, Laskowitz DT, Vavilala MS. Multiorgan Dysfunction After Severe Traumatic Brain Injury: Epidemiology, Mechanisms, and Clinical Management. Chest 2021; 160:956-964. [PMID: 33460623 PMCID: PMC8448997 DOI: 10.1016/j.chest.2021.01.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/10/2020] [Accepted: 01/07/2021] [Indexed: 01/20/2023] Open
Abstract
Traumatic brain injury (TBI) is a major global health problem and a major contributor to morbidity and mortality following multisystem trauma. Extracranial organ dysfunction is common after severe TBI and significantly impacts clinical care and outcomes following injury. Despite this, extracranial organ dysfunction remains an understudied topic compared with organ dysfunction in other critical care paradigms. In this review, we will: 1) summarize the epidemiology of extracranial multiorgan dysfunction following severe TBI; 2) examine relevant mechanisms that may be involved in the development of multi-organ dysfunction following severe TBI; and 3) discuss clinical management strategies to care for these complex patients.
Collapse
Affiliation(s)
- Vijay Krishnamoorthy
- Department of Anesthesiology, Duke University, Chapel Hill, NC; Critical Care and Perioperative Population Health Research Unit, Department of Anesthesiology, Duke University, Chapel Hill, NC.
| | - Jordan M Komisarow
- Critical Care and Perioperative Population Health Research Unit, Department of Anesthesiology, Duke University, Chapel Hill, NC; Department of Neurosurgery, Duke University, Chapel Hill, NC
| | | | - Monica S Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
| |
Collapse
|
20
|
Brazdzionis J, Patchana T, Savla P, Podkovik S, Browne J, Ohno A, Taka TM, Modi A, Wacker MR, Cortez V, Miulli DE. Medical Comorbidities Associated With Outcomes in Patients With Traumatic Epidural Hematomas. Cureus 2021; 13:e15514. [PMID: 34277158 PMCID: PMC8269989 DOI: 10.7759/cureus.15514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/08/2021] [Indexed: 11/25/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a frequently encountered neurosurgical pathology with significant morbidity and mortality. One such subtype is the epidural hematoma. Literature regarding the effects of comorbidities in TBI and epidural hematomas is limited. Methodology This was a single-center retrospective review of 50 consecutive patients admitted to a level two trauma center with epidural hematomas. Patients were identified using an internal trauma database. Patients were included if they were 18 years of age with a diagnosed epidural hematoma. Outcome variables of Glasgow coma scale (GCS), length of stay in the intensive care unit (ICU) and hospital, and requirement of a neurosurgical procedure were analyzed. Identification of the presence of diagnosed comorbidities was performed including common comorbidities such as obesity, diabetes, hypertension, hyperlipidemia, drug use, tobacco use, cancer, psychiatric disease, and renal disease. Correlations were evaluated using two-sided bivariate analysis (p < 0.05). Results A total of 50 patients were included for analysis. Significant correlations with a p-value less of than 0.05 were noted in initial GCS and cancer (r = -0.357, p = 0.011), requirements of an intracranial procedure with a history of gastrointestinal disease (r = 0.377, p = 0.007), and younger age (r = -0.306, p = 0.031). Increased ICU length of stay was related to a history of cancer (r = 0.494, p < 0.001), a history of respiratory disease (r = 0.427, p = 0.002), and a history of psychiatric disease (r = 0.297, p = 0.036). Increased hospital length of stay was related to psychiatric disorders (r = 0.285, p = 0.045). Discharge GCS was negatively associated with a history of hypertension (r = -0.374, p = 0.008), tobacco use (r = -0.417, p = 0.003), drug use (r = -0.294, p = 0.037), and history of cancer (r = -0.303, p = 0.032). Discussion and Conclusions In our 50 consecutive patient subset, selected comorbidities demonstrated significant relationships with outcome measures of GCS, need for a procedure, and lengths of stay in the hospital and ICU. Obtaining comorbidity information when available from families can better allow the clinician to optimize treatment and educate loved ones about the potential effects of these comorbidities on the overall health of the patient. Understanding these correlations may allow for a better understanding of the systemic effects of the pathophysiology of injury in epidural hematomas.
Collapse
Affiliation(s)
- James Brazdzionis
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Tye Patchana
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Paras Savla
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Stacey Podkovik
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Jonathan Browne
- Neurosurgery, California University of Science and Medicine, Colton, USA
| | - Ai Ohno
- Neurosurgery, California University of Science and Medicine, Colton, USA
| | - Taha M Taka
- Neurosurgery, University of California Riverside, Riverside, USA
| | - Arnav Modi
- Neurosurgery, California University of Science and Medicine, Colton, USA
| | | | - Vladimir Cortez
- Neurosurgery, Desert Regional Medical Center, Palm Springs, USA
| | - Dan E Miulli
- Neurosurgery, Arrowhead Regional Medical Center, Colton, USA
| |
Collapse
|
21
|
Sabet N, Soltani Z, Khaksari M. Multipotential and systemic effects of traumatic brain injury. J Neuroimmunol 2021; 357:577619. [PMID: 34058510 DOI: 10.1016/j.jneuroim.2021.577619] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability and mortality of people at all ages. Biochemical, cellular and physiological events that occur during primary injury lead to a delayed and long-term secondary damage that can last from hours to years. Secondary brain injury causes tissue damage in the central nervous system and a subsequent strong and rapid inflammatory response that may lead to persistent inflammation. However, this inflammatory response is not limited to the brain. Inflammatory mediators are transferred from damaged brain tissue to the bloodstream and produce a systemic inflammatory response in peripheral organs, including the cardiovascular, pulmonary, gastrointestinal, renal and endocrine systems. Complications of TBI are associated with its multiple and systemic effects that should be considered in the treatment of TBI patients. Therefore, in this review, an attempt was made to examine the systemic effects of TBI in detail. It is hoped that this review will identify the mechanisms of injury and complications of TBI, and open a window for promising treatment in TBI complications.
Collapse
Affiliation(s)
- Nazanin Sabet
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
22
|
Lung-protective ventilation and adjunctive strategies to manage respiratory failure: are they safe in the neurological patient? Curr Opin Crit Care 2021; 27:115-119. [PMID: 33480618 DOI: 10.1097/mcc.0000000000000809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The coexistence of neurological injury and respiratory failure is common in intensive care. This article provides a contemporary overview of the safety and efficacy of different strategies for mechanical ventilation and adjunctive respiratory approaches in patients with acute brain injury. RECENT FINDINGS Available evidence indicates that lung-protective ventilation (LPV) can be implemented safely in a range of patients with concurrent respiratory failure and brain injury of different etiologies; however, the clinical efficacy of LPV in this setting needs to be established. In patients who have severe acute respiratory distress syndrome (ARDS) and brain injury, adjunctive measures (neuromuscular blocker drug infusions, prone positioning, extracorporeal membrane oxygenation) may be considered, although the neurophysiological impact and safety of these techniques need further investigation. Intracranial pressure and other neuromonitoring techniques may be of value to ensure optimal management of mechanical ventilation and adjunctive measures in this population. SUMMARY Research is needed to determine the safety, feasibility, and efficacy of LPV and adjunctive approaches for managing patients with concurrent brain injury and respiratory failure.
Collapse
|
23
|
Gouvea Bogossian E, Peluso L, Creteur J, Taccone FS. Hyperventilation in Adult TBI Patients: How to Approach It? Front Neurol 2021; 11:580859. [PMID: 33584492 PMCID: PMC7875871 DOI: 10.3389/fneur.2020.580859] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Hyperventilation is a commonly used therapy to treat intracranial hypertension (ICTH) in traumatic brain injury patients (TBI). Hyperventilation promotes hypocapnia, which causes vasoconstriction in the cerebral arterioles and thus reduces cerebral blood flow and, to a lesser extent, cerebral blood volume effectively, decreasing temporarily intracranial pressure. However, hyperventilation can have serious systemic and cerebral deleterious effects, such as ventilator-induced lung injury or cerebral ischemia. The routine use of this therapy is therefore not recommended. Conversely, in specific conditions, such as refractory ICHT and imminent brain herniation, it can be an effective life-saving rescue therapy. The aim of this review is to describe the impact of hyperventilation on extra-cerebral organs and cerebral hemodynamics or metabolism, as well as to discuss the side effects and how to implement it to manage TBI patients.
Collapse
Affiliation(s)
- Elisa Gouvea Bogossian
- Intensive Care Department, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorenzo Peluso
- Intensive Care Department, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Creteur
- Intensive Care Department, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabio Silvio Taccone
- Intensive Care Department, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
24
|
Komisarow JM, Chen F, Vavilala MS, Laskowitz D, James ML, Krishnamoorthy V. Epidemiology and Outcomes of Acute Respiratory Distress Syndrome Following Isolated Severe Traumatic Brain Injury. J Intensive Care Med 2020; 37:68-74. [PMID: 33191844 DOI: 10.1177/0885066620972001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with traumatic brain injury (TBI) are at risk for extra-cranial complications, such as the acute respiratory distress syndrome (ARDS). We conducted an analysis of risk factors, mortality, and healthcare utilization associated with ARDS following isolated severe TBI. The National Trauma Data Bank (NTDB) dataset files from 2007-2014 were used to identify adult patients who suffered isolated [other body region-specific Abbreviated Injury Scale (AIS) < 3] severe TBI [admission total Glasgow Coma Scale (GCS) from 3 to 8 and head region-specific AIS >3]. In-hospital mortality was compared between patients who developed ARDS and those who did not. Utilization of healthcare resources (ICU length of stay, hospital length of stay, duration of mechanical ventilation, and frequency of tracheostomy and gastrostomy tube placement) was also examined. This retrospective cohort study included 38,213 patients with an overall ARDS occurrence of 7.5%. Younger age, admission tachycardia, pre-existing vascular and respiratory diseases, and pneumonia were associated with the development of ARDS. Compared to patients without ARDS, patients that developed ARDS experienced increased in-hospital mortality (OR 1.13, 95% CI 1.01-1.26), length of stay (p = <0.001), duration of mechanical ventilation (p = < 0.001), and placement of tracheostomy (OR 2.70, 95% CI 2.34-3.13) and gastrostomy (OR 2.42, 95% CI 2.06-2.84). After isolated severe TBI, ARDS is associated with increased mortality and healthcare utilization. Future studies should focus on both prevention and management strategies specific to TBI-associated ARDS.
Collapse
Affiliation(s)
| | - Fangyu Chen
- School of Medicine, 12277Duke University, Durham, NC, USA
| | - Monica S Vavilala
- Department of Anesthesiology, 7284University of Washington, Seattle, WA, USA
| | | | - Michael L James
- Department of Neurology, 12277Duke University, Durham, NC, USA.,Department of Anesthesiology, 12277Duke University, Durham, NC, USA
| | | |
Collapse
|
25
|
The impact of non-neurological organ dysfunction on outcomes in severe isolated traumatic brain injury. J Trauma Acute Care Surg 2020; 89:405-410. [PMID: 32744835 DOI: 10.1097/ta.0000000000002771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Organ dysfunction following traumatic brain injury (TBI) is common and has been associated with unpredictable outcomes. The aim of our study is to describe the incidence of non-neurological organ dysfunction (NNOD) and its impact on outcomes in patients with severe TBI admitted to our intensive care unit (ICU). METHODS We performed a 3-year (2015-2017) review of our Level 1 trauma center's prospectively maintained TBI database and included all adult (age ≥18y) patients with isolated severe TBI (head abbreviated injury severity (AIS) ≥3 and other AIS <3) and an ICU stay >48 hours. Organ dysfunction (OD) was measured by multiple organ dysfunction scores. Organ system failure was defined as a non-neurological component score of ≥3 on any day during the ICU stay. Outcomes measured were the incidence of NNOD and its effect on outcomes. Multivariate regression analysis was performed. RESULTS A total of 285 patients were included. The mean age was 48 ± 22 years, 72% were males, median [IQR] Glasgow Coma Scale (GCS) was 8[5-10], and median Injury Severity Score (ISS) was 17[10-26]. Epidural hematoma was the most common intracranial hemorrhage (49%) followed by subdural hematoma (46%). The overall incidence of NNOD was 33%, with the most common dysfunctional organ system being the respiratory (23%) followed by the cardiovascular (12%) and hepatic system (8%). The overall in-hospital mortality rate was 19% (NNOD:36% vs. No-NNOD:9%, p< 0.01). On regression analysis, NNOD was associated with higher in-hospital mortality (aOR: 2.0 [1.6-2.7]), discharge to skilled nursing facility (SNF) (aOR: 1.8 [1.4-2.2]), and Glasgow Outcome Scale-Extended (GOS-E) ≤4 (OR: 1.7 [1.3-2.3]) and p-values <0.01. CONCLUSION One in every three isolated severe TBI patients develop NNOD. NNOD is independently associated with worse outcomes. Understanding the mechanisms associated with NNOD in the setting of TBI may promote prevention practices and improve outcomes in TBI. LEVEL OF EVIDENCE Prognostic, level III.
Collapse
|
26
|
Mrozek S, Gobin J, Constantin JM, Fourcade O, Geeraerts T. Crosstalk between brain, lung and heart in critical care. Anaesth Crit Care Pain Med 2020; 39:519-530. [PMID: 32659457 DOI: 10.1016/j.accpm.2020.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 05/05/2020] [Accepted: 06/07/2020] [Indexed: 12/17/2022]
Abstract
Extracerebral complications, especially pulmonary and cardiovascular, are frequent in brain-injured patients and are major outcome determinants. Two major pathways have been described: brain-lung and brain-heart interactions. Lung injuries after acute brain damages include ventilator-associated pneumonia (VAP), acute respiratory distress syndrome (ARDS) and neurogenic pulmonary œdema (NPE), whereas heart injuries can range from cardiac enzymes release, ECG abnormalities to left ventricle dysfunction or cardiogenic shock. The pathophysiologies of these brain-lung and brain-heart crosstalk are complex and sometimes interconnected. This review aims to describe the epidemiology and pathophysiology of lung and heart injuries in brain-injured patients with the different pathways implicated and the clinical implications for critical care physicians.
Collapse
Affiliation(s)
- Ségolène Mrozek
- Department of anaesthesia and critical care, university hospital of Toulouse, university Toulouse 3 Paul Sabatier, Toulouse, France.
| | - Julie Gobin
- Department of anaesthesia and critical care, university hospital of Toulouse, university Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jean-Michel Constantin
- Department of anaesthesia and critical care, Sorbonne university, La Pitié-Salpêtrière hospital, Assistance publique-Hôpitaux de Paris, Paris, France
| | - Olivier Fourcade
- Department of anaesthesia and critical care, university hospital of Toulouse, university Toulouse 3 Paul Sabatier, Toulouse, France
| | - Thomas Geeraerts
- Department of anaesthesia and critical care, university hospital of Toulouse, university Toulouse 3 Paul Sabatier, Toulouse, France
| |
Collapse
|
27
|
Physical Activity Intolerance and Cardiorespiratory Dysfunction in Patients with Moderate-to-Severe Traumatic Brain Injury. Sports Med 2020; 49:1183-1198. [PMID: 31098990 DOI: 10.1007/s40279-019-01122-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Moderate-to-severe traumatic brain injury (TBI) is a chronic health condition with multi-systemic effects. Survivors face significant long-term functional limitations, including physical activity intolerance and disordered sleep. Persistent cardiorespiratory dysfunction is a potentially modifiable yet often overlooked major contributor to the alarmingly high long-term morbidity and mortality rates in these patients. This narrative review was developed through systematic and non-systematic searches for research relating cardiorespiratory function to moderate-to-severe TBI. The literature reveals patients who have survived moderate-to-severe TBI have ~ 25-35% reduction in maximal aerobic capacity 6-18 months post-injury, resting pulmonary capacity parameters that are reduced 25-40% for weeks to years post-injury, increased sedentary behavior, and elevated risk of cardiorespiratory-related morbidity and mortality. Synthesis of data from other patient populations reveals that cardiorespiratory dysfunction is likely a consequence of ventilator-induced diaphragmatic dysfunction (VIDD), which is not currently addressed in TBI management. Thus, cardiopulmonary exercise testing should be routinely performed in this patient population and those with cardiorespiratory deficits should be further evaluated for diaphragmatic dysfunction. Lack of targeted treatment for underlying cardiorespiratory dysfunction, including VIDD, likely contributes to physical activity intolerance and poor functional outcomes in these patients. Interventional studies have demonstrated that short-term exercise training programs are effective in patients with moderate-to-severe TBI, though improvement is variable. Inspiratory muscle training is beneficial in other patient populations with diaphragmatic dysfunction, and may be valuable for patients with TBI who have been mechanically ventilated. Thus, clinicians with expertise in cardiorespiratory fitness assessment and exercise training interventions should be included in patient management for individuals with moderate-to-severe TBI.
Collapse
|
28
|
Klocker E, Pietsch C, Pietsch U. [Treatment options for acute respiratory distress syndrome in neurointensive care. Individual management due to enhanced neuromonitoring? : A case report series]. Anaesthesist 2020; 69:421-431. [PMID: 32303783 DOI: 10.1007/s00101-020-00769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/14/2020] [Accepted: 03/19/2020] [Indexed: 11/25/2022]
Abstract
Severe pulmonary impairment can occur after traumatic brain injury or stroke. The resulting brain-lung interactions represent key points for the treatment and the subsequent outcome of the patient. Established treatment approaches, such as permissive hypercapnia and prone positioning, present the intensive care physician with divergent treatment goals in these patients with partially increased intracranial pressure. This case report series shows the instrument-based and noninstrument-based options for the treatment of acute respiratory distress syndrome (ARDS) in the simultaneous presence of intracranial pathologies. This includes equipment based therapies using extracorporeal CO2 elimination, special positioning maneuvers in specially designed hospital beds and positional maneuvers, such as prone positioning. With enhanced neuromonitoring it is possible to optimally adapt treatment measures focused on the lungs early and before secondary damage to the brain.
Collapse
Affiliation(s)
- E Klocker
- Klinik für Anästhesiologie, Intensiv‑, Rettungs- und Schmerzmedizin, Kantonsspital St. Gallen, 9007, St. Gallen, Schweiz.
| | - C Pietsch
- Klinik für Neurochirurgie, Kantonsspital St. Gallen, St. Gallen, Schweiz
| | - U Pietsch
- Klinik für Anästhesiologie, Intensiv‑, Rettungs- und Schmerzmedizin, Kantonsspital St. Gallen, 9007, St. Gallen, Schweiz
| |
Collapse
|
29
|
Jordan J, Shirey M, Ladores S. Corticosteroids in Pediatric Traumatic Brain Injury: A Principle-Based Concept Analysis. J Nurse Pract 2020. [DOI: 10.1016/j.nurpra.2019.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Lee S, Hwang H, Yamal JM, Goodman JC, Aisiku IP, Gopinath S, Robertson CS. IMPACT probability of poor outcome and plasma cytokine concentrations are associated with multiple organ dysfunction syndrome following traumatic brain injury. J Neurosurg 2019; 131:1931-1937. [PMID: 30641838 DOI: 10.3171/2018.8.jns18676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/14/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is a major cause of morbidity and mortality. Multiple organ dysfunction syndrome (MODS) occurs frequently after TBI and independently worsens outcome. The present study aimed to identify potential admission characteristics associated with post-TBI MODS. METHODS The authors performed a secondary analysis of a recent randomized clinical trial studying the effects of erythropoietin and blood transfusion threshold on neurological recovery after TBI. Admission clinical, demographic, laboratory, and imaging parameters were used in a multivariable Cox regression analysis to identify independent risk factors for MODS following TBI, defined as maximum total Sequential Organ Failure Assessment (SOFA) score > 7 within 10 days of TBI. RESULTS Two hundred patients were initially recruited and 166 were included in the final analysis. Respiratory dysfunction was the most common nonneurological organ system dysfunction, occurring in 62% of the patients. International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) probability of poor outcome at admission was significantly associated with MODS following TBI (odds ratio [OR] 8.88, 95% confidence interval [CI] 1.94-42.68, p < 0.05). However, more commonly used measures of TBI severity, such as the Glasgow Coma Scale, Injury Severity Scale, and Marshall classification, were not associated with post-TBI MODS. In addition, initial plasma concentrations of interleukin (IL)-6, IL-8, and IL-10 were significantly associated with the development of MODS (OR 1.47, 95% CI 1.20-1.80, p < 0.001 for IL-6; OR 1.26, 95% CI 1.01-1.58, p = 0.042 for IL-8; OR 1.77, 95% CI 1.24-2.53, p = 0.002 for IL-10) as well as individual organ dysfunction (SOFA component score ≥ 1). Finally, MODS following TBI was significantly associated with mortality (OR 5.95, 95% CI 2.18-19.14, p = 0.001), and SOFA score was significantly associated with poor outcome at 6 months (Glasgow Outcome Scale score < 4) when analyzed as a continuous variable (OR 1.21, 95% CI 1.06-1.40, p = 0.006). CONCLUSIONS Admission IMPACT probability of poor outcome and initial plasma concentrations of IL-6, IL-8, and IL-10 were associated with MODS following TBI.
Collapse
Affiliation(s)
| | - Hyunsoo Hwang
- 2Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston School of Public Health, Houston, Texas; and
| | - Jose-Miguel Yamal
- 2Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston School of Public Health, Houston, Texas; and
| | - J Clay Goodman
- 3Pathology & Immunology, Baylor College of Medicine, Houston
| | - Imoigele P Aisiku
- 4Department of Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
31
|
Kerr N, de Rivero Vaccari JP, Dietrich WD, Keane RW. Neural-respiratory inflammasome axis in traumatic brain injury. Exp Neurol 2019; 323:113080. [PMID: 31626746 DOI: 10.1016/j.expneurol.2019.113080] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/11/2019] [Accepted: 10/04/2019] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality. Approximately 20-25% of TBI subjects develop Acute Lung Injury (ALI), but the pathomechanisms of TBI-induced ALI remain poorly defined. Currently, mechanical ventilation is the only therapeutic intervention for TBI-induced lung injury. Our recent studies have shown that the inflammasome plays an important role in the systemic inflammatory response leading to lung injury-post TBI. Here, we outline the role of the extracellular vesicle (EV)-mediated inflammasome signaling in the etiology of TBI-induced ALI. Furthermore, we evaluate the efficacy of a low molecular weight heparin (Enoxaparin, a blocker of EV uptake) and a monoclonal antibody against apoptosis speck-like staining protein containing a caspase recruitment domain (anti-ASC) as therapeutics for TBI-induced lung injury. We demonstate that activation of an EV-mediated Neural-Respiratory Inflammasome Axis plays an essential role in TBI-induced lung injury and disruption of this axis has therapeutic potential as a treatment strategy.
Collapse
Affiliation(s)
- Nadine Kerr
- Department of Neurological Surgery, University of Miami Miller School of Medicine, United States of America; Miami Project to Cure Paralysis, United States of America
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, University of Miami Miller School of Medicine, United States of America; Miami Project to Cure Paralysis, United States of America
| | - W Dalton Dietrich
- Department of Neurological Surgery, University of Miami Miller School of Medicine, United States of America; Miami Project to Cure Paralysis, United States of America
| | - Robert W Keane
- Department of Neurological Surgery, University of Miami Miller School of Medicine, United States of America; Miami Project to Cure Paralysis, United States of America; Department of Physiology and Biophysics, University of Miami Miller School fo Medicine, 1600 NW10th Avenue, Miami, FL 33136, United States of America.
| |
Collapse
|
32
|
Ventilatory Strategies in the Brain-injured Patient. Int Anesthesiol Clin 2019; 56:131-146. [PMID: 29227316 DOI: 10.1097/aia.0000000000000169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Ischaemic stroke in mice induces lung inflammation but not acute lung injury. Sci Rep 2019; 9:3622. [PMID: 30842652 DOI: 10.1038/s41598-019-40392-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/12/2019] [Indexed: 01/11/2023] Open
Abstract
Stroke is a major cause of death worldwide and ischemic stroke is the most common subtype accounting for approximately 80% of all cases. Pulmonary complications occur in the first few days to weeks following ischemic stroke and are a major contributor to morbidity and mortality. Acute lung injury (ALI) occurs in up to 30% of patients with subarachnoid haemorrhage but the incidence of ALI after ischemic stroke is unclear. As ischemic stroke is the most common subtype of stroke, it is important to understand the development of ALI following the initial ischemic injury to the brain. Therefore, this study investigated whether focal ischemic stroke causes lung inflammation and ALI in mice. Ischemic stroke caused a significant increase in bronchoalveolar lavage fluid (BALF) macrophages and neutrophils and whole lung tissue proinflammatory IL-1β mRNA expression but this did not translate into histologically evident ALI. Thus, it appears that lung inflammation, but not ALI, occurs after experimental ischemic stroke in mice. This has significant implications for organ donors as the lungs from patient's dying of ischemic stroke are not severely damaged and could thus be used for transplantation in people awaiting this life-saving therapy.
Collapse
|
34
|
Early low-anticoagulant desulfated heparin after traumatic brain injury: Reduced brain edema and leukocyte mobilization is associated with improved watermaze learning ability weeks after injury. J Trauma Acute Care Surg 2019; 84:727-735. [PMID: 29373460 DOI: 10.1097/ta.0000000000001819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Unfractionated heparin administered immediately after traumatic brain injury (TBI) reduces brain leukocyte (LEU) accumulation, and enhances early cognitive recovery, but may increase bleeding after injury. It is unknown how non-anticoagulant heparins, such as 2,3-O desulfated heparin (ODSH), impact post-TBI cerebral inflammation and long-term recovery. We hypothesized that ODSH after TBI reduces LEU-mediated brain inflammation and improves long-term neurologic recovery. METHODS CD1 male mice (n = 66) underwent either TBI (controlled cortical impact [CCI]) or sham craniotomy. 2,3-O desulfated heparin (25 mg/kg [25ODSH] or 50 mg/kg [50ODSH]) or saline was administered for 48 hours after TBI in 46 animals. At 48 hours, intravital microscopy visualized rolling LEUs and fluorescent albumin leakage in the pial circulation, and the Garcia Neurologic Test assessed neurologic function. Brain edema (wet/dry ratio) was evaluated post mortem. In a separate group of animals (n = 20), learning/memory ability (% time swimming in the Probe platform quadrant) was assessed by the Morris Water Maze 17 days after TBI. Analysis of variance with Bonferroni correction determined significance (p < 0.05). RESULTS Compared with CCI (LEU rolling: 32.3 ± 13.7 LEUs/100 μm per minute, cerebrovascular albumin leakage: 57.4 ± 5.6%), both ODSH doses reduced post-TBI pial LEU rolling (25ODSH: 18.5 ± 9.2 LEUs/100 μm per minute, p = 0.036; 50ODSH: 7.8 ± 3.9 LEUs/100 μm per minute, p < 0.001) and cerebrovascular albumin leakage (25ODSH: 37.9 ± 11.7%, p = 0.001, 50ODSH: 32.3 ± 8.7%, p < 0.001). 50ODSH also reduced injured cerebral hemisphere edema (77.7 ± 0.4%) vs. CCI (78.7 ± 0.4 %, p = 0.003). Compared with CCI, both ODSH doses improved Garcia Neurologic Test at 48 hours. Learning/memory ability (% time swimming in target quadrant) was lowest in CCI (5.9 ± 6.4%) and significantly improved in the 25ODSH group (27.5 ± 8.2%, p = 0.025). CONCLUSION 2,3-O desulfated heparin after TBI reduces cerebral LEU recruitment, microvascular permeability and edema. 2,3-O desulfated heparin may also improve acute neurologic recovery leading to improved learning/memory ability weeks after injury.
Collapse
|
35
|
Gattupalli V, Jain K, Samra T. Lung Ultrasound as a Bedside Tool for Assessment of Extravascular Lung Water in Critically Ill Head Injured Patients: An Observational Study. Indian J Crit Care Med 2019; 23:131-134. [PMID: 31097889 PMCID: PMC6487619 DOI: 10.5005/jp-journals-10071-23135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Extra vascular lung water (EVLW) is defined as the amount of fluid in the interstitial and alveolar spaces. Primary aim of this study was to assess EVLW using lung USG (B lines >3 per lung field) in critically ill head injured patients. Materials and methods Intubated adult patients admitted in Trauma ICU with head injury (GCS 4-15) were assessed by daily chest X-ray and lung ultrasonography. Lung water content was graded based on the number of B lines per ICS with score ranging from 0-32 and categorized as low pulmonary fluid burden (0-10), moderate fluid burden (11-20) and high fluid burden (21-32). Results 140 critically ill head injured patients were assessed for eligibility and 20 excluded. Incidence of increased EVLW using lung USG was 61.66% (74/120) and the incidence reported using chest x ray was 40.83%(49/120) and the difference was statistically significant (p value <0.001). Increased EVLW significantly increased the duration of weaning, mechanical ventilation and ICU stay (p value <0.05). Significant association was observed between APACHE II, SAPS II and GCS at admission to ICU with presence of EVLW (p value ≤0.001). Mean delay in identification of EVLW by chest X-ray (CXR) compared to lung ultrasound was 1.42±0.76 days. Conclusion Lung ultrasound is better than CXR for early detection of increased EVLW in critically ill head injured patients and has prognostic relevance as increased EVLW prolongs duration of mechanical ventilation and ICU stay. How to cite this article Gattupalli V, Jain K, et al. Lung Ultrasound as a Bedside Tool for Assessment of Extravascular Lung Water in Critically Ill Head Injured Patients: An Observational Study. Indian J Crit Care Med 2019;23(3):131-134.
Collapse
Affiliation(s)
- Vasavi Gattupalli
- Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Kajal Jain
- Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Tanvir Samra
- Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
36
|
Park J. Monitoring and Interpretation of Mechanical Ventilator Waveform in the Neuro-Intensive Care Unit. JOURNAL OF NEUROCRITICAL CARE 2018. [DOI: 10.18700/jnc.180069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
37
|
Vaickus M, Hsieh T, Kintsurashvili E, Kim J, Kirsch D, Kasotakis G, Remick DG. Mild Traumatic Brain Injury in Mice Beneficially Alters Lung NK1R and Structural Protein Expression to Enhance Survival after Pseudomonas aeruginosa Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:295-307. [PMID: 30472211 DOI: 10.1016/j.ajpath.2018.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/04/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022]
Abstract
Mild traumatic brain injury (mTBI) in a murine model increases survival to a bacterial pulmonary challenge compared with blunt tail trauma (TT). We hypothesize substance P and its receptor, the neurokinin 1 receptor (NK1R; official name TACR1), play a role in the increased survival of mTBI mice. Mice were subjected to mTBI or TT, and 48 hours after trauma, the levels of NK1R mRNA and protein were significantly up-regulated in mTBI lungs. Examination of the lung 48 hours after injury by microarray showed significant differences in the expression of 433 gene sets between groups, most notably genes related to intercellular proteins. Despite down-regulated gene expression of connective proteins, the presence of an intact pulmonary vasculature was supported by normal histology and bronchoalveolar lavage protein levels. To determine whether these mTBI-induced lung changes benefited in vivo responses, two chemotactic stimuli (a CXCL1 chemokine and a live Pseudomonas aeruginosa infection) were administered 48 hours after trauma. For both stimuli, mTBI mice recruited more neutrophils to the lung 4 hours after instillation (CXCL1: mTBI = 6.3 ± 1.3 versus TT = 3.3 ± 0.7 neutrophils/mL; Pseudomonas aeruginosa: mTBI = 9.4 ± 1.4 versus TT = 5.3 ± 1.1 neutrophils/mL). This study demonstrates that the downstream consequences of mTBI on lung NK1R levels and connective protein expression enhance neutrophil recruitment to a stimulus that may contribute to increased survival.
Collapse
Affiliation(s)
- Max Vaickus
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Terry Hsieh
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Ekaterina Kintsurashvili
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Jiyoun Kim
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel Kirsch
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - George Kasotakis
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel G Remick
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
38
|
Xu FF, Zhang ZB, Wang YY, Wang TH. Brain-Derived Glia Maturation Factor β Participates in Lung Injury Induced by Acute Cerebral Ischemia by Increasing ROS in Endothelial Cells. Neurosci Bull 2018; 34:1077-1090. [PMID: 30191459 PMCID: PMC6246848 DOI: 10.1007/s12264-018-0283-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/03/2018] [Indexed: 02/05/2023] Open
Abstract
Brain damage can cause lung injury. To explore the mechanism underlying the lung injury induced by acute cerebral ischemia (ACI), we established a middle cerebral artery occlusion (MCAO) model in male Sprague-Dawley rats. We focused on glia maturation factor β (GMFB) based on quantitative analysis of the global rat serum proteome. Polymerase chain reaction, western blotting, and immunofluorescence revealed that GMFB was over-expressed in astrocytes in the brains of rats subjected to MCAO. We cultured rat primary astrocytes and confirmed that GMFB was also up-regulated in primary astrocytes after oxygen-glucose deprivation (OGD). We subjected the primary astrocytes to Gmfb RNA interference before OGD and collected the conditioned medium (CM) after OGD. We then used the CM to culture pulmonary microvascular endothelial cells (PMVECs) acquired in advance and assessed their status. The viability of the PMVECs improved significantly when Gmfb was blocked. Moreover, ELISA assays revealed an elevation in GMFB concentration in the medium after OGD. Cell cultures containing recombinant GMFB showed increased levels of reactive oxygen species and a deterioration in the state of the cells. In conclusion, GMFB is up-regulated in astrocytes after ACI, and brain-derived GMFB damages PMVECs by increasing reactive oxygen species. GMFB might thus be an initiator of the lung injury induced by ACI.
Collapse
Affiliation(s)
- Fei-Fei Xu
- Institute of Neurological Disease, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zi-Bin Zhang
- Institute of Neurological Disease, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang-Yang Wang
- Institute of Neurological Disease, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
39
|
Legros V, Bard M, Rouget D, Kleiber JC, Gelisse E, Lepousé C. Complications extraneurologiques des hémorragies sous-arachnoïdiennes anévrismales. MEDECINE INTENSIVE REANIMATION 2018. [DOI: 10.3166/rea-2018-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
L’hémorragie sous-arachnoïdienne anévrismale (HSA) est une pathologie rare, touchant principalement la femme jeune en bonne santé. Cette pathologie est bien connue, ainsi que son évolution. Les HSA peuvent se compliquer de nombreuses complications d’ordre neurologique comme l’hydrocéphalie aiguë, le vasospasme, la comitialité, l’hypertension intracrânienne par exemple. Cependant, d’autres complications extracrâniennes peuvent aggraver le pronostic de cette pathologie. Les mécanismes principaux de ces complications extraneurologiques sont un stress catécholaminergique et le syndrome de réponse inflammatoire systémique. Ces complications peuvent être d’ordre cardiovasculaire (défaillance cardiaque, modification de l’ECG…), pulmonaire (œdème pulmonaire neurogénique, PAVM…) et métabolique (anomalies ioniques, hyperglycémie, insuffisance rénale).
Collapse
|
40
|
Aljishi M, Jayathissa S. Neurogenic pulmonary oedema secondary to vertebral artery dissection while playing tennis. BMJ Case Rep 2018; 2018:bcr-2017-221753. [PMID: 29374634 DOI: 10.1136/bcr-2017-221753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We present a case of a patient who developed vertebral artery dissection (VAD) while playing tennis and presented with neurogenic pulmonary oedema. The case highlights two important points: acute pulmonary oedema as an unusual presenting feature of VAD and VAD, an important cause of stroke in young people, as being associated with playing low-impact sports such as tennis. These associations, independent of each other, are under-recognised and can lead to a delay in diagnosis.
Collapse
Affiliation(s)
- Manaf Aljishi
- Department of Internal Medicine, Hutt Valley District Health Board, Lower Hutt, New Zealand
| | - Sisira Jayathissa
- Department of Internal Medicine, Hutt Valley District Health Board, Lower Hutt, New Zealand
| |
Collapse
|
41
|
Khandelwal A, Kapoor I, Mahajan C, Prabhakar H. Effect of Positive End-Expiratory Pressure on Optic Nerve Sheath Diameter in Pediatric Patients with Traumatic Brain Injury. J Pediatr Neurosci 2018; 13:165-169. [PMID: 30090129 PMCID: PMC6057201 DOI: 10.4103/jpn.jpn_112_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: The peak incidence of traumatic brain injury (TBI) has been reported in children and young adults. Intracranial pressure (ICP) as an important component can be measured with invasive technique, whereas noninvasive measurement of optic nerve sheath diameter (ONSD) is increasingly becoming popular. Positive end-expiratory pressure (PEEP) has been found to affect ICP. We aimed to compare the effect of different values of PEEP on ONSD and to obtain the correlation with ICP measurement. Setting and Design: Neurointensive Care Unit, Trauma Center, AIIMS, New Delhi. Materials and Methods: Pediatric patients with TBI, of either gender, between 1 and 18 years of age in whom ICP was measured using intraparenchymal Codman catheter admitted in neurointensive care unit were enrolled. For this crossover study, the sequence of PEEP (0 or 3 or 5 cm H2O) was randomized and ONSD was measured. The mean of three ONSD values was taken as final value. Statistical Method: The ONSD, ICP, peak airway pressure, and hemodynamic parameters at various stages were compared using two-way repeated measures analysis of variance with Bonferroni correction. A P value of <0.05 was considered to be significant. Results: Ten patients (seven males, three females) participated in the study. There was no significant increase in ONSD values when PEEP was increased from 0 to 3 cm H2O. However, increase in PEEP values from 3 to 5 cm H2O showed significantly increased ONSD values. Conclusion: PEEP up to 3 cm H2O can be safely applied in pediatric patients following TBI. Further increment of PEEP might accentuate the ICP values.
Collapse
Affiliation(s)
- Ankur Khandelwal
- Department of Neuroanesthesiology and Critical Care, Neuroscience Center, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Indu Kapoor
- Department of Neuroanesthesiology and Critical Care, Neuroscience Center, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Charu Mahajan
- Department of Neuroanesthesiology and Critical Care, Neuroscience Center, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Hemanshu Prabhakar
- Department of Neuroanesthesiology and Critical Care, Neuroscience Center, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
42
|
Goyal K, Hazarika A, Khandelwal A, Sokhal N, Bindra A, Kumar N, Kedia S, Rath GP. Non- Neurological Complications after Traumatic Brain Injury: A Prospective Observational Study. Indian J Crit Care Med 2018; 22:632-638. [PMID: 30294128 PMCID: PMC6161576 DOI: 10.4103/ijccm.ijccm_156_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Introduction and Aims Recognizing and treating nonneurological complications occurring in traumatic brain injury (TBI) patients during intensive care unit (ICU) stay are challenging. The aim is to estimate various nonneurological complications in TBI patients. The secondary aim is to see the effect of these complications on ICU stay, disability, and mortality. Materials and Methods This was a prospective observational study at the neuro-ICU of a Level-I trauma center. A total of 154 TBI patients were enrolled. The period of the study was from admission to discharge from ICU or demise. Inclusion criteria were patients aged >16 years and patients with severe TBI (Glasgow coma score [GCS] ≤8). Nonneurological complications were frequent in TBI patients. Results We observed respiratory complications to be the most common (61%). Other complications, in the decreasing order, included dyselectrolytemia (46.1%), cardiovascular (34.4%), coagulopathy (33.1%), sepsis (26%), abdominal complications (17.5%), and acute kidney injury (AKI, 3.9%). The presence of systemic complications except AKI was found to be significantly associated with increased ICU stay. Most of the patients of AKI died early in ICU. Respiratory dysfunction was found to be independently associated with 3.05 times higher risk of worsening clinical condition (disability) (P < 0.018). The presence of cardiovascular complications during ICU stay (4.2 times, P < 0.005), AKI (24.7 times, P < 0.02), coagulopathy (3.13 times, P < 0.047), and GCS <6 (4.2 times, P < 0.006) of TBI was independently associated with significantly increased risk of ICU mortality. Conclusion TBI patients tend to have poor outcome due to concomitant nonneurological complications. These have significant bearing on ICU stay, disability, and mortality.
Collapse
Affiliation(s)
- Keshav Goyal
- Department of Neuroanaesthesiology and Critical Care, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Amarjyoti Hazarika
- Department of Anaesthesiology and Intensive Care, PGIMER, Chandigarh, India
| | - Ankur Khandelwal
- Department of Neuroanaesthesiology and Critical Care, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Navdeep Sokhal
- Department of Neuroanaesthesiology and Critical Care, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Bindra
- Department of Neuroanaesthesiology and Critical Care, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Niraj Kumar
- Department of Neuroanaesthesiology and Critical Care, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Shweta Kedia
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Girija P Rath
- Department of Neuroanaesthesiology and Critical Care, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
43
|
So JS, Yun JH. The Combined Use of Cardiac Output and Intracranial Pressure Monitoring to Maintain Optimal Cerebral Perfusion Pressure and Minimize Complications for Severe Traumatic Brain Injury. Korean J Neurotrauma 2017; 13:96-102. [PMID: 29201841 PMCID: PMC5702765 DOI: 10.13004/kjnt.2017.13.2.96] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/12/2017] [Accepted: 10/18/2017] [Indexed: 11/15/2022] Open
Abstract
Objective To show the effect of dual monitoring including cardiac output (CO) and intracranial pressure (ICP) monitoring for severe traumatic brain injury (TBI) patiens. We hypothesized that meticulous treatment using dual monitoring is effective to sustain maintain minimal intensive care unit (ICU) complications and maintain optimal ICP and cerebral perfusion pressure (CPP) for severe TBI patiens. Methods We included severe TBI, below Glasgow Coma Scale (GCS) 8 and head abbreviation injury scale (AIS) >4 and performed decompressive craniectomy at trauma ICU of our hospital. We collected the demographic data, head AIS, injury severity score (ISS), initial GCS, ICU stay, sedation duration, fluid therapy related complications, Glasgow Outcome Scale (GOS) at 3 months and variable parameters of ICP and CO monitor. Results Thirty patients with severe TBI were initially selected. Thirteen patients were excluded because 10 patients had fixed pupillary reflexes and 3 patients had uncontrolled ICP due to severe brain edema. Overall 17 patients had head AIS 5 except 2 patients and 10 patients (58.8%) had multiple traumas as mean ISS 29.1. Overall complication rate of the patients was 64.7%. Among the parameters of CO monitoring, high stroke volume variation is associated with fluid therapy related complications (p=0.043) and low cardiac contractibility is associated with these complications (p=0.009) statistically. Conclusion Combined use of CO and ICP monitors in severe TBI patients who could be necessary to decompressive craniectomy and postoperative sedation is good alternative methods to maintain an adequate ICP and CPP and reduce fluid therapy related complications during postoperative ICU care.
Collapse
Affiliation(s)
- Jin Shup So
- Department of Neurosurgery, Dankook University Hospital, Dankook University College of Medicine, Cheonan, Korea
| | - Jung-Ho Yun
- Department of Neurosurgery, Dankook University Hospital, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
44
|
Della Torre V, Badenes R, Corradi F, Racca F, Lavinio A, Matta B, Bilotta F, Robba C. Acute respiratory distress syndrome in traumatic brain injury: how do we manage it? J Thorac Dis 2017; 9:5368-5381. [PMID: 29312748 PMCID: PMC5756968 DOI: 10.21037/jtd.2017.11.03] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/31/2017] [Indexed: 12/24/2022]
Abstract
Traumatic brain injury (TBI) is an important cause of morbidity and mortality worldwide. TBI patients frequently suffer from lung complications and acute respiratory distress syndrome (ARDS), which is associated with poor clinical outcomes. Moreover, the association between TBI and ARDS in trauma patients is well recognized. Mechanical ventilation of patients with a concomitance of acute brain injury and lung injury can present significant challenges. Frequently, guidelines recommending management strategies for patients with traumatic brain injuries come into conflict with what is now considered best ventilator practice. In this review, we will explore the strategies of the best practice in the ventilatory management of patients with ARDS and TBI, concentrating on those areas in which a conflict exists. We will discuss the use of ventilator strategies such as protective ventilation, high positive end expiratory pressure (PEEP), prone position, recruitment maneuvers (RMs), as well as techniques which at present are used for 'rescue' in ARDS (including extracorporeal membrane oxygenation) in patients with TBI. Furthermore, general principles of fluid, haemodynamic and hemoglobin management will be discussed. Currently, there are inadequate data addressing the safety or efficacy of ventilator strategies used in ARDS in adult patients with TBI. At present, choice of ventilator rescue strategies is best decided on a case-by-case basis in conjunction with local expertise.
Collapse
Affiliation(s)
- Valentina Della Torre
- Neurocritical Care Unit, Addenbrooke’s Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Rafael Badenes
- Department of Anesthesiology and Surgical Trauma Intensive Care, Hospital Clinic Universitari Valencia, University of Valencia, Valencia, Spain
| | | | - Fabrizio Racca
- Department of Anesthesiology and Intensive Care Unit, SS Antonio Biagio e Cesare Arrigo Hospital, Alessandria, Italy
| | - Andrea Lavinio
- Neurocritical Care Unit, Addenbrooke’s Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Basil Matta
- Neurocritical Care Unit, Addenbrooke’s Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Federico Bilotta
- Department of Anaesthesia and Intensive Care, La Sapienza University, Rome, Italy
| | - Chiara Robba
- Neurocritical Care Unit, Addenbrooke’s Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Department of Neuroscience, University of Genova, Italy
| |
Collapse
|
45
|
Zens TJ, Danobeitia JS, Chlebeck PJ, Zitur LJ, Odorico S, Brunner K, Coonen J, Capuano S, D’Alessandro AM, Matkowskyj K, Zhong W, Torrealba J, Fernandez L. Guidelines for the management of a brain death donor in the rhesus macaque: A translational transplant model. PLoS One 2017; 12:e0182552. [PMID: 28926566 PMCID: PMC5604963 DOI: 10.1371/journal.pone.0182552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 07/20/2017] [Indexed: 01/08/2023] Open
Abstract
Introduction The development of a translatable brain death animal model has significant potential to advance not only transplant research, but also the understanding of the pathophysiologic changes that occur in brain death and severe traumatic brain injury. The aim of this paper is to describe a rhesus macaque model of brain death designed to simulate the average time and medical management described in the human literature. Methods Following approval by the Institutional Animal Care and Use Committee, a brain death model was developed. Non-human primates were monitored and maintained for 20 hours after brain death induction. Vasoactive agents and fluid boluses were administered to maintain hemodynamic stability. Endocrine derangements, particularly diabetes insipidus, were aggressively managed. Results A total of 9 rhesus macaque animals were included in the study. The expected hemodynamic instability of brain death in a rostral to caudal fashion was documented in terms of blood pressure and heart rate changes. During the maintenance phase of brain death, the animal’s temperature and hemodynamics were maintained with goals of mean arterial pressure greater than 60mmHg and heart rate within 20 beats per minute of baseline. Resuscitation protocols are described so that future investigators may reproduce this model. Conclusion We have developed a reproducible large animal primate model of brain death which simulates clinical scenarios and treatment. Our model offers the opportunity for researchers to have translational model to test the efficacy of therapeutic strategies prior to human clinical trials.
Collapse
Affiliation(s)
- Tiffany J. Zens
- University of Wisconsin Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Juan S. Danobeitia
- University of Wisconsin Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Peter J. Chlebeck
- University of Wisconsin Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Laura J. Zitur
- University of Wisconsin Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Scott Odorico
- University of Wisconsin Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Kevin Brunner
- Wisconsin Primate Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jennifer Coonen
- Wisconsin Primate Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Saverio Capuano
- Wisconsin Primate Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Anthony M. D’Alessandro
- University of Wisconsin Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Kristina Matkowskyj
- University of Wisconsin Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Weixiong Zhong
- University of Wisconsin Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Jose Torrealba
- University of Texas Southwestern Medical Center Department of Pathology, Dallas, Texas, United States of America
| | - Luis Fernandez
- University of Wisconsin Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
46
|
Nagata K, Kumasaka K, Browne KD, Li S, St-Pierre J, Cognetti J, Marks J, Johnson VE, Smith DH, Pascual JL. Unfractionated heparin after TBI reduces in vivo cerebrovascular inflammation, brain edema and accelerates cognitive recovery. J Trauma Acute Care Surg 2017; 81:1088-1094. [PMID: 27533909 DOI: 10.1097/ta.0000000000001215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Severe traumatic brain injury (TBI) may increase the risk of venous thromboembolic complications; however, early prevention with heparinoids is often withheld for its anticoagulant effect. New evidence suggests low molecular weight heparin reduces cerebral edema and improves neurological recovery after stroke and TBI, through blunting of cerebral leukocyte (LEU) recruitment. It remains unknown if unfractionated heparin (UFH) similarly affects brain inflammation and neurological recovery post-TBI. We hypothesized that UFH after TBI reduces cerebral edema by reducing LEU-mediated inflammation and improves neurological recovery. METHODS CD1 male mice underwent either TBI by controlled cortical impact (CCI) or sham craniotomy. UFH (75 U/kg or 225 U/kg) or vehicle (VEH, 0.9% saline) was administered 2, 11, 20, 27, and 34 hours after TBI. At 48 hours, pial intravital microscopy through a craniotomy was used to visualize live brain LEUs interacting with endothelium and microvascular fluorescein isothiocyanate-albumin leakage. Neurologic function (Garcia Neurological Test, GNT) and body weight loss ratios were evaluated 24 and 48 hours after TBI. Cerebral and lung wet-to-dry ratios were evaluated post mortem. ANOVA with Bonferroni correction was used to determine significance (p < 0.05). RESULTS Compared to positive controls (CCI), both UFH doses reduced post-TBI in vivo LEU rolling on endothelium, concurrent cerebrovascular albumin leakage, and ipsilateral cerebral water content after TBI. Additionally, only low dose UFH (75 U/kg) improved GNT at both 24 and 48 hours after TBI. High dose UFH (225 U/kg) significantly increased body weight loss above sham at 48 hours. Differences in lung water content and blood pressure between groups were not significant. CONCLUSIONS UFH after TBI reduces LEU recruitment, microvascular permeability, and brain edema to injured brain. Lower UFH doses concurrently improve neurological recovery whereas higher UFH may worsen functional recovery. Further study is needed to determine if this is caused by increased bleeding from injured brain with higher UFH doses.
Collapse
Affiliation(s)
- Katsuhiro Nagata
- From the Division of Traumatology, Surgical Critical Care & Emergency Surgery (K.N., J.S-P., J.L.P.) and Department of Neurosurgery, Center for Brain Injury and Repair (K.D.B., J.C., V.E.J., D.H.S., J.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Sidney Kimmel Medical College at Thomas Jefferson University (J.M.), Philadelphia, Pennsylvania; Department of Neurosurgery (S.L.), Qianfoshan Hospital, Shandong University, Jinan, China; and Department of Emergency and Critical Care Medicine (K.K.), Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jeong JH. Brain and Lung: Lung Injury in Patients with Brain Injury. JOURNAL OF NEUROCRITICAL CARE 2017. [DOI: 10.18700/jnc.170009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
48
|
Fujita M, Oda Y, Yamashita S, Kaneda K, Kaneko T, Suehiro E, Dohi K, Kuroda Y, Kobata H, Tsuruta R, Maekawa T. Early-Stage Hyperoxia Is Associated with Favorable Neurological Outcomes and Survival after Severe Traumatic Brain Injury: A Post-Hoc Analysis of the Brain Hypothermia Study. J Neurotrauma 2017; 34:1565-1570. [PMID: 27958774 DOI: 10.1089/neu.2016.4753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of hyperoxia on the neurological outcomes of patients with severe traumatic brain injury (TBI) are still controversial. We examined whether the partial pressure of arterial oxygen (PaO2) and hyperoxia were associated with neurological outcomes and survival by conducting post-hoc analyses of the Brain Hypothermia (B-HYPO) study, a multi-center randomized controlled trial of mild therapeutic hypothermia for severe TBI. The differences in PaO2 and PaO2/fraction of inspiratory oxygen (P/F) ratio on the 1st day of admission were compared between patients with favorable (n = 64) and unfavorable (n = 65) neurological outcomes and between survivors (n = 90) and deceased patients (n = 39). PaO2 and the P/F ratio were significantly greater in patients with favorable outcomes than in patients with unfavorable neurological outcomes (PaO2: 252 ± 122 vs. 202 ± 87 mm Hg, respectively, p = 0.008; P/F ratio: 455 ± 171 vs. 389 ± 155, respectively, p = 0.022) and in survivors than in deceased patients (PaO2: 242 ± 117 vs. 193 ± 75 mm Hg, respectively, p = 0.005; P/F ratio: 445 ± 171 vs. 370 ± 141, respectively, p = 0.018). Similar tendencies were observed in subgroup analyses in patients with fever control and therapeutic hypothermia, and in patients with an evacuated mass or other lesions (unevacuated lesions). PaO2 was independently associated with survival (odds ratio 1.008, p = 0.037). These results suggested that early-stage hyperoxia might be associated with favorable neurological outcomes and survival following severe TBI.
Collapse
Affiliation(s)
- Motoki Fujita
- Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Yasutaka Oda
- Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Susumu Yamashita
- Department of Emergency Medicine, Tokuyama Central Hospital, Yamaguchi, Japan
| | - Kotaro Kaneda
- Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Tadashi Kaneko
- Emergency and General Medicine, Kumamoto University Hospital, Kumamoto, Japan
| | - Eiichi Suehiro
- Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, Yamaguchi, Japan.,Department of Neurosurgery, Yamaguchi University School of Medicine, Yamaguchi, Japan
| | - Kenji Dohi
- Department of Emergency and Critical Care Medicine, Showa University Hospital, Tokyo, Japan
| | - Yasuhiro Kuroda
- Department of Emergency, Disaster, and Critical Care Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hitoshi Kobata
- Osaka Mishima Emergency Critical Care Center, Osaka, Japan
| | - Ryosuke Tsuruta
- Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, Yamaguchi, Japan
| | | |
Collapse
|
49
|
Hu Y, Xiong LL, Zhang P, Wang TH. Microarray expression profiles of genes in lung tissues of rats subjected to focal cerebral ischemia-induced lung injury following bone marrow-derived mesenchymal stem cell transplantation. Int J Mol Med 2016; 39:57-70. [PMID: 27922691 PMCID: PMC5179184 DOI: 10.3892/ijmm.2016.2819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 11/21/2016] [Indexed: 02/05/2023] Open
Abstract
Ischemia-induced stroke is the most common disease of the nervous system and is associated with a high mortality rate worldwide. Cerebral ischemia may lead to remote organ dysfunction, particular in the lungs, resulting in lung injury. Nowadays, bone marrow-derived mesenchymal stem cells (BMSCs) are widely studied in clinical trials as they may provide an effective solution to the treatment of neurological and cardiac diseases; however, the underlying molecular mechanisms remain unknown. In this study, a model of permanent focal cerebral ischemia-induced lung injury was successfully established and confirmed by neurological evaluation and lung injury scores. We demonstrated that the transplantation of BMSCs (passage 3) via the tail vein into the lung tissues attenuated lung injury. In order to elucidate the underlying molecular mechanisms, we analyzed the gene expression profiles in lung tissues from the rats with focal cerebral ischemia and transplanted with BMSCs using a Gene microarray. Moreover, the Gene Ontology database was employed to determine gene function. We found that the phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF) were downregulated in the BMSC transplantation groups, compared with the control group. These results suggested that BMSC transplantation may attenuate lung injury following focal cerebral ischemia and that this effect is associated with the downregulation of TGF-β, PDGF and the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Piao Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Ting-Hua Wang
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
50
|
Association between ventilatory settings and development of acute respiratory distress syndrome in mechanically ventilated patients due to brain injury. J Crit Care 2016; 38:341-345. [PMID: 27914908 DOI: 10.1016/j.jcrc.2016.11.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/23/2016] [Accepted: 11/13/2016] [Indexed: 11/21/2022]
Abstract
PURPOSE In neurologically critically ill patients with mechanical ventilation (MV), the development of acute respiratory distress syndrome (ARDS) is a major contributor to morbidity and mortality, but the role of ventilatory management has been scarcely evaluated. We evaluate the association of tidal volume, level of PEEP and driving pressure with the development of ARDS in a population of patients with brain injury. MATERIALS AND METHODS We performed a secondary analysis of a prospective, observational study on mechanical ventilation. RESULTS We included 986 patients mechanically ventilated due to an acute brain injury (hemorrhagic stroke, ischemic stroke or brain trauma). Incidence of ARDS in this cohort was 3%. Multivariate analysis suggested that driving pressure could be associated with the development of ARDS (odds ratio for unit increment of driving pressure 1.12; confidence interval for 95%: 1.01 to 1.23) whereas we did not observe association for tidal volume (in ml per kg of predicted body weight) or level of PEEP. ARDS was associated with an increase in mortality, longer duration of mechanical ventilation, and longer ICU length of stay. CONCLUSIONS In a cohort of brain-injured patients the development of ARDS was not common. Driving pressure was associated with the development of this disease.
Collapse
|