1
|
Ding G, Li L, Chopp M, Zhang L, Li Q, Luo H, Wei M, Zhang J, Boyd E, Zhang Z, Jiang Q. Velocity of cerebrospinal fluid in the aqueduct measured by phase-contrast MRI in rat. NMR IN BIOMEDICINE 2024:e5233. [PMID: 39104053 DOI: 10.1002/nbm.5233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Cerebrospinal fluid (CSF) circulation plays a key role in cerebral waste clearance via the glymphatic system. Although CSF flow velocity is an essential component of CSF dynamics, it has not been sufficiently characterized, and particularly, in studies of the glymphatic system in rat. To investigate the relationship between the flow velocity of CSF in the brain aqueduct and the glymphatic waste clearance rate, using phase-contrast MRI we performed the first measurements of CSF velocity in rats. Phase-contrast MRI was performed using a 7 T system to map mean velocity of CSF flow in the aqueduct in rat brain. The effects of age (3 months old versus 18 months old), gender, strain (Wistar, RNU, Dark Agouti), anesthetic agents (isoflurane versus dexmedetomidine), and neurodegenerative disorder (Alzheimer' disease in Fischer TgF344-AD rats, males and females) on CSF velocity were investigated in eight independent groups of rats (12 rats per group). Our results demonstrated that quantitative velocities of CSF flow in the aqueduct averaged 5.16 ± 0.86 mm/s in healthy young adult male Wistar rats. CSF flow velocity in the aqueduct was not altered by rat gender, strain, and the employed anesthetic agents in all rats, also age in the female rats. However, aged (18 months) Wistar male rats exhibited significantly reduced the CSF flow velocity in the aqueduct (4.31 ± 1.08 mm/s). In addition, Alzheimer's disease further reduced the CSF flow velocity in the aqueduct of male and female rats.
Collapse
Affiliation(s)
- Guangliang Ding
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Lian Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Qingjiang Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Hao Luo
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Min Wei
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Jing Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Edward Boyd
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
2
|
Kadaba Sridhar S, Dysterheft Robb J, Gupta R, Cheong S, Kuang R, Samadani U. Structural neuroimaging markers of normal pressure hydrocephalus versus Alzheimer's dementia and Parkinson's disease, and hydrocephalus versus atrophy in chronic TBI-a narrative review. Front Neurol 2024; 15:1347200. [PMID: 38576534 PMCID: PMC10991762 DOI: 10.3389/fneur.2024.1347200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/07/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Normal Pressure Hydrocephalus (NPH) is a prominent type of reversible dementia that may be treated with shunt surgery, and it is crucial to differentiate it from irreversible degeneration caused by its symptomatic mimics like Alzheimer's Dementia (AD) and Parkinson's Disease (PD). Similarly, it is important to distinguish between (normal pressure) hydrocephalus and irreversible atrophy/degeneration which are among the chronic effects of Traumatic Brain Injury (cTBI), as the former may be reversed through shunt placement. The purpose of this review is to elucidate the structural imaging markers which may be foundational to the development of accurate, noninvasive, and accessible solutions to this problem. Methods By searching the PubMed database for keywords related to NPH, AD, PD, and cTBI, we reviewed studies that examined the (1) distinct neuroanatomical markers of degeneration in NPH versus AD and PD, and atrophy versus hydrocephalus in cTBI and (2) computational methods for their (semi-) automatic assessment on Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) scans. Results Structural markers of NPH and those that can distinguish it from AD have been well studied, but only a few studies have explored its structural distinction between PD. The structural implications of cTBI over time have been studied. But neuroanatomical markers that can predict shunt response in patients with either symptomatic idiopathic NPH or post-traumatic hydrocephalus have not been reliably established. MRI-based markers dominate this field of investigation as compared to CT, which is also reflected in the disproportionate number of MRI-based computational methods for their automatic assessment. Conclusion Along with an up-to-date literature review on the structural neurodegeneration due to NPH versus AD/PD, and hydrocephalus versus atrophy in cTBI, this article sheds light on the potential of structural imaging markers as (differential) diagnostic aids for the timely recognition of patients with reversible (normal pressure) hydrocephalus, and opportunities to develop computational tools for their objective assessment.
Collapse
Affiliation(s)
- Sharada Kadaba Sridhar
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States
- Neurotrauma Research Lab, Center for Veterans Research and Education, Minneapolis, MN, United States
| | - Jen Dysterheft Robb
- Neurotrauma Research Lab, Center for Veterans Research and Education, Minneapolis, MN, United States
| | - Rishabh Gupta
- Neurotrauma Research Lab, Center for Veterans Research and Education, Minneapolis, MN, United States
- University of Minnesota Twin Cities Medical School, Minneapolis, MN, United States
| | - Scarlett Cheong
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States
- Neurotrauma Research Lab, Center for Veterans Research and Education, Minneapolis, MN, United States
| | - Rui Kuang
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Uzma Samadani
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States
- Neurotrauma Research Lab, Center for Veterans Research and Education, Minneapolis, MN, United States
- University of Minnesota Twin Cities Medical School, Minneapolis, MN, United States
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States
- Division of Neurosurgery, Department of Surgery, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, United States
| |
Collapse
|
3
|
Seltzer LA, Couldwell MW, Tubbs RS, Bui CJ, Dumont AS. The Top 100 Most Cited Journal Articles on Hydrocephalus. Cureus 2024; 16:e54481. [PMID: 38510885 PMCID: PMC10954317 DOI: 10.7759/cureus.54481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Hydrocephalus represents a significant burden of disease, with more than 383,000 new cases annually worldwide. When the magnitude of this condition is considered, a centralized archive of pertinent literature is of great clinical value. From a neurosurgical standpoint, hydrocephalus is one of the most frequently treated conditions in the field. The focus of this study was to identify the top 100 journal articles specific to hydrocephalus using bibliometric analysis. Using the Journal of Citation Report database, 10 journals were identified. The Web of Science Core Collection was then searched using each journal name and the search term "hydrocephalus." The results were ordered by "Times Cited" and searched by the number of citations. The database contained journal articles from 1976 to 2021, and the following variables were collected for analysis: journal, article type, year of publication, and the number of citations. Journal articles were excluded if they had no relation to hydrocephalus, mostly involved basic science research, or included animal studies. Ten journals were identified using the above criteria, and a catalog of the 100 most cited publications in the hydrocephalus literature was created. Articles were arranged from highest to lowest citation number, with further classification by journal, article type, and publication year. Of the 100 articles referenced, 38 were review articles, 24 were original articles, 15 were comparative studies, 11 were clinical trials, six were multi-center studies, three were cross-sectional, and three were case reports with reviews. Articles were also sorted by study type and further stratified by etiology. If the etiology was not specified, studies were instead subcategorized by treatment type. Etiologies such as aqueductal stenosis, tumors, and other obstructive causes of hydrocephalus were classified as obstructive (n=6). Communicating (n=15) included idiopathic, normal pressure hydrocephalus, and other non-obstructive etiologies. The category "other" (n=3) was assigned to studies that included etiologies, populations, and/or treatments that did not fit into the classifications previously outlined. Through our analysis of highly cited journal articles focusing on different etiologies and the surgical or medical management of hydrocephalus, we hope to elucidate important trends. By establishing the 100 most cited hydrocephalus articles, we contribute one source, stratified for efficient referencing, to facilitate clinical care and future research on hydrocephalus.
Collapse
Affiliation(s)
- Laurel A Seltzer
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, USA
| | - Mitchell W Couldwell
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, USA
| | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University, St. George's, GRD
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, USA
- Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, USA
- Department of Structural Biology, Tulane University School of Medicine, New Orleans, USA
| | - C J Bui
- Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, USA
| | - Aaron S Dumont
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, USA
| |
Collapse
|
4
|
Oernbo EK, Steffensen AB, Gredal H, Poulsen HH, Rostgaard N, Rasmussen CH, Møller-Nissen M, Simonsen AH, Hasselbalch SG, Juhler M, MacAulay N. Cerebrospinal fluid osmolality cannot predict development or surgical outcome of idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2022; 19:52. [PMID: 35761330 PMCID: PMC9238121 DOI: 10.1186/s12987-022-00349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The etiology of idiopathic normal pressure hydrocephalus (iNPH) is currently unknown. With no visible obstructions, altered cerebrospinal fluid (CSF) dynamics may explain the accumulation of ventricular fluid. We hypothesized that elevated osmolality in the CSF of iNPH patients could potentiate formation of ventricular fluid and thereby cause the disease progression and/or predict the surgical outcome. To address this hypothesis, we determined the lumbar and ventricular CSF osmolality of iNPH patients at different disease stages and compared with lumbar CSF samples obtained from control subjects. METHODS The osmolality of CSF was determined on a total of 35 iNPH patients at diagnosis and at the subsequent treatment with shunt surgery (n = 20) and compared with the CSF osmolality from 20 control subjects. Simultaneously collected lumbar and ventricular CSF samples from experimental pigs were used to evaluate the compatibility between CSF from different compartments. RESULTS We found no evidence of increased osmolality in the CSF of iNPH patients upon diagnosis or at the time of shunt treatment months after the diagnosis, compared with control individuals. CSF tapped from the lumbar space could be used as a read-out for ventricular CSF osmolality, as these were similar in both the patient group and in experimental pigs. We further observed no correlation between the CSF osmolality in iNPH patients and their responsiveness to shunt surgeries. CONCLUSIONS The osmolality of lumbar CSF is a reliable reflection of the ventricular CSF osmolality, and is not elevated in iNPH patients. iNPH therefore does not appear to arise as a function of osmotic imbalances in the CSF system and CSF osmolality cannot serve as a biomarker for iNPH or as a predictive tool for shunt responsiveness.
Collapse
Affiliation(s)
- Eva Kjer Oernbo
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Annette Buur Steffensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Hanne Gredal
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle Harding Poulsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nina Rostgaard
- Department of Neurosurgery, Neuroscience Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Cecilie Holm Rasmussen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marlene Møller-Nissen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Department of Neurology, Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Centre, Department of Neurology, Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Neuroscience Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
5
|
Hett K, McKnight CD, Eisma JJ, Elenberger J, Lindsey JS, Considine CM, Claassen DO, Donahue MJ. Parasagittal dural space and cerebrospinal fluid (CSF) flow across the lifespan in healthy adults. Fluids Barriers CNS 2022; 19:24. [PMID: 35313906 PMCID: PMC8935696 DOI: 10.1186/s12987-022-00320-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/04/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Recent studies have suggested alternative cerebrospinal fluid (CSF) clearance pathways for brain parenchymal metabolic waste products. One fundamental but relatively under-explored component of these pathways is the anatomic region surrounding the superior sagittal sinus, which has been shown to have relevance to trans-arachnoid molecular passage. This so-called parasagittal dural (PSD) space may play a physiologically significant role as a distal intracranial component of the human glymphatic circuit, yet fundamental gaps persist in our knowledge of how this space changes with normal aging and intracranial bulk fluid transport. METHODS We re-parameterized MRI methods to assess CSF circulation in humans using high resolution imaging of the PSD space and phase contrast measures of flow through the cerebral aqueduct to test the hypotheses that volumetric measures of PSD space (1) are directly related to CSF flow (mL/s) through the cerebral aqueduct, and (2) increase with age. Multi-modal 3-Tesla MRI was applied in healthy participants (n = 62; age range = 20-83 years) across the adult lifespan whereby phase contrast assessments of CSF flow through the aqueduct were paired with non-contrasted T1-weighted and T2-weighted MRI for PSD volumetry. PSD volume was extracted using a recently validated neural networks algorithm. Non-parametric regression models were applied to evaluate how PSD volume related to tissue volume and age cross-sectionally, and separately how PSD volume related to CSF flow (significance criteria: two-sided p < 0.05). RESULTS A significant PSD volume enlargement in relation to normal aging (p < 0.001, Spearman's-[Formula: see text] = 0.6), CSF volume (p < 0.001, Spearman's-[Formula: see text] = 0.6) and maximum CSF flow through the aqueduct of Sylvius (anterograde and retrograde, p < 0.001) were observed. The elevation in PSD volume was not significantly related to gray or white matter tissue volumes. Findings are consistent with PSD volume increasing with age and bulk CSF flow. CONCLUSIONS Findings highlight the feasibility of quantifying PSD volume non-invasively in vivo in humans using machine learning and non-contrast MRI. Additionally, findings demonstrate that PSD volume increases with age and relates to CSF volume and bi-directional flow. Values reported should provide useful normative ranges for how PSD volume adjusts with age, which will serve as a necessary pre-requisite for comparisons to persons with neurodegenerative disorders.
Collapse
Affiliation(s)
- Kilian Hett
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Colin D McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jarrod J Eisma
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jason Elenberger
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer S Lindsey
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ciaran M Considine
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA. .,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA. .,Division of Behavioral and Cognitive Neurology, Village at Vanderbilt, 1500 21st Avenue South, Nashville, TN, 37212, USA.
| |
Collapse
|
6
|
Li Y, Rusinek H, Butler T, Glodzik L, Pirraglia E, Babich J, Mozley PD, Nehmeh S, Pahlajani S, Wang X, Tanzi EB, Zhou L, Strauss S, Carare RO, Theise N, Okamura N, de Leon MJ. Decreased CSF clearance and increased brain amyloid in Alzheimer's disease. Fluids Barriers CNS 2022; 19:21. [PMID: 35287702 PMCID: PMC8919541 DOI: 10.1186/s12987-022-00318-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/21/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND In sporadic Alzheimer's disease (AD), brain amyloid-beta (Aβ) deposition is believed to be a consequence of impaired Aβ clearance, but this relationship is not well established in living humans. CSF clearance, a major feature of brain glymphatic clearance (BGC), has been shown to be abnormal in AD murine models. MRI phase contrast and intrathecally delivered contrast studies have reported reduced CSF flow in AD. Using PET and tau tracer 18F-THK5117, we previously reported that the ventricular CSF clearance of the PET tracer was reduced in AD and associated with elevated brain Aβ levels. METHODS In the present study, we use two PET tracers, 18F-THK5351 and 11C-PiB to estimate CSF clearance calculated from early dynamic PET frames in 9 normal controls and 15 AD participants. RESULTS we observed that the ventricular CSF clearance measures were correlated (r = 0.66, p < 0.01), with reductions in AD of 18 and 27%, respectively. We also replicated a significant relationship between ventricular CSF clearance (18F-THK5351) and brain Aβ load (r = - 0.64, n = 24, p < 0.01). With a larger sample size, we extended our observations to show that reduced CSF clearance is associated with reductions in cortical thickness and cognitive performance. CONCLUSIONS Overall, the findings support the hypothesis that failed CSF clearance is a feature of AD that is related to Aβ deposition and to the pathology of AD. Longitudinal studies are needed to determine whether failed CSF clearance is a predictor of progressive amyloidosis or its consequence.
Collapse
Affiliation(s)
- Yi Li
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA.
| | - Henry Rusinek
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Tracy Butler
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Lidia Glodzik
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Elizabeth Pirraglia
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - John Babich
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - P David Mozley
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Sadek Nehmeh
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Silky Pahlajani
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Xiuyuan Wang
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Emily B Tanzi
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Liangdong Zhou
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Sara Strauss
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton, UK
| | - Neil Theise
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Mony J de Leon
- Department of Radiology, Weill Cornell Medicine, Cornell University, Brain Health Imaging Institute, 407 East 61 Street, New York, NY, 10021, USA.
| |
Collapse
|
7
|
Yavuz Ilik S, Otani T, Yamada S, Watanabe Y, Wada S. A subject-specific assessment of measurement errors and their correction in cerebrospinal fluid velocity maps using 4D flow MRI. Magn Reson Med 2021; 87:2412-2423. [PMID: 34866235 DOI: 10.1002/mrm.29111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/05/2022]
Abstract
PURPOSE Phase-contrast MRI (PC-MRI) of cerebrospinal fluid (CSF) velocity is used to evaluate the characteristics of intracranial diseases, such as normal-pressure hydrocephalus (NPH). Nevertheless, PC-MRI has several potential error sources, with eddy-current-based phase offset error being non-negligible in CSF measurement. In this study, we assess the measurement error of CSF velocity maps obtained using 4D flow MRI and evaluate correction methods. METHODS CSF velocity maps of 10 patients with NPH were acquired using 4D flow MRI (velocity-encoding = 5 cm/s). Distributed phase offset error was estimated for a whole 3D background field by polynomial fitting using robust regression analysis. This estimated phase offset error was then used to correct the CSF velocity maps. The estimated error profiles were compared with those obtained using an existing 2D correction approach involving local background information near the region of interest. RESULTS The residual standard error of the polynomial fitting against the phase offset error extracted from the measured velocities was within 0.2 cm/s. The spatial dependencies of the phase offset errors showed similar tendencies in all cases, but sufficient differences in these values were found to indicate requirement of velocity correction. Differences of the estimated errors among other correction approaches were in the order of 10-2 cm/s, and the estimated errors were in good agreement with those obtained using existing approaches. CONCLUSION Our method is capable of estimating the measurement error of CSF velocity maps obtained from 4D flow MRI and provides quantitatively reasonable characteristics for the main CSF profile in the cerebral aqueduct in patients with NPH.
Collapse
Affiliation(s)
- Selin Yavuz Ilik
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Tomohiro Otani
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Shigeki Yamada
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Shigeo Wada
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
8
|
Lolansen SD, Rostgaard N, Andreassen SN, Simonsen AH, Juhler M, Hasselbalch SG, MacAulay N. Elevated CSF inflammatory markers in patients with idiopathic normal pressure hydrocephalus do not promote NKCC1 hyperactivity in rat choroid plexus. Fluids Barriers CNS 2021; 18:54. [PMID: 34863228 PMCID: PMC8645122 DOI: 10.1186/s12987-021-00289-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic normal pressure hydrocephalus (iNPH) is a potentially reversible neurological condition of unresolved etiology characterized by a clinical triad of symptoms; gait disturbances, urinary incontinence, and cognitive deterioration. In the present study, we aimed to elucidate the molecular coupling between inflammatory markers and development of iNPH and determine whether inflammation-induced hyperactivity of the choroidal Na+/K+/2Cl- cotransporter (NKCC1) that is involved in cerebrospinal fluid (CSF) secretion could contribute to the iNPH pathogenesis. METHODS Lumbar CSF samples from 20 iNPH patients (10 with clinical improvement upon CSF shunting, 10 without clinical improvement) and 20 elderly control subjects were analyzed with the novel proximity extension assay technique for presence of 92 different inflammatory markers. RNA-sequencing was employed to delineate choroidal abundance of the receptors for the inflammatory markers found elevated in the CSF from iNPH patients. The ability of the elevated inflammatory markers to modulate choroidal NKCC1 activity was determined by addition of combinations of rat version of these in ex vivo experiments on rat choroid plexus. RESULTS 11 inflammatory markers were significantly elevated in the CSF from iNPH patients compared to elderly control subjects: CCL28, CCL23, CCL3, OPG, CXCL1, IL-18, IL-8, OSM, 4E-BP1, CXCL6, and Flt3L. One inflammatory marker, CDCP1, was significantly decreased in iNPH patients compared to control subjects. None of the inflammatory markers differed significantly when comparing iNPH patients with and without clinical improvement upon CSF shunting. All receptors for the elevated inflammatory markers were expressed in the rat and human choroid plexus, except CCR4 and CXCR1, which were absent from the rat choroid plexus. None of the elevated inflammatory markers found in the CSF from iNPH patients modulated the choroidal NKCC1 activity in ex vivo experiments on rat choroid plexus. CONCLUSION The CSF from iNPH patients contains elevated levels of a subset of inflammatory markers. Although the corresponding inflammatory receptors are, in general, expressed in the choroid plexus of rats and humans, their activation did not modulate the NKCC1-mediated fraction of choroidal CSF secretion ex vivo. The molecular mechanisms underlying ventriculomegaly in iNPH, and the possible connection to inflammation, therefore remains to be elucidated.
Collapse
Affiliation(s)
- Sara Diana Lolansen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Nina Rostgaard
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Søren Norge Andreassen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | | | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
9
|
Williams G, Thyagaraj S, Fu A, Oshinski J, Giese D, Bunck AC, Fornari E, Santini F, Luciano M, Loth F, Martin BA. In vitro evaluation of cerebrospinal fluid velocity measurement in type I Chiari malformation: repeatability, reproducibility, and agreement using 2D phase contrast and 4D flow MRI. Fluids Barriers CNS 2021; 18:12. [PMID: 33736664 PMCID: PMC7977612 DOI: 10.1186/s12987-021-00246-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/03/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Phase contrast magnetic resonance imaging, PC MRI, is a valuable tool allowing for non-invasive quantification of CSF dynamics, but has lacked adoption in clinical practice for Chiari malformation diagnostics. To improve these diagnostic practices, a better understanding of PC MRI based measurement agreement, repeatability, and reproducibility of CSF dynamics is needed. METHODS An anatomically realistic in vitro subject specific model of a Chiari malformation patient was scanned three times at five different scanning centers using 2D PC MRI and 4D Flow techniques to quantify intra-scanner repeatability, inter-scanner reproducibility, and agreement between imaging modalities. Peak systolic CSF velocities were measured at nine axial planes using 2D PC MRI, which were then compared to 4D Flow peak systolic velocity measurements extracted at those exact axial positions along the model. RESULTS Comparison of measurement results showed good overall agreement of CSF velocity detection between 2D PC MRI and 4D Flow (p = 0.86), fair intra-scanner repeatability (confidence intervals ± 1.5 cm/s), and poor inter-scanner reproducibility. On average, 4D Flow measurements had a larger variability than 2D PC MRI measurements (standard deviations 1.83 and 1.04 cm/s, respectively). CONCLUSION Agreement, repeatability, and reproducibility of 2D PC MRI and 4D Flow detection of peak CSF velocities was quantified using a patient-specific in vitro model of Chiari malformation. In combination, the greatest factor leading to measurement inconsistency was determined to be a lack of reproducibility between different MRI centers. Overall, these findings may help lead to better understanding for application of 2D PC MRI and 4D Flow techniques as diagnostic tools for CSF dynamics quantification in Chiari malformation and related diseases.
Collapse
Affiliation(s)
- Gwendolyn Williams
- Department of Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MC1122, Moscow, ID, 83844, USA
| | - Suraj Thyagaraj
- Department of Mechanical Engineering, Conquer Chiari Research Center, University of Akron, Akron, OH, 44325, USA
| | - Audrey Fu
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID, 83844, USA
| | - John Oshinski
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Daniel Giese
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Alexander C Bunck
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Eleonora Fornari
- CIBM, Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Francesco Santini
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Mark Luciano
- Department of Neurosurgery, John Hopkins University, Baltimore, MD, USA
| | - Francis Loth
- Department of Mechanical Engineering, Conquer Chiari Research Center, University of Akron, Akron, OH, 44325, USA
| | - Bryn A Martin
- Department of Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MC1122, Moscow, ID, 83844, USA.
- Alcyone Therapeutics Inc, Lowell, MA, USA.
| |
Collapse
|
10
|
Laganà MM, Jakimovski D, Bergsland N, Dwyer MG, Baglio F, Zivadinov R. Measuring Aqueduct of Sylvius Cerebrospinal Fluid Flow in Multiple Sclerosis Using Different Software. Diagnostics (Basel) 2021; 11:325. [PMID: 33671219 PMCID: PMC7923004 DOI: 10.3390/diagnostics11020325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 01/02/2023] Open
Abstract
Aqueduct of Sylvius (AoS) cerebrospinal fluid flow can be quantified using phase-contrast (PC) Magnetic Resonance Imaging. The software used for AoS segmentation might affect the PC-derived measures. We analyzed AoS PC data of 30 people with multiple sclerosis and 19 normal controls using three software packages, and estimated cross-sectional area (CSA), average and highest AoS velocity (Vmean and Vmax), flow rate and volume. Our aims were to assess the repeatability and reproducibility of each PC-derived measure obtained with the various software packages, including in terms of group differentiation. All the variables had good repeatability, except the average Vmean, flow rate and volume obtained with one software package. Substantial to perfect agreement was seen when evaluating the overlap between the AoS segmentations obtained with different software packages. No variable was significantly different between software packages, with the exception of Vmean diastolic peak and CSA. Vmax diastolic peak differentiated groups, regardless of the software package. In conclusion, a clinical study should preliminarily evaluate the repeatability in order to interpret its findings. Vmax seemed to be a repeatable and reproducible measure, since the pixel with its value is usually located in the center of the AoS, and is thus unlikely be affected by ROI size.
Collapse
Affiliation(s)
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; (D.J.); (M.G.D.); (R.Z.)
| | - Niels Bergsland
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy; (N.B.); (F.B.)
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; (D.J.); (M.G.D.); (R.Z.)
| | - Michael G. Dwyer
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; (D.J.); (M.G.D.); (R.Z.)
| | - Francesca Baglio
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy; (N.B.); (F.B.)
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; (D.J.); (M.G.D.); (R.Z.)
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
11
|
Chatterjee K, Atay N, Abler D, Bhargava S, Sahoo P, Rockne RC, Munson JM. Utilizing Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to Analyze Interstitial Fluid Flow and Transport in Glioblastoma and the Surrounding Parenchyma in Human Patients. Pharmaceutics 2021; 13:pharmaceutics13020212. [PMID: 33557069 PMCID: PMC7913790 DOI: 10.3390/pharmaceutics13020212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Glioblastoma (GBM) is the deadliest and most common brain tumor in adults, with poor survival and response to aggressive therapy. Limited access of drugs to tumor cells is one reason for such grim clinical outcomes. A driving force for therapeutic delivery is interstitial fluid flow (IFF), both within the tumor and in the surrounding brain parenchyma. However, convective and diffusive transport mechanisms are understudied. In this study, we examined the application of a novel image analysis method to measure fluid flow and diffusion in GBM patients. Methods: Here, we applied an imaging methodology that had been previously tested and validated in vitro, in silico, and in preclinical models of disease to archival patient data from the Ivy Glioblastoma Atlas Project (GAP) dataset. The analysis required the use of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which is readily available in the database. The analysis results, which consisted of IFF flow velocity and diffusion coefficients, were then compared to patient outcomes such as survival. Results: We characterized IFF and diffusion patterns in patients. We found strong correlations between flow rates measured within tumors and in the surrounding parenchymal space, where we hypothesized that velocities would be higher. Analyzing overall magnitudes indicated a significant correlation with both age and survival in this patient cohort. Additionally, we found that neither tumor size nor resection significantly altered the velocity magnitude. Lastly, we mapped the flow pathways in patient tumors and found a variability in the degree of directionality that we hypothesize may lead to information concerning treatment, invasive spread, and progression in future studies. Conclusions: An analysis of standard DCE-MRI in patients with GBM offers more information regarding IFF and transport within and around the tumor, shows that IFF is still detected post-resection, and indicates that velocity magnitudes correlate with patient prognosis.
Collapse
Affiliation(s)
- Krishnashis Chatterjee
- Department of Biomedical Engineering & Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; (K.C.); (N.A.); (S.B.)
| | - Naciye Atay
- Department of Biomedical Engineering & Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; (K.C.); (N.A.); (S.B.)
| | - Daniel Abler
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (D.A.); (P.S.); (R.C.R.)
- ARTORG Center for Biomedical Engineering Research, University of Bern, 3008 Bern, Switzerland
| | - Saloni Bhargava
- Department of Biomedical Engineering & Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; (K.C.); (N.A.); (S.B.)
| | - Prativa Sahoo
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (D.A.); (P.S.); (R.C.R.)
| | - Russell C. Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (D.A.); (P.S.); (R.C.R.)
| | - Jennifer M. Munson
- Department of Biomedical Engineering & Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; (K.C.); (N.A.); (S.B.)
- Correspondence: ; Tel.: +1-(540)-532-6392
| |
Collapse
|
12
|
Christen MA, Schweizer‐Gorgas D, Richter H, Joerger FB, Dennler M. Quantification of cerebrospinal fluid flow in dogs by cardiac-gated phase-contrast magnetic resonance imaging. J Vet Intern Med 2021; 35:333-340. [PMID: 33274812 PMCID: PMC7848380 DOI: 10.1111/jvim.15932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) flow in disease has been investigated with two-dimensional (2D) phase-contrast magnetic resonance imaging (PC-MRI) in humans. Despite similar diseases occurring in dogs, PC-MRI is not routinely performed and CSF flow and its association with diseases is poorly understood. OBJECTIVES To adapt 2D and four-dimensional (4D) PC-MRI to dogs and to apply them in a group of neurologically healthy dogs. ANIMALS Six adult Beagle dogs of a research colony. METHODS Prospective, experimental study. Sequences were first optimized on a phantom mimicking small CSF spaces and low velocity flow. Then, 4D PC-MRI and 2D PC-MRI at the level of the mesencephalic aqueduct, foramen magnum (FM), and cervical spine were performed. RESULTS CSF displayed a bidirectional flow pattern on 2D PC-MRI at each location. Mean peak velocity (and range) in cm/s was 0.92 (0.51-2.08) within the mesencephalic aqueduct, 1.84 (0.89-2.73) and 1.17 (0.75-1.8) in the ventral and dorsal subarachnoid space (SAS) at the FM, and 2.03 (range 1.1-3.0) and 1.27 (range 0.96-1.82) within the ventral and dorsal SAS of the cervical spine. With 4D PC-MRI, flow velocities of >3 cm/s were visualized in the phantom, but no flow data were obtained in dogs. CONCLUSION Peak flow velocities were measured with 2D PC-MRI at all 3 locations and slower velocities were recorded in healthy Beagle dogs compared to humans. These values serve as baseline for future applications. The current technical settings did not allow measurement of CSF flow in Beagle dogs by 4D PC-MRI.
Collapse
Affiliation(s)
- Muriel A. Christen
- Division of Clinical Radiology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | | | - Henning Richter
- Clinic of Diagnostic Imaging, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Fabiola B. Joerger
- Department of Clinical Diagnostics and Services, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Matthias Dennler
- Clinic of Diagnostic Imaging, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
13
|
Wang Z, Zhang Y, Hu F, Ding J, Wang X. Pathogenesis and pathophysiology of idiopathic normal pressure hydrocephalus. CNS Neurosci Ther 2020; 26:1230-1240. [PMID: 33242372 PMCID: PMC7702234 DOI: 10.1111/cns.13526] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH), the most common type of adult-onset hydrocephalus, is a potentially reversible neuropsychiatric entity characterized by dilated ventricles, cognitive deficit, gait apraxia, and urinary incontinence. Despite its relatively typical imaging features and clinical symptoms, the pathogenesis and pathophysiology of iNPH remain unclear. In this review, we summarize current pathogenetic conceptions of iNPH and its pathophysiological features that lead to neurological deficits. The common consensus is that ventriculomegaly resulting from cerebrospinal fluid (CSF) dynamics could initiate a vicious cycle of neurological damages in iNPH. Pathophysiological factors including hypoperfusion, glymphatic impairment, disturbance of metabolism, astrogliosis, neuroinflammation, and blood-brain barrier disruption jointly cause white matter and gray matter lesions, and eventually lead to various iNPH symptoms. Also, we review the current treatment options and discuss the prospective treatment strategies for iNPH. CSF diversion with ventriculoperitoneal or lumboperitonealshunts remains as the standard therapy, while its complications prompt attempts to refine shunt insertion and develop new therapeutic procedures. Recent progress on advanced biomaterials and improved understanding of pathogenesis offers new avenues to treat iNPH.
Collapse
Affiliation(s)
- Zhangyang Wang
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yiying Zhang
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Fan Hu
- Department of NeurosugeryZhongshan Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Jing Ding
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Xin Wang
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
- Department of The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
14
|
Clinical and radiological evaluation of treated Chiari I adult patients: retrospective study from two neurosurgical centers. Neurosurg Rev 2020; 44:2261-2276. [PMID: 33051726 DOI: 10.1007/s10143-020-01414-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/24/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
Chiari malformation type I (CM1) is a common neurosurgical disorder. It often causes debilitation in the affected patients. CM1 is a herniation of the caudal cerebellum into the spinal canal. This study aimed to evaluate the clinical and radiological outcomes of posterior fossa decompression and duraplasty (PFDD) in treated CM1 patients. In retrospective design, we reviewed the medical records of diagnosed patients with CM1 at two neurosurgical centers spanning 8 years from 2010 to 2017. We selected all CM1 patients who underwent PFDD surgery (n = 72) as the core sample for this study. We used the Chicago Chiari Outcome Scale (CCOS) to evaluate clinical outcomes. Pre- and postoperatively, we assessed the syrinx/cord ratio, the syrinx length, and the improvement of aqueductal stroke volume (ASV) on CSF flow MRIs. The mean value of CCOS was 14.1 ± 2.1. On midsagittal MRIs, the mean regression in ectopia tonsils was 9.4 ± 1.9 mm (i.e., mean pre- and postoperative tonsil herniation was 13.1 ± 3.1 mm and 4.0 ± 1.6 mm, respectively; p < 0.001). On coronal MRIs, the mean regression in ectopia tonsils was 8.4 ± 1.5 mm (i.e., mean pre- and postoperative tonsil herniation was 13.9 ± 2.4 mm and 5.8 ± 1.0 mm, respectively; p < 0.001). A strong positive correlation was observed between clinical improvement and the increase in ASV values. CSF flow MRIs can help in the surgical decision and follow-up of CM1 patients. ASV ≤ 12 μl is a significant predictor for surgical intervention. Full clinical and radiological evaluation utilizing CSF flow MRI are essential. Most syrinx cavities have regressed following PFDD.
Collapse
|
15
|
Alimajstorovic Z, Westgate CSJ, Jensen RH, Eftekhari S, Mitchell J, Vijay V, Seneviratne SY, Mollan SP, Sinclair AJ. Guide to preclinical models used to study the pathophysiology of idiopathic intracranial hypertension. Eye (Lond) 2020; 34:1321-1333. [PMID: 31896803 PMCID: PMC7376028 DOI: 10.1038/s41433-019-0751-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/24/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Idiopathic intracranial hypertension (IIH) is characterised by raised intracranial pressure (ICP) and papilloedema in the absence of an identifiable secondary cause typically occurring in young women with obesity. The impact is considerable with the potential for blindness, chronic disabling headaches, future risk of cardiovascular disease and marked healthcare utilisation. There have been marked advances in our understanding the pathophysiology of IIH including the role of androgen excess. Insight into pathophysiological underpinnings has arisen from astute clinical observations, studies, and an array of preclinical models. This article summarises the current literature pertaining to the pathophysiology of IIH. The current preclinical models relevant to gaining mechanistic insights into IIH are then discussed. In vitro and in vivo models which study CSF secretion and the effect of potentially pathogenic molecules have started to glean important mechanistic insights. These models are also useful to evaluate novel therapeutic targets to abrogate CSF secretion. Importantly, in vitro CSF secretion assays translate into relevant changes in ICP in vivo. Models of CSF absorption pertinent to IIH, are less well established but highly relevant and of future interest. There is no fully developed in vivo model of IIH but this remains an area of importance. Progress is being made to improve our understanding of the underlying aetiology in IIH including the characterisation of disease biomarkers and their mechanistic role in driving disease pathology. Preclinical models, used to evaluate IIH mechanisms are yielding important mechanistic insights. Further work to refine these techniques will provide translatable insights into disease aetiology.
Collapse
Affiliation(s)
- Zerin Alimajstorovic
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Connar S J Westgate
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Neurology, Danish Headache Centre, Rigshospitalet-Glostrup, Glostrup Research Institute, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark
| | - Rigmor H Jensen
- Department of Neurology, Danish Headache Centre, Rigshospitalet-Glostrup, Glostrup Research Institute, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark
| | - Sajedeh Eftekhari
- Department of Neurology, Danish Headache Centre, Rigshospitalet-Glostrup, Glostrup Research Institute, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark
| | - James Mitchell
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Vivek Vijay
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Senali Y Seneviratne
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Susan P Mollan
- Birmingham Neuro-Ophthalmology, Queen Elizabeth Hospital, Birmingham, UK
| | - Alexandra J Sinclair
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
- Birmingham Neuro-Ophthalmology, Queen Elizabeth Hospital, Birmingham, UK.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK.
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK.
| |
Collapse
|
16
|
Sartoretti T, Wyss M, Sartoretti E, Reischauer C, Hainc N, Graf N, Binkert C, Najafi A, Sartoretti-Schefer S. Sex and Age Dependencies of Aqueductal Cerebrospinal Fluid Dynamics Parameters in Healthy Subjects. Front Aging Neurosci 2019; 11:199. [PMID: 31427956 PMCID: PMC6688190 DOI: 10.3389/fnagi.2019.00199] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/16/2019] [Indexed: 11/29/2022] Open
Abstract
Objectives To assess the influence of age and sex on 10 cerebrospinal fluid (CSF) flow dynamics parameters measured with an MR phase contrast (PC) sequence within the cerebral aqueduct at the level of the intercollicular sulcus. Materials and Methods 128 healthy subjects (66 female subjects with a mean age of 52.9 years and 62 male subjects with a mean age of 51.8 years) with a normal Evans index, normal medial temporal atrophy (MTA) score, and without known disorders of the CSF circulation were included in the study. A PC MR sequence on a 3T MR scanner was used. Ten different flow parameters were analyzed using postprocessing software. Ordinal and linear regression models were calculated. Results The parameters stroke volume (sex: p < 0.001, age: p = 0.003), forward flow volume (sex: p < 0.001, age: p = 0.002), backward flow volume (sex: p < 0.001, age: p = 0.018), absolute stroke volume (sex: p < 0.001, age: p = 0.005), mean flux (sex: p < 0.001, age: p = 0.001), peak velocity (sex: p = 0.009, age: p = 0.0016), and peak pressure gradient (sex: p = 0.029, age: p = 0.028) are significantly influenced by sex and age. The parameters regurgitant fraction, stroke distance, and mean velocity are not significantly influenced by sex and age. Conclusion CSF flow dynamics parameters measured in the cerebral aqueduct are partly age and sex dependent. For establishment of reliable reference values for clinical use in future studies, the impact of sex and age should be considered and incorporated.
Collapse
Affiliation(s)
- Thomas Sartoretti
- Laboratory of Translational Nutrition Biology, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Michael Wyss
- Philips Healthcare, Zurich, Switzerland.,Department of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | | | - Carolin Reischauer
- Department of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Radiology, HFR Fribourg - Hôpital Cantonal, Fribourg, Switzerland
| | - Nicolin Hainc
- Department of Neuroradiology, University Hospital Zürich, University of Zürich, Zurich, Switzerland
| | | | - Christoph Binkert
- Department of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Arash Najafi
- Department of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | | |
Collapse
|
17
|
Korbecki A, Zimny A, Podgórski P, Sąsiadek M, Bladowska J. Imaging of cerebrospinal fluid flow: fundamentals, techniques, and clinical applications of phase-contrast magnetic resonance imaging. Pol J Radiol 2019; 84:e240-e250. [PMID: 31481996 PMCID: PMC6717940 DOI: 10.5114/pjr.2019.86881] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 12/28/2022] Open
Abstract
Cerebrospinal fluid (CSF) is a dynamic compartment of the brain, constantly circulating through the ventricles and subarachnoid space. In recent years knowledge about CSF has expended due to numerous applications of phase-contrast magnetic resonance imaging (PC-MRI) in CSF flow evaluation, leading to the revision of former theories and new concepts about pathophysiology of CSF disorders, which are caused either by alterations in CSF production, absorption, or its hydrodynamics. Although alternative non-invasive techniques have emerged in recent years, PC-MRI is still a fundamental sequence that provides both qualitative and quantitative CSF assessment. PC-MRI is widely used to evaluate CSF hydrodynamics in normal pressure hydrocephalus (NPH), Chiari type I malformations (CMI), syringomyelia, and after neurosurgical procedures. In NPH precisely performed PC-MRI provides reliable clinical information useful for differential diagnosis and selection of patients benefiting from surgical operation. Patients with CMI show abnormalities in CSF dynamics within the subarachnoid space, which are pronounced even further if syringomyelia coexists. Another indication for PC-MRI may be assessment of post-surgical CSF flow normalisation. The aim of this review is to highlight the significance of CSF as a multifunctional entity, to outline both the physical and technical background of PC-MRI, and to state current applications of this technique, not only in the diagnosis of central nervous system disorders, but also in the further clinical monitoring and prognosis after treatment.
Collapse
|
18
|
Benninghaus A, Balédent O, Lokossou A, Castelar C, Leonhardt S, Radermacher K. Enhanced in vitro model of the CSF dynamics. Fluids Barriers CNS 2019; 16:11. [PMID: 31039805 PMCID: PMC6492379 DOI: 10.1186/s12987-019-0131-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/15/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Fluid dynamics of the craniospinal system are complex and still not completely understood. In vivo flow and pressure measurements of the cerebrospinal fluid (CSF) are limited. Whereas in silico modeling can be an adequate pathway for parameter studies, in vitro modeling of the craniospinal system is essential for testing and evaluation of therapeutic measures associated with innovative implants relating to, for example, normal pressure hydrocephalus and other fluid disorders. Previously-reported in vitro models focused on the investigation of only one hypothesis of the fluid dynamics rather than developing a modular set-up to allow changes in focus of the investigation. The aim of this study is to present an enhanced and validated in vitro model of the CSF system which enables the future embedding of implants, the validation of in silico models or phase-contrast magnetic resonance imaging (PC-MRI) measurements and a variety of sensitivity analyses regarding pathological behavior, such as reduced CSF compliances, higher resistances or altered blood dynamics. METHODS The in vitro model consists of a ventricular system which is connected via the aqueduct to the cranial and spinal subarachnoid spaces. Two compliance chambers are integrated to cushion the arteriovenous blood flow generated by a cam plate unit enabling the modeling of patient specific flow dynamics. The CSF dynamics are monitored using three cranial pressure sensors and a spinal ultrasound flow meter. Measurements of the in vitro spinal flow were compared to cervical flow data recorded with PC-MRI from nine healthy young volunteers, and pressure measurements were compared to the literature values reported for intracranial pressure (ICP) to validate the newly developed in vitro model. RESULTS The maximum spinal CSF flow recorded in the in vitro simulation was 133.60 ml/min in the caudal direction and 68.01 ml/min in the cranial direction, whereas the PC-MRI flow data of the subjects showed 122.82 ml/min in the caudal and 77.86 ml/min in the cranial direction. In addition, the mean ICP (in vitro) was 12.68 mmHg and the pressure wave amplitude, 4.86 mmHg, which is in the physiological range. CONCLUSIONS The in vitro pressure values were in the physiological range. The amplitudes of the flow results were in good agreement with PC-MRI data of young and healthy volunteers. However, the maximum cranial flow in the in vitro model occurred earlier than in the PC-MRI data, which might be due to a lack of an in vitro dynamic compliance. Implementing dynamic compliances and related sensitivity analyses are major aspects of our ongoing research.
Collapse
Affiliation(s)
- Anne Benninghaus
- Chair of Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany.
| | - Olivier Balédent
- Department of Image Processing, University Hospital, E.A 7516, CHIMERE, Jules Verne University of Picardy, 80054, Amiens cedex, France
| | - Armelle Lokossou
- Department of Image Processing, University Hospital, E.A 7516, CHIMERE, Jules Verne University of Picardy, 80054, Amiens cedex, France
| | - Carlos Castelar
- Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Steffen Leonhardt
- Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Klaus Radermacher
- Chair of Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| |
Collapse
|
19
|
Sakhare AR, Barisano G, Pa J. Assessing test-retest reliability of phase contrast MRI for measuring cerebrospinal fluid and cerebral blood flow dynamics. Magn Reson Med 2019; 82:658-670. [PMID: 31020721 DOI: 10.1002/mrm.27752] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Pathological states occur when cerebrospinal fluid (CSF) and cerebral blood flow (CBF) dynamics become dysregulated in the brain. Phase-contrast MRI (PC-MRI) is a noninvasive imaging technique that enables quantitative measurements of CSF and CBF flow. While studies have validated PC-MRI as an imaging technique for flow, few studies have evaluated its reliability for CSF and CBF flow parameters commonly associated with neurological disease. The purpose of this study was to evaluate test-retest reliability at the cerebral aqueduct (CA) and C2-C3 area using PC-MRI to assess the feasibility of investigating CSF and CBF flow dynamics. METHODS This study was performed on 27 cognitively normal young adults (ages 20-35 years). Flow data was acquired on a 3T Siemens Prisma using a 2D cine-PC pulse sequence. Three consecutive flow measurements were acquired at the CA and C2-C3 area. Intraclass correlation coefficient (ICC) and coefficient of variance (CV) were used to evaluate intrarater, inter-rater, and test-retest reliability. RESULTS Among the 26 flow parameters analyzed, 22 had excellent reliability (ICC > 0.80), including measurements of CSF stroke volume, flush peak, and fill peak, and 4 parameters had good reliability (ICC 0.60-0.79). 16 flow parameters had a mean CV ≤ 10%, 7 had a CV ≤ 15%, and 3 had a CV ≤ 30%. All CSF and CBF flow measurements had excellent inter-rater and intrarater reliability (ICC > 0.80). CONCLUSION This study shows that CSF and CBF flow can be reliably measured at the CA and C2-C3 area using PC-MRI, making it a promising tool for studying flow dynamics in the central nervous system.
Collapse
Affiliation(s)
- Ashwin R Sakhare
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California.,Department of Neurology, Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Giuseppe Barisano
- Department of Neurology, Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California.,Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| | - Judy Pa
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California.,Department of Neurology, Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California.,Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| |
Collapse
|
20
|
Shanks J, Markenroth Bloch K, Laurell K, Cesarini KG, Fahlström M, Larsson EM, Virhammar J. Aqueductal CSF Stroke Volume Is Increased in Patients with Idiopathic Normal Pressure Hydrocephalus and Decreases after Shunt Surgery. AJNR Am J Neuroradiol 2019. [PMID: 30792248 DOI: 10.3174/ajnr.a5972 [epub 2019 feb 21]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Increased CSF stroke volume through the cerebral aqueduct has been proposed as a possible indicator of positive surgical outcome in patients with idiopathic normal pressure hydrocephalus; however, consensus is lacking. In this prospective study, we aimed to compare CSF flow parameters in patients with idiopathic normal pressure hydrocephalus with those in healthy controls and change after shunt surgery and to investigate whether any parameter could predict surgical outcome. MATERIALS AND METHODS Twenty-one patients with idiopathic normal pressure hydrocephalus and 21 age- and sex-matched healthy controls were prospectively included and examined clinically and with MR imaging of the brain. Eighteen patients were treated with shunt implantation and were re-examined clinically and with MR imaging the day before the operation and 3 months postoperatively. All MR imaging scans included a phase-contrast sequence. RESULTS The median aqueductal CSF stroke volume was significantly larger in patients compared with healthy controls (103.5 μL; interquartile range, 69.8-142.8 μL) compared with 62.5 μL (interquartile range, 58.3-73.8 μL; P < .01) and was significantly reduced 3 months after shunt surgery from 94.8 μL (interquartile range, 81-241 μL) to 88 μL (interquartile range, 51.8-173.3 μL; P < .05). Net flow in the caudocranial direction (retrograde) was present in 11/21 patients and in 10/21 controls. Peak flow and net flow did not differ between patients and controls. There were no correlations between any CSF flow parameters and surgical outcomes. CONCLUSIONS Aqueductal CSF stroke volume was increased in patients with idiopathic normal pressure hydrocephalus and decreased after shunt surgery, whereas retrograde aqueductal net flow did not seem to be specific for patients with idiopathic normal pressure hydrocephalus. On the basis of the results, the usefulness of CSF flow parameters to predict outcome after shunt surgery seem to be limited.
Collapse
Affiliation(s)
- J Shanks
- From the Departments of Surgical Sciences and Radiology (J.S., M.F., E.-M.L.)
| | - K Markenroth Bloch
- Lund University Bioimaging Center (K.M.B.), Lund University, Lund, Sweden
| | - K Laurell
- Department of Pharmacology and Clinical Neuroscience (K.L.), Umeå University, Umeå, Sweden
| | | | - M Fahlström
- From the Departments of Surgical Sciences and Radiology (J.S., M.F., E.-M.L.)
| | - E-M Larsson
- From the Departments of Surgical Sciences and Radiology (J.S., M.F., E.-M.L.)
| | - J Virhammar
- Neuroscience and Neurology (J.V.), Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Shanks J, Markenroth Bloch K, Laurell K, Cesarini KG, Fahlström M, Larsson EM, Virhammar J. Aqueductal CSF Stroke Volume Is Increased in Patients with Idiopathic Normal Pressure Hydrocephalus and Decreases after Shunt Surgery. AJNR Am J Neuroradiol 2019; 40:453-459. [PMID: 30792248 DOI: 10.3174/ajnr.a5972] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/31/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Increased CSF stroke volume through the cerebral aqueduct has been proposed as a possible indicator of positive surgical outcome in patients with idiopathic normal pressure hydrocephalus; however, consensus is lacking. In this prospective study, we aimed to compare CSF flow parameters in patients with idiopathic normal pressure hydrocephalus with those in healthy controls and change after shunt surgery and to investigate whether any parameter could predict surgical outcome. MATERIALS AND METHODS Twenty-one patients with idiopathic normal pressure hydrocephalus and 21 age- and sex-matched healthy controls were prospectively included and examined clinically and with MR imaging of the brain. Eighteen patients were treated with shunt implantation and were re-examined clinically and with MR imaging the day before the operation and 3 months postoperatively. All MR imaging scans included a phase-contrast sequence. RESULTS The median aqueductal CSF stroke volume was significantly larger in patients compared with healthy controls (103.5 μL; interquartile range, 69.8-142.8 μL) compared with 62.5 μL (interquartile range, 58.3-73.8 μL; P < .01) and was significantly reduced 3 months after shunt surgery from 94.8 μL (interquartile range, 81-241 μL) to 88 μL (interquartile range, 51.8-173.3 μL; P < .05). Net flow in the caudocranial direction (retrograde) was present in 11/21 patients and in 10/21 controls. Peak flow and net flow did not differ between patients and controls. There were no correlations between any CSF flow parameters and surgical outcomes. CONCLUSIONS Aqueductal CSF stroke volume was increased in patients with idiopathic normal pressure hydrocephalus and decreased after shunt surgery, whereas retrograde aqueductal net flow did not seem to be specific for patients with idiopathic normal pressure hydrocephalus. On the basis of the results, the usefulness of CSF flow parameters to predict outcome after shunt surgery seem to be limited.
Collapse
Affiliation(s)
- J Shanks
- From the Departments of Surgical Sciences and Radiology (J.S., M.F., E.-M.L.)
| | - K Markenroth Bloch
- Lund University Bioimaging Center (K.M.B.), Lund University, Lund, Sweden
| | - K Laurell
- Department of Pharmacology and Clinical Neuroscience (K.L.), Umeå University, Umeå, Sweden
| | | | - M Fahlström
- From the Departments of Surgical Sciences and Radiology (J.S., M.F., E.-M.L.)
| | - E-M Larsson
- From the Departments of Surgical Sciences and Radiology (J.S., M.F., E.-M.L.)
| | - J Virhammar
- Neuroscience and Neurology (J.V.), Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Rodrigues FB, Byrne LM, De Vita E, Johnson EB, Hobbs NZ, Thornton JS, Scahill RI, Wild EJ. Cerebrospinal fluid flow dynamics in Huntington's disease evaluated by phase contrast MRI. Eur J Neurosci 2019; 49:1632-1639. [PMID: 30687961 PMCID: PMC6618296 DOI: 10.1111/ejn.14356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 11/27/2022]
Abstract
Multiple targeted therapeutics for Huntington's disease are now in clinical trials, including intrathecally delivered compounds. Previous research suggests that CSF dynamics may be altered in Huntington's disease, which could be of paramount relevance to intrathecal drug delivery to the brain. To test this hypothesis, we conducted a prospective cross-sectional study comparing people with early stage Huntington's disease with age- and gender-matched healthy controls. CSF peak velocity, mean velocity and mean flow at the level of the cerebral aqueduct, and sub-arachnoid space in the upper and lower spine, were quantified using phase contrast MRI. We calculated Spearman's rank correlations, and tested inter-group differences with Wilcoxon rank-sum test. Ten people with early Huntington's disease, and 10 controls were included. None of the quantified measures was associated with potential modifiers of CSF dynamics (demographics, osmolality, and brain volumes), or by known modifiers of Huntington's disease (age and HTTCAG repeat length); and no significant differences were found between the two studied groups. While external validation is required, the attained results are sufficient to conclude tentatively that a clinically relevant alteration of CSF dynamics - that is, one that would justify dose-adjustments of intrathecal drugs - is unlikely to exist in Huntington's disease.
Collapse
Affiliation(s)
- Filipe B Rodrigues
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lauren M Byrne
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Enrico De Vita
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK.,Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Eileanoir B Johnson
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - John S Thornton
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rachael I Scahill
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Edward J Wild
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
23
|
Hamilton RB, Scalzo F, Baldwin K, Dorn A, Vespa P, Hu X, Bergsneider M. Opposing CSF hydrodynamic trends found in the cerebral aqueduct and prepontine cistern following shunt treatment in patients with normal pressure hydrocephalus. Fluids Barriers CNS 2019; 16:2. [PMID: 30665428 PMCID: PMC6341759 DOI: 10.1186/s12987-019-0122-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/11/2019] [Indexed: 01/22/2023] Open
Abstract
Background This study investigated cerebrospinal fluid (CSF) hydrodynamics using cine phase-contrast MRI in the cerebral aqueduct and the prepontine cistern between three distinct groups: pre-shunt normal pressure hydrocephalus (NPH) patients, post-shunt NPH patients, and controls. We hypothesized that the hyperdynamic flow of CSF through the cerebral aqueduct seen in NPH patients was due to a reduction in cisternal CSF volume buffering. Both hydrodynamic (velocity, flow, stroke volume) and peak flow latency (PFL) parameters were investigated. Methods Scans were conducted on 30 pre-treatment patients ranging in age from 58 to 88 years along with an additional 12 controls. Twelve patients also received scans following either ventriculoatrial (VA) or ventriculoperitoneal (VP) shunt treatment (9 VP, 3 VA), ranging in age from 74 to 89 years with a mean follow up time of 6 months. Results Significant differences in area, velocity, flow, and stroke volume for the cerebral aqueduct were found between the pre-treatment NPH group and the healthy controls. Shunting caused a significant decrease in both caudal and cranial mean flow and stroke volume in the cerebral aqueduct. No significant changes were found in the prepontine cistern between the pre-treatment group and healthy controls. For the PFL, no significant differences were seen in the cerebral aqueduct between any of the three groups; however, the prepontine cistern PFL was significantly decreased in the pre-treatment NPH group when compared to the control group. Conclusions Although several studies have quantified the changes in aqueductal flow between hydrocephalic groups and controls, few studies have investigated prepontine cistern flow. Our study was the first to investigate both regions in the same patients for NPH pre- and post- treatment. Following shunt treatment, the aqueductal CSF metrics decreased toward control values, while the prepontine cistern metrics trended up (not significantly) from the normal values established in this study. The opposing trend of the two locations suggests a redistribution of CSF pulsatility in NPH patients. Furthermore, the significantly decreased latency of the prepontine cisternal CSF flow suggests additional evidence for CSF pulsatility dysfunction.
Collapse
Affiliation(s)
- Robert B Hamilton
- Neural Systems and Dynamics Laboratory, Department of Neurosurgery, The David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.,Biomedical Engineering Graduate Program, Henry Samueli School of Engineering and Applied Science, University of California-Los Angeles, 7400 Boelter Hall, Los Angeles, CA, 90095, USA.,Neural Analytics, Inc., 2440 S Sepulveda Blvd, Suite 115, Los Angeles, CA, 90064, USA
| | - Fabien Scalzo
- Neural Systems and Dynamics Laboratory, Department of Neurosurgery, The David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.,Neural Analytics, Inc., 2440 S Sepulveda Blvd, Suite 115, Los Angeles, CA, 90064, USA
| | - Kevin Baldwin
- Neural Systems and Dynamics Laboratory, Department of Neurosurgery, The David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Amber Dorn
- Neural Analytics, Inc., 2440 S Sepulveda Blvd, Suite 115, Los Angeles, CA, 90064, USA.
| | - Paul Vespa
- The David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Xiao Hu
- Neural Systems and Dynamics Laboratory, Department of Neurosurgery, The David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.,Biomedical Engineering Graduate Program, Henry Samueli School of Engineering and Applied Science, University of California-Los Angeles, 7400 Boelter Hall, Los Angeles, CA, 90095, USA
| | - Marvin Bergsneider
- Neural Systems and Dynamics Laboratory, Department of Neurosurgery, The David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.,Biomedical Engineering Graduate Program, Henry Samueli School of Engineering and Applied Science, University of California-Los Angeles, 7400 Boelter Hall, Los Angeles, CA, 90095, USA
| |
Collapse
|
24
|
Nowosławska E, Gwizdała D, Barańska D, Grzelak P, Podgórski M, Zakrzewski K, Polis B, Stasiołek M, Polis L. The oscillatory flow of the cerebrospinal fluid in the Sylvian aqueduct and the prepontine cistern measured with phase contrast MRI in children with hydrocephalus-a preliminary report. Childs Nerv Syst 2018; 34:845-851. [PMID: 29322338 PMCID: PMC5895674 DOI: 10.1007/s00381-017-3699-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 12/12/2017] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Recognizing patients with ventriculomegaly who are at risk of developing acute hydrocephalus presents a challenge for the clinician. The association between disturbed cerebrospinal fluid flow (CSF) and impaired brain compliance may play a role in the pathogenesis of hydrocephalus. Phase contrast MRI is a noninvasive technique which can be used to assess CSF parameters. The aim of the work is to evaluate the effectiveness of phase contrast MRI in recognizing patients at risk of acute hydrocephalus, based on measuring the pulsatile CSF flow parameters in the Sylvian aqueduct and prepontine cistern in children with ventriculomegaly. AIM The aim of the work is to characterize the parameters of cerebrospinal fluid (CSF) flow in the Sylvian aqueduct and prepontine cistern in children with ventriculomegaly with regard to patient age and symptoms. We hypothesize that the relationship between CSF flow parameters in these two regions will vary according to analyzed factors and it will allow to recognize children at risk of hydrocephalus. MATERIALS AND METHODS A group of 26 children with ventriculomegaly (five girls and 21 boys) underwent phase contrast MRI examinations (Philips 3T Achieva with Q-flow integral application). Amplitudes of average and peak velocities of the CSF flow through the Sylvian aqueduct and prepontine cistern were used to calculate ratios of oscillation and peak velocities, respectively. The relationship between the oscillation coefficient, the peak velocity coefficient, and stroke volume was then assessed in accordance with age and clinical symptoms. RESULTS The peak velocity coefficient was significantly higher in patients with hyper-oscillating flow through the Sylvian aqueduct (3.04 ± 3.37 vs. 0.54 ± 0.28; p = 0.0094). Moreover, these patients tended to develop symptoms more often (p = 0.0612). No significant age-related changes were observed in CSF flow parameters. CONCLUSION Phase contrast MRI is a useful tool for noninvasive assessment of CSF flow parameters. The application of coefficients instead of direct values seems to better represent hemodynamic conditions in the ventricular system. However, further studies are required to evaluate their clinical significance and normal limits.
Collapse
Affiliation(s)
- Emilia Nowosławska
- Department of Neurosurgery, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland.
| | - Dominika Gwizdała
- Department of Diagnostic Imaging, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Dobromiła Barańska
- Department of Diagnostic Imaging, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Piotr Grzelak
- Department of Diagnostic Imaging, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Michał Podgórski
- Department of Diagnostic Imaging, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Krzysztof Zakrzewski
- Department of Neurosurgery, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Bartosz Polis
- Department of Neurosurgery, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Mariusz Stasiołek
- Department of Neurology, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Lech Polis
- Department of Neurosurgery, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| |
Collapse
|
25
|
Ringstad G, Lindstrøm EK, Vatnehol SAS, Mardal KA, Emblem KE, Eide PK. Non-invasive assessment of pulsatile intracranial pressure with phase-contrast magnetic resonance imaging. PLoS One 2017; 12:e0188896. [PMID: 29190788 PMCID: PMC5708728 DOI: 10.1371/journal.pone.0188896] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/02/2017] [Indexed: 12/04/2022] Open
Abstract
Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response in patients with idiopathic normal pressure hydrocephalus, but may potentially cause complications such as bleeding and infection. We tested how a proposed surrogate parameter for pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived pulse pressure gradient, compared with its invasive counterpart. In 22 patients with suspected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Repeated measurements of the pulse pressure gradient were also undertaken in four healthy controls. Of 17 shunted patients, 16 responded, indicating high proportion of “true” normal pressure hydrocephalus in the patient cohort. However, there was no correlation between the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial pressure (R = -.18, P = .43). Pulse pressure gradients were also similar in patients and healthy controls (P = .26), and did not differ between individuals with pulsatile intracranial pressure above or below established thresholds for shunt treatment (P = .97). Assessment of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the pulse pressure gradient from magnetic resonance imaging comprises short-term pressure fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate marker for intracranial pressure pulsations.
Collapse
Affiliation(s)
- Geir Ringstad
- Department of Radiology and Nuclear Medicine, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Erika Kristina Lindstrøm
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Svein Are Sirirud Vatnehol
- Faculty of Medicine, University of Oslo, Oslo, Norway
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Kent-André Mardal
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | | - Per Kristian Eide
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
26
|
Takizawa K, Matsumae M, Hayashi N, Hirayama A, Yatsushiro S, Kuroda K. Hyperdynamic CSF motion profiles found in idiopathic normal pressure hydrocephalus and Alzheimer's disease assessed by fluid mechanics derived from magnetic resonance images. Fluids Barriers CNS 2017; 14:29. [PMID: 29047355 PMCID: PMC5648475 DOI: 10.1186/s12987-017-0077-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/13/2017] [Indexed: 11/29/2022] Open
Abstract
Background Magnetic resonance imaging (MRI) does not only ascertain morphological features, but also measures physiological properties such as fluid velocity or pressure gradient. The purpose of this study was to investigate cerebrospinal fluid (CSF) dynamics in patients with morphological abnormalities such as enlarged brain ventricles and subarachnoid spaces. We used a time-resolved three dimensional phase contrast (3D-PC) MRI technique to quantitatively evaluate CSF dynamics in the Sylvian aqueduct of healthy elderly individuals and patients with either idiopathic normal pressure hydrocephalus (iNPH) or Alzheimer’s disease (AD) presenting with ventricular enlargement. Methods Nineteen healthy elderly individuals, ten iNPH patients, and seven AD patients (all subjects ≥ 60 years old) were retrospectively evaluated 3D-PC MRI. The CSF velocity, pressure gradient, and rotation in the Sylvian aqueduct were quantified and compared between the three groups using Kolmogorov–Smirnov and Mann–Whitney U tests. Results There was no statistically significant difference in velocity among the three groups. The pressure gradient was not significantly different between the iNPH and AD groups, but was significantly different between the iNPH group and the healthy controls (p < 0.001), and similarly, between the AD group and the healthy controls (p < 0.001). Rotation was not significantly different between the iNPH and AD groups, but was significantly different between the iNPH group and healthy controls (p < 0.001), and similarly, between the AD group and the healthy controls (p < 0.001). Conclusions Quantitative analysis of CSF dynamics with time resolved 3D-PC MRI revealed differences and similarities in the Sylvian aqueduct between healthy elderly individuals, iNPH patients, and AD patients. The results showed that CSF motion is in a hyperdynamic state in both iNPH and AD patient groups compared to healthy elderly individuals, and that iNPH patients and AD patients display similar CSF motion profiles.
Collapse
Affiliation(s)
- Ken Takizawa
- Department of Neurosurgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 2591193, Japan
| | - Mitsunori Matsumae
- Department of Neurosurgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 2591193, Japan.
| | - Naokazu Hayashi
- Department of Neurosurgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 2591193, Japan
| | - Akihiro Hirayama
- Department of Neurosurgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 2591193, Japan
| | - Satoshi Yatsushiro
- Course of Science and Technology, Graduate School of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 2591292, Japan.,Department of Biological Engineering, Tokai University, School of Biological Engineering, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 2591292, Japan
| | - Kagayaki Kuroda
- Course of Science and Technology, Graduate School of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 2591292, Japan.,Department of Biological Engineering, Tokai University, School of Biological Engineering, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 2591292, Japan
| |
Collapse
|
27
|
Corte AD, de Souza CFM, Anés M, Maeda FK, Lokossou A, Vedolin LM, Longo MG, Ferreira MM, Perrone SGP, Balédent O, Giugliani R. Correlation of CSF flow using phase-contrast MRI with ventriculomegaly and CSF opening pressure in mucopolysaccharidoses. Fluids Barriers CNS 2017; 14:23. [PMID: 28918752 PMCID: PMC5603164 DOI: 10.1186/s12987-017-0073-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/04/2017] [Indexed: 11/30/2022] Open
Abstract
Background Very little is known about the incidence and prevalence of hydrocephalus in patients with mucopolysaccharidoses (MPS). The biggest challenge is to distinguish communicating hydrocephalus from ventricular dilatation secondary to brain atrophy, because both conditions share common clinical and neuroradiological features. The main purpose of this study is to assess the relationship between ventriculomegaly, brain and cerebrospinal fluid (CSF) volumes, aqueductal and cervical CSF flows, and CSF opening pressure in MPS patients, and to provide potential biomarkers for abnormal CSF circulation. Methods Forty-three MPS patients (12 MPS I, 15 MPS II, 5 MPS III, 9 MPS IV A and 2 MPS VI) performed clinical and developmental tests, and T1, T2, FLAIR and phase-contrast magnetic resonance imaging (MRI) followed by a lumbar puncture with the CSF opening pressure assessment. For the analysis of MRI variables, we measured the brain and CSF volumes, white matter (WM) lesion load, Evans’ index, third ventricle width, callosal angle, dilated perivascular spaces (PVS), craniocervical junction stenosis, aqueductal and cervical CSF stroke volumes, and CSF glycosaminoglycans concentration. Results All the scores used to assess the supratentorial ventricles enlargement and the ventricular CSF volume presented a moderate correlation with the aqueductal CSF stroke volume (ACSV). The CSF opening pressure did not correlate either with the three measures of ventriculomegaly, or the ventricular CSF volume, or with the ACSV. Dilated PVS showed a significant association with the ventriculomegaly, ventricular CSF volume and elevated ACSV. Conclusions In MPS patients ventriculomegaly is associated with a severe phenotype, increased cognitive decline, WM lesion severity and enlarged PVS. The authors have shown that there are associations between CSF flow measurements and measurements related to CSF volumetrics. There was also an association of volumetric measurements with the degree of dilated PVS.
Collapse
Affiliation(s)
- Amauri Dalla Corte
- Post-Graduate Program in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90035-903, Brazil.
| | - Carolina F M de Souza
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Maurício Anés
- Medical Physics and Radioprotection Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Fabio K Maeda
- Clinical Engineering, Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Brazil
| | - Armelle Lokossou
- Image Processing Unit, Amiens University Hospital, Amiens, France
| | | | | | - Monica M Ferreira
- Anesthesiology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Solanger G P Perrone
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Olivier Balédent
- Image Processing Unit, Amiens University Hospital, Amiens, France
| | - Roberto Giugliani
- Post-Graduate Program in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90035-903, Brazil
| |
Collapse
|
28
|
Ragunathan S, Pipe JG. Radiofrequency saturation induced bias in aqueductal cerebrospinal fluid flow quantification obtained using two-dimensional cine phase contrast magnetic resonance imaging. Magn Reson Med 2017; 79:2067-2076. [PMID: 28833454 DOI: 10.1002/mrm.26883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
Abstract
PURPOSE To explore the extent of bias in cerebrospinal fluid flow estimates due to radiofrequency saturation, and its possible impact on the use of two-dimensional cine phase contrast magnetic resonance imaging in the diagnosis and characterization of normal pressure hydrocephalus in patients. THEORY AND METHODS Theoretical signal equations were generated to describe saturation dependence on velocity. An experimental set of phase contrast magnetic resonance imaging scans with two different flip angles was used to show bias in flow estimates in a flow phantom, and in six different healthy volunteers. The cerebral aqueduct was targeted as the flow region of interest. RESULTS Data from a constant flow phantom showed a spatial distribution of voxels with significant bias in flow at the periphery of the flow region. The velocity difference (bias) maps of the cerebral aqueduct correlated with the spatial velocity gradients around peak systole and peak diastole, and high correlation with temporal velocity gradients during transition between systole and diastole. The aqueductal stroke volume for θ = 30° were found to be significantly higher than for θ = 10° using a Wilcoxon signed rank test. CONCLUSION This work shows the extent of bias in cerebrospinal fluid flow quantification due to radiofrequency saturation effects. This clinical relevance of this error was presented with respect to shunt responsiveness among normal pressure hydrocephalus patients. Magn Reson Med 79:2067-2076, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
| | - James G Pipe
- Barrow Neurological Institute, Imaging Research, Phoenix, Arizona, USA
| |
Collapse
|
29
|
Ichikawa S, Motosugi U, Okumura A, Shimizu T, Onishi H. Measurement of Cerebrospinal Fluid Flow Dynamics Using Phase Contrast MR Imaging with Bilateral Jugular Vein Compression: A Feasibility Study in Healthy Volunteers. Magn Reson Med Sci 2017; 17:265-268. [PMID: 28819086 PMCID: PMC6039778 DOI: 10.2463/mrms.tn.2017-0056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We measured the changes in the cerebrospinal fluid (CSF) flow dynamics after compression of the bilateral jugular veins using phase contrast-magnetic resonance imaging (PC-MRI). PC-MRI was performed in 10 healthy male volunteers using a 3T clinical scanner with a two-dimensional gradient echo sequence. We successfully measured the changes in CSF flow velocity using PC-MRI with and without compression of the bilateral jugular veins. The relative velocity range decreased by about 30% when the bilateral jugular veins were compressed.
Collapse
Affiliation(s)
| | - Utaroh Motosugi
- Corresponding author, Phone: +81-55-273-1111, Fax: +81-55-273-6744, E-mail:
| | | | | | | |
Collapse
|
30
|
Pediatric brain MRI, Part 2: Advanced techniques. Pediatr Radiol 2017; 47:544-555. [PMID: 28409252 DOI: 10.1007/s00247-017-3792-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/13/2016] [Accepted: 01/26/2017] [Indexed: 10/19/2022]
Abstract
Pediatric neuroimaging is a complex and specialized field that uses magnetic resonance (MR) imaging as the workhorse for diagnosis. MR protocols should be tailored to the specific indication and reviewed by the supervising radiologist in real time. Targeted advanced imaging sequences can be added to provide information regarding tissue microstructure, perfusion, metabolism and function. In part 2 of this review, we highlight the utility of advanced imaging techniques for superior evaluation of pediatric neurologic disease. We focus on the following techniques, with clinical examples: phase-contrast imaging, perfusion-weighted imaging, vessel wall imaging, diffusion tensor imaging, task-based functional MRI and MR spectroscopy.
Collapse
|
31
|
Puy V, Zmudka-Attier J, Capel C, Bouzerar R, Serot JM, Bourgeois AM, Ausseil J, Balédent O. Interactions between Flow Oscillations and Biochemical Parameters in the Cerebrospinal Fluid. Front Aging Neurosci 2016; 8:154. [PMID: 27445797 PMCID: PMC4925673 DOI: 10.3389/fnagi.2016.00154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023] Open
Abstract
The equilibrium between the ventricular and lumbar cerebrospinal fluid (CSF) compartments may be disturbed (in terms of flow and biochemistry) in patients with chronic hydrocephalus (CH). Using flow magnetic resonance imaging (MRI) and CSF assays, we sought to determine whether changes in CSF were associated with biochemical alterations. Nine elderly patients with CH underwent phase-contrast MRI. An index of CSF dynamics (Idyn) was defined as the product of the lumbar and ventricular CSF flows. During surgery, samples of CSF were collected from the lumbar and ventricular compartments and assayed for chloride, glucose and total protein. The lumbar/ventricular (L/V) ratio was calculated for each analyte. The ratio between measured and expected levels (Ibioch) was calculated for each analyte and compared with Idyn. Idyn varied from 0 to 100.10(3)μl(2).s(2). In contrast to the L/V ratios for chloride and glucose, the L/V ratio for total protein varied markedly from one patient to another (mean ± standard deviation (SD): 2.63 ± 1.24). The Ibioch for total protein was strongly correlated with the corresponding Idyn (Spearman's R: 0.98; p < 5 × 10(-5)).We observed correlated alterations in CSF flow and biochemical parameters in patients with CH. Our findings also highlight the value of dynamic flow analysis in the interpretation of data on CSF biochemistry.
Collapse
Affiliation(s)
- Vincent Puy
- Biochemistry Unit, CBH, Amiens University Medical CenterAmiens, France; INSERM U1088, Research GroupAmiens, France
| | - Jadwiga Zmudka-Attier
- BioFlowImage Research Group, Jules Verne University of PicardyAmiens, France; Geriatric Unit, General HospitalSaint Quentin, France
| | - Cyrille Capel
- BioFlowImage Research Group, Jules Verne University of PicardyAmiens, France; Neurosurgery Unit, Amiens University Medical CenterAmiens, France
| | - Roger Bouzerar
- BioFlowImage Research Group, Jules Verne University of PicardyAmiens, France; Medical Imaging Unit, Amiens University Medical CenterAmiens, France
| | - Jean-Marie Serot
- BioFlowImage Research Group, Jules Verne University of PicardyAmiens, France; Geriatric Unit, General HospitalSaint Quentin, France
| | | | - Jérome Ausseil
- Biochemistry Unit, CBH, Amiens University Medical CenterAmiens, France; INSERM U1088, Research GroupAmiens, France
| | - Olivier Balédent
- BioFlowImage Research Group, Jules Verne University of PicardyAmiens, France; Medical Imaging Unit, Amiens University Medical CenterAmiens, France
| |
Collapse
|
32
|
Ringstad G, Emblem KE, Geier O, Alperin N, Eide PK. Reply: To PMID 25977480. AJNR Am J Neuroradiol 2015; 36:1633-4. [PMID: 26251437 PMCID: PMC7968769 DOI: 10.3174/ajnr.a4488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - O Geier
- The Intervention Centre Oslo University Hospital-Rikshospitalet Oslo, Norway
| | - N Alperin
- University of Miami Miller School of Medicine Miami, Florida
| | - P K Eide
- Department of Neurosurgery Oslo University Hospital-Rikshospitalet Oslo, Norway
| |
Collapse
|
33
|
Ringstad G, Emblem KE, Geier O, Alperin N, Eide PK. Aqueductal Stroke Volume: Comparisons with Intracranial Pressure Scores in Idiopathic Normal Pressure Hydrocephalus. AJNR Am J Neuroradiol 2015; 36:1623-30. [PMID: 25977480 PMCID: PMC7968750 DOI: 10.3174/ajnr.a4340] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/11/2015] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND PURPOSE Aqueductal stroke volume from phase-contrast MR imaging has been proposed for predicting shunt response in normal pressure hydrocephalus. However, this biomarker has remained controversial in use and has a lack of validation with invasive intracranial monitoring. We studied how aqueductal stroke volume compares with intracranial pressure scores in the presurgical work-up and clinical score, ventricular volume, and aqueduct area and assessed the patient's response to shunting. MATERIALS AND METHODS Phase-contrast MR imaging was performed in 21 patients with probable idiopathic normal pressure hydrocephalus. Patients were selected for shunting on the basis of pathologically increased intracranial pressure pulsatility. Patients with shunts were offered a second MR imaging after 12 months. Ventricular volume and transverse aqueductal area were calculated, as well as clinical symptom score. RESULTS No correlations between aqueductal stroke volume and preoperative scores of mean intracranial pressure or mean wave amplitudes were observed. Preoperative aqueductal stroke volume was not different between patients with shunts and conservatively treated patients (P = .69) but was correlated with ventricular volume (R = 0.60, P = .004) and aqueductal area (R = 0.58, P = .006) but not with the severity or duration of clinical symptoms. After shunting, aqueductal stroke volume (P = .006) and ventricular volume (P = .002) were reduced. A clinical improvement was seen in 16 of 17 patients who had shunts (94%). CONCLUSIONS Aqueductal stroke volume does not reflect intracranial pressure pulsatility or symptom score, but rather aqueduct area and ventricular volume. The results do not support the use of aqueductal stroke volume for selecting patients for shunting.
Collapse
Affiliation(s)
- G Ringstad
- From the Department of Radiology and Nuclear Medicine (G.R.)
| | - K E Emblem
- Intervention Centre (K.E.E., O.G.), Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - O Geier
- Intervention Centre (K.E.E., O.G.), Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - N Alperin
- Department of Radiology (N.A.), University of Miami Miller School of Medicine, Miami, Florida
| | - P K Eide
- Department of Neurosurgery (P.K.E.), Oslo University Hospital, Oslo, Norway Faculty of Medicine (P.K.E.), University of Oslo, Oslo, Norway
| |
Collapse
|
34
|
Relation between tag position and degree of visualized cerebrospinal fluid reflux into the lateral ventricles in time-spatial labeling inversion pulse magnetic resonance imaging at the foramen of Monro. Fluids Barriers CNS 2015; 12:14. [PMID: 26093635 PMCID: PMC4475619 DOI: 10.1186/s12987-015-0011-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/10/2015] [Indexed: 11/25/2022] Open
Abstract
Background Time-spatial labeling inversion pulse (Time-SLIP) magnetic resonance imaging allows non-invasive visualization of cerebrospinal fluid (CSF) movement. Our study evaluated the sensitivity of the Time-SLIP tag placement on the measurement of CSF reflux from the third ventricle into the lateral ventricles via the foramen of Monro. Findings Multiple Time-SLIP MRI scans were obtained in three healthy volunteers (23–55 years of age) evaluating the observed CSF pulsation and reflux from the third ventricle into the lateral ventricles while varying the placement of the tag. Linear regression was performed to evaluate the effects of tag position on the amount of visualized reflux and pulsation. Variation in the position of the tag relative to the plane of the free margin of the septum pellucidum produced a significant inverse variation in the observed reflux into the lateral ventricles (R2 = 0.74). The further the distance of the top (superior edge) of the tag from the plane of the free margin of the septum pellucidum, the less reflux into the lateral ventricles was observed (P = 0.006). Conclusions The amount of observed CSF reflux into the lateral ventricles in Time-SLIP MR imaging is dependent on the positioning of the CSF tag with decreasing amount of visualized reflux the further caudal the CSF tag is relative to the free margin of the septum pellucidum. Electronic supplementary material The online version of this article (doi:10.1186/s12987-015-0011-0) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Long-term neuropsychological sequelae in HIV-seronegative cryptococcal meningoencephalitis patients with and without ventriculoperitoneal shunts: a cine MRI study. Behav Neurol 2015; 2015:356476. [PMID: 25948879 PMCID: PMC4407401 DOI: 10.1155/2015/356476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/09/2015] [Accepted: 03/20/2015] [Indexed: 11/18/2022] Open
Abstract
Background. Hydrocephalus in cryptococcal meningoencephalitis is most commonly managed with a ventriculoperitoneal shunt. This study applied cine magnetic resonance imaging (MRI) to evaluate initial disease severity on long-term cerebrospinal fluid (CSF) flow dynamics and associated neuropsychological sequelae in cryptococcal meningoencephalitis patients with and without ventriculoperitoneal shunts. Methods. Eighteen human immunodeficiency virus-seronegative cryptococcal meningoencephalitis patients (10 with shunts versus 8 without shunts) were compared with 32 age- and sex-matched healthy volunteers. All subjects underwent complete neurologic examination and neuropsychological testing. Cine MRI was conducted to evaluate CSF flow parameters. Initial CSF laboratory analysis and imaging findings were correlated with present CSF flow parameters and neuropsychological scores. Results. Patients without shunts had higher average flow than controls, suggesting chronic hydrocephalus. Initial Evans ratios and CSF glucose levels were associated with CSF peak velocity and flow. Worsening CSF flow parameters correlated with decreased neuropsychological performance. Conclusions. CSF flow parameter differences between the cryptococcal meningoencephalitis patients both with and without ventriculoperitoneal shunts could be detected by cine MRI and correlated with acute stage disease severity and chronic stage neuropsychological results. Cine MRI is useful for assessing the chronic hydrocephalus that may lead to neuropsychological deficits in cryptococcal meningoencephalitis patients.
Collapse
|
36
|
Yamada S, Tsuchiya K, Bradley WG, Law M, Winkler ML, Borzage MT, Miyazaki M, Kelly EJ, McComb JG. Current and emerging MR imaging techniques for the diagnosis and management of CSF flow disorders: a review of phase-contrast and time-spatial labeling inversion pulse. AJNR Am J Neuroradiol 2015; 36:623-30. [PMID: 25012672 PMCID: PMC7964307 DOI: 10.3174/ajnr.a4030] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article provides an overview of phase-contrast and time-spatial labeling inversion pulse MR imaging techniques to assess CSF movement in the CNS under normal and pathophysiologic situations. Phase-contrast can quantitatively measure stroke volume in selected regions, notably the aqueduct of Sylvius, synchronized to the heartbeat. Judicious fine-tuning of the technique is needed to achieve maximal temporal resolution, and it has limited visualization of CSF motion in many CNS regions. Phase-contrast is frequently used to evaluate those patients with suspected normal pressure hydrocephalus and a Chiari I malformation. Correlation with successful treatment outcome has been problematic. Time-spatial labeling inversion pulse, with a high signal-to-noise ratio, assesses linear and turbulent motion of CSF anywhere in the CNS. Time-spatial labeling inversion pulse can qualitatively visualize whether CSF flows between 2 compartments and determine whether there is flow through the aqueduct of Sylvius or a new surgically created stoma. Cine images reveal CSF linear and turbulent flow patterns.
Collapse
Affiliation(s)
- S Yamada
- From the Department of Neurosurgery (S.Y.), Toshiba Rinkan Hospital, Sagamihara, Kanagawa, Japan
| | - K Tsuchiya
- Department of Radiology (K.T.), Kyorin University, Mitaka, Tokyo, Japan
| | - W G Bradley
- Department of Radiology (W.G.B.), University of California, San Diego, San Diego, California
| | - M Law
- Department of Neuroradiology (M.L.), University of Southern California, Los Angeles, California
| | - M L Winkler
- Steinberg Diagnostic Imaging Center (M.L.W.), Las Vegas, Nevada
| | - M T Borzage
- Division of Neuroradiology (M.T.B.), Department of Radiology, Institute for Maternal Fetal Health, Children's Hospital Los Angeles, Los Angeles, California Department of Biomedical Engineering (M.T.B.), USC Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - M Miyazaki
- Toshiba Medical Research Institute (M.M.), Vernon Hills, Illinois
| | - E J Kelly
- Toshiba America Medical Systems Inc (E.J.K.), Tustin, California
| | - J G McComb
- Division of Neurosurgery (J.G.M.), Children's Hospital Los Angeles, Los Angeles, California Department of Neurological Surgery (J.G.M.), Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
37
|
Updated physiology and pathophysiology of CSF circulation--the pulsatile vector theory. Childs Nerv Syst 2013; 29:1811-25. [PMID: 23832074 DOI: 10.1007/s00381-013-2219-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Hydrocephalus is still a not well-understood diagnostic and a therapeutic dilemma because of the lack of sufficient and comprehensive model of cerebrospinal fluid circulation and pathological alterations. CONCLUSIONS Based on current studies, reviews, and knowledge of cerebrospinal fluid dynamics, brain water dynamics, intracranial pressure, and cerebral perfusion physiology, a new concept is deducted that can describe normal and pathological changes of cerebrospinal fluid circulation and pathophysiology of idiopathic intracranial hypertension.
Collapse
|
38
|
ElSankari S, Balédent O, van Pesch V, Sindic C, de Broqueville Q, Duprez T. Concomitant analysis of arterial, venous, and CSF flows using phase-contrast MRI: a quantitative comparison between MS patients and healthy controls. J Cereb Blood Flow Metab 2013; 33:1314-21. [PMID: 23778162 PMCID: PMC3764393 DOI: 10.1038/jcbfm.2013.95] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 01/30/2023]
Abstract
Venous dysfunction has recently been hypothesized to contribute to the pathophysiology of multiple sclerosis (MS). 2D phase-contrast (PC) magnetic resonance imaging (MRI) is a non-invasive and innocuous technique enabling reliable quantification of cerebrospinal fluid (CSF) and blood flows in the same imaging session. We compared PC-MRI measurements of CSF, arterial and venous flows in MS patients to those from a normative cohort of healthy controls (HC). Nineteen MS patients underwent a standardized MR protocol for cerebral examination on a 3T system including Fast cine PC-MRI sequences with peripheral gating in four acquisition planes. Quantitative data were processed using a homemade software to extract CSF and blood flow regions of interest, animate flows, and calculate cervical and intracranial vascular flow curves during the cardiac cycle (CC). Results were compared with values obtained in 21 HC using multivariate analysis. Venous flow patterns were comparable in both groups without signs of reflux. Arterial flows (P=0.02) and cervical CSF dynamic oscillations (P=0.01) were decreased in MS patients. No significant differences in venous cerebral and cervical outflows were observed between groups, thereby contradicting the recently proposed theory of venous insufficiency. Unexpected decrease in arterial perfusion in MS patients warrants further correlation to volumetric measurements of the brain.
Collapse
Affiliation(s)
- Souraya ElSankari
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
39
|
Beggs CB. Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis. BMC Med 2013; 11:142. [PMID: 23724917 PMCID: PMC3668302 DOI: 10.1186/1741-7015-11-142] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/20/2013] [Indexed: 01/20/2023] Open
Abstract
Venous abnormalities contribute to the pathophysiology of several neurological conditions. This paper reviews the literature regarding venous abnormalities in multiple sclerosis (MS), leukoaraiosis, and normal-pressure hydrocephalus (NPH). The review is supplemented with hydrodynamic analysis to assess the effects on cerebrospinal fluid (CSF) dynamics and cerebral blood flow (CBF) of venous hypertension in general, and chronic cerebrospinal venous insufficiency (CCSVI) in particular.CCSVI-like venous anomalies seem unlikely to account for reduced CBF in patients with MS, thus other mechanisms must be at work, which increase the hydraulic resistance of the cerebral vascular bed in MS. Similarly, hydrodynamic changes appear to be responsible for reduced CBF in leukoaraiosis. The hydrodynamic properties of the periventricular veins make these vessels particularly vulnerable to ischemia and plaque formation.Venous hypertension in the dural sinuses can alter intracranial compliance. Consequently, venous hypertension may change the CSF dynamics, affecting the intracranial windkessel mechanism. MS and NPH appear to share some similar characteristics, with both conditions exhibiting increased CSF pulsatility in the aqueduct of Sylvius.CCSVI appears to be a real phenomenon associated with MS, which causes venous hypertension in the dural sinuses. However, the role of CCSVI in the pathophysiology of MS remains unclear.
Collapse
Affiliation(s)
- Clive B Beggs
- Medical Biophysics Laboratory, School of Engineering, Design and Technology, University of Bradford, Bradford, West Yorkshire BD7 1DP, UK.
| |
Collapse
|
40
|
Hamilton R, Baldwin K, Fuller J, Vespa P, Hu X, Bergsneider M. Intracranial pressure pulse waveform correlates with aqueductal cerebrospinal fluid stroke volume. J Appl Physiol (1985) 2012; 113:1560-6. [PMID: 22995390 DOI: 10.1152/japplphysiol.00357.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study identifies a novel relationship between cerebrospinal fluid (CSF) stroke volume through the cerebral aqueduct and the characteristic peaks of the intracranial pulse (ICP) waveform. ICP waveform analysis has become much more advanced in recent years; however, clinical practice remains restricted to mean ICP, mainly due to the lack of physiological understanding of the ICP waveform. Therefore, the present study set out to shed some light on the physiological meaning of ICP morphological metrics derived by the morphological clustering and analysis of continuous intracranial pulse (MOCAIP) algorithm by investigating their relationships with a well defined physiological variable, i.e., the stroke volume of CSF through the cerebral aqueduct. Seven patients received both overnight ICP monitoring along with a phase-contrast MRI (PC-MRI) of the cerebral aqueduct to quantify aqueductal stroke volume (ASV). Waveform morphological analysis of the ICP signal was performed by the MOCAIP algorithm. Following extraction of morphological metrics from the ICP signal, nine temporal ICP metrics and two amplitude-based metrics were compared with the ASV via Spearman's rank correlation. Of the nine temporal metrics correlated with the ASV, only the width of the P2 region (ICP-Wi2) reached significance. Furthermore, both ICP pulse pressure amplitude and mean ICP did not reach significance. In this study, we showed the width of the second peak (ICP-Wi2) of an ICP pulse wave is positively related to the volume of CSF movement through the cerebral aqueduct. This finding is an initial step in bridging the gap between ICP waveform morphology research and clinical practice.
Collapse
Affiliation(s)
- Robert Hamilton
- Neural Systems and Dynamics Laboratory, Department of Neurosurgery, the David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
41
|
Schmid Daners M, Knobloch V, Soellinger M, Boesiger P, Seifert B, Guzzella L, Kurtcuoglu V. Age-specific characteristics and coupling of cerebral arterial inflow and cerebrospinal fluid dynamics. PLoS One 2012; 7:e37502. [PMID: 22666360 PMCID: PMC3364266 DOI: 10.1371/journal.pone.0037502] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 04/20/2012] [Indexed: 11/25/2022] Open
Abstract
The objective of this work is to quantify age-related differences in the characteristics and coupling of cerebral arterial inflow and cerebrospinal fluid (CSF) dynamics. To this end, 3T phase-contrast magnetic resonance imaging blood and CSF flow data of eleven young ( years) and eleven elderly subjects ( years) with a comparable sex-ratio were acquired. Flow waveforms and their frequency composition, transfer functions from blood to CSF flows and cross-correlations were analyzed. The magnitudes of the frequency components of CSF flow in the aqueduct differ significantly between the two age groups, as do the frequency components of the cervical spinal CSF and the arterial flows. The males' aqueductal CSF stroke volumes and average flow rates are significantly higher than those of the females. Transfer functions and cross-correlations between arterial blood and CSF flow reveal significant age-dependence of phase-shift between these, as do the waveforms of arterial blood, as well as cervical-spinal and aqueductal CSF flows. These findings accentuate the need for age- and sex-matched control groups for the evaluation of cerebral pathologies such as hydrocephalus.
Collapse
Affiliation(s)
- Marianne Schmid Daners
- Institute for Dynamic Systems and Control, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Verena Knobloch
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Michaela Soellinger
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Neuroimaging Research Unit, Department of Neurology, Medical University Graz, Graz, Austria
| | - Peter Boesiger
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Burkhardt Seifert
- Institute of Social and Preventive Medicine, University of Zurich, Zurich, Switzerland
| | - Lino Guzzella
- Institute for Dynamic Systems and Control, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Vartan Kurtcuoglu
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
42
|
Neocortical capillary flow pulsatility is not elevated in experimental communicating hydrocephalus. J Cereb Blood Flow Metab 2012; 32:318-29. [PMID: 21934694 PMCID: PMC3272598 DOI: 10.1038/jcbfm.2011.130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While communicating hydrocephalus (CH) is often characterized by increased pulsatile flow of cerebrospinal fluid (CSF) in the cerebral aqueduct, a clear-cut explanation for this phenomenon is lacking. Increased pulsatility of the entire cerebral vasculature including the cortical capillaries has been suggested as a causative mechanism. To test this theory, we used two-photon microscopy to measure flow pulsatility in neocortical capillaries 40 to 500 μm below the pial surface in adult rats with CH at 5 to 7 days (acute, n=8) and 3 to 5 weeks (chronic, n=5) after induction compared with intact controls (n=9). Averaging over all cortical depths, no increase in capillary pulsatility occurred in acute (pulsatility index (PI): 0.15±0.06) or chronic (0.14±0.05) CH animals compared with controls (0.18±0.07; P=0.07). More specifically, PI increased significantly with cortical depth in controls (r=0.35, P<0.001), but no such increase occurred in acute (r=0.06, P=0.3) or chronic (r=0.05, P=0.5) CH. Pulsatile CSF aqueductal flow, in contrast, was elevated 10- to 500-fold compared with controls. We conclude that even in the presence of markedly elevated pulsatile CSF flow in the aqueduct, there is no concurrent increase in microvascular pulsatile flow.
Collapse
|
43
|
Battal B, Kocaoglu M, Bulakbasi N, Husmen G, Tuba Sanal H, Tayfun C. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol 2011; 84:758-65. [PMID: 21586507 DOI: 10.1259/bjr/66206791] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cerebrospinal fluid (CSF) spaces include ventricles and cerebral and spinal subarachnoid spaces. CSF motion is a combined effect of CSF production rate and superimposed cardiac pulsations. Knowledge of CSF dynamics has benefited considerably from the development of phase-contrast (PC) MRI. There are several disorders such as communicating and non-communicating hydrocephalus, Chiari malformation, syringomyelic cyst and arachnoid cyst that can change the CSF dynamics. The aims of this pictorial review are to outline the PC MRI technique, CSF physiology and cerebrospinal space anatomy, to describe a group of congenital and acquired disorders that can alter the CSF dynamics, and to assess the use of PC MRI in the assessment of various central nervous system abnormalities.
Collapse
Affiliation(s)
- B Battal
- Department of Radiology, Gulhane Military Medical School, Etlik, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
44
|
El Sankari S, Gondry-Jouet C, Fichten A, Godefroy O, Serot JM, Deramond H, Meyer ME, Balédent O. Cerebrospinal fluid and blood flow in mild cognitive impairment and Alzheimer's disease: a differential diagnosis from idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2011; 8:12. [PMID: 21349149 PMCID: PMC3045982 DOI: 10.1186/2045-8118-8-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/17/2011] [Indexed: 11/29/2022] Open
Abstract
Background Phase-contrast magnetic resonance imaging (PC-MRI) enables quantification of cerebrospinal fluid (CSF) flow and total cerebral blood (tCBF) flow and may be of value for the etiological diagnosis of neurodegenerative diseases. This investigation aimed to study CSF flow and intracerebral vascular flow in patients with Alzheimer's disease (AD) and patients with amnesic mild cognitive impairment (a-MCI) and to compare the results with patients with idiopathic normal pressure hydrocephalus (NPH) and with healthy elderly volunteers (HEV). Methods Ten a-MCI and 9 mild AD patients were identified in a comprehensive neurological and neuropsychological assessment. They underwent brain MRI; PC-MRI pulse sequence was performed with the following parameters: two views per segment; flip angle: 25° for vascular flow and 20° for CSF flow; field-of-view (FOV): 14 × 14 mm²; matrix: 256 × 128; slice thickness: 5 mm; with one excitation for exams on the 3 T machine, and 2 excitations for the 1.5 T machine exams. Velocity (encoding) sensitization was set to 80 cm/s for the vessels at the cervical level, 10 or 20 cm/s for the aqueduct and 5 cm/s for the cervical subarachnoid space (SAS). Dynamic flow images were analyzed with in-house processing software. The patients' results were compared with those obtained for HEVs (n = 12), and for NPH patients (n = 13), using multivariate analysis. Results Arterial tCBF and the calculated pulsatility index were significantly greater in a-MCI patients than in HEVs. In contrast, vascular parameters were lower in NPH patients. Cervical CSF flow analysis yielded similar values for all four populations. Aqueductal CSF stroke volumes (in μl per cardiac cycle) were similar in HEVs (34 ± 17) and AD patients (39 ± 18). In contrast, the aqueductal CSF was hyperdynamic in a-MCI patients (73 ± 33) and even more so in NPH patients (167 ± 89). Conclusion Our preliminary data show that a-MCI patients present with high systolic arterial peak flows, which are associated with higher mean total cerebral arterial flows. Aqueductal CSF oscillations are within normal range in AD and higher than normal in NPH. This study provides an original dynamic vision of cerebral neurodegenerative diseases, consistent with the vascular theory for AD, and supporting primary flow disturbances different from those observed in NPH.
Collapse
Affiliation(s)
- Soraya El Sankari
- Department of Image Processing, Jules Verne University of Picardy and Amiens University Hospital, CHU d'Amiens, F-80054 Amiens cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Wagshul ME, Eide PK, Madsen JR. The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 2011; 8:5. [PMID: 21349153 PMCID: PMC3042979 DOI: 10.1186/2045-8118-8-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 01/18/2011] [Indexed: 02/01/2023] Open
Abstract
The maintenance of adequate blood flow to the brain is critical for normal brain function; cerebral blood flow, its regulation and the effect of alteration in this flow with disease have been studied extensively and are very well understood. This flow is not steady, however; the systolic increase in blood pressure over the cardiac cycle causes regular variations in blood flow into and throughout the brain that are synchronous with the heart beat. Because the brain is contained within the fixed skull, these pulsations in flow and pressure are in turn transferred into brain tissue and all of the fluids contained therein including cerebrospinal fluid. While intracranial pulsatility has not been a primary focus of the clinical community, considerable data have accrued over the last sixty years and new applications are emerging to this day. Investigators have found it a useful marker in certain diseases, particularly in hydrocephalus and traumatic brain injury where large changes in intracranial pressure and in the biomechanical properties of the brain can lead to significant changes in pressure and flow pulsatility. In this work, we review the history of intracranial pulsatility beginning with its discovery and early characterization, consider the specific technologies such as transcranial Doppler and phase contrast MRI used to assess various aspects of brain pulsations, and examine the experimental and clinical studies which have used pulsatility to better understand brain function in health and with disease.
Collapse
Affiliation(s)
- Mark E Wagshul
- Albert Einstein College of Medicine, Department of Radiology, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
46
|
[Dynamic magnetic resonance imaging of the cerebrospinal fluid flow within the cerebral aqueduct by different FISP 2D sequences]. VOJNOSANIT PREGL 2010; 67:357-63. [PMID: 20499727 DOI: 10.2298/vsp1005357l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIM A vast majority of current radiogical techniques, such as computerized tomography (CT) and magnetic resonance imaging (MRI) have great potencial of vizualization and delineation of cerebrospinal fuid spaces morphology within cerebral aqueduct. The aim of this study was to determine the possibilities of two differently acquired FISP (Fast Imaging with Steady State Precession) 2D MR sequences in the estimation of the pulsatile cerebrospinal fluid (CSF) flow intensity through the normal cerebral aqueduct. METHODS Sixty eight volunteers underwent brain MRI on 1.5T MR imager with additionally performed ECG retrospectively gated FISP 2D sequences (first one, as the part of the standard software package, with following technical parameters: TR 40, TE 12, FA 17, Matrix: 192 x 256, Acq 1, and the second one, experimentally developed by our investigation team: TR 30, TE 12, FA 70, Matrix: 192 x 256, Acq 1) respectively at two fixed slice positions--midsagittal and perpendicular to cerebral aqueduct, displayed and evaluated by multiplegated images in a closed-loop cinematographic (CINE) format. RESULTS Normal brain morphology with preserved patency of the cerebral aqueduct in all of 68 healthy volunteers was demonstrated on MRI examination. Cerebrospinal fluid flow within the cerebral aqueduct was distinguishable on both CINE MRI studies in midsagittal plane, but the estimation of intraaqueductal CSF flow in perpendicular plane was possible on CINE MRI studies acquired with experimentally improved FISP 2D (TR 30, FA 70) sequence only. CONCLUSION Due to the changes of technical parameters CINE MRI study acquired with FISP 2D (TR 30, FA 70) in perpendicular plane demonstrated significantly higher capability in the estimation of the CSF pulsation intensity within the cerebral aqueduct.
Collapse
|
47
|
Stoquart-El Sankari S, Lehmann P, Gondry-Jouet C, Fichten A, Godefroy O, Meyer ME, Baledent O. Phase-contrast MR imaging support for the diagnosis of aqueductal stenosis. AJNR Am J Neuroradiol 2008; 30:209-14. [PMID: 18832663 DOI: 10.3174/ajnr.a1308] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Patients with aqueductal stenosis (AS) present with various clinical and radiologic features. Conventional MR imaging provides useful information in AS but depends on a subjective evaluation by the neuroradiologist. The purpose of this study was to evaluate the support of the phase-contrast MR imaging (PC-MR imaging) technique (sensitive to CSF flows) for the diagnosis of AS. MATERIALS AND METHODS We retrospectively considered 17 patients who underwent PC-MR imaging to explore hydrocephalus, with the absence of CSF flow at the aqueductal level. We analyzed their clinical and morphologic MR imaging data. RESULTS None of the usually reported direct or indirect signs of aqueductal obstruction were seen in 7 patients in whom the clinical suggestion of AS was confirmed by PC-MR imaging results. Seven patients in this population had a third ventriculostomy, and 5 of them were among those in whom conventional MR imaging failed to reveal signs of aqueductal obstruction. All of these 7 patients had a positive postsurgical outcomes. The analysis of CSF and vascular dynamic data in this population was compared with an aged-matched population, and these data were found similar except for the fourth ventricular CSF flush flow latency. CONCLUSIONS PC-MR imaging supports the diagnosis of CSF flow blockage at the aqueductal level in a reliable, reproducible, and rapid way, which aids in the diagnosis of AS in patients with clinical and/or radiologic suggestion of obstructive hydrocephalus. We, therefore, suggest using this technique in the current evaluation of hydrocephalus.
Collapse
|
48
|
Magnetic resonance measurement of blood and CSF flow rates with phase contrast--normal values, repeatability and CO2 reactivity. ACTA NEUROCHIRURGICA. SUPPLEMENT 2008; 102:263-70. [PMID: 19388327 DOI: 10.1007/978-3-211-85578-2_50] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Similarity in flow pulsatility has been proposed as a basis for semi-automated segmentation of vessel lumens for MR-based flow measurement, but re-examinations of salient aspects of the methodology have not been widely reported. METHODS 12 normal control subjects underwent repeated (3*Baseline+1*5%CO2) phase contrast measurements of CSF flow through the cerebral aqueduct and foramen magnum, and CBF through the 6 large cranial vessels at the level of the 1st vertebra. Average flows were calculated for regions temporally correlated (0.3 < or = Rthreshold < or = 0.95) to user defined seed points and their 3 x 3 neighbours. RESULTS Arterial CBF averaged 710ml/min, with low variability (+/- 4%/17%, intra-individual/group CV respectively) and was the only flow to respond significantly to 5%/mmHg CO2. Venous outflow was much smaller (298ml/min +/- 10%/ 72%), possibly due to the weak venous pulse and variable venous anatomy. Average CSF flows exceeded the classical 0.4ml/min CSF production rate and were highly variable--aqueduct: 0.6ml/min (+/- 50%/93%), foramen magnum: -2.7ml/min (+/- 158%/226%). CONCLUSIONS This preliminary analysis identified procedural steps that can improve the accuracy and repeatability of MR flow measurements, but the process remains user-dependent for the weakly pulsatile foramen magnum CSF and venous flows where variability remains a significant confound even to relatively large perturbations such as CO2 administration.
Collapse
|
49
|
The role of cerebrospinal fluid flow study using phase contrast MR imaging in diagnosing idiopathic normal pressure hydrocephalus. ACTA NEUROCHIRURGICA. SUPPLEMENT 2008; 102:119-23. [PMID: 19388301 DOI: 10.1007/978-3-211-85578-2_24] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The purpose of this prospective study was to identify the ability of cerebrospinal fluid flow study using phase contrast MR imaging to replace the invasive methods currently used to establish the diagnosis of idiopathic normal pressure hydrocephalus (iNPH). MATERIALS AND METHODS Between January 2003 and April 2005, 61 patients with clinical symptoms fitting the Hakim triad and a dilated ventricular system on CT underwent a intrathecal infusion test and cerebrospinal tap test. All patients also had a phase contrast MRI to determine the CSF flow rate in the aqueduct. Shunted patients were followed postoperatively up to 12 months. The pre- and postoperative symptomatic condition was evaluated using the clinical Kiefer score. The outcome was calculated by the NPH Recovery Rate. FINDINGS Patients were classified into 41 with iNPH and 20 patients with brain atrophy. Thirty-nine iNPH patients were shunted and two patients refused surgery. The mean Kiefer score of the shunted patients was statistically significantly lower after surgery. In patients screened for clinical symptoms and ventriculomegaly on CT imaging, an aqueduct-CSF flow rate greater than 24.5 ml/min was found to be statistically specific for a diagnosis of iNPH. CONCLUSIONS The measurement of the CSF flow rate in the aqueduct by using the phase contrast MRI technique is a highly specific pre-selective method for diagnosing iNPH.
Collapse
|
50
|
Al-Zain FT, Rademacher G, Lemcke J, Mutze J, Meier U. [Idiopathic normal-pressure hydrocephalus. Flow measurement of cerebrospinal fluid using phase contrast MRI and its diagnostics importance]. DER NERVENARZT 2007; 78:181-7. [PMID: 17225144 DOI: 10.1007/s00115-006-2231-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIM The measurement of CSF flow in the aqueduct has been a focus of interest since the development of MR imaging (MRI) techniques for this purpose in diagnosing idiopathic normal-pressure hydrocephalus (iNPH).The purpose of this prospective study was to determine the ability of this diagnostic tool to replace invasive methods in establishing the diagnosis of iNPH. PATIENTS AND METHODS Between January 2003 and April 2005, 61 patients with the Hakim triad of clinical symptoms and dilated ventricular systems underwent the intrathecal infusion test, cerebrospinal tap test, and phase-contrast MRI to measure CSF flow rate in the aqueduct. Shunted patients were controlled 12 months postoperatively. Pre- and postoperative clinical symptoms were evaluated with the Kiefer score. Outcome was calculated according to the NPH recovery rate. RESULTS According to these criteria the patients were classified into groups of 41 with iNPH and 20 with brain atrophy. Of the iNPH patients, 39 were shunted and two did not agree to surgery. The mean Kiefer score of the shunted patients was statistically significantly lower after surgery. The aqueductal CSF flow rate of these patients was statistically analyzed and showed that a flow rate of more than 24.5 ml/min is 95% specific to iNPH. CONCLUSIONS Measurement of the CSF flow rate in the aqueduct using phase-contrast MRI is a highly specific preselective method for diagnosing iNPH.
Collapse
Affiliation(s)
- F T Al-Zain
- Klinik für Neurochirurgie, Unfallkrankenhaus Berlin
| | | | | | | | | |
Collapse
|