1
|
Stingl JC, Radermacher J, Wozniak J, Viviani R. Pharmacogenetic Dose Modeling Based on CYP2C19 Allelic Phenotypes. Pharmaceutics 2022; 14:pharmaceutics14122833. [PMID: 36559326 PMCID: PMC9781550 DOI: 10.3390/pharmaceutics14122833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Pharmacogenetic variability in drug metabolism leads to patient vulnerability to side effects and to therapeutic failure. Our purpose was to introduce a systematic statistical methodology to estimate quantitative dose adjustments based on pharmacokinetic differences in pharmacogenetic subgroups, addressing the concerns of sparse data, incomplete information on phenotypic groups, and heterogeneity of study design. Data on psychotropic drugs metabolized by the cytochrome P450 enzyme CYP2C19 were used as a case study. CYP2C19 activity scores were estimated, while statistically assessing the influence of methodological differences between studies, and used to estimate dose adjustments in genotypic groups. Modeling effects of activity scores in each substance as a population led to prudential predictions of adjustments when few data were available ('shrinkage'). The best results were obtained with the regularized horseshoe, an innovative Bayesian approach to estimate coefficients viewed as a sample from two populations. This approach was compared to modeling the population of substance as normally distributed, to a more traditional "fixed effects" approach, and to dose adjustments based on weighted means, as in current practice. Modeling strategies were able to assess the influence of study parameters and deliver adjustment levels when necessary, extrapolated to all phenotype groups, as well as their level of uncertainty. In addition, the horseshoe reacted sensitively to small study sizes, and provided conservative estimates of required adjustments.
Collapse
Affiliation(s)
- Julia Carolin Stingl
- Institute of Clinical Pharmacology, University Hospital of RWTH, 52074 Aachen, Germany
- Correspondence: ; Tel.: +49-241-8089131
| | - Jason Radermacher
- Institute of Clinical Pharmacology, University Hospital of RWTH, 52074 Aachen, Germany
| | - Justyna Wozniak
- Institute of Clinical Pharmacology, University Hospital of RWTH, 52074 Aachen, Germany
| | - Roberto Viviani
- Institute of Psychology, University of Innsbruck, 6020 Innsbruck, Austria
- Psychiatry and Psychotherapy Clinic, University of Ulm, 89075 Ulm, Germany
| |
Collapse
|
2
|
Eap CB, Gründer G, Baumann P, Ansermot N, Conca A, Corruble E, Crettol S, Dahl ML, de Leon J, Greiner C, Howes O, Kim E, Lanzenberger R, Meyer JH, Moessner R, Mulder H, Müller DJ, Reis M, Riederer P, Ruhe HG, Spigset O, Spina E, Stegman B, Steimer W, Stingl J, Suzen S, Uchida H, Unterecker S, Vandenberghe F, Hiemke C. Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): focus on antidepressants. World J Biol Psychiatry 2021; 22:561-628. [PMID: 33977870 DOI: 10.1080/15622975.2021.1878427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objectives: More than 40 drugs are available to treat affective disorders. Individual selection of the optimal drug and dose is required to attain the highest possible efficacy and acceptable tolerability for every patient.Methods: This review, which includes more than 500 articles selected by 30 experts, combines relevant knowledge on studies investigating the pharmacokinetics, pharmacodynamics and pharmacogenetics of 33 antidepressant drugs and of 4 drugs approved for augmentation in cases of insufficient response to antidepressant monotherapy. Such studies typically measure drug concentrations in blood (i.e. therapeutic drug monitoring) and genotype relevant genetic polymorphisms of enzymes, transporters or receptors involved in drug metabolism or mechanism of action. Imaging studies, primarily positron emission tomography that relates drug concentrations in blood and radioligand binding, are considered to quantify target structure occupancy by the antidepressant drugs in vivo. Results: Evidence is given that in vivo imaging, therapeutic drug monitoring and genotyping and/or phenotyping of drug metabolising enzymes should be an integral part in the development of any new antidepressant drug.Conclusions: To guide antidepressant drug therapy in everyday practice, there are multiple indications such as uncertain adherence, polypharmacy, nonresponse and/or adverse reactions under therapeutically recommended doses, where therapeutic drug monitoring and cytochrome P450 genotyping and/or phenotyping should be applied as valid tools of precision medicine.
Collapse
Affiliation(s)
- C B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Lausanne, Switzerland, Geneva, Switzerland
| | - G Gründer
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - P Baumann
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - N Ansermot
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A Conca
- Department of Psychiatry, Health Service District Bolzano, Bolzano, Italy.,Department of Child and Adolescent Psychiatry, South Tyrolean Regional Health Service, Bolzano, Italy
| | - E Corruble
- INSERM CESP, Team ≪MOODS≫, Service Hospitalo-Universitaire de Psychiatrie, Universite Paris Saclay, Le Kremlin Bicetre, France.,Service Hospitalo-Universitaire de Psychiatrie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - S Crettol
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M L Dahl
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J de Leon
- Eastern State Hospital, University of Kentucky Mental Health Research Center, Lexington, KY, USA
| | - C Greiner
- Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | - O Howes
- King's College London and MRC London Institute of Medical Sciences (LMS)-Imperial College, London, UK
| | - E Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - J H Meyer
- Campbell Family Mental Health Research Institute, CAMH and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - R Moessner
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - H Mulder
- Department of Clinical Pharmacy, Wilhelmina Hospital Assen, Assen, The Netherlands.,GGZ Drenthe Mental Health Services Drenthe, Assen, The Netherlands.,Department of Pharmacotherapy, Epidemiology and Economics, Department of Pharmacy and Pharmaceutical Sciences, University of Groningen, Groningen, The Netherlands.,Department of Psychiatry, Interdisciplinary Centre for Psychopathology and Emotion Regulation, University of Groningen, Groningen, The Netherlands
| | - D J Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Reis
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| | - P Riederer
- Center of Mental Health, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany.,Department of Psychiatry, University of Southern Denmark Odense, Odense, Denmark
| | - H G Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - O Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - E Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - B Stegman
- Institut für Pharmazie der Universität Regensburg, Regensburg, Germany
| | - W Steimer
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Munich, Germany
| | - J Stingl
- Institute for Clinical Pharmacology, University Hospital of RWTH Aachen, Germany
| | - S Suzen
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - H Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - S Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - F Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
3
|
Shalimova A, Babasieva V, Chubarev VN, Tarasov VV, Schiöth HB, Mwinyi J. Therapy response prediction in major depressive disorder: current and novel genomic markers influencing pharmacokinetics and pharmacodynamics. Pharmacogenomics 2021; 22:485-503. [PMID: 34018822 DOI: 10.2217/pgs-2020-0157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder is connected with high rates of functional disability and mortality. About a third of the patients are at risk of therapy failure. Several pharmacogenetic markers especially located in CYP450 genes such as CYP2D6 or CYP2C19 are of relevance for therapy outcome prediction in major depressive disorder but a further optimization of predictive tools is warranted. The article summarizes the current knowledge on pharmacogenetic variants, therapy effects and side effects of important antidepressive therapeutics, and sheds light on new methodological approaches for therapy response estimation based on genetic markers with relevance for pharmacokinetics, pharmacodynamics and disease pathology identified in genome-wide association study analyses, highlighting polygenic risk score analysis as a tool for further optimization of individualized therapy outcome prediction.
Collapse
Affiliation(s)
- Alena Shalimova
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, 751 24, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Viktoria Babasieva
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, 751 24, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Vladimir N Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Institute of Translational Medicine & Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, 751 24, Sweden.,Institute of Translational Medicine & Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, 751 24, Sweden
| |
Collapse
|
4
|
Rollason V, Lloret-Linares C, Lorenzini KI, Daali Y, Gex-Fabry M, Piguet V, Besson M, Samer C, Desmeules J. Evaluation of Phenotypic and Genotypic Variations of Drug Metabolising Enzymes and Transporters in Chronic Pain Patients Facing Adverse Drug Reactions or Non-Response to Analgesics: A Retrospective Study. J Pers Med 2020; 10:E198. [PMID: 33121061 PMCID: PMC7711785 DOI: 10.3390/jpm10040198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
This retrospective study evaluates the link between an adverse drug reaction (ADR) or a non-response to treatment and cytochromes P450 (CYP), P-glycoprotein (P-gp) or catechol-O-methyltransferase (COMT) activity in patients taking analgesic drugs for chronic pain. Patients referred to a pain center for an ADR or a non-response to an analgesic drug between January 2005 and November 2014 were included. The genotype and/or phenotype was obtained for assessment of the CYPs, P-gp or COMT activities. The relation between the event and the result of the genotype and/or phenotype was evaluated using a semi-quantitative scale. Our analysis included 243 individual genotypic and/or phenotypic explorations. Genotypes/phenotypes were mainly assessed because of an ADR (n = 145, 59.7%), and the majority of clinical situations were observed with prodrug opioids (n = 148, 60.9%). The probability of a link between an ADR or a non-response and the genotypic/phenotypic status of the patient was evaluated as intermediate to high in 40% and 28.2% of all cases, respectively. The drugs in which the probability of an association was the strongest were the prodrug opioids, with an intermediate to high link in 45.6% of the cases for occurrence of ADRs and 36.0% of the cases for non-response. This study shows that the genotypic and phenotypic approach is useful to understand ADRs or therapeutic resistance to a usual therapeutic dosage, and can be part of the evaluation of chronic pain patients.
Collapse
Affiliation(s)
- Victoria Rollason
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Emergency Medicine and Intensive Care, Geneva University Hospitals, 1205 Geneva, Switzerland; (K.I.L.); (Y.D.); (V.P.); (M.B.); (C.S.); (J.D.)
- Faculty of Medicine, Geneva University, 1206 Geneva, Switzerland
| | - Célia Lloret-Linares
- Ramsay Générale de Santé, Hôpital Privé Pays de Savoie, Maladies Nutritionnelles et Métaboliques, 74000 Annemasse, France;
| | - Kuntheavy Ing Lorenzini
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Emergency Medicine and Intensive Care, Geneva University Hospitals, 1205 Geneva, Switzerland; (K.I.L.); (Y.D.); (V.P.); (M.B.); (C.S.); (J.D.)
- Faculty of Medicine, Geneva University, 1206 Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Emergency Medicine and Intensive Care, Geneva University Hospitals, 1205 Geneva, Switzerland; (K.I.L.); (Y.D.); (V.P.); (M.B.); (C.S.); (J.D.)
- Faculty of Medicine, Geneva University, 1206 Geneva, Switzerland
| | - Marianne Gex-Fabry
- Division of Psychiatric Specialties, Department of Psychiatry and Mental Health, Geneva University Hospitals, 1226 Thônex, Switzerland;
| | - Valérie Piguet
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Emergency Medicine and Intensive Care, Geneva University Hospitals, 1205 Geneva, Switzerland; (K.I.L.); (Y.D.); (V.P.); (M.B.); (C.S.); (J.D.)
| | - Marie Besson
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Emergency Medicine and Intensive Care, Geneva University Hospitals, 1205 Geneva, Switzerland; (K.I.L.); (Y.D.); (V.P.); (M.B.); (C.S.); (J.D.)
- Faculty of Medicine, Geneva University, 1206 Geneva, Switzerland
| | - Caroline Samer
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Emergency Medicine and Intensive Care, Geneva University Hospitals, 1205 Geneva, Switzerland; (K.I.L.); (Y.D.); (V.P.); (M.B.); (C.S.); (J.D.)
- Faculty of Medicine, Geneva University, 1206 Geneva, Switzerland
| | - Jules Desmeules
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Emergency Medicine and Intensive Care, Geneva University Hospitals, 1205 Geneva, Switzerland; (K.I.L.); (Y.D.); (V.P.); (M.B.); (C.S.); (J.D.)
- Faculty of Medicine, Geneva University, 1206 Geneva, Switzerland
| |
Collapse
|
5
|
Baumann P, Eap CB, Gastpar M. The effect of perazine on the CYP2D6 and CYP2C19 phenotypes as measured by the dextromethorphan and mephenytoin tests in psychiatric patients. Basic Clin Pharmacol Toxicol 2019; 126:444-447. [PMID: 31814297 DOI: 10.1111/bcpt.13373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 11/29/2022]
Abstract
There is evidence that the antipsychotic drug perazine is an inhibitor of CYP2D6. This study aimed at evaluating its effect on CYP2D6 and CYP2C19 activities in submitting psychiatric patients to phenotyping with dextromethorphan and mephenytoin, respectively, substrates of these enzymes, before and during a treatment with perazine. A total of 31 patients were phenotyped with dextromethorphan (CYP2D6) and mephenytoin (CYP2C19) before and after a 2-week treatment with 450 ± 51 mg/day (mean ± sd) perazine. At baseline, five patients appeared to be poor metabolizers (PM) of dextromethorphan and two patients of mephenytoin. The metabolic ratio (MR) of dextromethorphan/dextrorphan as determined in collected urine increased significantly (Wilcoxon; P < .0001) from baseline (0.39 ± 1.38 [mean ± sd]) till day 14 (1.46 ± 2.22). In 19 out of 26 extensive metabolizers (EM) of dextromethorphan, the phenotype changed from EM to PM. This suggests an almost complete inhibition of CYP2D6 by perazine and/or its metabolites. On the other hand, perazine (or some of its metabolites) did seemingly not inhibit CYP2C19. In conclusion, this study suggests that in patients treated with perazine and co-medicated with CYP2D6 substrates, there could be an increased risk of adverse effects as a consequence of a pharmacokinetic interaction.
Collapse
Affiliation(s)
- Pierre Baumann
- Department of Psychiatry (DP-CHUV), University of Lausanne, Prilly-Lausanne, Switzerland
| | - Chin B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Prilly-Lausanne, Switzerland
| | | |
Collapse
|
6
|
Abstract
OBJECTIVE The aim of this study was to ensure patients' safety and to enhance treatment efficacy, knowledge about pharmacokinetic interactions even in complex clinical situations of polypharmacy is invaluable. This study is to uncover the potential of pharmacokinetic interactions between venlafaxine and trimipramine in a naturalistic sample. METHODS Out of a therapeutic drug monitoring database with plasma concentrations of venlafaxine (VEN) and O-desmethylvenlafaxine (ODV), we considered two groups of patients receiving venlafaxine without known cytochrome P450 confounding medications, taking solely venlafaxine: V0 (n = 905), and a group of patients co-medicated with trimipramine, VTRIM (n = 33). For VEN, ODV and active moiety (sum of VEN + ODV) plasma concentrations and dose-adjusted concentrations as well as ODV/VEN ratios were compared between groups using the Mann-Whitney U test with a significance level of 0.05. RESULTS Patients co-medicated with trimipramine had higher plasma concentrations of VEN (183.0 vs. 72.0, +154%, P = 0.002) and AM (324.0 vs. 267.5, +21%, P = 0.005) and higher dose adjusted plasma concentrations than patients in the control group (P = 0.001 and P = 0.003). No differences were found for ODV and C/D ODV (P < 0.05 for both comparisons). The metabolite to parent ratio, ODV/VEN, was significantly lower in the VTRIM group (1.15 vs. 2.37, P = 0.012). CONCLUSION Findings suggest inhibitory effects of trimipramine on venlafaxine pharmacokinetics most likely via an inhibition of CYP 2D6 or by saturated enzyme capacity. The lack of in vitro data hampers the understanding of the exact mechanisms. Clinicians should be aware of drug-drug interactions when combining these agents. Therapeutic drug monitoring helps to ensure treatment efficacy and patients' safety.
Collapse
|
7
|
Krämer M, Heese P, Banger M, Madea B, Hess C. Range of therapeutic prothipendyl and prothipendyl sulfoxide concentrations in clinical blood samples. Drug Test Anal 2017; 10:1009-1016. [PMID: 29027369 DOI: 10.1002/dta.2319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 11/09/2022]
Abstract
Due to a lack of reference blood concentrations in the literature, the forensic evaluation of prothipendyl findings in blood samples is difficult. Interpretations with regard to the assessment of blood concentrations as well as an estimation of the ingested prothipendyl amounts were often vague. To describe a concentration range in clinical samples, prothipendyl and prothipendyl sulfoxide concentrations were determined in serum samples of 50 psychiatric patients receiving 40 mg, 80 mg, or 160 mg doses of prothipendyl. The analyses of prothipendyl and prothipendyl sulfoxide were carried out using validated methods of high performance liquid chromatography coupled to triple quadrupole mass spectrometry (LC-QQQ-MS), respectively. 40 mg doses caused average prothipendyl serum concentrations of 18.0 ng/mL (1 hour after intake) and 7.9 ng/mL (10.5 hours after intake), while 80 mg doses caused averages of 42.6 ng/mL and 15.2 ng/mL at the mentioned times of sampling. Irrespective of the given dose, prothipendyl concentrations below 30 ng/mL were observed in 80% of the patient samples taken 1 hour after ingestion as well as in 90% of the samples collected 10.5 hours after administration. Serum concentrations of the Phase I metabolite prothipendyl sulfoxide averaged 4.3 ng/mL (1 hour after intake) and 3.6 ng/mL (10.5 hours after intake). Possible drug-drug interactions regarding absorption and metabolism of prothipendyl are discussed. Results of the herein presented study are useful for the interpretation of analytical prothipendyl findings in forensic toxicology. The utility of the described concentration range is demonstrated by discussing two death cases involving prothipendyl findings.
Collapse
Affiliation(s)
- Michael Krämer
- Institute of Forensic Medicine, Department of Forensic Toxicology, University Bonn, Germany
| | - Peter Heese
- Department of Addiction Disorders and Psychotherapy, LVR Hospital Bonn, Germany
| | - Markus Banger
- Department of Addiction Disorders and Psychotherapy, LVR Hospital Bonn, Germany
| | - Burkhard Madea
- Institute of Forensic Medicine, Department of Forensic Toxicology, University Bonn, Germany
| | - Cornelius Hess
- Institute of Forensic Medicine, Department of Forensic Toxicology, University Bonn, Germany
| |
Collapse
|
8
|
Ford KA, Ryslik G, Sodhi J, Halladay J, Diaz D, Dambach D, Masuda M. Computational predictions of the site of metabolism of cytochrome P450 2D6 substrates: comparative analysis, molecular docking, bioactivation and toxicological implications. Drug Metab Rev 2015; 47:291-319. [DOI: 10.3109/03602532.2015.1047026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Abstract
Multidrug resistance P-glycoprotein (P-gp; also known as MDR1 and ABCB1) is expressed in the luminal membrane of the small intestine and blood-brain barrier, and the apical membranes of excretory cells such as hepatocytes and kidney proximal tubule epithelia. P-gp regulates the absorption and elimination of a wide range of compounds, such as digoxin, paclitaxel, HIV protease inhibitors and psychotropic drugs. Its substrate specificity is as broad as that of cytochrome P450 (CYP) 3A4, which encompasses up to 50 % of the currently marketed drugs. There has been considerable interest in variations in the ABCB1 gene as predictors of the pharmacokinetics and/or treatment outcomes of several drug classes, including antidepressants and antipsychotics. Moreover, P-gp-mediated transport activity is saturable, and is subject to modulation by inhibition and induction, which can affect the pharmacokinetics, efficacy or safety of P-gp substrates. In addition, many of the P-gp substrates overlap with CYP3A4 substrates, and several psychotropic drugs that are P-gp substrates are also CYP3A4 substrates. Therefore, psychotropic drugs that are P-gp substrates may cause a drug interaction when P-gp inhibitors and inducers are coadministered, or when psychotropic drugs or other medicines that are P-gp substrates are added to a prescription. Hence, it is clinically important to accumulate data about drug interactions through studies on P-gp, in addition to CYP3A4, to assist in the selection of appropriate psychotropic medications and in avoiding inappropriate combinations of therapeutic agents. There is currently insufficient information available on the psychotropic drug interactions related to P-gp, and therefore we summarize the recent clinical data in this review.
Collapse
Affiliation(s)
- Yumiko Akamine
- Department of Hospital Pharmacy, University of the Ryukyus, Nishihara-cho, Okinawa, Japan
| | | | | | | |
Collapse
|
10
|
Campagna-Slater V, Pottel J, Therrien E, Cantin LD, Moitessier N. Development of a computational tool to rival experts in the prediction of sites of metabolism of xenobiotics by p450s. J Chem Inf Model 2012; 52:2471-83. [PMID: 22916680 DOI: 10.1021/ci3003073] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The metabolism of xenobiotics--and more specifically drugs--in the liver is a critical process controlling their half-life. Although there exist experimental methods, which measure the metabolic stability of xenobiotics and identify their metabolites, developing higher throughput predictive methods is an avenue of research. It is expected that predicting the chemical nature of the metabolites would be an asset for designing safer drugs and/or drugs with modulated half-lives. We have developed IMPACTS (In-silico Metabolism Prediction by Activated Cytochromes and Transition States), a computational tool combining docking to metabolic enzymes, transition state modeling, and rule-based substrate reactivity prediction to predict the site of metabolism (SoM) of xenobiotics. Its application to sets of CYP1A2, CYP2C9, CYP2D6, and CYP3A4 substrates and comparison to experts' predictions demonstrates its accuracy and significance. IMPACTS identified an experimentally observed SoM in the top 2 predicted sites for 77% of the substrates, while the accuracy of biotransformation experts' prediction was 65%. Application of IMPACTS to external sets and comparison of its accuracy to those of eleven other methods further validated the method implemented in IMPACTS.
Collapse
Affiliation(s)
- Valérie Campagna-Slater
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC H3A 0B8, Canada
| | | | | | | | | |
Collapse
|
11
|
Haenisch B, Hiemke C, Bönisch H. Inhibitory potencies of trimipramine and its main metabolites at human monoamine and organic cation transporters. Psychopharmacology (Berl) 2011; 217:289-95. [PMID: 21484238 DOI: 10.1007/s00213-011-2281-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/23/2011] [Indexed: 01/11/2023]
Abstract
RATIONALE The antidepressant trimipramine shows an atypical pharmacological profile and its mechanism of action is still obscure. OBJECTIVES The present study investigated whether trimipramine and three of its metabolites interact with targets of other antidepressants, namely, the human monoamine transporters for noradrenaline (hNAT), serotonin (hSERT), and dopamine (hDAT), and with the human organic cation transporters (hOCT1, hOCT2, and hOCT3) which are expressed in the brain and are known to be involved in the uptake of monoamines. METHODS HEK293 cells heterologously expressing the abovementioned transporters were used to determine the inhibition of [(3)H]MPP(+) uptake by trimipramine and its main metabolites. RESULTS At concentrations up to 30 μM, all transporters, except hOCT3, were inhibited by all examined substances. With IC(50) values between 2 and 10 μM, trimipramine inhibited hSERT, hNAT, hOCT1, and hOCT2, whereas clearly higher concentrations were needed for half-maximal inhibition of hDAT. Desmethyl-trimipramine showed about the same potencies as trimipramine, whereas 2-hydroxy-trimipramine was less potent at hNAT, hSERT, and hOCT1. Trimipramine-N-oxide preferentially inhibited hSERT. CONCLUSIONS Neither trimipramine nor its metabolites are highly potent inhibitors of the examined monoamine transporters. However, since at a steady state the sum of the concentrations of the parent compound and its active metabolites is almost two times higher than the plasma concentration of trimipramine and since it is known that tricyclic antidepressants accumulate in the brain (up to tenfold), at least partial inhibition by trimipramine and its metabolites of hSERT and hNAT (but not of hOCT3) may contribute to the antidepressant action of trimipramine.
Collapse
Affiliation(s)
- Britta Haenisch
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| | | | | |
Collapse
|
12
|
|
13
|
Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41:89-295. [PMID: 19514967 DOI: 10.1080/03602530902843483] [Citation(s) in RCA: 502] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pharmacogenetics is the study of how interindividual variations in the DNA sequence of specific genes affect drug response. This article highlights current pharmacogenetic knowledge on important human drug-metabolizing cytochrome P450s (CYPs) to understand the large interindividual variability in drug clearance and responses in clinical practice. The human CYP superfamily contains 57 functional genes and 58 pseudogenes, with members of the 1, 2, and 3 families playing an important role in the metabolism of therapeutic drugs, other xenobiotics, and some endogenous compounds. Polymorphisms in the CYP family may have had the most impact on the fate of therapeutic drugs. CYP2D6, 2C19, and 2C9 polymorphisms account for the most frequent variations in phase I metabolism of drugs, since almost 80% of drugs in use today are metabolized by these enzymes. Approximately 5-14% of Caucasians, 0-5% Africans, and 0-1% of Asians lack CYP2D6 activity, and these individuals are known as poor metabolizers. CYP2C9 is another clinically significant enzyme that demonstrates multiple genetic variants with a potentially functional impact on the efficacy and adverse effects of drugs that are mainly eliminated by this enzyme. Studies into the CYP2C9 polymorphism have highlighted the importance of the CYP2C9*2 and *3 alleles. Extensive polymorphism also occurs in other CYP genes, such as CYP1A1, 2A6, 2A13, 2C8, 3A4, and 3A5. Since several of these CYPs (e.g., CYP1A1 and 1A2) play a role in the bioactivation of many procarcinogens, polymorphisms of these enzymes may contribute to the variable susceptibility to carcinogenesis. The distribution of the common variant alleles of CYP genes varies among different ethnic populations. Pharmacogenetics has the potential to achieve optimal quality use of medicines, and to improve the efficacy and safety of both prospective and currently available drugs. Further studies are warranted to explore the gene-dose, gene-concentration, and gene-response relationships for these important drug-metabolizing CYPs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Bundoora, Victoria, Australia.
| | | | | |
Collapse
|
14
|
Schlatter C, Egger SS, Tchambaz L, Krähenbühl S. Pharmacokinetic Changes of Psychotropic Drugs in Patients with Liver Disease. Drug Saf 2009; 32:561-78. [DOI: 10.2165/00002018-200932070-00003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Williams JA, Andersson T, Andersson TB, Blanchard R, Behm MO, Cohen N, Edeki T, Franc M, Hillgren KM, Johnson KJ, Katz DA, Milton MN, Murray BP, Polli JW, Ricci D, Shipley LA, Vangala S, Wrighton SA. PhRMA white paper on ADME pharmacogenomics. J Clin Pharmacol 2008; 48:849-89. [PMID: 18524998 DOI: 10.1177/0091270008319329] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pharmacogenomic (PGx) research on the absorption, distribution, metabolism, and excretion (ADME) properties of drugs has begun to have impact for both drug development and utilization. To provide a cross-industry perspective on the utility of ADME PGx, the Pharmaceutical Research and Manufacturers of America (PhRMA) conducted a survey of major pharmaceutical companies on their PGx practices and applications during 2003-2005. This white paper summarizes and interprets the results of the survey, highlights the contributions and applications of PGx by industrial scientists as reflected by original research publications, and discusses changes in drug labels that improve drug utilization by inclusion of PGx information. In addition, the paper includes a brief review on the clinically relevant genetic variants of drug-metabolizing enzymes and transporters most relevant to the pharmaceutical industry.
Collapse
Affiliation(s)
- J Andrew Williams
- Pfizer Global Research and Development, 10646 Science Center Drive (CB10), San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Black JL, O'Kane DJ, Mrazek DA. The impact of CYP allelic variation on antidepressant metabolism: a review. Expert Opin Drug Metab Toxicol 2007; 3:21-31. [PMID: 17269892 DOI: 10.1517/17425255.3.1.21] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Psychiatric diseases that are treated with antidepressants are the leading causes of morbidity and mortality in humankind. Although antidepressants are generally well tolerated and widely available, they are not equally effective in all patients and only 35 - 45% of patients treated for depression with these drugs recover to premorbid levels of functioning. There is a need for an effective, individualized approach to antidepressant selection. One promising lead in the development of personalized medicine is the emerging field of pharmacogenomics, whereby pharmacologic agents are selected on the basis of the genotype of patients, with particular attention to drug targets and phase I- and phase II-metabolizing enzymes. This review article focuses on phase I antidepressant-metabolizing enzymes (e.g., relevant CYP enzymes). The authors first briefly review CYP nomenclature, the relevant members of the CYP superfamily and their alleles, the metabolic categories and CYP antidepressant substrates, inhibitors and inducers. The literature on the impact of CYP polymorphisms on antidepressant metabolism are also reviewed.
Collapse
Affiliation(s)
- John L Black
- Psychogenomics Laboratory, Department of Pyschiatry and Psychology, Mayo Clinic College of Medicine, 200 1st Street SW, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
17
|
Brocks DR. Drug disposition in three dimensions: an update on stereoselectivity in pharmacokinetics. Biopharm Drug Dispos 2007; 27:387-406. [PMID: 16944450 DOI: 10.1002/bdd.517] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many marketed drugs are chiral and are administered as the racemate, a 50:50 combination of two enantiomers. Pharmacodynamic and pharmacokinetic differences between enantiomers are well documented. Because of enantioselectivity in pharmacokinetics, results of in vitro pharmacodynamic studies involving enantiomers may differ from those in vivo where pharmacokinetic processes will proceed. With respect to pharmacokinetics, disparate plasma concentration vs time curves of enantiomers may result from the pharmacokinetic processes proceeding at different rates for the two enantiomers. At their foundation, pharmacokinetic processes may be enantioselective at the levels of drug absorption, distribution, metabolism and excretion. In some circumstances, one enantiomer can be chemically or biochemically inverted to its antipode in a unidirectional or bidirectional manner. Genetic consideration such as polymorphic drug metabolism and gender, and patient factors such as age, disease state and concomitant drug intake can all play a role in determining the relative plasma concentrations of the enantiomers of a racemic drug. The use of a nonstereoselective assay method for a racemic compound can lead to difficulties in interpretation of data from, for example, bioequivalence or dose/concentration vs effect assessments. In this review data from a number of representative studies involving pharmacokinetics of chiral drugs are presented and discussed.
Collapse
Affiliation(s)
- Dion R Brocks
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Thuerauf N, Lunkenheimer J. The impact of the CYP2D6-polymorphism on dose recommendations for current antidepressants. Eur Arch Psychiatry Clin Neurosci 2006; 256:287-93. [PMID: 16783493 DOI: 10.1007/s00406-006-0663-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cytochrome P450 CYP2D6 represents an extensively characterized polymorphic drug-metabolizing enzyme. The CYP2D6-gene is highly polymorphic and more than 70 different alleles are known currently. The activity of the enzyme markedly varies among individuals from poor to intermediate and extensive up to ultrarapid metabolism on the basis of the polymorphism of the CYP2D6 gene. Association studies provide growing evidence for the clinical importance of the CYP2D6 polymorphism investigating whether the CYP2D6 genotype distribution differs from that of the normal population either in patients with marked adverse effects or in nonresponders during treatment with CYP2D6 substrates. However, these scientifically important studies present less information for dose adjustments necessary to individualize pharmacotherapy in a given clinical case. With respect to psychopharmacological drug metabolism several antidepressants were characterized as being CYP2D6 substrates. Thus, this review summarizes dose recommendations of current antidepressants.
Collapse
Affiliation(s)
- Norbert Thuerauf
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Univeristy of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | | |
Collapse
|
19
|
Srinivas NR. Drug disposition of chiral and achiral drug substrates metabolized by cytochrome P450 2D6 isozyme: case studies, analytical perspectives and developmental implications. Biomed Chromatogr 2006; 20:466-91. [PMID: 16779774 DOI: 10.1002/bmc.680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The concepts of drug development have evolved over the last few decades. Although number of novel chemical entitities belonging to varied classes have made it to the market, the process of drug development is challenging, intertwined as it is with complexities and uncertainities. The intention of this article is to provide a comprehensive review of novel chemical entities (NCEs) that are substrates to cytochrome P450 (CYP) 2D6 isozyme. Topics covered in this review aim: (1) to provide a framework of the importance of CYP2D6 isozyme in the biotransformation of NCEs as stand-alones and/or in conjunction with other CYP isozymes; (2) to provide several case studies of drug disposition of important drug substrates, (3) to cover key analytical perspectives and key assay considerations to assess the role and involvement of CYP2D6, and (4) to elaborate some important considerations from the development point of view. Additionally, wherever applicable, special emphasis is provided on chiral drug substrates in the various subsections of the review.
Collapse
Affiliation(s)
- Nuggehally R Srinivas
- Drug Development, Discovery Research, Dr Reddy's Laboratories, Miyapur, Hyderabad, India.
| |
Collapse
|
20
|
Baumann P, Ulrich S, Eckermann G, Gerlach M, Kuss HJ, Laux G, Müller-Oerlinghausen B, Rao ML, Riederer P, Zernig G, Hiemke C. The AGNP-TDM Expert Group Consensus Guidelines: focus on therapeutic monitoring of antidepressants. DIALOGUES IN CLINICAL NEUROSCIENCE 2005. [PMID: 16156382 PMCID: PMC3181735 DOI: 10.31887/dcns.2005.7.3/pbaumann] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Therapeutic drug monitoring (TDM) of psychotropic drugs such as antidepressants has been widely introduced for optimization of pharmacotherapy in psychiatric patients. The interdisciplinary TDM group of the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) has worked out consensus guidelines with the aim of providing psychiatrists and TDM laboratories with a tool to optimize the use of TDM. Five research-based levels of recommendation were defined with regard to routine monitoring of drug plasma concentrations: (i) strongly recommended; (ii) recommended; (iii) useful; (iv) probably useful; and (v) not recommended. In addition, a list of indications that justify the use of TDM is presented, eg, control of compliance, lack of clinical response or adverse effects at recommended doses, drug interactions, pharmacovigilance programs, presence of a genetic particularity concerning drug metabolism, and children, adolescents, and elderly patients. For some drugs, studies on therapeutic ranges are lacking, but target ranges for clinically relevant plasma concentrations are presented for most drugs, based on pharmacokinetic studies reported in the literature. For many antidepressants, a thorough analysis of the literature on studies dealing with the plasma concentration-clinical effectiveness relationship allowed inclusion of therapeutic ranges of plasma concentrations. In addition, recommendations are made with regard to the combination of pharmacogenetic (phenotyping or genotyping) tests with TDM. Finally, practical instructions are given for the laboratory practitioners and the treating physicians how to use TDM: preparation of TDM, drug analysis, reporting and interpretation of results, and adequate use of information for patient treatment TDM is a complex process that needs optimal interdisciplinary coordination of a procedure implicating patients, treating physicians, clinical pharmacologists, and clinical laboratory specialists. These consensus guidelines should be helpful for optimizing TDM of antidepressants.
Collapse
Affiliation(s)
- Pierre Baumann
- Department of Psychiatry, University of Lausanne, Prilly Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I, Brockmöller J. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 2004; 9:442-73. [PMID: 15037866 DOI: 10.1038/sj.mp.4001494] [Citation(s) in RCA: 479] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Genetic factors contribute to the phenotype of drug response. We systematically analyzed all available pharmacogenetic data from Medline databases (1970-2003) on the impact that genetic polymorphisms have on positive and adverse reactions to antidepressants and antipsychotics. Additionally, dose adjustments that would compensate for genetically caused differences in blood concentrations were calculated. To study pharmacokinetic effects, data for 36 antidepressants were screened. We found that for 20 of those, data on polymorphic CYP2D6 or CYP2C19 were found and that in 14 drugs such genetic variation would require at least doubling of the dose in extensive metabolizers in comparison to poor metabolizers. Data for 38 antipsychotics were examined: for 13 of those CYP2D6 and CYP2C19 genotype was of relevance. To study the effects of genetic variability on pharmacodynamic pathways, we reviewed 80 clinical studies on polymorphisms in candidate genes, but those did not for the most part reveal significant associations between neurotransmitter receptor and transporter genotypes and therapy response or adverse drug reactions. In addition associations found in one study could not be replicated in other studies. For this reason, it is not yet possible to translate pharmacogenetic parameters fully into therapeutic recommendations. At present, antidepressant and antipsychotic drug responses can best be explained as the combinatorial outcome of complex systems that interact at multiple levels. In spite of these limitations, combinations of polymorphisms in pharmacokinetic and pharmacodynamic pathways of relevance might contribute to identify genotypes associated with best and worst responders and they may also identify susceptibility to adverse drug reactions.
Collapse
Affiliation(s)
- J Kirchheiner
- Institute of Clinical Pharmacology, Campus Charité Mitte, University Medicine Berlin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Kirchheiner J, Sasse J, Meineke I, Roots I, Brockmöller J. Trimipramine pharmacokinetics after intravenous and oral administration in carriers of CYP2D6 genotypes predicting poor, extensive and ultrahigh activity. ACTA ACUST UNITED AC 2003; 13:721-8. [PMID: 14646691 DOI: 10.1097/00008571-200312000-00003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The tricyclic antidepressant trimipramine is one of the drugs with the most pronounced differences in pharmacokinetics caused by the CYP2D6 genetic polymorphism. However, the effect of CYP2D6 genotype on steady state kinetics and on bioavailability has not been studied so far. In addition, we were interested in trimipramine pharmacokinetics in genetically defined ultra rapid metabolizers. METHODS We studied intravenous and multiple dose oral application of 50 mg trimipramine in five, seven, and three healthy volunteers with CYP2D6 genotypes predicting deficient, highly active and ultrarapid metabolism. The latter group included carriers of one wild-type and one duplication allele. Trimipramine and desmethyltrimipramine concentrations were measured by HPLC over a time interval of 72 h after intravenous and after one oral application. RESULTS Both bioavailability and systemic clearance significantly depended on CYP2D6 genotype with a linear gene dose relationship. Mean bioavailability was 44, 16 and 12% in carriers of zero, two and three active genes of CYP2D6, respectively, and the corresponding data for systemic clearance were 12.0, 24.2, and 30.3 l/h. Consequently, the mean total oral clearances were 27.3, 151, and 253 l/h in poor, extensive and ultrarapid metabolizers. CONCLUSIONS High bioavailability combined with low systemic clearance of trimipramine in poor metabolizers of CYP2D6 substrates results in a very high exposure to trimipramine with the risk of adverse drug reactions. On the other hand, the extremely high systemic and presystemic elimination may result in sub-therapeutic drug concentrations in carriers of CYP2D6 gene duplications with a high risk of poor therapeutic response.
Collapse
Affiliation(s)
- Julia Kirchheiner
- Institute of Clinical Pharmacology, University Medical Center Charité, Humboldt University of Berlin, Berlin.
| | | | | | | | | |
Collapse
|
23
|
Kirchheiner J, Müller G, Meineke I, Wernecke KD, Roots I, Brockmöller J. Effects of polymorphisms in CYP2D6, CYP2C9, and CYP2C19 on trimipramine pharmacokinetics. J Clin Psychopharmacol 2003; 23:459-66. [PMID: 14520122 DOI: 10.1097/01.jcp.0000088909.24613.92] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Little is known about the impact of cytochrome P450 polymorphisms on the metabolism of trimipramine, which is still widely used as antidepressant due to its positive effect on sleep patterns. A single oral dose of 75 mg trimipramine was given to 42 healthy volunteers selected according to their CYP2D6, CYP2C19, and CYP2C9 genotypes. The reference group included 8 subjects with homozygous active wild-type genotypes of all 3 enzymes (EM). This group was compared with 7 intermediate (IM) with 1 and 7 poor metabolizers (PM) with zero active alleles of CYP2D6 and CYP2C19, respectively, and with 4 subjects with the genotype CYP2C9*3/*3. Pharmacokinetics of trimipramine and its demethylated metabolite strongly depended on the CYP2D6 genotype. Median oral clearance of trimipramine was 276 L/h (range 180-444) in the reference group but only 36 L/h (range 24-48) in CYP2D6 PMs (P < 0.001). These differences could only be explained by an effect of CYP genotypes on both parameters, systemic clearance and bioavailability, the latter being at least 3-fold higher in CYP2D6 PMs than in the reference group. The desmethyltrimipramine area under the concentration-time curve was 40-fold greater in CYP2D6 PMs than in the reference group (1.7 vs. 0.04 mg/L x h in EMs), but below the quantification limit in most carriers of deficiencies of CYP2C19 or CYP2C9. This indicates that both CYP2C enzymes contribute to the demethylation of desmethyltrimipramine and CYP2D6 to further metabolism.
Collapse
Affiliation(s)
- Julia Kirchheiner
- Institute of Clinical Pharmacology, University Medical Center Charité, Humboldt University of Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Desta Z, Zhao X, Shin JG, Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 2002; 41:913-58. [PMID: 12222994 DOI: 10.2165/00003088-200241120-00002] [Citation(s) in RCA: 584] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytochrome P450 2C19 (CYP2C19) is the main (or partial) cause for large differences in the pharmacokinetics of a number of clinically important drugs. On the basis of their ability to metabolise (S)-mephenytoin or other CYP2C19 substrates, individuals can be classified as extensive metabolisers (EMs) or poor metabolisers (PMs). Eight variant alleles (CYP2C19*2 to CYP2C19*8) that predict PMs have been identified. The distribution of EM and PM genotypes and phenotypes shows wide interethnic differences. Nongenetic factors such as enzyme inhibition and induction, old age and liver cirrhosis can also modulate CYP2C19 activity. In EMs, approximately 80% of doses of the proton pump inhibitors (PPIs) omeprazole, lansoprazole and pantoprazole seem to be cleared by CYP2C19, whereas CYP3A is more important in PMs. Five-fold higher exposure to these drugs is observed in PMs than in EMs of CYP2C19, and further increases occur during inhibition of CYP3A-catalysed alternative metabolic pathways in PMs. As a result, PMs of CYP2C19 experience more effective acid suppression and better healing of duodenal and gastric ulcers during treatment with omeprazole and lansoprazole compared with EMs. The pharmacoeconomic value of CYP2C19 genotyping remains unclear. Our calculations suggest that genotyping for CYP2C19 could save approximately 5000 US dollars for every 100 Asians tested, but none for Caucasian patients. Nevertheless, genotyping for the common alleles of CYP2C19 before initiating PPIs for the treatment of reflux disease and H. pylori infection is a cost effective tool to determine appropriate duration of treatment and dosage regimens. Altered CYP2C19 activity does not seem to increase the risk for adverse drug reactions/interactions of PPIs. Phenytoin plasma concentrations and toxicity have been shown to increase in patients taking inhibitors of CYP2C19 or who have variant alleles and, because of its narrow therapeutic range, genotyping of CYP2C19 in addition to CYP2C9 may be needed to optimise the dosage of phenytoin. Increased risk of toxicity of tricyclic antidepressants is likely in patients whose CYP2C19 and/or CYP2D6 activities are diminished. CYP2C19 is a major enzyme in proguanil activation to cycloguanil, but there are no clinical data that suggest that PMs of CYP2C19 are at a greater risk for failure of malaria prophylaxis or treatment. Diazepam clearance is clearly diminished in PMs or when inhibitors of CYP2C19 are coprescribed, but the clinical consequences are generally minimal. Finally, many studies have attempted to identify relationships between CYP2C19 genotype and phenotype and susceptibility to xenobiotic-induced disease, but none of these are compelling.
Collapse
Affiliation(s)
- Zeruesenay Desta
- Division of Clinical Pharmacology, Indiana University School of Medicine, Wishard Hospital, Indianapolis 46202, USA
| | | | | | | |
Collapse
|
25
|
Kirchheiner J, Meineke I, Müller G, Roots I, Brockmöller J. Contributions of CYP2D6, CYP2C9 and CYP2C19 to the biotransformation of E- and Z-doxepin in healthy volunteers. PHARMACOGENETICS 2002; 12:571-80. [PMID: 12360109 DOI: 10.1097/00008571-200210000-00010] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In-vitro data indicated a contribution of cytochrome P450 enzymes 1A2, 3A4, 2C9, 2C19 and 2D6 to biotransformation of doxepin. We studied the effects of genetic polymorphisms in CYP2D6, CYP2C9 and CYP2C19 on E- and Z-doxepin pharmacokinetics in humans. Doxepin kinetics was studied after a single oral dose of 75 mg in healthy volunteers genotyped as extensive (EM), intermediate (IM) and poor (PM) metabolizers of substrates of CYP2D6 and of CYP2C19 and as slow metabolizers with the CYP2C9 genotype *3/*3. E-, Z-doxepin and -desmethyldoxepin were quantified in plasma by HPLC. Data were analyzed by non-parametric pharmacokinetics and statistics and by population pharmacokinetic modeling considering effects of genotype on clearance and bioavailability. Mean E-doxepin clearance (95% confidence interval) was 406 (390-445), 247 (241-271), and 127 (124-139) l h(-1) in EMs, IMs and PMs of CYP2D6. In addition, EMs had about 2-fold lower bioavailability compared with PMs indicating significant contribution of CYP2D6 to E-doxepin first-pass metabolism. E-doxepin oral clearance was also significantly lower in carriers of CYP2C9*3/*3 (238 l h(-1) ). CYP2C19 was involved in Z-doxepin metabolism with 2.5-fold differences in oral clearances (73 l h(-1) in CYP2C19 PMs compared with 191 l h(-1) in EMs). The area under the curve (0-48 h) of the active metabolite -desmethyldoxepin was dependent on CYP2D6 genotype with a median of 5.28, 1.35, and 1.28 nmol l h(-1) in PMs, IMs, and EMs of CYP2D6. The genetically polymorphic enzymes exhibited highly stereoselective effects on doxepin biotransformation in humans. The CYP2D6 polymorphism had a major impact on E-doxepin pharmacokinetics and CYP2D6 PMs might be at an elevated risk for adverse drug effects when treated with common recommended doses.
Collapse
Affiliation(s)
- Julia Kirchheiner
- Institute of Clinical Pharmacology, University Medical Center Charité, Humboldt University Berlin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Chirality has become an increasingly important consideration in the development of psychoactive drugs because enantiomers often show major differences in their pharmacokinetic and pharmacologic properties. This review illustrates the implications of stereochemistry in clinical psychopharmacology using the antidepressant class of drugs as a focus. In many cases, a better understanding of stereochemistry can improve therapeutic outcomes. For example, with citalopram, the racemic formulation is effective for depression as well as panic and obsessive-compulsive disorders. However, the S-enantiomer, escitalopram, is at least twice as potent as racemic citalopram as an inhibitor of serotonin reuptake, implying that it can be used at lower doses, while offering an improved therapeutic index as well as an improved safety profile and reduced drug interaction liability. Clinical trial data support these advantages. Continuing research on the stereochemical properties of psychoactive drugs should simplify the characterization of dose-response relationships, and clarify the effects of disease states, genetic polymorphisms, pregnancy, age, and gender on stereoselective pharmacokinetics and pharmacodynamics. Better understanding of the fate of chiral psychotropic agents and the factors that influence their stereoselective disposition and actions will provide a rational basis for their expanded use in various patient populations.
Collapse
Affiliation(s)
- C Lindsay DeVane
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina, USA
| | | |
Collapse
|
27
|
Baumann P, Eap CB. Enantiomeric antidepressant drugs should be considered on individual merit. Hum Psychopharmacol 2001; 16:S85-S92. [PMID: 12404713 DOI: 10.1002/hup.336] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many antidepressants have been introduced as racemic drugs, the enantiomers of which may differ in some of their pharmacodynamic and pharmacokinetic properties. This review argues that each enantiomer of a chiral antidepressant should be evaluated according to its individual characteristics rather than by extrapolation from the racemate, or by assumptions based on the stereoselective characteristics of other enantiomeric drugs. For example, in some cases the enantiomers' pharmacodynamic and therapeutic properties can be complementary, which suggests that the racemate should be used clinically. In other cases where enantiomers show qualitatively similar but quantitatively different properties to the racemate, using a single enantiomer might be more appropriate. In yet further cases, a distomer may induce the metabolism of the eutomer, enantiomers may be metabolised by different enzymes, there may be a different profile of drug-drug interactions, and therapeutic drug monitoring may be simpler. Therefore, this review exemplifies the principle that each enantiomer of a chiral antidepressant should be evaluated according to its individual pharmacological, pharmacokinetic and pharmacogenetic characteristics. These factors are discussed in relation to five chiral antidepressants: trimipramine, mianserin, mirtazapine, fluoxetine and citalopram. It is hoped that an appreciation of the stereoselective differences between enantiomers will facilitate improvements in the benefit:risk ratio of drugs used in the management of depression. Copyright 2001 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Pierre Baumann
- Unité de Biochimie et Psychopharmacologie Clinique, Département Universitaire de Psychiatrie Adulte, Université de Lausanne, Prilly-Lausanne, Switzerland
| | | |
Collapse
|
28
|
Kirchheiner J, Brøsen K, Dahl ML, Gram LF, Kasper S, Roots I, Sjöqvist F, Spina E, Brockmöller J. CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001; 104:173-92. [PMID: 11531654 DOI: 10.1034/j.1600-0447.2001.00299.x] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE This review aimed to provide distinct dose recommendations for antidepressants based on the genotypes of cytochrome P450 enzymes CYP2D6 and CYP2C19. This approach may be a useful complementation to clinical monitoring and therapeutic drug monitoring. METHOD Our literature search covered 32 antidepressants marketed in Europe, Canada, and the United States. We evaluated studies which had compared pharmacokinetic parameters of antidepressants among poor, intermediate, extensive and ultrarapid metabolizers. RESULTS For 14 antidepressants, distinct dose recommendations for extensive, intermediate and poor metabolizers of either CYP2D6 or CYP2C19 were given. For the tricyclic antidepressants, dose reductions around 50% were generally recommended for poor metabolizers of substrates of CYP2D6 or CYP2C19, whereas differences were smaller for the selective serotonin reuptake inhibitors. CONCLUSION We have provided preliminary average dose suggestions based on the phenotype or genotype. This is a first attempt to apply the new pharmacogenetics to suggest dose-regimens that take the differences in drug metabolic capacity into account.
Collapse
Affiliation(s)
- J Kirchheiner
- Institute of Clinical Pharmacology, Charité, Humboldt University of Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|