1
|
Ott LC, Cuenca AG. Innate immune cellular therapeutics in transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1067512. [PMID: 37994308 PMCID: PMC10664839 DOI: 10.3389/frtra.2023.1067512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Successful organ transplantation provides an opportunity to extend the lives of patients with end-stage organ failure. Selectively suppressing the donor-specific alloimmune response, however, remains challenging without the continuous use of non-specific immunosuppressive medications, which have multiple adverse effects including elevated risks of infection, chronic kidney injury, cardiovascular disease, and cancer. Efforts to promote allograft tolerance have focused on manipulating the adaptive immune response, but long-term allograft survival rates remain disappointing. In recent years, the innate immune system has become an attractive therapeutic target for the prevention and treatment of transplant organ rejection. Indeed, contemporary studies demonstrate that innate immune cells participate in both the initial alloimmune response and chronic allograft rejection and undergo non-permanent functional reprogramming in a phenomenon termed "trained immunity." Several types of innate immune cells are currently under investigation as potential therapeutics in transplantation, including myeloid-derived suppressor cells, dendritic cells, regulatory macrophages, natural killer cells, and innate lymphoid cells. In this review, we discuss the features and functions of these cell types, with a focus on their role in the alloimmune response. We examine their potential application as therapeutics to prevent or treat allograft rejection, as well as challenges in their clinical translation and future directions for investigation.
Collapse
Affiliation(s)
- Leah C Ott
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Alex G Cuenca
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
2
|
Suuring M, Moreau A. Regulatory Macrophages and Tolerogenic Dendritic Cells in Myeloid Regulatory Cell-Based Therapies. Int J Mol Sci 2021; 22:7970. [PMID: 34360736 PMCID: PMC8348814 DOI: 10.3390/ijms22157970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid regulatory cell-based therapy has been shown to be a promising cell-based medicinal approach in organ transplantation and for the treatment of autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, Crohn's disease and multiple sclerosis. Dendritic cells (DCs) are the most efficient antigen-presenting cells and can naturally acquire tolerogenic properties through a variety of differentiation signals and stimuli. Several subtypes of DCs have been generated using additional agents, including vitamin D3, rapamycin and dexamethasone, or immunosuppressive cytokines, such as interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β). These cells have been extensively studied in animals and humans to develop clinical-grade tolerogenic (tol)DCs. Regulatory macrophages (Mregs) are another type of protective myeloid cell that provide a tolerogenic environment, and have mainly been studied within the context of research on organ transplantation. This review aims to thoroughly describe the ex vivo generation of tolDCs and Mregs, their mechanism of action, as well as their therapeutic application and assessment in human clinical trials.
Collapse
Affiliation(s)
| | - Aurélie Moreau
- Centre de Recherche en Transplantation et Immunologie—UMR1064, INSERM—ITUN, Nantes Université, CHU Nantes, 44000 Nantes, France;
| |
Collapse
|
3
|
Kim NS, Torrez T, Langridge W. LPS enhances CTB-INSULIN induction of IDO1 and IL-10 synthesis in human dendritic cells. Cell Immunol 2019; 338:32-42. [PMID: 30910218 DOI: 10.1016/j.cellimm.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 12/19/2022]
Abstract
Autoantigen-specific immunotherapy promises effective treatment for devastating tissue specific autoimmune diseases like multiple sclerosis (MS) and type 1 diabetes (T1D). Because activated dendritic cells (DCs) stimulate the differentiation of autoreactive T cells involved in the initiation of autoimmunity, blocking the activation of DCs may be an effective strategy for inhibiting tissue specific autoimmunity. Following this approach, immature DCs were shown to remain inactive after treatment with chimeric fusion proteins composed of the cholera toxin B subunit adjuvant linked to autoantigens like proinsulin (CTB-INS). Mass spectrometer analysis of human DCs treated with CTB-INS suggest that upregulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1) is responsible for inhibiting DC activation thereby resulting in a state of immunological tolerance within the DC. Here we show that the fusion protein CTB-INS inhibits human monocyte derived DC (moDC) activation through stimulation of IDO1 biosynthesis and that the resultant state of DC tolerance can be further enhanced by the presence of residual E. coli lipopolysaccharide (LPS) present in partially purified CTB-INS preparations. Additional experiments showed that LPS enhancement of DC tolerance was dependent upon stimulation of IDO1 biosynthesis. LPS stimulation of increased levels of IDO1 in the DC resulted in increased secretion of kynurenines, tryptophan degradation products known to suppress DC mediated pro-inflammatory T cell differentiation and to stimulate the proliferation of regulatory T cells (Tregs). Further, the presence of LPS in CTB-INS treated DCs stimulated the biosynthesis of costimulatory factors CD80 and CD86 but failed to upregulate maturation factor CD83, suggesting CTB-INS treated DCs may be maintained in a state of semi-activation. While treatment of moDCs with increasing amounts of LPS free CTB-INS was shown to increase DC secretion of the anti-inflammatory cytokine IL-10, the presence of residual LPS in partially purified CTB-INS preparations dramatically increased IL-10 secretion, suggesting that CTB-INS may enhance DC mediated immunological tolerance by stimulating the proliferation of anti-inflammatory T cells. While the extraction of LPS from bacterial generated CTB-INS may remove additional unknown factors that may contribute to the regulation of IDO1 levels, together, our experimental data suggest that LPS stimulates the ability of CTB-INS to induce IDO1 and IL-10 important factors required for establishment of a state of functional immunological tolerance in human DCs. Regulation of the ratio of LPS to CTB-INS may prove to be an effective method for optimization of readily available "off the shelf" CTB-INS mediated immune-therapy for tissue specific autoimmune diseases including type 1 diabetes.
Collapse
Affiliation(s)
- Nan-Sun Kim
- Division of Biochemistry, Center for Health Disparity and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, United States; National Institute of Horticultural & Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju 55365, Republic of Korea; Department of Molecular Biology, Chonbuk National University, Dukjindong 664-14, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Timothy Torrez
- Division of Biochemistry, Center for Health Disparity and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, United States
| | - William Langridge
- Division of Biochemistry, Center for Health Disparity and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, United States.
| |
Collapse
|
4
|
Zhao Y, Jia Y, Wang L, Chen S, Huang X, Xu B, Zhao G, Xiang Y, Yang J, Chen G. Upregulation of Heme Oxygenase-1 Endues Immature Dendritic Cells With More Potent and Durable Immunoregulatory Properties and Promotes Engraftment in a Stringent Mouse Cardiac Allotransplant Model. Front Immunol 2018; 9:1515. [PMID: 30013566 PMCID: PMC6036127 DOI: 10.3389/fimmu.2018.01515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is critical for the ability of immature dendritic cells (imDCs) to suppress T-cell responses. Induction of high HO-1 expression may markedly improve the tolerogenic capacity of imDCs. Here, we generated bone marrow-derived DCs (BMDCs) from BALB/c mice with low doses of GM-CSF and IL-4. The adherent BMDCs were obtained as imDCs. Upregulation of HO-1 in imDCs (HO-1hi-imDCs) was achieved by cobalt protoporphyrin treatment. HO-1hi-imDCs proved to be more maturation-resistant than conventional imDCs, with an enhanced ability to inhibit allogeneic T-cell proliferation stimulated by anti-CD3/CD28 antibodies. When donor-derived DC adoptive transfer was performed in a stringent mouse cardiac allotransplant model, the extent of graft prolongation observed with HO-1hi imDCs was superior to that obtained with conventional imDCs. T-cell activation and proliferation in cardiac allograft recipients was more strongly suppressed in the HO-1hi imDC transfusion group than that in the untreated imDC group. Furthermore, donor HO-1hi imDCs were able to maintain a status of high HO-1 expression and survived longer in the recipient spleens than did untreated imDCs after adoptive transfer. In vitro-generated HO-1hi imDCs had an enhanced tolerogenic capacity to modulate alloimmune responses both in vitro and in vivo, and thus may offer a novel antigen-specific and cost-effective strategy to induce transplant tolerance.
Collapse
Affiliation(s)
- Yue Zhao
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Jia
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Department of Nephrology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Public Health, Wuhan, China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Public Health, Wuhan, China
| | - Xia Huang
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Public Health, Wuhan, China
| | - Bingyang Xu
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xiang
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Public Health, Wuhan, China
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Public Health, Wuhan, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Public Health, Wuhan, China
| |
Collapse
|
5
|
Obregon C, Kumar R, Pascual MA, Vassalli G, Golshayan D. Update on Dendritic Cell-Induced Immunological and Clinical Tolerance. Front Immunol 2017; 8:1514. [PMID: 29250057 PMCID: PMC5715373 DOI: 10.3389/fimmu.2017.01514] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) as highly efficient antigen-presenting cells are at the interface of innate and adaptive immunity. As such, they are key mediators of immunity and antigen-specific immune tolerance. Due to their functional specialization, research efforts have focused on the characterization of DCs subsets involved in the initiation of immunogenic responses and in the maintenance of tissue homeostasis. Tolerogenic DCs (tolDCs)-based therapies have been designed as promising strategies to prevent and control autoimmune diseases as well as allograft rejection after solid organ transplantation (SOT). Despite successful experimental studies and ongoing phase I/II clinical trials using autologous tolDCs in patients with type 1 diabetes, rheumatoid arthritis, multiple sclerosis, and in SOT recipients, additional basic research will be required to determine the optimal DC subset(s) and conditioning regimens for tolDCs-based treatments in vivo. In this review, we discuss the characteristics of human DCs and recent advances in their classification, as well as the role of DCs in immune regulation and their susceptibility to in vitro or in vivo manipulation for the development of tolerogenic therapies, with a focus on the potential of tolDCs for the treatment of autoimmune diseases and the prevention of allograft rejection after SOT.
Collapse
Affiliation(s)
- Carolina Obregon
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Rajesh Kumar
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Manuel Antonio Pascual
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Department of Surgery, Transplantation Centre, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Vassalli
- Département coeur-vaisseaux, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Fondazione Cardiocentro Ticino, Swiss Institute of Regenerative Medicine (SIRM), Lugano, Switzerland
| | - Déla Golshayan
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Department of Surgery, Transplantation Centre, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Ezzelarab M, Raich-Regue D, Lu L, Zahorchak A, Perez-Gutierrez A, Humar A, Wijkstrom M, Minervini M, Wiseman R, Cooper D, Morelli A, Thomson A. Renal Allograft Survival in Nonhuman Primates Infused With Donor Antigen-Pulsed Autologous Regulatory Dendritic Cells. Am J Transplant 2017; 17:1476-1489. [PMID: 28009481 PMCID: PMC5444942 DOI: 10.1111/ajt.14182] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/30/2016] [Accepted: 12/15/2016] [Indexed: 01/25/2023]
Abstract
Systemic administration of autologous regulatory dendritic cells (DCreg; unpulsed or pulsed with donor antigen [Ag]), prolongs allograft survival and promotes transplant tolerance in rodents. Here, we demonstrate that nonhuman primate (NHP) monocyte-derived DCreg preloaded with cell membrane vesicles from allogeneic peripheral blood mononuclear cells induce T cell hyporesponsiveness to donor alloantigen (alloAg) in vitro. These donor alloAg-pulsed autologous DCreg (1.4-3.6 × 106 /kg) were administered intravenously, 1 day before MHC-mismatched renal transplantation to rhesus monkeys treated with costimulation blockade (cytotoxic T lymphocyte Ag 4 immunoglobulin [CTLA4] Ig) and tapered rapamycin. Prolongation of graft median survival time from 39.5 days (no DCreg infusion; n = 6 historical controls) and 29 days with control unpulsed DCreg (n = 2), to 56 days with donor Ag-pulsed DCreg (n = 5) was associated with evidence of modulated host CD4+ and CD8+ T cell responses to donor Ag and attenuation of systemic IL-17 production. Circulating anti-donor antibody (Ab) was not detected until CTLA4 Ig withdrawal. One monkey treated with donor Ag-pulsed DCreg rejected its graft in association with progressively elevated anti-donor Ab, 525 days posttransplant (160 days after withdrawal of immunosuppression). These findings indicate a modest but not statistically significant beneficial effect of donor Ag-pulsed autologous DCreg infusion on NHP graft survival when administered with a minimal immunosuppressive drug regimen.
Collapse
Affiliation(s)
- M.B. Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - D. Raich-Regue
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - L. Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A.F. Zahorchak
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A. Perez-Gutierrez
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A. Humar
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - M. Wijkstrom
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - M. Minervini
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - R.W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI
| | - D.K.C. Cooper
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A.E. Morelli
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A.W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Corresponding author: Angus W. Thomson, PhD, DSc, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1540 BST, Pittsburgh, PA 15261, Phone: (412) 624-6392,
| |
Collapse
|
7
|
Cai S, Hou J, Fujino M, Zhang Q, Ichimaru N, Takahara S, Araki R, Lu L, Chen JM, Zhuang J, Zhu P, Li XK. iPSC-Derived Regulatory Dendritic Cells Inhibit Allograft Rejection by Generating Alloantigen-Specific Regulatory T Cells. Stem Cell Reports 2017; 8:1174-1189. [PMID: 28434942 PMCID: PMC5425686 DOI: 10.1016/j.stemcr.2017.03.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 01/03/2023] Open
Abstract
Regulatory dendritic cell (DCregs)-based immunotherapy is a potential therapeutic tool for transplant rejection. We generated DCregs from murine induced pluripotent stem cells (iPSCs), which could remain in a “stable immature stage” even under strong stimulation. Harnessing this characteristic, we hypothesized that iPS-DCregs worked as a negative vaccine to generate regulatory T cells (Tregs), and induced donor-specific allograft acceptance. We immunized naive CBA (H-2Kk) mice with B6 (H-2Kb) iPS-DCregs and found that Tregs (CD4+CD25+FOXP3+) significantly increased in CBA splenocytes. Moreover, immunized CBA recipients permanently accepted B6 cardiac grafts in a donor-specific pattern. We demonstrated mechanistically that donor-type iPS-DCregs triggered transforming growth factor β1 secretion, under which the donor-antigen peptides directed naive CD4+ T cells to differentiate into donor-specific FOXP3+ Tregs instead of into effector T cells in vivo. These findings highlight the potential of iPS-DCregs as a key cell therapy resource in clinical transplantation. iPS-DCregs keep in stable immature stage that makes them a powerful cellular vaccine Donor-type iPS-DCregs lead to permanent acceptance of allogeneic cardiac grafts iPS-DCregs reduce CTL and downregulate proinflammatory cytokine iPS-DCregs enhance Tregs transmigration capability in a TGF-β1-dependent manner
Collapse
Affiliation(s)
- Songjie Cai
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Jiangang Hou
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Qi Zhang
- Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Naotsugu Ichimaru
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shiro Takahara
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Ryoko Araki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Lina Lu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ji-Mei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Jian Zhuang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Ping Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China.
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| |
Collapse
|
8
|
Han N, Zhang Z, Liu S, Ow A, Ruan M, Yang W, Zhang C. Increased tumor-infiltrating plasmacytoid dendritic cells predicts poor prognosis in oral squamous cell carcinoma. Arch Oral Biol 2017; 78:129-134. [PMID: 28242507 DOI: 10.1016/j.archoralbio.2017.02.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/15/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Accumulating evidence suggests that plasmacytoid dendritic cells (pDC) have a dual role not only in initiating anti-tumor immune responses but also in inducing immune tolerance to facilitate cancer development. The aim of this study was to investigate the distribution and function of tumor-infiltrating pDCs in primary oral squamous cell carcinoma (OSCC) and their relation to patient outcome. METHODS The distribution of pDCs in 10 normal oral mucosa and 60 OSCC tissues was detected by immunohistochemistry. The population of pDCs in six OSCC patients and six healthy donors was evaluated by flow cytometry. The relationship between tumor-infiltrating pDCs and clinicopathological data and patient outcome was analyzed accordingly. The capacity of pDCs to produce cytokines, such as IFN-α, IL-6, IL-8 and TNF-α in response to TLR-9 ligands (CpG-ODN) was measured by ELISA. RESULT PDCs were detected at high levels in 38.3% of the OSCC tissues, primarily in the stroma, but were absent in normal oral mucosa. The frequency of pDCs in OSCC tissue was significantly higher than that observed in normal oral mucosa. However, the distribution and population of circulating pDCs was similar between healthy donors and OSCC patients. Kaplan-Meier analysis revealed a significant association of increasing number of tumor-infiltrating pDCs with lymph node metastasis and overall survival. Multivariate analysis confirmed that high levels of tumor-infiltrating pDCs was an independent prognostic factor. Further cytokine analysis revealed a decreased secretion of IFN-α, IL-6 and TNF-α, which indicated an impaired function of tumor-infiltrating pDCs. CONCLUSIONS The increased number of tumor-infiltrating pDCs correlates with an adverse outcome in primary OSCC patients. This finding is not only suggestive of the contribution of pDCs in the progression of oral cancer but also presents an opportunity and a new target for OSCC immune therapy in oral cancer management.
Collapse
Affiliation(s)
- Nannan Han
- Department of Oral Maxillofacial-Head Neck Oncology, Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zun Zhang
- Department of Stomatology, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Shengwen Liu
- Department of Oral Maxillofacial-Head Neck Oncology, Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Andrew Ow
- Department of Oral and Maxillofacial Surgery, Ng Teng Fong General Hospital, Jurong Health Services, Singapore.
| | - Min Ruan
- Department of Oral Maxillofacial-Head Neck Oncology, Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| | - Wenjun Yang
- Department of Oral Maxillofacial-Head Neck Oncology, Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Chenping Zhang
- Department of Oral Maxillofacial-Head Neck Oncology, Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
9
|
Combining Exosomes Derived from Immature DCs with Donor Antigen-Specific Treg Cells Induces Tolerance in a Rat Liver Allograft Model. Sci Rep 2016; 6:32971. [PMID: 27640806 PMCID: PMC5027549 DOI: 10.1038/srep32971] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/18/2016] [Indexed: 12/20/2022] Open
Abstract
Allograft tolerance is the ultimate goal in the field of transplantation immunology. Immature dendritic cells (imDCs) play an important role in establishing tolerance but have limitations, including potential for maturation, short lifespan in vivo and short storage times in vitro. However, exosomes (generally 30–100 nm) from imDCs (imDex) retain many source cell properties and may overcome these limitations. In previous reports, imDex prolonged the survival time of heart or intestine allografts. However, tolerance or long-term survival was not achieved unless immune suppressants were used. Regulatory T cells (Tregs) can protect allografts from immune rejection, and our previous study showed that the effects of imDex were significantly associated with Tregs. Therefore, we incorporated Tregs into the treatment protocol to further reduce or avoid suppressant use. We defined the optimal exosome dose as approximately 20 μg (per treatment before, during and after transplantation) in rat liver transplantation and the antigen-specific role of Tregs in protecting liver allografts. In the co-treatment group, recipients achieved long-term survival, and tolerance was induced. Moreover, imDex amplified Tregs, which required recipient DCs and were enhanced by IL-2. Fortunately, the expanded Tregs retained their regulatory ability and donor-specificity. Thus, imDex and donor-specific Tregs can collaboratively induce graft tolerance.
Collapse
|
10
|
Kouwenberg M, Jacobs CWM, van der Vlag J, Hilbrands LB. Allostimulatory Effects of Dendritic Cells with Characteristic Features of a Regulatory Phenotype. PLoS One 2016; 11:e0159986. [PMID: 27525971 PMCID: PMC4985155 DOI: 10.1371/journal.pone.0159986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 07/12/2016] [Indexed: 02/06/2023] Open
Abstract
Introduction Tolerogenic dendritic cells (DCs) have the potential to prolong graft survival after transplantation. Tolerogenic DCs are in general characterized by a low expression of co-stimulatory molecule and a high IL-10:IL-12 production ratio. Based on promising results with earlier used alternatively activated DCs, we aimed to generate in culture potentially tolerogenic DC by simultaneously blocking GSK3 by lithium chloride (LiCl) and stimulating TLR2 by PAM3CysSerLys4. Materials and Methods Bone marrow-derived LiClPAM3 DCs were generated by the addition of LiCl 24 hours before harvesting, and one hour later PAM3CysSerLys4. The phenotype of the DCs was assessed by determining the expression of co-stimulatory molecules in flow cytometry and cytokine production in ELISA, whereas their functional properties were tested in a mixed lymphocyte reaction. A fully MHC mismatched heterotopic heart transplant preceded by infusion of donor-derived LiClPAM3 DC was performed to assess the tolerogenic potential of LiClPAM3 DCs in vivo. Results LiClPAM3 DCs displayed a tolerogenic phenotype accompanied with a low expression of co-stimulatory molecules and a high IL-10:IL-12 production ratio. However, in mixed lymphocyte reaction, LiClPAM3 DCs appeared superior in T cell stimulation, and induced Th1 and Th17 differentiation. Moreover, mice pretreated with LiClPAM3 DC displayed a reduced graft survival. Analysis of LiClPAM3 DC culture supernatant revealed high levels of CXCL-1, which was also found in supernatants of co-cultures of LiClPAM3 DC and T cells. Nevertheless, we could not show a role for CXCL-1 in T cell proliferation or activation in vitro. Discussion LiClPAM3 DCs display in vitro a tolerogenic phenotype with a high IL-10:IL-12 ratio, but appeared to be highly immunogenic, since allograft rejection was accelerated. As yet unidentified LiClPAM3 DC-derived factors, may explain the immunogenic character of LiClPAM3 DCs in vivo.
Collapse
Affiliation(s)
- M Kouwenberg
- Department of Nephrology, Radboud university medical center, Nijmegen, the Netherlands
| | - C W M Jacobs
- Department of Nephrology, Radboud university medical center, Nijmegen, the Netherlands
| | - J van der Vlag
- Department of Nephrology, Radboud university medical center, Nijmegen, the Netherlands
| | - L B Hilbrands
- Department of Nephrology, Radboud university medical center, Nijmegen, the Netherlands
| |
Collapse
|
11
|
Effects of Adoptive Transfer of Tolerogenic Dendritic Cells on Allograft Survival in Organ Transplantation Models: An Overview of Systematic Reviews. J Immunol Res 2016; 2016:5730674. [PMID: 27547767 PMCID: PMC4980535 DOI: 10.1155/2016/5730674] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 02/05/2023] Open
Abstract
Objective. To dissect the efficacy of Tol-DC therapy with or without IS in multiple animal models of transplantation. Methods and Results. PubMed, Medline, Embase, and the Cochrane Library were searched for reviews published up to April 2015. Six systematic reviews and a total of 61 articles were finally included. Data were grouped by organ transplantation models and applied to meta-analysis. Our meta-analysis shows that Tol-DC therapy successfully prolonged allograft survival to varying extents in all except the islet transplantation models and with IS drugs further prolonged the survival of heart, skin, and islet allografts in mice, but not of heart allografts in rats. Compared with IS drugs alone, Tol-DC therapy with IS extended islet allograft survival in rats but failed to influence the survival of skin, small intestine, and heart allografts in rats or of heart and skin allografts in mice. Conclusion. Tol-DC therapy significantly prolonged multiple allograft survival and further prolonged survival with IS. However, standardized protocols for modification of Tol-DC should be established before its application in clinic.
Collapse
|
12
|
Thomson AW, Zahorchak AF, Ezzelarab MB, Butterfield LH, Lakkis FG, Metes DM. Prospective Clinical Testing of Regulatory Dendritic Cells in Organ Transplantation. Front Immunol 2016; 7:15. [PMID: 26858719 PMCID: PMC4729892 DOI: 10.3389/fimmu.2016.00015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/12/2016] [Indexed: 01/03/2023] Open
Abstract
Dendritic cells (DC) are rare, professional antigen-presenting cells with ability to induce or regulate alloimmune responses. Regulatory DC (DCreg) with potential to down-modulate acute and chronic inflammatory conditions that occur in organ transplantation can be generated in vitro under a variety of conditions. Here, we provide a rationale for evaluation of DCreg therapy in clinical organ transplantation with the goal of promoting sustained, donor-specific hyporesponsiveness, while lowering the incidence and severity of rejection and reducing patients’ dependence on anti-rejection drugs. Generation of donor- or recipient-derived DCreg that suppress T cell responses and prolong transplant survival in rodents or non-human primates has been well-described. Recently, good manufacturing practice (GMP)-grade DCreg have been produced at our Institution for prospective use in human organ transplantation. We briefly review experience of regulatory immune therapy in organ transplantation and describe our experience generating and characterizing human monocyte-derived DCreg. We propose a phase I/II safety study in which the influence of donor-derived DCreg combined with conventional immunosuppression on subclinical and clinical rejection and host alloimmune responses will be examined in detail.
Collapse
Affiliation(s)
- Angus W Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alan F Zahorchak
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Mohamed B Ezzelarab
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Lisa H Butterfield
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fadi G Lakkis
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Diana M Metes
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Tolerogenic Dendritic Cells on Transplantation: Immunotherapy Based on Second Signal Blockage. J Immunol Res 2015; 2015:856707. [PMID: 26543876 PMCID: PMC4620289 DOI: 10.1155/2015/856707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs), the most important professional antigen-presenting cells (APC), play crucial role in both immunity and tolerance. It is well known that DCs are able to mount immune responses against foreign antigens and simultaneously tolerate self-antigens. Since DCs can be modulated depending on the surrounding microenvironment, they can act as a bridge between innate and adaptive immunity. However, the mechanisms that support this dual role are not entirely clear. Recent studies have shown that DCs can be manipulated ex vivo in order to trigger their tolerogenic profile, what can be a tool to be used in clinical trials aiming the treatment of various diseases and the prevention of transplant rejection. In this sense, the blockage of costimulatory molecules on DC, in the attempt of inhibiting the second signal in the immunological synapse, can be considered as one of the main strategies under development. This review brings an update on current therapies using tolerogenic dendritic cells modulated with costimulatory blockers with the aim of reducing transplant rejection. However, although there are current clinical trials using tolerogenic DC to treat allograft rejection, the actual challenge is to modulate these cells in order to maintain a permanent tolerogenic profile.
Collapse
|
14
|
Orchestration of transplantation tolerance by regulatory dendritic cell therapy or in-situ targeting of dendritic cells. Curr Opin Organ Transplant 2015; 19:348-56. [PMID: 24926700 DOI: 10.1097/mot.0000000000000097] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Extensive research in murine transplant models over the past two decades has convincingly demonstrated the ability of regulatory dendritic cells (DCregs) to promote long-term allograft survival. We review important considerations regarding the source of therapeutic DCregs (donor or recipient) and their mode of action, in-situ targeting of DCregs, and optimal therapeutic regimens to promote DCreg function. RECENT FINDINGS Recent studies have defined protocols and mechanisms whereby ex-vivo-generated DCregs of donor or recipient origin subvert allogeneic T-cell responses and promote long-term organ transplant survival. Particular interest has focused on how donor antigen is acquired, processed and presented by autologous dendritic cells, on the stability of DCregs, and on in-situ targeting of dendritic cells to promote their tolerogenic function. New evidence of the therapeutic efficacy of DCregs in a clinically relevant nonhuman primate organ transplant model and production of clinical grade DCregs support early evaluation of DCreg therapy in human graft recipients. SUMMARY We discuss strategies currently used to promote dendritic cell tolerogenicity, including DCreg therapy and in-situ targeting of dendritic cells, with a view to improved understanding of underlying mechanisms and identification of the most promising strategies for therapeutic application.
Collapse
|
15
|
Özmen S. Bilateral Vascularized Composite Skin/Bone Transplantation Models. Plast Reconstr Surg 2015. [DOI: 10.1007/978-1-4471-6335-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Domen J, Li Y, Sun L, Simpson P, Gandy K. Rapid tolerance induction by hematopoietic progenitor cells in the absence of donor-matched lymphoid cells. Transpl Immunol 2014; 31:112-8. [PMID: 24794050 DOI: 10.1016/j.trim.2014.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/03/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND Donor specific hematopoietic cell transplantation has long been recognized for its potential in tolerance induction for subsequently transplanted organs. We have recently published that co-administration of Myeloid Progenitor (MP) and third party Hematopoietic Stem Cells (HSC) can induce MP-specific tolerance for subsequently transplanted organs [1]. METHODS Mice received an allogeneic HSC and third party MP transplantation simultaneous with placement of a MP-matched skin graft. Variants tested include time of graft placement, MP genotype and source of cells. RESULTS Using B10;B6-Rag2(-/-)Il2rg(-/-) mice, we demonstrate that specific tolerance can be induced by MP given simultaneous with the skin graft in the complete absence of MP-donor-matched lymphoid cells. Ex vivo expanded MP function as well as sorted cells in inducing tolerance. In addition we demonstrate that tolerance can be induced by MP in the context of autologous HSC transplantation. CONCLUSIONS Our results demonstrate that the previously observed expansion of organ donor matched Treg is not essential for tolerance, and that MP tolerance protocols can be envisioned in most clinical settings, including those involving deceased donor organs.
Collapse
Affiliation(s)
- Jos Domen
- Section of Cardiac Surgery, Children's Mercy Hospital and Clinics, Kansas City MO64108, United States; Department of Pediatrics, University of Missouri Kansas City, Kansas City, MO, United States.
| | - Yongwu Li
- Section of Cardiac Surgery, Children's Mercy Hospital and Clinics, Kansas City MO64108, United States.
| | - Lei Sun
- Section of Cardiac Surgery, Children's Mercy Hospital and Clinics, Kansas City MO64108, United States.
| | - Pippa Simpson
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.
| | - Kimberly Gandy
- Section of Cardiac Surgery, Children's Mercy Hospital and Clinics, Kansas City MO64108, United States; Department of Pediatrics, University of Missouri Kansas City, Kansas City, MO, United States; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
17
|
Abstract
Regulatory myeloid cells (RMC) are emerging as novel targets for immunosuppressive (IS) agents and hold considerable promise as cellular therapeutic agents. Herein, we discuss the ability of regulatory macrophages, regulatory dendritic cells, and myeloid-derived suppressor cells to regulate alloimmunity, their potential as cellular therapeutic agents, and the IS agents that target their function. We consider protocols for the generation of RMC and the selection of donor- or recipient-derived cells for adoptive cell therapy. Additionally, the issues of cell trafficking and antigen (Ag) specificity after RMC transfer are discussed. Improved understanding of the immunobiology of these cells has increased the possibility of moving RMC into the clinic to reduce the burden of current IS agents and to promote Ag-specific tolerance. In the second half of this review, we discuss the influence of established and experimental IS agents on myeloid cell populations. IS agents believed historically to act primarily on T cell activation and proliferation are emerging as important regulators of RMC function. Better insights into the influence of IS agents on RMC will enhance our ability to develop cell therapy protocols to promote the function of these cells. Moreover, novel IS agents may be designed to target RMC in situ to promote Ag-specific immune regulation in transplantation and to usher in a new era of immune modulation exploiting cells of myeloid origin.
Collapse
Affiliation(s)
- Brian R. Rosborough
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Dàlia Raïch-Regué
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Heth R. Turnquist
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
18
|
Ezzelarab M, Zahorchak A, Lu L, Morelli A, Chalasani G, Demetris A, Lakkis F, Wijkstrom M, Murase N, Humar A, Shapiro R, Cooper D, Thomson A. Regulatory dendritic cell infusion prolongs kidney allograft survival in nonhuman primates. Am J Transplant 2013; 13:1989-2005. [PMID: 23758811 PMCID: PMC4070451 DOI: 10.1111/ajt.12310] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/03/2013] [Accepted: 04/16/2013] [Indexed: 01/25/2023]
Abstract
We examined the influence of regulatory dendritic cells (DCreg), generated from cytokine-mobilized donor blood monocytes in vitamin D3 and IL-10, on renal allograft survival in a clinically relevant rhesus macaque model. DCreg expressed low MHC class II and costimulatory molecules, but comparatively high levels of programmed death ligand-1 (B7-H1), and were resistant to pro-inflammatory cytokine-induced maturation. They were infused intravenously (3.5-10 × 10(6) /kg), together with the B7-CD28 costimulation blocking agent CTLA4Ig, 7 days before renal transplantation. CTLA4Ig was given for up to 8 weeks and rapamycin, started on Day -2, was maintained with tapering of blood levels until full withdrawal at 6 months. Median graft survival time was 39.5 days in control monkeys (no DC infusion; n = 6) and 113.5 days (p < 0.05) in DCreg-treated animals (n = 6). No adverse events were associated with DCreg infusion, and there was no evidence of induction of host sensitization based on circulating donor-specific alloantibody levels. Immunologic monitoring also revealed regulation of donor-reactive memory CD95(+) T cells and reduced memory/regulatory T cell ratios in DCreg-treated monkeys compared with controls. Termination allograft histology showed moderate combined T cell- and Ab-mediated rejection in both groups. These findings justify further preclinical evaluation of DCreg therapy and their therapeutic potential in organ transplantation.
Collapse
Affiliation(s)
- M. Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - A.F. Zahorchak
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - L. Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - A.E. Morelli
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - G. Chalasani
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A.J. Demetris
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - F.G. Lakkis
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - M. Wijkstrom
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - N. Murase
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - A. Humar
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - R. Shapiro
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - D.K.C. Cooper
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - A.W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Corresponding author: Angus W. Thomson, PhD DSc, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1540 BST, Pittsburgh, PA 15261, Phone: (412) 624-6392,
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW We discuss the use of tolerogenic dendritic cells (TolDCs) as a therapeutic tool in solid organ transplantation, with particular emphasis on recent experimental and preclinical data supporting the clinical translation of TolDC therapy. RECENT FINDINGS TolDC have been successfully used in rodents to promote long-term allograft survival. Although most studies have focused on donor dendritic cells or donor antigen-pulsed dendritic cells, our group investigated a strategy based on the administration of autologous dendritic cells (not pulsed with donor antigens). We discuss the therapeutic efficacy, mechanisms, and potential risks and advantages of each strategy. We also highlight recent findings on the generation of clinical grade human TolDC from blood monocytes. Finally, we discuss preliminary experience with dendritic cells in humans and critical issues regarding the implementation of TolDC therapy to clinical organ transplantation. SUMMARY TolDC hold therapeutic promise for the treatment of transplanted patients. Cell therapy with unpulsed, autologous dendritic cells appears as a well tolerated, clinically relevant approach that might help in improving long-term allograft survival and limit the harmful effects of immunosuppressive treatments.
Collapse
|
20
|
Smyth LA, Ratnasothy K, Moreau A, Alcock S, Sagoo P, Meader L, Tanriver Y, Buckland M, Lechler R, Lombardi G. Tolerogenic Donor-Derived Dendritic Cells Risk Sensitization In Vivo owing to Processing and Presentation by Recipient APCs. THE JOURNAL OF IMMUNOLOGY 2013; 190:4848-60. [PMID: 23536635 DOI: 10.4049/jimmunol.1200870] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Modification of allogeneic dendritic cells (DCs) through drug treatment results in DCs with in vitro hallmarks of tolerogenicity. Despite these observations, using murine MHC-mismatched skin and heart transplant models, donor-derived drug-modified DCs not only failed to induce tolerance but also accelerated graft rejection. The latter was inhibited by injecting the recipient with anti-CD8 Ab, which removed both CD8(+) T cells and CD8(+) DCs. The discrepancy between in vitro and in vivo data could be explained, partly, by the presentation of drug-modified donor DC MHC alloantigens by recipient APCs and activation of recipient T cells with indirect allospecificity, leading to the induction of alloantibodies. Furthermore, allogeneic MHC molecules expressed by drug-treated DCs were rapidly processed and presented in peptide form by recipient APCs in vivo within hours of DC injection. Using TCR-transgenic T cells, Ag presentation of injected OVA-pulsed DCs was detectable for ≤ 3 d, whereas indirect presentation of MHC alloantigen by recipient APCs led to activation of T cells within 14 h and was partially inhibited by reducing the numbers of CD8(+) DCs in vivo. In support of this observation when mice lacking CD8(+) DCs were pretreated with drug-modified DCs prior to transplantation, skin graft rejection kinetics were similar to those in non-DC-treated controls. Of interest, when the same mice were treated with anti-CD40L blockade plus drug-modified DCs, skin graft survival was prolonged, suggesting endogenous DCs were responsible for T cell priming. Altogether, these findings highlight the risks and limitations of negative vaccination using alloantigen-bearing "tolerogenic" DCs.
Collapse
Affiliation(s)
- Lesley A Smyth
- Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Macedo C, Turquist H, Metes D, Thomson AW. Immunoregulatory properties of rapamycin-conditioned monocyte-derived dendritic cells and their role in transplantation. Transplant Res 2012; 1:16. [PMID: 23369601 PMCID: PMC3560974 DOI: 10.1186/2047-1440-1-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/04/2012] [Indexed: 12/14/2022] Open
Abstract
In efforts to minimize the chronic administration of immunosuppression (IS) drugs in transplantation and autoimmune disease, various cell-based tolerogenic therapies, including the use of regulatory or tolerogenic dendritic cells (tolDC) have been developed. These DC-based therapies aim to harness the inherent immunoregulatory potential of these professional antigen-presenting cells. In this short review, we describe both the demonstrated tolerogenic properties, and current limitations of rapamycin-conditioned DC (RAPA-DC). RAPA-DC are generated through inhibition of the integrative kinase mammalian target of rapamycin (mTOR) by the immunosuppressive macrolide rapamycin during propagation of monocyte-derived DC. Consistent with the characteristics of tolDC, murine RAPA-DC display resistance to phenotypic maturation induced by pro-inflammatory stimuli; exhibit the ability to migrate to secondary lymphoid tissue (important for 'cross-presentation' of antigen to T cells), and enrich for naturally-occurring CD4+ regulatory T cells. In rodent models, delivery of recipient-derived RAPA-DC pulsed with donor antigen prior to organ transplantation can prolong allogeneic heart-graft survival indefinitely, especially when combined with a short course of IS. These encouraging data support ongoing efforts to develop RAPA-DC for clinical testing. When compared to murine RAPA-DC however, human RAPA-DC have proven only partially resistant to maturation triggered by pro-inflammatory cytokines, and display heterogeneity in their impact on effector T-cell expansion and function. In total, the evidence suggests the need for more in-depth studies to better understand the mechanisms by which mTOR controls human DC function. These studies may facilitate the development of RAPA-DC therapy alone or together with agents that preserve/enhance their tolerogenic properties as clinical immunoregulatory vectors.
Collapse
Affiliation(s)
- Camila Macedo
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Hēth Turquist
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Diana Metes
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Angus W Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
22
|
Issa F, Wood KJ. Translating tolerogenic therapies to the clinic - where do we stand? Front Immunol 2012; 3:254. [PMID: 22934094 PMCID: PMC3422982 DOI: 10.3389/fimmu.2012.00254] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/30/2012] [Indexed: 12/12/2022] Open
Abstract
Manipulation of the immune system to prevent the development of a specific immune response is an ideal strategy to improve outcomes after transplantation. A number of experimental techniques exploiting central and peripheral tolerance mechanisms have demonstrated success, leading to the first early phase clinical trials for tolerance induction. The first major strategy centers on the facilitation of donor-cell mixed chimerism in the transplant recipient with the use of bone marrow or hematopoietic stem cell transplantation. The second strategy, utilizing peripheral regulatory mechanisms, focuses on cellular therapy with regulatory T cells. This review examines the key studies and novel research directions in the field of immunological tolerance.
Collapse
Affiliation(s)
- Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, Level 6, John Radcliffe Hospital, University of Oxford Oxford, UK
| | | |
Collapse
|
23
|
Wu W, Shan J, Li Y, Luo L, Sun G, Zhou Y, Yang T, Xia M, Guo Y, Feng L. Adoptive transfusion of tolerance dendritic cells prolongs the survival of cardiac allograft: a systematic review of 44 basic studies in mice. J Evid Based Med 2012; 5:139-53. [PMID: 23672221 DOI: 10.1111/j.1756-5391.2012.01191.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Tolerogenic DCs (Tol-DCs), a group of cells with imDC phenotype, can stably induce T cells low-reactivity and immune tolerance. We systematically reviewed the adoptive transfusion of Tol-DCs induced by different ways to prolong cardiac allograft survival and its possible mechanism. METHOD MEDLINE (1966 to March 2011), EMbase (1980 to March 2011), and ISI (inception to March 2011) were searched for identification of relevant studies. We used allogeneic heart graft survival time as endpoint outcome to analyze the effect of adoptive transfusion of Tol-DC on cardiac allograft. By integrating studies' information, we summarized the mechanisms of Tol-DC in prolonging cardiac grafts. RESULTS Four methods were used to induce Tol-DC in all of the 44 included studies including gene-modified, drug-intervened, cytokine-induced, and other-derived (liver-derived & spleen-derived) DCs. The results showed that all types of Tol-DC can effectively prolong graft survival, and the average extension of graft survival time for each group was as follows: 22.02 ± 21.9 days (3.2 folds to control group) in the gene modified group, 25.94 ± 16.9 days (4.3 folds) in the drug-intervened groups, 9.00 ± 8.13 days (1.9 folds) in the cytokine-induced group, and 10.69 ± 9.94 days (2.1 folds) in the other-derived group. The main mechanisms of Tol-DCs to prolong graft survival were as follows: (1) induceT-cell hyporeactivity (detected by MLR); (2) reduce the effect of cytotoxic lymphocyte (CTL); (3) promote Th2 differentiation; (4) induce Treg; (5) induce chimerism. CONCLUSION For fully MHC mismatched allogeneic heart transplant recipients of inbred mouse, adoptive transfusion of Tol-DC, which can be gene-modified, drug-intervened, cytokine-induced, spleen-derived or liver-derived, can clearly prolong the survival of cardiac allograft or induce immune tolerance. Gene-modified and drug-induced Tol-DC can prolong graft survival most obviously. Having better reliability and stability than drug-induction, gene-modification is the best way to induce Tol-DCs at present. One-time intravenous infusion of 2 × 10(6) Tol-DC is a simple and feasible way to induce long-term graft survival. Multiple infusions will prolong it but increase the risk and cost. Adoptive transfusion of Tol-DC in conjunction with immunosuppressive agents may also prolong the graft survival time.
Collapse
Affiliation(s)
- Wenqiao Wu
- Key Laboratory of Transplant Engineering and Immunology of Health Ministry of China, Regenerative medical research center, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang Z, Divito S, Shufesky W, Sumpter T, Wang H, Tkacheva OA, Wang W, Liu C, Larregina AT, Morelli AE. Dendritic cell therapies in transplantation revisited: deletion of recipient DCs deters the effect of therapeutic DCs. Am J Transplant 2012; 12:1398-408. [PMID: 22500950 PMCID: PMC3365643 DOI: 10.1111/j.1600-6143.2012.04060.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A critical goal in transplantation is the achievement of donor-specific tolerance, minimizing the use of immunosuppressants. Dendritic cells (DCs) are antigen (Ag) presenting cells (APCs) with capability to promote immunity or tolerance. The immune-regulatory properties of DCs have been exploited for generation of tolerogenic/immunosuppressive (IS) DCs that, when transfer systemically, prolong allograft survival in murine models. Surprisingly, the in vivo mechanisms of therapies based on (donor- or recipient-derived) ISDCs in transplantation remain unknown, given that previous studies investigated their effects in vitro, or ex vivo after transplantation. Since once injected, ISDCs are short-lived and transfer Ag to recipient APCs, we assessed the role of recipient DCs by depleting them at the time of ISDC-therapy in a mouse model of cardiac transplantation. The results indicate that, contrary to the accepted paradigm, systemically administered ISDCs reduce the alloresponse and prolong allograft survival, not by themselves, but through conventional DCs (cDCs) of the recipient. These findings raise doubts on the advantages of the currently used ISDC-therapies, since the immune-regulatory properties of the injected ISDC do not seem to be functionally relevant in vivo, and the quiescent/pro-tolerogenic status of cDCs may be compromised in patients with end-stage diseases that require transplantation.
Collapse
Affiliation(s)
- Z. Wang
- T.E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,The Heart Lung and Esophageal Surgery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - S.J. Divito
- T.E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - W.J. Shufesky
- T.E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - T. Sumpter
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - H. Wang
- The Heart Lung and Esophageal Surgery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - O. A. Tkacheva
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - W. Wang
- The Heart Lung and Esophageal Surgery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - C. Liu
- The Heart Lung and Esophageal Surgery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - A. T. Larregina
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - A. E. Morelli
- T.E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
25
|
Wood KJ, Bushell A, Hester J. Regulatory immune cells in transplantation. Nat Rev Immunol 2012; 12:417-30. [DOI: 10.1038/nri3227] [Citation(s) in RCA: 340] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Hattori T, Saban DR, Emami-Naeini P, Chauhan SK, Funaki T, Ueno H, Dana R. Donor-derived, tolerogenic dendritic cells suppress immune rejection in the indirect allosensitization-dominant setting of corneal transplantation. J Leukoc Biol 2012; 91:621-7. [PMID: 22291211 DOI: 10.1189/jlb.1011500] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Significant interest has been focused on the use of ex vivo-manipulated DCs to optimally induce transplant tolerance and promote allograft survival. Although it is understood that donor-derived, tolerogenic DCs suppress the direct pathway of allosensitization, whether such DCs can similarly suppress the indirect pathway remains unclear. We therefore used the murine model of corneal transplantation to address this, as these allografts are rejected in an indirect pathway-dominant manner. Interestingly, recipients administered with donor bone marrow-derived DCregs, generated via culturing with GM-CSF, IL-10, and TGF-β1, significantly prolonged survival of corneal allografts. Correspondingly, these recipients demonstrated a potent reduction in the frequency of indirectly allosensitized T cells, as determined by ELISPOT. Examination of DCregs relative to mDCs or iDCs showed a resistance to up-regulation of MHC-II and costimulatory molecules, as well as an impaired capacity to stimulate MLRs. In vivo, DCreg administration in corneal-allografted recipients led to inhibition of CD4(+)IFN-γ(+) T cell frequencies and an associated increase in Foxp3 expression in the Treg compartment. We conclude that donor-derived, tolerogenic DCs significantly suppress the indirect pathway, thereby identifying a novel regulatory mechanism for these cells in transplantation.
Collapse
|
27
|
Ferreira GB, van Etten E, Verstuyf A, Waer M, Overbergh L, Gysemans C, Mathieu C. 1,25-Dihydroxyvitamin D3 alters murine dendritic cell behaviour in vitro and in vivo. Diabetes Metab Res Rev 2011; 27:933-41. [PMID: 22069288 DOI: 10.1002/dmrr.1275] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Differentiation and maturation of dendritic cells yield a cell type with the ability to prime immune responses towards defence and destruction. 1,25(OH)2D3, the active form of vitamin D3, fosters the development of tolerogenic dendritic cells. This study aimed to evaluate the effects of 1,25(OH)2D3 on murine dendritic cell behaviour in vitro and in vivo. METHODS Dendritic cells were differentiated from bone marrow cells of female C57Bl/6 mice in the presence or absence of 10(-8) M 1,25(OH)2D3 for 8 days (IL4 and GM-CSF). Maturation was induced for 48 h (IFNγ, LPS and BALB/C islet homogenate antigen). RESULTS Bone marrow-derived dendritic cells displayed a different surface marker profile in the presence of 1,25(OH)2D3 with decreased MHC II, CD86 and CD80 and increased CCR5, DEC205, F4/80 and CD40, as well as lower IL6 and IL12 expression upon LPS/IFNγ stimulation. T-cell proliferation was significantly reduced when exposed to islet antigen-loaded 1,25D3-DCs as compared to control dendritic cells and IL4, IL10, TNFα and TGFβ levels were increased. In vivo, transfer of islet antigen-loaded control dendritic cells resulted in priming of the immune system and hyperacute islet allograft rejection (4/4), whereas this was prevented in 5/7 mice treated with islet antigen-loaded 1,25D3-DCs. CONCLUSION We conclude that in vitro 1,25(OH)2D3 exposure alters dendritic cell behaviour, converting them into a cell type that drives T cells away from destruction towards a regulatory phenotype.
Collapse
Affiliation(s)
- Gabriela Bomfim Ferreira
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Katholieke Universiteit Leuven (KUL), 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
28
|
Deng C, Qi H, Wang X, Zhou H, Deng S, Li F. Role of T and Dendritic Cells in Mouse Islet Allografts Treated With Anti-CD45RB Monoclonal Antibodies. Transplant Proc 2011; 43:2721-7. [DOI: 10.1016/j.transproceed.2011.05.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 03/29/2011] [Accepted: 05/11/2011] [Indexed: 01/09/2023]
|
29
|
Hill M, Segovia M, Cuturi MC. What is the role of antigen-processing mechanisms in autologous tolerogenic dendritic cell therapy in organ transplantation? Immunotherapy 2011; 3:12-4. [PMID: 21524160 DOI: 10.2217/imt.11.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Injection of autologous tolerogenic dendritic cells is a promising strategy to diminish the burden of harmful immunosuppression in clinical transplantation. We discuss the immunoregulatory mechanisms triggered by this approach. Tolerogenic dendritic cells have long been associated with decreased antigen-processing capacities. However, different lines of evidence led us to propose that injected autologous dendritic cells may need to process donor antigens from graft passenger leukocytes. It is known that drugs such as calcineurin inhibitors can interfere with antigen processing. Indeed, this issue is of the most importance to rationalize the translation of autologous tolerogenic dendritic cell therapy to the clinic.
Collapse
|
30
|
Ezzelarab M, Thomson AW. Tolerogenic dendritic cells and their role in transplantation. Semin Immunol 2011; 23:252-63. [PMID: 21741270 DOI: 10.1016/j.smim.2011.06.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 06/10/2011] [Indexed: 01/09/2023]
Abstract
The pursuit of clinical transplant tolerance has led to enhanced understanding of mechanisms underlying immune regulation, including the characterization of immune regulatory cells, in particular antigen-presenting cells (APC) and regulatory T cells (Treg), that may play key roles in promoting operational tolerance. Dendritic cells (DC) are highly efficient APC that have been studied extensively in rodents and humans, and more recently in non-human primates. Owing to their ability to regulate both innate and adaptive immune responses, DC are considered to play crucial roles in directing the alloimmune response towards transplant tolerance or rejection. Mechanisms via which they can promote central and peripheral tolerance include clonal deletion, the induction of Treg, and inhibition of memory T cell responses. These properties have led to the use of tolerogenic DC as a therapeutic strategy to promote organ transplant tolerance. In rodents, infusion of donor- or recipient-derived tolerogenic DC can extensively prolong donor-specific allograft survival, in association with regulation of the host T cell response. In clinical transplantation, progress has been made in monitoring DC in relation to graft outcome, including studies in operational liver transplant tolerance. Although clinical trials involving immunotherapeutic DC for patients with cancer are ongoing, implementation of human DC therapy in clinical transplantation will require assessment of various critical issues. These include cell isolation and purification techniques, source, route and timing of administration, and combination immunosuppressive therapy. With ongoing non-human primate studies focused on DC therapy, these logistics can be investigated seeking the optimal approaches. The scientific rationale for implementation of tolerogenic DC therapy to promote clinical transplant tolerance is strong. Evaluation of technical and therapeutic logistic issues is an important next step prior to the application of tolerogenic DC in clinical organ transplantation.
Collapse
Affiliation(s)
- Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, BST W1540, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
31
|
HLA-G level on monocytoid dendritic cells correlates with regulatory T-cell Foxp3 expression in liver transplant tolerance. Transplantation 2011; 91:1132-40. [PMID: 21423069 DOI: 10.1097/tp.0b013e31821414c9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Human leukocyte antigen (HLA)-G is a nonclassical HLA class I molecule expressed as membrane-bound and soluble isoforms. Interaction of HLA-G with its receptor, immunoglobulin-like transcript 4 on dendritic cells (DCs) down-regulates their T-cell stimulatory ability. METHODS We examined expression of HLA-G, immunoglobulin-like transcript 4, other immune regulatory molecules (inducible costimulator ligand and glucocorticoid-induced tumor necrosis factor-related receptor ligand), and the activation marker CMRF44 on circulating monocytoid dendritic cell (mDC) and plasmacytoid dendritic cell by monoclonal antibody staining and flow cytometry. Three groups of stable liver transplant recipients: operationally tolerant (TOL), prospective immunosuppressive drug weaning, and maintenance immunosuppression (MI) were studied, together with healthy controls (HC). Serum HLA-G levels were measured by enzyme-linked immunosorbent assay. RESULTS In TOL patients, monocytoid dendritic cell (mDC) but not plasmacytoid dendritic cell expressed higher HLA-G than in MI patients or HC. In TOL patients, the incidence of CD4(+)CD25(hi)CD127(-) regulatory T cells (Treg) and the intensity of Treg forkhead box p3 (Foxp3) expression were significantly higher than in the MI group. HLA-G expression on circulating mDC correlated significantly with that of Foxp3 in the TOL group. There was no correlation between immunosuppressive drug (tacrolimus) dose or trough level and HLA-G expression or Treg frequency or Foxp3 expression. The incidence of patients with circulating HLA-G levels more than 100 ng/mL was highest in the TOL group, although statistical significance was not achieved. CONCLUSIONS Higher HLA-G expression on circulating mDC in TOL recipients compared with MI or HC, suggests a possible role of HLA-G in immune regulation possibly mediated by enhanced host Treg Foxp3 expression.
Collapse
|
32
|
Liu X, Mishra P, Yu S, Beckmann J, Wendland M, Kocks J, Seth S, Hoffmann K, Hoffmann M, Kremmer E, Förster R, Worbs T. Tolerance induction towards cardiac allografts under costimulation blockade is impaired in CCR7-deficient animals but can be restored by adoptive transfer of syngeneic plasmacytoid dendritic cells. Eur J Immunol 2011; 41:611-23. [PMID: 21341262 DOI: 10.1002/eji.201040877] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/15/2010] [Accepted: 12/15/2010] [Indexed: 12/19/2022]
Abstract
Deficiency of transplant recipients for the chemokine receptor CCR7 was originally described to slightly increase the survival time of vascularized solid organ grafts, probably due to a reduced priming of alloreactive T cells. Using a model of allotolerance induction by donor-specific splenocyte transfusion (DST) in combination with anti-CD40L mAb-mediated costimulation blockade (CSB), we show here a striking failure of CCR7-deficient (CCR7(-/-) ) recipients to tolerate cardiac allografts. Furthermore, in addition to the recently described lack of Treg, CCR7(-/-) mice were found to harbor significantly reduced numbers of plasmacytoid dendritic cells (pDCs) within peripheral as well as mesenteric lymph nodes (LNs), but not the bone marrow or spleen. pDCs had previously been suggested to function as tolerogenic APC during allograft transplantation, and a single transfer of syngeneic WT pDCs, but not conventional DCs, was indeed sufficient to rescue graft survival in DST+CSB-treated CCR7(-/-) recipients in a dose-dependent manner. We therefore conclude that the nearly complete absence of pDCs within LNs of CCR7(-/-) mice prevents the successful induction of DST+CSB-mediated allotolerance, leading to the observed acute rejection of cardiac allografts under tolerizing conditions.
Collapse
Affiliation(s)
- Xiaosun Liu
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Endogenous dendritic cells mediate the effects of intravenously injected therapeutic immunosuppressive dendritic cells in transplantation. Blood 2010; 116:2694-705. [PMID: 20576812 DOI: 10.1182/blood-2009-10-251058] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The prevailing idea regarding the mechanism(s) by which therapeutic immunosuppressive dendritic cells (DCs) restrain alloimmunity is based on the concept that they interact directly with antidonor T cells, inducing anergy, deletion, and/or regulation. However, this idea has not been tested in vivo. Using prototypic in vitro-generated maturation-resistant (MR) DCs, we demonstrate that once MR-DCs carrying donor antigen (Ag) are administered intravenously, they decrease the direct and indirect pathway T-cell responses and prolong heart allograft survival but fail to directly regulate T cells in vivo. Rather, injected MR-DCs are short-lived and reprocessed by recipient DCs for presentation to indirect pathway CD4(+) T cells, resulting in abortive activation and deletion without detrimental effect on the number of indirect CD4(+) FoxP3(+) T cells, thus increasing the regulatory to effector T cell relative percentage. The effect on the antidonor response was independent of the method used to generate therapeutic DCs or their viability; and in accordance with the idea that recipient Ag-presenting cells mediate the effects of therapeutic DCs in transplantation, prolongation of allograft survival was achieved using donor apoptotic MR-DCs or those lacking surface major histocompatibility complex molecules. We therefore conclude that therapeutic DCs function as Ag-transporting cells rather than Ag-presenting cells to prolong allograft survival.
Collapse
|
34
|
Abe M, Metes D, Thomson AW. Dendritic cells and regulation of alloimmune responses: relevance to outcome and therapy of organ transplantation. Expert Rev Clin Immunol 2010; 1:419-30. [PMID: 20476992 DOI: 10.1586/1744666x.1.3.419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dendritic cells are uniquely well-equipped for antigen capture, processing and presentation. They are highly-efficient antigen-presenting cells that induce and regulate T-cell reactivity. Due to their inherent tolerogenicity, immature dendritic cells offer considerable potential as candidate cellular vaccines for negative regulation of immune reactivity/promotion of tolerance. Both classic myeloid and, more recently, characterized plasmacytoid dendritic cells, exhibit tolerogenic properties. Manipulation of dendritic cells differentiation/ maturation in the laboratory using cytokines, pharmacologic agents or genetic engineering approaches can render stably immature dendritic cells that promote organ transplant tolerance in rodents. There are also indications from human studies of the ability of dendritic cells to promote T-cell tolerance and induce T-regulatory cells, with potential for therapeutic application in organ transplantation. In addition, recent clinical observations suggest that modulation of dendritic cell function (e.g., by immunosuppressive drugs) affects the outcome of transplantation. The challenge confronting applied dendritic cell biology is the identification of optimal strategies and therapeutic regimens to allow the potential of these powerful immune regulatory cells to be realized in the clinic.
Collapse
Affiliation(s)
- Masanori Abe
- Thomas E Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
35
|
Xiong M, Lu J, Zhao A, Xu L, Bao S, Lin Q, Yang B. Therapy with FasL-gene-modified dendritic cells confers a protective microenvironment in murine pregnancy. Fertil Steril 2010; 93:2767-9. [PMID: 20117771 DOI: 10.1016/j.fertnstert.2009.11.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 11/19/2009] [Accepted: 11/19/2009] [Indexed: 11/17/2022]
Abstract
Analysis of the expression of FasL in the local decidua of pregnant mice and examination of the apoptosis of T cells in peripheral blood and local decidua indicated that adoptive transference of FasL-gene-modified dendritic cells may induce pregnancy immune tolerance by increasing FasL expression in the maternal-fetal interface and inducing the apoptosis of T cells in local decidua but not the peripheral blood.
Collapse
Affiliation(s)
- Miao Xiong
- Department of Obstetrics and Gynecology, Shanghai Pudong New Area Gongli Hospital, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Lott DG, Dan O, Lu L, Strome M. Decoy NF-kappaB fortified immature dendritic cells maintain laryngeal allograft integrity and provide enhancement of regulatory T cells. Laryngoscope 2010; 120:44-52. [PMID: 19877191 DOI: 10.1002/lary.20667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES/HYPOTHESIS The increased risk of malignancy associated with post-transplant immunosuppression limits the potential of laryngeal transplantation as a reconstructive option. This risk may be mitigated by utilizing decoy nuclear factor kappa B (NF-kappaB) immature dendritic cells (iDC) to provide donor-specific tolerance. The purpose of this study was to explore whether tolerogenic properties of iDC can be applied to composite tissue transplantation. STUDY DESIGN Animal study. METHODS Five iDC-injected mice were euthanized at 15, 30, and 60 days post-laryngeal transplant. Control groups included five transplanted mice without immunosuppression, one iDC-injected mouse euthanized prior to transplantation, one mouse without injection or transplantation, and one mouse administered mature DC to serve as an accelerated rejection control. Larynges were graded for rejection severity according to a grading scale. Draining lymph nodes and spleens were evaluated by flow cytometry to determine immunogenic activity of iDC and T cells locally and peripherally. RESULTS Each time group demonstrated moderate allograft rejection (rejection severity scores: 4.38, 5.10, 5.29). NF-kappaB iDC-treated mice had significantly less rejection at all time points compared to nonimmunosuppressed mice. Flow cytometry showed inhibition of cytotoxic T cell infiltration and expansion of regulatory T cells at the allograft site. CONCLUSIONS iDC immunosuppression maintains laryngeal allograft integrity up to 60 days post-transplantation. Regulatory T cells are enhanced at the allograft site, which serves to suppress immune cell activation and induce self-antigen tolerance. iDC injection may lessen post-transplant comorbidities by decreasing the systemic immune response and favorably affecting concurrent immunosuppressive dose sequencing for laryngeal allograft preservation.
Collapse
Affiliation(s)
- David G Lott
- Cleveland Clinic Head and Neck Institute, Cleveland, Ohio 44195, USA.
| | | | | | | |
Collapse
|
37
|
Ma DY, Clark EA. The role of CD40 and CD154/CD40L in dendritic cells. Semin Immunol 2009; 21:265-72. [PMID: 19524453 DOI: 10.1016/j.smim.2009.05.010] [Citation(s) in RCA: 319] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 05/15/2009] [Indexed: 02/08/2023]
Abstract
In this review, we focus on the function of CD40-CD40L (CD154) interactions in the regulation of dendritic cell (DC)-T cell and DC-B cell crosstalk. In addition, we examine differences and similarities between the CD40 signaling pathway in DCs and other innate immune cell receptors, and how these pathways integrate DC functions. As research into DC vaccines and immunotherapies progresses, further understanding of CD40 and DC function will advance the applicability of DCs in immunotherapy for human diseases.
Collapse
Affiliation(s)
- Daphne Y Ma
- Department of Immunology, 1959 NE Pacific Street, Health Sciences Building, Box 357650, Seattle, WA 98195-7650, USA
| | | |
Collapse
|
38
|
Oluwole SF, Oluwole OO, Adeyeri AO, DePaz HA. New strategies in immune tolerance induction. Cell Biochem Biophys 2009; 40:27-48. [PMID: 15289641 DOI: 10.1385/cbb:40:3:27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Induction of tolerance in clinical organ transplantation that will obviate the use of chronic immunosuppression and preserve host immune response to other antigens remains the goal of transplant research. The thymus plays a critical role in the ability of the immune system to discriminate between self- and nonself-antigens or harmful and harmless alloantigens. We now know that multiple factors determine how the immune system responds to a self-antigen or foreign antigen. These determinants include developmental stage of the host, stage of T-cell maturity, site of antigen encounter, type and maturity of antigen-presenting cells, and presence and type of costimulatory molecules. Our understanding of the mechanisms of T-cell interactions with peptide/ major histocompatibility complex in peripheral lymphoid organs has led to experiments that translate into peripheral T-cell tolerance. The induction of high-avidity peripheral alloreactive T cells in the early phase of organ transplantation makes it difficult to achieve long-term alloantigen-specific tolerance without the use of transient perioperative immunosuppression. Therefore, protocols that induce robust tolerance in rodent and nonhuman primate models involve the use of donor antigen combined with a short course of perioperative immunosuppression. These studies suggest that the underlying mechanisms of peripheral tolerance include deletion, anergy, immune deviation, and regulatory T cells. This review focuses on recent advances in tolerance induction in experimental animal models and discusses their relevance to the development of protocols for the induction and maintenance of clinical transplant tolerance.
Collapse
Affiliation(s)
- Soji F Oluwole
- Department of Surgery, Columbia University, College of Physicians and Surgeons, New York, NY, USA.
| | | | | | | |
Collapse
|
39
|
Ueno T, Tanaka K, Jurewicz M, Murayama T, Guleria I, Fiorina P, Paez JC, Augello A, Vergani A, Wong M, Smith RN, Abdi R. Divergent role of donor dendritic cells in rejection versus tolerance of allografts. J Am Soc Nephrol 2009; 20:535-44. [PMID: 19129312 DOI: 10.1681/asn.2008040377] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Little is known about heart tissue/donor dendritic cells, which play a key role in mounting alloimmune responses. In this report, we focus on three primary features of donor dendritic cells: their generation, their trafficking after transplantation, and their role in regulating tolerance versus rejection. Using transgenic mice as donors of heart allografts enabled us to monitor trafficking of donor dendritic cells after transplantation. Donor dendritic cells rapidly migrated into secondary lymphoid tissues within 3 h of transplantation. We found that the chemokine receptor CX3CR1 regulates the generation of heart tissue dendritic cells constitutively. Compared with wild-type hearts, CX3CR1(-/-) hearts contained fewer dendritic cells, and heart allografts from CX3CR1(-/-) donors survived significantly longer without immunosuppression. Unexpectedly, though, co-stimulatory blockade with anti-CD154 or CTLA4-Ig induced long-term survival for wild-type heart allografts but not for CX3CR1(-/-) heart allografts. Increasing the dendritic cell frequency in CX3CR1(-/-) hearts by treatment with Flt3L restored the anti-CD154-induced prolongation of CX3CR1(-/-) heart allograft survival. Compared with wild-type donors, depleting transgenic donors of dendritic cells before heart transplantation also markedly worsened chronic rejection under anti-CD154 treatment. These data indicate the importance of the CX3CR1 pathway in the generation of heart tissue dendritic cells and the divergent role of tissue/dendritic cells in rejection versus tolerance.
Collapse
Affiliation(s)
- Takuya Ueno
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Eshel D, Toporik A, Efrati T, Nakav S, Chen A, Douvdevani A. Characterization of natural human antagonistic soluble CD40 isoforms produced through alternative splicing. Mol Immunol 2008; 46:250-7. [DOI: 10.1016/j.molimm.2008.08.280] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 08/18/2008] [Accepted: 08/27/2008] [Indexed: 10/21/2022]
|
41
|
Induction of Donor-Specific T-Cell Hyporesponsiveness Using Dexamethasone-Treated Dendritic Cells in Two Fully Mismatched Rat Kidney Transplantation Models. Transplantation 2008; 86:1275-82. [DOI: 10.1097/tp.0b013e31818a6682] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Eksteen B, Neuberger JM. Mechanisms of disease: the evolving understanding of liver allograft rejection. NATURE CLINICAL PRACTICE. GASTROENTEROLOGY & HEPATOLOGY 2008; 5:209-219. [PMID: 18317494 DOI: 10.1038/ncpgasthep1070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 01/02/2008] [Indexed: 12/18/2022]
Abstract
Liver transplantation is a successful treatment for select forms of liver disease and is unrivalled amongst other forms of solid organ transplantation in the ability of the recipient to develop long-term tolerance to the allograft. Much of this success can be attributed to the inherently tolerogenic manner in which antigens are presented in the liver and the presence of specialized regulatory lymphocyte populations. These observations are not universal, however, and a proportion of recipients develop problematic allograft rejection. Anti-allograft responses lead to an influx of effector cells that target hepatic parenchymal cells and induce apoptosis through members of the tumor necrosis factor superfamily. Anti-rejection therapies have traditionally targeted the entire lymphocyte response against the allograft and, whilst these therapies have been efficacious at limiting effector cell responses, they have also had deleterious effects on the regulatory cell populations that are required to promote long-term tolerance. The emergence of newer anti-rejection drugs that have the potential to target the effector response selectively, whilst preserving the much needed tolerogenic responses, has afforded us the opportunity to refine our future immunosuppressant strategies.
Collapse
Affiliation(s)
- Bertus Eksteen
- Liver Unit, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | | |
Collapse
|
43
|
Prolongation of Composite Tissue Allograft Survival by Immature Recipient Dendritic Cells Pulsed with Donor Antigen and Transient Low-Dose Immunosuppression. Plast Reconstr Surg 2008; 121:37-49. [DOI: 10.1097/01.prs.0000293754.55706.7f] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Laskarin G, Kämmerer U, Rukavina D, Thomson AW, Fernandez N, Blois SM. Antigen-presenting cells and materno-fetal tolerance: an emerging role for dendritic cells. Am J Reprod Immunol 2007; 58:255-67. [PMID: 17681042 DOI: 10.1111/j.1600-0897.2007.00511.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During pregnancy, a delicate balance of innate and adaptive immune responses at the maternal-fetal interface promotes survival of the semi-allogeneic embryo and, at the same time, allows effective immunity to protect the mother from environmental pathogens. As in other tissues, antigen handling and processing in the decidualized endometrium constitutes a primary event in the onset of immune responses and is therefore likely to determine their stimulatory or tolerogenic nature. Maternal antigen-presenting cells [macrophages and dendritic cells (DCs)] are scattered throughout the decidualized endometrium during all stages of pregnancy and appear to be important players in this feto-maternal immune adjustment. This review focuses on the characterization of decidual macrophages and DCs, as well as their involvement in cell-cell interactions within the decidual leukocyte network, which are likely to influence uterine and placental homeostasis as well as the local maternal immune responses to the fetus during pregnancy.
Collapse
Affiliation(s)
- Gordana Laskarin
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, Rijeka, Croatia
| | | | | | | | | | | |
Collapse
|
45
|
Oishi A, Nagai T, Mandai M, Takahashi M, Yoshimura N. The effect of dendritic cells on the retinal cell transplantation. Biochem Biophys Res Commun 2007; 363:292-6. [PMID: 17869222 DOI: 10.1016/j.bbrc.2007.08.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 08/21/2007] [Indexed: 01/15/2023]
Abstract
The potential of bone marrow cell-derived immature dendritic cells (myeloid iDCs) in modulating the efficacy of retinal cell transplantation therapy was investigated. (1) In vitro, myeloid iDCs but not BMCs enhanced the survival and proliferation of embryonic retinal cells, and the expression of various neurotrophic factors by myeloid iDCs was confirmed with RT-PCR. (2) In subretinal transplantation, neonatal retinal cells co-transplanted with myeloid iDCs showed higher survival rate compared to those transplanted without myeloid iDCs. (3) CD8 T-cells reactive against donor retinal cells were significantly increased in the mice with transplantation of retinal cells alone. These results suggested the beneficial effects of the use of myeloid iDCs in retinal cell transplantation therapy.
Collapse
Affiliation(s)
- Akio Oishi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Japan
| | | | | | | | | |
Collapse
|
46
|
Rehman KK, Bertera S, Trucco M, Gambotto A, Robbins PD. Immunomodulation by Adenoviral-Mediated SCD40-Ig Gene Therapy for Mouse Allogeneic Islet Transplantation. Transplantation 2007; 84:301-7. [PMID: 17700153 DOI: 10.1097/01.tp.0000275183.50435.b6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The success of pancreatic islet transplantation is limited because of immune rejection of allogeneic transplanted tissue and potential adverse side effects of nonspecific immunosuppression. Local expression of an immunosuppressive agent at the site of islet transplant could promote long-term engraftment without associated systemic side effects. METHODS We have examined the ability of adenoviral vector mediated local production of sCD40-immunoglobulin (Ig), blocking the CD40-CD40 ligand (CD40L) costimulatory pathway, from genetically modified allogeneic islets to facilitate long-term engraftment in fully allogeneic mouse model. RESULTS Transplantation of islets infected with an adenoviral vector expressing sCD40-Ig resulted in allograft survival longer than 120 days in five of the nine recipient mice (56%). However, mice that received mock infected (n=5) or control adenoviral vector (Ad.eGFP; n=6) rejected the allograft with a median survival of 15 and 16 days, respectively. Histopathology demonstrated that the grafts of the long-term surviving animals preserved islets with minimal mononuclear cell infiltration. CONCLUSION These results demonstrate that local inhibition of the CD40-CD40L pathway by adenoviral gene transfer of sCD40-Ig to the islets prior to transplant significantly prolonged islet allograft acceptance. This approach could be used clinically to facilitate islet transplantation.
Collapse
Affiliation(s)
- Khaja K Rehman
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
47
|
Zahorchak AF, Kean LS, Tokita D, Turnquist HR, Abe M, Finke J, Hamby K, Rigby MR, Larsen CP, Thomson AW. Infusion of Stably Immature Monocyte-Derived Dendritic Cells Plus CTLA4Ig Modulates Alloimmune Reactivity in Rhesus Macaques. Transplantation 2007; 84:196-206. [PMID: 17667811 DOI: 10.1097/01.tp.0000268582.21168.f6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Immature dendritic cells (DC) can promote long-term transplant survival in rodents. We assessed the impact of stably immature, donor-derived DC on alloimmune reactivity in rhesus macaques. METHODS CD14 monocytes isolated from leukapheresis products of Macacca mulatta were cultured in granulocyte-macrophage colony stimulating factor plus interleukin (IL)-4+/-vitamin (vit) D3, and IL-10. Major histocompatibility complex class II and cosignaling molecule expression was determined on CD11c cells by flow cytometry. T-cell allostimulatory capacity of the DC, including DC exposed to proinflammatory cytokines, was determined in mixed leukocyte reaction. To test their influence in vivo, purified DC were infused intravenously into allogeneic recipients, either alone or followed by CTLA4Ig, 24 hr later. Proliferative responses of recipient CFSE-labeled T cells to donor or third party DC, cytokine production by stimulated T cells, and circulating alloantibody levels were determined by flow cytometry, up to 100 days postinfusion. RESULTS VitD3/IL-10-conditioned, monocyte-derived DC were resistant to maturation and failed to induce allogeneic T cell proliferation in vitro. After their infusion, an increase in anti-donor and anti-third party T-cell reactivity was observed, that subsequently subsided to fall significantly below pretreatment levels (by day 56) only in animals also given CTLA4Ig. No increase in circulating immunoglobulin (Ig) M or IgG anti-donor alloantibody titers compared with pretreatment values was detected. With DC+CTLA4Ig infusion, alloreactive IL-10-producing T cells were prevalent in the circulation after day 28. CONCLUSIONS Maturation-resistant rhesus DC infusion is well-tolerated. DC+CTLA4Ig infusion modulates allogeneic T-cell responses and results in hyporesponsiveness to donor and third party alloantigens.
Collapse
Affiliation(s)
- Alan F Zahorchak
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang SH, Jin JZ, Lee SH, Park H, Kim CH, Lee DS, Kim S, Chung NH, Kim YS. Role of NKT cells in allogeneic islet graft survival. Clin Immunol 2007; 124:258-66. [PMID: 17662658 DOI: 10.1016/j.clim.2007.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
Although NKT cells expressing CD1d-reactive TCR exerted protective role in autoimmune diseases, the regulatory function of CD1d-dependent NKT cells in alloimmune responses has not been investigated thoroughly. Here, we demonstrated the regulatory effects of NKT cells using a pancreas islet transplantation model. CD40/CD154 blocking induced long-term graft survival in most B6 recipients, but B6.CD1d(-/-) recipients showed co-stimulation blockade-resistant rejection. Adoptive transfer of NKT cells into B6.CD1d(-/-) restored tolerizing capacity of co-stimulatory blockade. Activation of NKT cells was effective for the prolongation of graft survival and up-regulated membrane-bound TGF-beta expression transiently on their cell surface. The activated CD1d-dependent NKT cells inhibited alloantigen-driven cell proliferation through cell contacts and the beneficial effect of CD154 blocking for allograft survival was related to TGF-beta pathway. Thus, we can conclude that NKT cells are essential for the stable allograft survival and the regulatory function is dependent on, at least in part, TGF-beta engagement.
Collapse
Affiliation(s)
- Seung Hee Yang
- Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Morelli AE, Thomson AW. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 2007; 7:610-21. [PMID: 17627284 DOI: 10.1038/nri2132] [Citation(s) in RCA: 693] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, there has been a shift from the perception of dendritic cells (DCs) solely as inducers of immune reactivity to the view that these cells are crucial regulators of immunity, which includes their ability to induce and maintain tolerance. Advances in our understanding of the phenotypical and functional plasticity of DCs, and in our ability to manipulate their development and maturation in vitro and in vivo, has provided a basis for the therapeutic harnessing of their inherent tolerogenicity. In this Review, we integrate the available information on the role of DCs in the induction of tolerance, with a focus on transplantation.
Collapse
Affiliation(s)
- Adrian E Morelli
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
50
|
Oh BC, Lee HM, Lim DP, Cho JJ, Lee G, Lee DS, Lee JR. Effect of immature dendritic cell injection before heterotropic cardiac allograft. Transplant Proc 2007; 38:3189-92. [PMID: 17175218 DOI: 10.1016/j.transproceed.2006.10.180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Indexed: 11/17/2022]
Abstract
Although dendritic cells (DCs) are unrivaled for initiation of immune responses, the immunomodulatory capacity of chemically fixed DC has not been thoroughly evaluated. We monitored the tolerogenic capacity of chemically fixed DCs using allogeneic heart transplantations. Bone marrow progenitors were differentiated into immature DCs which were then chemically fixed and injected intravenously into recipient mice at 14 days before allogeneic heart transplantation. Chemically fixed DCs markedly prolonged graft survival in the major histocompatibility complex (MHC) I/II mismatch cardiac transplantation (B6 --> B10.A; median survival time [MST] 12.5 days vs >70 days). T cells that encountered chemically fixed DCs showed attenuated apoptotic cell death and inactivated phenotypes after allogeneic heterotropic heart transplantation. Furthermore, when DCs from interleukin (IL)-10-/- mice were treated, the in vitro T-cell response was greater than that from IL-12-/- mice. We have suggested that the chemically fixed DCs may mediate peripheral T-cell tolerance, with therapeutic potential for allogeneic transplantation.
Collapse
Affiliation(s)
- B C Oh
- Department of Immunology, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|