1
|
Ding Z, Yang J, Wu B, Wu Y, Guo F. Long non-coding RNA CCHE1 modulates LDHA-mediated glycolysis and confers chemoresistance to melanoma cells. Cancer Metab 2023; 11:10. [PMID: 37480145 PMCID: PMC10360318 DOI: 10.1186/s40170-023-00309-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/25/2023] [Indexed: 07/23/2023] Open
Abstract
Melanoma is considered as the most common metastatic skin cancer with increasing incidence and high mortality globally. The vital roles of long non-coding RNAs (lncRNAs) in the tumorigenesis of melanoma are elucidated by emerging evidence. The lncRNA cervical carcinoma high-expressed 1 (CCHE1) was overexpressed and acted as an oncogene in a variety of cancers, while the function of CCHE1 in melanoma remains unclear. Here, we found that CCHE1 was highly expressed in melanoma and correlated with the poorer survival of melanoma patients. Depletion of CCHE1 inhibited the proliferation, induced cell apoptosis and suppressed in vivo tumor growth. To further understand the functional mechanism of CCHE1, the interacting partners of CCHE1 were identified via RNA pull-down assay followed by mass spectrometry. CCHE1 was found to bind lactate dehydrogenase A (LDHA) and acted as a scaffold to enhance the interaction of LDHA with the fibroblast growth factor receptor type 1 (FGFR1), which consequently enhanced LDHA phosphorylation and activity of LDHA. Inhibiting CCHE1 strikingly suppressed the glycolytic flux of melanoma cells and lactate generation in vivo. Further study demonstrated that CCHE1 desensitized melanoma cells to dacarbazine and inhibition of glycolysis reversed CCHE1-induced chemoresistance. These results uncovered the novel function of CCHE1 in melanoma by reprogramming the glucose metabolism via orchestrating the activity of LDHA.
Collapse
Affiliation(s)
- Zhi Ding
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Junyi Yang
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Baojin Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingzhi Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fanli Guo
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Fibroblast Growth Factor Receptor Signaling in Skin Cancers. Cells 2019; 8:cells8060540. [PMID: 31167513 PMCID: PMC6628025 DOI: 10.3390/cells8060540] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factor (FGF)/Fibroblast growth factor receptor (FGFR) signaling regulates various cellular processes during the embryonic development and in the adult organism. In the skin, fibroblasts and keratinocytes control proliferation and survival of melanocytes in a paracrine manner via several signaling molecules, including FGFs. FGF/FGFR signaling contributes to the skin surface expansion in childhood or during wound healing, and skin protection from UV light damage. Aberrant FGF/FGFR signaling has been implicated in many disorders, including cancer. In melanoma cells, the FGFR expression is low, probably because of the strong endogenous mutation-driven constitutive activation of the downstream mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-ERK) signaling pathway. FGFR1 is exceptional as it is expressed in the majority of melanomas at a high level. Melanoma cells that acquired the capacity to synthesize FGFs can influence the neighboring cells in the tumor niche, such as endothelial cells, fibroblasts, or other melanoma cells. In this way, FGF/FGFR signaling contributes to intratumoral angiogenesis, melanoma cell survival, and development of resistance to therapeutics. Therefore, inhibitors of aberrant FGF/FGFR signaling are considered as drugs in combination treatment. The ongoing LOGIC-2 phase II clinical trial aims to find out whether targeting the FGF/FGFR signaling pathway with BGJ398 may be a good therapeutic strategy in melanoma patients who develop resistance to v-Raf murine sarcoma viral oncogene homolog B (BRAF)/MEK inhibitors.
Collapse
|
3
|
Ramani M, Mudge MC, Morris RT, Zhang Y, Warcholek SA, Hurst MN, Riviere JE, DeLong RK. Zinc Oxide Nanoparticle-Poly I:C RNA Complexes: Implication as Therapeutics against Experimental Melanoma. Mol Pharm 2017; 14:614-625. [PMID: 28135100 DOI: 10.1021/acs.molpharmaceut.6b00795] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is current interest in harnessing the combined anticancer and immunological effect of nanoparticles (NPs) and RNA. Here, we evaluate the bioactivity of poly I:C (pIC) RNA, bound to anticancer zinc oxide NP (ZnO-NP) against melanoma. Direct RNA association to unfunctionalized ZnO-NP is shown by observing change in size, zeta potential, and absorption/fluorescence spectra upon complexation. RNA corona was visualized by transmission electron microscopy (TEM) for the first time. Binding constant (Kb = 1.6-2.8 g-1 L) was determined by modified Stern-Volmer, absorption, and biological surface activity index analysis. The pIC-ZnO-NP complex increased cell death for both human (A375) and mouse (B16F10) cell lines and suppressed tumor cell growth in BALB/C-B16F10 mouse melanoma model. Ex vivo tumor analysis indicated significant molecular activity such as changes in the level of phosphoproteins JNK, Akt, and inflammation markers IL-6 and IFN-γ. High throughput proteomics analysis revealed zinc oxide and poly I:C-specific and combinational patterns that suggested possible utility as an anticancer and immunotherapeutic strategy against melanoma.
Collapse
Affiliation(s)
| | - Miranda C Mudge
- Department of Biomedical Science, Missouri State University , Springfield, Missouri 65897, United States
| | - R Tyler Morris
- Department of Biomedical Science, Missouri State University , Springfield, Missouri 65897, United States
| | | | | | - Miranda N Hurst
- Department of Biomedical Science, Missouri State University , Springfield, Missouri 65897, United States
| | | | - Robert K DeLong
- Department of Biomedical Science, Missouri State University , Springfield, Missouri 65897, United States
| |
Collapse
|
4
|
Yarbrough WG, Panaccione A, Chang MT, Ivanov SV. Clinical and molecular insights into adenoid cystic carcinoma: Neural crest-like stemness as a target. Laryngoscope Investig Otolaryngol 2016; 1:60-77. [PMID: 28894804 PMCID: PMC5510248 DOI: 10.1002/lio2.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES This review surveys trialed therapies and molecular defects in adenoid cystic carcinoma (ACC), with an emphasis on neural crest-like stemness characteristics of newly discovered cancer stem cells (CSCs) and therapies that may target these CSCs. DATA SOURCES Articles available on Pubmed or OVID MEDLINE databases and unpublished data. REVIEW METHODS Systematic review of articles pertaining to ACC and neural crest-like stem cells. RESULTS Adenoid cystic carcinoma of the salivary gland is a slowly growing but relentless cancer that is prone to nerve invasion and metastases. A lack of understanding of molecular etiology and absence of targetable drivers has limited therapy for patients with ACC to surgery and radiation. Currently, no curative treatments are available for patients with metastatic disease, which highlights the need for effective new therapies. Research in this area has been inhibited by the lack of validated cell lines and a paucity of clinically useful markers. The ACC research environment has recently improved, thanks to the introduction of novel tools, technologies, approaches, and models. Improved understanding of ACC suggests that neural crest-like stemness is a major target in this rare tumor. New cell culture techniques and patient-derived xenografts provide tools for preclinical testing. CONCLUSION Preclinical research has not identified effective targets in ACC, as confirmed by the large number of failed clinical trials. New molecular data suggest that drivers of neural crest-like stemness may be required for maintenance of ACC; as such, CSCs are a target for therapy of ACC.
Collapse
Affiliation(s)
- Wendell G. Yarbrough
- Section of Otolaryngology, Department of Surgery, Yale School of MedicineNew HavenConnecticutUSA
- Yale Cancer CenterNew HavenConnecticutUSA
| | - Alexander Panaccione
- Department of Cancer BiologyVanderbilt University School of MedicineNashvilleTennesseeU.S.A.
| | - Michael T. Chang
- Section of Otolaryngology, Department of Surgery, Yale School of MedicineNew HavenConnecticutUSA
| | - Sergey V. Ivanov
- Section of Otolaryngology, Department of Surgery, Yale School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
5
|
Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult. Sci Rep 2015; 5:17705. [PMID: 26635098 PMCID: PMC4669526 DOI: 10.1038/srep17705] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/03/2015] [Indexed: 12/14/2022] Open
Abstract
To explore the general requirement of endothelial mTORC2 during embryonic and
adolescent development, we knocked out the essential mTORC2 component Rictor
in the mouse endothelium in the embryo, during adolescence and in endothelial cells
in vitro. During embryonic development, Rictor knockout resulted
in growth retardation and lethality around embryonic day 12. We detected reduced
peripheral vascularization and delayed ossification of developing fingers, toes and
vertebrae during this confined midgestational period. Rictor knockout did not
affect viability, weight gain, and vascular development during further adolescence.
However during this period, Rictor knockout prevented skin capillaries to
gain larger and heterogeneously sized diameters and remodeling into tortuous vessels
in response to FGF2. Rictor knockout strongly reduced extensive FGF2-induced
neovascularization and prevented hemorrhage in FGF2-loaded matrigel plugs.
Rictor knockout also disabled the formation of capillary-like networks by
FGF2-stimulated mouse aortic endothelial cells in vitro. Low RICTOR
expression was detected in quiescent, confluent mouse aortic endothelial cells,
whereas high doses of FGF2 induced high RICTOR expression that was associated with
strong mTORC2-specific protein kinase Cα and AKT phosphorylation. We
demonstrate that the endothelial FGF-RICTOR axis is not required during endothelial
quiescence, but crucial for midgestational development and sustained and extensive
neovascularization in the adult.
Collapse
|
6
|
Villaruz LC, Huang G, Romkes M, Kirkwood JM, Buch SC, Nukui T, Flaherty KT, Lee SJ, Wilson MA, Nathanson KL, Benos PV, Tawbi HA. MicroRNA expression profiling predicts clinical outcome of carboplatin/paclitaxel-based therapy in metastatic melanoma treated on the ECOG-ACRIN trial E2603. Clin Epigenetics 2015; 7:58. [PMID: 26052356 PMCID: PMC4457092 DOI: 10.1186/s13148-015-0092-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/27/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Carboplatin/paclitaxel (CP), with or without sorafenib, result in objective response rates of 18-20 % in unselected chemotherapy-naïve patients. Molecular predictors of survival and response to CP-based chemotherapy in metastatic melanoma (MM) are critical to improving the therapeutic index. Intergroup trial E2603 randomized MM patients to CP with or without sorafenib. Expression data were collected from pre-treatment formalin-fixed paraffin-embedded (FFPE) tumor tissues from 115 of 823 patients enrolled on E2603. The selected patients were balanced across treatment arms, BRAF status, and clinical outcome. We generated data using Nanostring array (microRNA (miRNA) expression) and DNA-mediated annealing, selection, extension and ligation (DASL)/Illumina microarrays (HT12 v4) (mRNA expression) with protocols optimized for FFPE samples. Integrative computational analysis was performed using a novel Tree-guided Recursive Cluster Selection (T-ReCS) [1] algorithm to select the most informative features/genes, followed by TargetScan miRNA target prediction (Human v6.2) and mirConnX [2] for network inference. RESULTS T-ReCS identified PLXNB1 as negatively associated with progression-free survival (PFS) and miR-659-3p as the primary miRNA associated positively with PFS. miR-659-3p was differentially expressed based on PFS but not based on treatment arm, BRAF or NRAS status. Dichotomized by median PFS (less vs greater than 4 months), miR-659-3p expression was significantly different. High miR-659-3p expression distinguished patients with responsive disease (complete or partial response) from patients with stable disease. miR-659-3p predicted gene targets include NFIX, which is a transcription factor known to interact with c-Jun and AP-1 in the context of developmental processes and disease. CONCLUSIONS This novel integrative analysis implicates miR-659-3p as a candidate predictive biomarker for MM patients treated with platinum-based chemotherapy and may serve to improve patient selection.
Collapse
Affiliation(s)
- Liza C Villaruz
- University of Pittsburgh Cancer Institute, Pittsburgh, PA USA
| | - Grace Huang
- University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Marjorie Romkes
- University of Pittsburgh Cancer Institute, Pittsburgh, PA USA
| | - John M Kirkwood
- University of Pittsburgh Cancer Institute, Pittsburgh, PA USA
| | - Shama C Buch
- University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Tomoko Nukui
- University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Keith T Flaherty
- University of Pennsylvania, Philadelphia, PA USA.,Massachusetts General Hospital, Boston, MA USA
| | | | - Melissa A Wilson
- University of Pennsylvania, Philadelphia, PA USA.,New York University, New York, NY USA
| | | | | | - Hussein A Tawbi
- University of Pittsburgh Cancer Institute, Pittsburgh, PA USA
| |
Collapse
|
7
|
Pastushenko I, Vermeulen PB, Van den Eynden GG, Rutten A, Carapeto FJ, Dirix LY, Van Laere S. Mechanisms of tumour vascularization in cutaneous malignant melanoma: clinical implications. Br J Dermatol 2014; 171:220-33. [PMID: 24641095 DOI: 10.1111/bjd.12973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 01/02/2023]
Abstract
Malignant melanoma represents < 10% of all skin cancers but is responsible for the majority of skin-cancer-related deaths. Metastatic melanoma has historically been considered as one of the most therapeutically challenging malignancies. Fortunately, for the first time after decades of basic research and clinical investigation, new drugs have produced major clinical responses. Angiogenesis has been considered an important target for cancer treatment. Initial efforts have focused primarily on targeting endothelial and tumour-related vascular endothelial growth factor signalling. Here, we review different mechanisms of tumour vascularization described in melanoma and discuss the potential clinical implications.
Collapse
Affiliation(s)
- I Pastushenko
- Department of Dermatology, Hospital Clínico Universitario 'Lozano Blesa', Zaragoza, 50009, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Easty DJ, Gray SG, O'Byrne KJ, O'Donnell D, Bennett DC. Receptor tyrosine kinases and their activation in melanoma. Pigment Cell Melanoma Res 2011; 24:446-61. [PMID: 21320293 DOI: 10.1111/j.1755-148x.2011.00836.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Receptor tyrosine kinases (RTKs) and their downstream signalling pathways have long been hypothesized to play key roles in melanoma development. A decade ago, evidence was derived largely from animal models, RTK expression studies and detection of activated RAS isoforms in a small fraction of melanomas. Predictions that overexpression of specific RTKs implied increased kinase activity and that some RTKs would show activating mutations in melanoma were largely untested. However, technological advances including rapid gene sequencing, siRNA methods and phospho-RTK arrays now give a more complete picture. Mutated forms of RTK genes including KIT, ERBB4, the EPH and FGFR families and others are known in melanoma. Additional over- or underexpressed RTKs and also protein tyrosine phosphatases (PTPs) have been reported, and activities measured. Complex interactions between RTKs and PTPs are implicated in the abnormal signalling driving aberrant growth and survival in malignant melanocytes, and indeed in normal melanocytic signalling including the response to ultraviolet radiation. Kinases are considered druggable targets, so characterization of global RTK activity in melanoma should assist the rational development of tyrosine kinase inhibitors for clinical use.
Collapse
Affiliation(s)
- David J Easty
- Department of Oncology, St James's Hospital, Dublin, Ireland Division of Biomedical Sciences, St George's, University of London, London, UK.
| | | | | | | | | |
Collapse
|
9
|
Biomarkers: the useful and the not so useful--an assessment of molecular prognostic markers for cutaneous melanoma. J Invest Dermatol 2010; 130:1971-87. [PMID: 20555347 DOI: 10.1038/jid.2010.149] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Among individuals with localized (Stage I-II) melanoma, stratifying patients by a number of phenotypic variables (e.g., depth of invasion, ulceration) yields a wide range of 10-year melanoma-specific survival rates. With the possible exception of Ki-67, no molecular assessment is routinely used. However, there have been a tremendous number of studies assessing protein expression by immunohistochemistry toward the goal of better prediction of recurrence. In a previous systematic review, which required publication of multivariable prognostic models as a strict inclusion criterion, we identified 37 manuscripts that collectively reported on 62 proteins. Data for 324 proteins extracted from 418 manuscripts did not meet our inclusion criteria for that study, but are revisited here, emphasizing trends of protein expression across either melanocytic lesion progression or gradations of tumor thickness. These identified 101 additional proteins that stratify melanoma, organized according to the Hanahan and Weinberg functional capabilities of cancer.
Collapse
|
10
|
Abstract
Angiogenesis is critical in melanoma progression and metastasis and relies on the synthesis and release of proangiogenic molecules such as vascular endothelial growth factor (VEGF)-A and fibroblast growth factors (FGFs). S100A13 is a small calcium-binding protein that facilitates the release of FGF-1, the prototype of the FGF family. S100A13 is upregulated in astrocytic gliomas, in which it correlates with VEGF-A expression, microvessel density and tumor grading, and promotes a more aggressive, invasive phenotype in lung cancer-derived cell lines. To investigate the involvement of S100A13 in human cutaneous melanoma, we analyzed a series of 87 cutaneous melanocytic lesions: 14 common acquired melanocytic nevi, 14 atypical, so-called 'dysplastic' nevi, 45 melanomas (17 radial growth phase and 28 vertical growth phase) and 14 melanoma metastases. Main clinical and pathological features, including histotype, Breslow thickness, Clark's level and outcome were recorded. Microvessel density was determined with CD105/endoglin staining. Semiquantitative determination of S100A13, FGF-1 and VEGF-A protein expression was obtained by immunostaining. Quantification of S100A13 mRNA was achieved by real-time PCR. We found that S100A13 was expressed in melanocytic lesions; compared with benign nevi, S100A13 protein expression was significantly upregulated in melanomas (P=0.024), in which it correlated positively with the intensity of VEGF-A staining (P=0.041) and microvessel density (P=0.007). The level of expression of S100A13 mRNA also significantly increased with progression of disease, from radial growth phase (0.7+/-0.7) to vertical growth phase (3.6+/-3.1) to metastases (7.0+/-7.0) (P<0.001). Furthermore, S100A13 mRNA correlated positively with VEGF-A (P=0.023), TNM stage (P=0.05), risk of relapse (P=0.014) and status at follow-up (P=0.024). In conclusion, S100A13 is expressed in melanocytic lesions when the angiogenic switch occurs and it may cooperate with VEGF-A in supporting the formation of new blood vessels, favoring the shift from radial to vertical tumor growth. Therefore, S100A13 may represent a new angiogenic and prognostic marker in melanoma.
Collapse
|
11
|
Gould Rothberg BE, Bracken MB, Rimm DL. Tissue biomarkers for prognosis in cutaneous melanoma: a systematic review and meta-analysis. J Natl Cancer Inst 2009; 101:452-74. [PMID: 19318635 DOI: 10.1093/jnci/djp038] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the clinical management of early-stage cutaneous melanoma, it is critical to determine which patients are cured by surgery alone and which should be treated with adjuvant therapy. To assist in this decision, many groups have made an effort to use molecular information. However, although there are hundreds of studies that have sought to assess the potential prognostic value of molecular markers in predicting the course of cutaneous melanoma, at this time, no molecular method to improve risk stratification is part of recommended clinical practice. To help understand this disconnect, we conducted a systematic review and meta-analysis of the published literature that reported immunohistochemistry-based protein biomarkers of melanoma outcome. Three parallel search strategies were applied to the PubMed database through January 15, 2008, to identify cohort studies that reported associations between immunohistochemical expression and survival outcomes in melanoma that conformed to the REMARK criteria. Of the 102 cohort studies, we identified only 37 manuscripts, collectively describing 87 assays on 62 distinct proteins, which met all inclusion criteria. Promising markers that emerged included melanoma cell adhesion molecule (MCAM)/MUC18 (all-cause mortality [ACM] hazard ratio [HR] = 16.34; 95% confidence interval [CI] = 3.80 to 70.28), matrix metalloproteinase-2 (melanoma-specific mortality [MSM] HR = 2.6; 95% CI = 1.32 to 5.07), Ki-67 (combined ACM HR = 2.66; 95% CI = 1.41 to 5.01), proliferating cell nuclear antigen (ACM HR = 2.27; 95% CI = 1.56 to 3.31), and p16/INK4A (ACM HR = 0.29; 95% CI = 0.10 to 0.83, MSM HR = 0.4; 95% CI = 0.24 to 0.67). We further noted incomplete adherence to the REMARK guidelines: 14 of 27 cohort studies that failed to adequately report their methods and nine studies that failed to either perform multivariable analyses or report their risk estimates were published since 2005.
Collapse
|
12
|
Gartside MG, Chen H, Ibrahimi OA, Byron SA, Curtis AV, Wellens CL, Bengston A, Yudt LM, Eliseenkova AV, Ma J, Curtin JA, Hyder P, Harper UL, Riedesel E, Mann GJ, Trent JM, Bastian BC, Meltzer PS, Mohammadi M, Pollock PM. Loss-of-function fibroblast growth factor receptor-2 mutations in melanoma. Mol Cancer Res 2009; 7:41-54. [PMID: 19147536 DOI: 10.1158/1541-7786.mcr-08-0021] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report that 10% of melanoma tumors and cell lines harbor mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. These novel mutations include three truncating mutations and 20 missense mutations occurring at evolutionary conserved residues in FGFR2 as well as among all four FGFRs. The mutation spectrum is characteristic of those induced by UV radiation. Mapping of these mutations onto the known crystal structures of FGFR2 followed by in vitro and in vivo studies show that these mutations result in receptor loss of function through several distinct mechanisms, including loss of ligand binding affinity, impaired receptor dimerization, destabilization of the extracellular domains, and reduced kinase activity. To our knowledge, this is the first demonstration of loss-of-function mutations in a class IV receptor tyrosine kinase in cancer. Taken into account with our recent discovery of activating FGFR2 mutations in endometrial cancer, we suggest that FGFR2 may join the list of genes that play context-dependent opposing roles in cancer.
Collapse
Affiliation(s)
- Michael G Gartside
- Division of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Deli T, Varga N, Adám A, Kenessey I, Rásó E, Puskás LG, Tóvári J, Fodor J, Fehér M, Szigeti GP, Csernoch L, Tímár J. Functional genomics of calcium channels in human melanoma cells. Int J Cancer 2007; 121:55-65. [PMID: 17330843 DOI: 10.1002/ijc.22621] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ca(2+)-signaling of human melanoma is in the focus of intensive research since the identification of the role of WNT-signaling in melanomagenesis. Genomic and functional studies pointed to the important role of various Ca(2+) channels in melanoma, but these data were contradictory. In the present study we clearly demonstrate, in a number of different ways including microarray analysis, DNA sequencing and immunocytochemistry, that various human melanoma cell lines and melanoma tissues overexpress ryanodine receptor type 2 (RyR2) and express P2X(7) channel proteins as compared to melanocytes. These channels, although retain some of their usual characteristics and pharmacological properties, display unique features in melanoma cells, including a functional interaction between the two molecules. Unlike P2X(7), RyR2 does not function as a calcium channel. On the other hand, the P2X(7) receptor has an antiapoptotic function in melanoma cells, since ATP-activation suppresses induced apoptosis, while knock down of the gene expression significantly enhances that.
Collapse
Affiliation(s)
- Tamás Deli
- Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rothhammer T, Poser I, Soncin F, Bataille F, Moser M, Bosserhoff AK. Bone Morphogenic Proteins Are Overexpressed in Malignant Melanoma and Promote Cell Invasion and Migration. Cancer Res 2005. [DOI: 10.1158/0008-5472.448.65.2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Malignant melanoma cells are known to have altered expression of growth factors compared with normal human melanocytes. These changes probably favor tumor growth and progression and influence the tumor environment. The induction of transforming growth factor β1 (TGF-β1), TGF-β2, and TGF-β3 expression in malignant melanoma has been reported before, whereas the expression of related bone morphogenic protein (BMP) molecules has not been analyzed in melanomas until now. Here, we show that BMP4 and BMP7 are up-regulated in nine melanoma cell lines, whereas BMP2 is overexpressed in only two of the analyzed cell lines. Immunohistochemistry of primary and metastatic melanoma also shows increased BMP4 and BMP7 expression compared with nevi. Promoter studies reveal that expression is controlled at the transcriptional level. The transcription factor Ets-1 was identified as a positive regulator for BMP4 expression. In order to determine the functional relevance of BMP expression in malignant melanoma, chordin-expressing cell clones and antisense BMP4 cell clones were generated. The clones in which BMP4 activity and expression are reduced show no changes in proliferation or in attachment-independent growth when compared with controls. However, a strong reduction of migratory and invasive properties was observed in these cells, suggesting that BMP4 promotes melanoma cell invasion and migration and therefore has an important role in the progression of malignant melanoma.
Collapse
Affiliation(s)
| | - Ina Poser
- 1University of Regensburg Medical School, Regensburg, Germany
| | - Fabrice Soncin
- 2Centre National de la Recherche Scientifique UMR8526, Institut de Biologie de Lille, Lille, France; and
| | - Frauke Bataille
- 1University of Regensburg Medical School, Regensburg, Germany
| | - Markus Moser
- 3Max-Plank-Institute of Biochemistry, Martinsried, Germany
| | | |
Collapse
|
15
|
Jin C, McKeehan K, Wang F. Transgenic mouse with high Cre recombinase activity in all prostate lobes, seminal vesicle, and ductus deferens. Prostate 2003; 57:160-4. [PMID: 12949940 DOI: 10.1002/pros.10283] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Prostate-specific gene ablation provides a powerful tool for functional characterization of genes that have impact on embryonic development or on other organs, specifically in the prostate. Uniform expression of Cre with high recombinase activity in the prostate is needed for prostate-specific gene ablation based on Cre-loxP recombinations. Currently, available strains of Cre transgenic mice only express Cre recombinase adequately in certain lobes of the prostate. In other lobes, the expression is low and mosaic. Additional strains of transgenic mice expressing high levels of prostate-specific Cre in all prostate lobes would be useful to study the impact of genome manipulation in all prostate lobes. METHODS The ARR2PB composite promoter with improved capacity to drive androgen-responsive gene expression was used to initiate expression of a transgene bearing the cDNA encoding a recently modified Cre recombinase with improved recombination activity. In addition, an insulator element from the chicken globin locus that minimized negative effect on transcription of the transgene imposed by chromosome structure was employed. The derived transgenic founders were crossed with the Z/AP reporter mouse and Fgfr2(f/f) mice bearing loxP flanking the FGFR2 locus. Immunochemical and mRNA analyses were employed to test expression and efficacy of the Cre recombinase in the prostate and other tissues. RESULTS The ARR2PBi-Cre transgenic mouse specifically and uniformly expressed Cre recombinase in the dorsal, lateral, ventral, and anterior lobes of the prostate, seminal vesicles, and ductus deferens. The Cre recombinase in these tissues effectively excised loxP flanked DNA fragments in the Z/AP reporter that triggered expression of beta-galactosidase, and the loxP-flanked FGFR2(f/f) locus resulting in specific ablation of FGFR2 in the prostate. CONCLUSIONS Compared with the currently available prostate-specific Cre strains, the new ARR2PBi-Cre strain exhibited higher and more uniform expression of Cre recombinase in the prostate as well as in seminal vesicles and ductus deferens. This provides an additional tool for efficient hormone-dependent gene targeting in epithelial cells of all lobes of the adult prostate, seminal vesicle, and ductus deferens.
Collapse
Affiliation(s)
- Chengliu Jin
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030-3303, USA
| | | | | |
Collapse
|
16
|
Abstract
Primary neoplasms are biologically heterogeneous and the process of metastasis consists of a series of sequential, selective steps that few cells can complete. The outcome of cancer metastasis depends on multiple interactions between metastatic cells and homeostatic mechanisms that are unique to one or another organ microenvironment. The specific organ microenvironment determines the extent of cancer cell proliferation, angiogenesis, invasion, and survival. Therapy of metastasis should therefore be targeted not only against tumor cells, but also against the host factors that contribute to and support the progressive growth and survival of metastatic cancer cells.
Collapse
Affiliation(s)
- Isaiah J Fidler
- The University of Texas M. D. Anderson Cancer Center1515 Holcombe Boulevard, Houston, Texas 77030, USA.
| |
Collapse
|
17
|
Abstract
The major cause of death from cancer is due to metastases that are resistant to conventional therapies. Several reasons account for the failure to treat metastases. First, neoplasms are biologically heterogeneous and contain subpopulations of cells with different angiogenic, invasive, and metastatic properties. Second, the process of metastasis selects for a small subpopulation of cells that preexist within a parental neoplasm. Third, and perhaps the greatest obstacle for therapy, is that the outcome of metastasis depends on multiple interactions ('cross-talk') of metastatic cells with homeostatic mechanisms which the tumor cells usurp. Most recent data demonstrate that the organ microenvironment can influence the growth, invasion, and response of metastases to chemotherapy. Therapy of metastasis should therefore be targeted against both the metastatic tumor cells and the homeostatic factors that promote metastasis.
Collapse
Affiliation(s)
- Isaiah J Fidler
- Department of Cancer Biology, The University of Texas, M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Claffey KP, Abrams K, Shih SC, Brown LF, Mullen A, Keough M. Fibroblast growth factor 2 activation of stromal cell vascular endothelial growth factor expression and angiogenesis. J Transl Med 2001; 81:61-75. [PMID: 11204275 DOI: 10.1038/labinvest.3780212] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Angiogenesis is a key component of human cancer progression and metastasis. In an effort to recapitulate early events in tumor-induced angiogenesis, we have employed a subcutaneous Matrigel implant model using immunodeficient mice as hosts. Matrigel-containing fibroblast growth factor 2 (FGF-2; 1.2 microg/ml) induced stromal cell infiltration into the Matrigel/skin interface within 4 days and maximal neovascularization at 7 days. Cells staining positive for the endothelial cell marker, platelet-endothelial cell adhesion molecule 1 (PECAM-1), were present in neovessels and in isolated cells within the Matrigel matrix. Immunohistochemical analysis revealed high levels of vascular endothelial growth factor (VEGF) deposited in the stromal interface present only in the FGF-2-containing but not in control Matrigel implants. VEGF expression was confirmed with in situ hybridization. High VEGF mRNA levels were observed in the infiltrating stromal cells but not in endothelial or endothelial precursors as defined by PECAM-1 staining. In vitro analysis of FGF-2-treated embryonic fibroblasts, Balb/c 3T3 cells, showed an induction of VEGF transcription, mRNA synthesis, and protein secretion as defined by transcriptional reporter, Northern blot, and ELISA assays. The FGF-2-induced VEGF expression was not dependent on select matrix adherence or signaling components because VEGF mRNA expression induced by FGF-2 was equally activated on serum, basement membrane, and fibronectin matrix substrates. Systemic application of anti-VEGF antibodies significantly repressed FGF-2-induced angiogenesis over control antibody by 88% (p < 0.001). These data support an FGF-2 angiogenic model that is dependent on endothelial cell activation, stromal cell infiltration, and VEGF expression by the infiltrating stromal cell population.
Collapse
Affiliation(s)
- K P Claffey
- Department of Physiology, University of Connecticut Health Center, Farmington 06030, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Lázár-Molnár E, Hegyesi H, Tóth S, Falus A. Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine 2000; 12:547-54. [PMID: 10843728 DOI: 10.1006/cyto.1999.0614] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tumour development and progression involves the expression of oncogenes and inactivation of tumour suppressor genes, leading to the appearance of multiple malignant characteristics. Malignant melanoma cells express different growth factors and cytokines and their receptors in respective stages of tumour progression, which by autocrine and paracrine effects enable them to grow autonomously and confer competence to metastasis. Autocrine growth factors (bFGF, MGSA/GRO, IL-8 and sometimes IL-6, PDGF-A, IL-10) produced by melanoma cells stimulate proliferation of the producing cell itself, while paracrine growth factors (for example PDGF, EGF, TGF-beta, IL-1, GM-CSF, IGF-I, NGF, VEGF) modulate the microenvironment to the benefit of tumour growth and invasion. Paracrine effects include angiogenesis, stroma formation, modulation of host immune response, activation of proteolytic enzymes, adhesion or motility and metastasis formation. Some growth factors have inhibitory effects on melanocytes and early lesions (IL-1, IL-6, TGF-beta, OSM, TNF and IFN) but not on advanced stage melanomas, and in some cases they switch to autocrine stimulator (IL-6, TGF-beta). Understanding the involvement of different growth factors and cytokines in the molecular mechanism of melanoma progression will help to provide an insight into new future therapeutic approaches for melanoma.
Collapse
Affiliation(s)
- E Lázár-Molnár
- Department of Genetics, Cell and Immunobiology, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | |
Collapse
|
20
|
Abstract
In situ hybridization (ISH) is a technique by which specific nucleotide sequences are identified in cells or tissue sections. These may be endogenous, bacterial or viral, DNA or RNA. On the basis of research applications, the technique is now being translated into diagnostic practice, mainly in the areas of gene expression, infection and interphase cytogenetics. Diagnostic applications are most often based on short nucleotide sequences (oligomers) labelled with non-isotopic reporter molecules, and sites of binding may be localized by histochemical or immunohistochemical methods. The technique can be applied to routinely fixed and processed tissues; with some targets, it is even possible to obtain hybridization in autopsy material. ISH has been used to detect messenger RNA (mRNA) as a marker of gene expression, where levels of protein storage are low; for example, to confirm an endocrine tumour as the source of excess hormone production. Its application in infectious diseases has to date been mainly in viral infections, such as the typing of human papillomavirus (HPV) or the detection of Epstein-Barr virus by the presence of small nuclear RNAs (EBERs). The expression of mRNAs for histone proteins has been used to detect cells in S phase, and related methods may be applied to detect apoptotic cells. Using probes to chromosome-specific sequences, it is possible to detect aneuploidy, and to document changes in specific chromosomes, which may have prognostic significance in some tumours, such as B-cell chronic lymphatic leukaemia. Using sequence-specific probes, translocations can be identified, such as the t(11;12) of Ewing's sarcoma. This review presents an outline of the technique of in situ hybridization and discusses areas of current and potential diagnostic application.
Collapse
Affiliation(s)
- A M McNicol
- University Department of Pathology, Glasgow Royal Infirmary University NHS Trust, U.K
| | | |
Collapse
|