1
|
Stern S, Hyland PL, Pacanowski M, Schuck RN. Leveraging in Vitro Models for Clinically Relevant Rare CYP2D6 Variants in Pharmacogenomics. Drug Metab Dispos 2024; 52:159-170. [PMID: 38167410 PMCID: PMC10877705 DOI: 10.1124/dmd.123.001512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/09/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is responsible for the metabolism of up to 20% of small-molecule drugs and therefore, may impact the safety and efficacy of medicines in broad therapeutic areas. CYP2D6 is highly polymorphic, and the frequency of variants can differ across racial and ethnic populations, significantly affecting enzymatic function and drug metabolism. However, rare variants of CYP2D6 present a unique challenge for academia, industry, and regulatory agencies alike due to the lack of feasibility of characterizing their clinical relevance in clinical trials, particularly in variants that exhibit population-specific frequencies in racial and ethnic groups that are poorly represented in clinical trials. Despite significant advancement in pharmacogenomics, the substrate specificity and related clinical relevance of these CYP2D6 rare variants remain largely unclear, and further efforts are warranted to characterize the burden of these variants on adverse drug reactions and drug efficacy. Thus, cell-based in vitro systems can be used to inform substrate-specific effects and the overall relevance of a rare variant. Liver microsomes, cell-based expression systems, ex vivo primary samples, and purified variant protein have all been used with various substrates to potentially predict the clinical impact of new substrates. In this review, we identify rare variants of CYP2D6 that demonstrate differences across races in prevalence and thus are often unassessed in clinical trials. Accordingly, we examine current pharmacogenomic in vitro models used to analyze the functional impact of these rare variants in a substrate-specific manner. SIGNIFICANCE STATEMENT: Variants of CYP2D6 play a clinically relevant role in drug metabolism, leading to potential safety and efficacy concerns. Although the influence of prevalent variants is often well characterized, rare variants are traditionally not included in clinical trials. This review captures the clinical relevance of rare variants in CYP2D6 by highlighting in vitro models that analyze their impact on the metabolism of CYP2D6 substrates.
Collapse
Affiliation(s)
- Sydney Stern
- Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland
| | - Paula L Hyland
- Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland
| | - Michael Pacanowski
- Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland
| | - Robert N Schuck
- Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
2
|
Ahire D, Kruger L, Sharma S, Mettu VS, Basit A, Prasad B. Quantitative Proteomics in Translational Absorption, Distribution, Metabolism, and Excretion and Precision Medicine. Pharmacol Rev 2022; 74:769-796. [PMID: 35738681 DOI: 10.1124/pharmrev.121.000449] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A reliable translation of in vitro and preclinical data on drug absorption, distribution, metabolism, and excretion (ADME) to humans is important for safe and effective drug development. Precision medicine that is expected to provide the right clinical dose for the right patient at the right time requires a comprehensive understanding of population factors affecting drug disposition and response. Characterization of drug-metabolizing enzymes and transporters for the protein abundance and their interindividual as well as differential tissue and cross-species variabilities is important for translational ADME and precision medicine. This review first provides a brief overview of quantitative proteomics principles including liquid chromatography-tandem mass spectrometry tools, data acquisition approaches, proteomics sample preparation techniques, and quality controls for ensuring rigor and reproducibility in protein quantification data. Then, potential applications of quantitative proteomics in the translation of in vitro and preclinical data as well as prediction of interindividual variability are discussed in detail with tabulated examples. The applications of quantitative proteomics data in physiologically based pharmacokinetic modeling for ADME prediction are discussed with representative case examples. Finally, various considerations for reliable quantitative proteomics analysis for translational ADME and precision medicine and the future directions are discussed. SIGNIFICANCE STATEMENT: Quantitative proteomics analysis of drug-metabolizing enzymes and transporters in humans and preclinical species provides key physiological information that assists in the translation of in vitro and preclinical data to humans. This review provides the principles and applications of quantitative proteomics in characterizing in vitro, ex vivo, and preclinical models for translational research and interindividual variability prediction. Integration of these data into physiologically based pharmacokinetic modeling is proving to be critical for safe, effective, timely, and cost-effective drug development.
Collapse
Affiliation(s)
- Deepak Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Laken Kruger
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Sheena Sharma
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Vijaya Saradhi Mettu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
3
|
Dong Y, Huang H, Deng Y, Xu Y, Chen M, Liu Y, Zhang C. Prediction of the CYP2D6 enzymatic activity based on investigating of the CYP2D6 genotypes around the vivax malaria patients in Yunnan Province, China. Malar J 2021; 20:448. [PMID: 34823523 PMCID: PMC8620920 DOI: 10.1186/s12936-021-03988-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, the incidence rate of vivax malaria recurrence still had 3.1% in Yunnan Province population after eradication therapy using primaquine (PQ). In order to understand the specific failure reasons for preventing vivax malaria relapses, a preliminary exploration on the CYP2D6 enzyme activity was carried out in the vivax malaria patients in Yunnan Province population by analysing mutational polymorphism in the coding region of CYP2D6 gene. METHODS Blood samples were collected from vivax malaria patients with suspected relapse (SR) and non-relapsed (NR) malaria in Yunnan Province. The DNA fragments containing 9 exons regions of human CYP2D6 gene were amplified by performing PCR and sequenced. The sequencing results were aligned by using DNAStar 11.0 to obtain the coding DNA sequence (CDS) of CYP2D6 gene. DnaSP 6.11.01 software was used to identify mutant polymorphisms and haplotypes of the CDS chain. The waterfall function of GenVisR package in R was utilized to visualize the mutational landscape. The alleles of CYP2D6 gene were identified according to the criteria prescribed by Human Cytochrome P450 (CYP) Allele Nomenclature Committee Database and the CYP2D6 enzyme activity was predicted based on diploid genotype. RESULTS A total of 320 maternal CDS chains, including 63 from SR group and 257 from NR group, were obtained. Twelve mutant loci, including c.31 (rs769259), c.100 (rs1065852), c.271 (rs28371703), c.281 (rs28371704), c.294 (rs28371705), c.297 (rs200269944), c.336 (rs1081003), c.408 (rs1058164), c.505 (rs5030865), c.801 (rs28371718), c.886 (rs16947), and c.1,457 (rs1135840) were observed on the 640 CDS chains (including 320 maternal and 320 paternal chains). The high-frequency mutation at rs1135840 (0.703) and low-frequency mutation, such as rs28371703, were detected only in the SR group. The frequency of mutant rs1058164 and rs1135840 were significantly increased in the SR group ([Formula: see text]= 4.468, 5.889, P < 0.05), as opposed to the NR group. Of the 23 haplotypes (from Hap_1 to Hap_23), the nomenclatures of 11 allelic forms could be found: Hap_3 was non-mutant, Hap_2 accounted for the highest frequency (36.9%, 236/640), and Hap_9 had the most complex sequence structure, containing 7 loci mutations. Allele *10 was the most frequent among these genotypes (0.423). Among the allele *10 standard named genotypes, *1/*10, *1/*1 and *2/*10 were significantly more frequent in the NR group ([Formula: see text]= 3.911, P < 0.05) and all showed uncompromised enzyme activity; the impaired genotype *10/*39 was more frequent in the SR group ([Formula: see text]= 10.050, P < 0.05), and genotype *4/*4was detected only in the SR group. CONCLUSION In the patients receiving PQ dosage in Yunnan Province population, both rs1135840 single nucleotide polymorphism and *10 allele form was common in the CYP2D6 gene. Low-frequency mutation sites, such as rs28371703, were only presented in patients with vivax malaria relapse.
Collapse
Affiliation(s)
- Ying Dong
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China.
| | - Herong Huang
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei, 230031, China
| | - Yan Deng
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Yanchun Xu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Mengni Chen
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Yan Liu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Canglin Zhang
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| |
Collapse
|
4
|
Carvalho Henriques B, Buchner A, Hu X, Wang Y, Yavorskyy V, Wallace K, Dong R, Martens K, Carr MS, Behroozi Asl B, Hague J, Sivapalan S, Maier W, Dernovsek MZ, Henigsberg N, Hauser J, Souery D, Cattaneo A, Mors O, Rietschel M, Pfeffer G, Hume S, Aitchison KJ. Methodology for clinical genotyping of CYP2D6 and CYP2C19. Transl Psychiatry 2021; 11:596. [PMID: 34811360 PMCID: PMC8608805 DOI: 10.1038/s41398-021-01717-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 10/28/2021] [Indexed: 01/10/2023] Open
Abstract
Many antidepressants, atomoxetine, and several antipsychotics are metabolized by the cytochrome P450 enzymes CYP2D6 and CYP2C19, and guidelines for prescribers based on genetic variants exist. Although some laboratories offer such testing, there is no consensus regarding validated methodology for clinical genotyping of CYP2D6 and CYP2C19. The aim of this paper was to cross-validate multiple technologies for genotyping CYP2D6 and CYP2C19 against each other, and to contribute to feasibility for clinical implementation by providing an enhanced range of assay options, customizable automated translation of data into haplotypes, and a workflow algorithm. AmpliChip CYP450 and some TaqMan single nucleotide variant (SNV) and copy number variant (CNV) data in the Genome-based therapeutic drugs for depression (GENDEP) study were used to select 95 samples (out of 853) to represent as broad a range of CYP2D6 and CYP2C19 genotypes as possible. These 95 included a larger range of CYP2D6 hybrid configurations than have previously been reported using inter-technology data. Genotyping techniques employed were: further TaqMan CNV and SNV assays, xTAGv3 Luminex CYP2D6 and CYP2C19, PharmacoScan, the Ion AmpliSeq Pharmacogenomics Panel, and, for samples with CYP2D6 hybrid configurations, long-range polymerase chain reactions (L-PCRs) with Sanger sequencing and Luminex. Agena MassARRAY was also used for CYP2C19. This study has led to the development of a broader range of TaqMan SNV assays, haplotype phasing methodology with TaqMan adaptable for other technologies, a multiplex genotyping method for efficient identification of some hybrid haplotypes, a customizable automated translation of SNV and CNV data into haplotypes, and a clinical workflow algorithm.
Collapse
Affiliation(s)
| | - Avery Buchner
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada ,grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Xiuying Hu
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada
| | - Yabing Wang
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada
| | - Vasyl Yavorskyy
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada ,grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Keanna Wallace
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada
| | - Rachael Dong
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Kristina Martens
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Michael S. Carr
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada ,grid.17089.370000 0001 2190 316XDepartment of Pharmacology, University of Alberta, Edmonton, Canada
| | - Bahareh Behroozi Asl
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada ,grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Joshua Hague
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada ,grid.17089.370000 0001 2190 316XDepartment of Medical Genetics, University of Alberta, Edmonton, Canada
| | - Sudhakar Sivapalan
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada
| | - Wolfgang Maier
- grid.10388.320000 0001 2240 3300Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | | | - Neven Henigsberg
- grid.4808.40000 0001 0657 4636Croatian Institute for Brain Research, Centre for Excellence for Basic, Clinical and Translational Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Joanna Hauser
- grid.22254.330000 0001 2205 0971Departnent of Psychiatry, Poznan University of Medical Sciences, Poznań, Poland
| | - Daniel Souery
- grid.4989.c0000 0001 2348 0746Laboratoire de Psychologie Médicale, Université Libre de Bruxelles and Psy Pluriel, Centre Européen de Psychologie Médicale, Brussels, Belgium
| | - Annamaria Cattaneo
- grid.419422.8Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy ,grid.4708.b0000 0004 1757 2822Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - Ole Mors
- grid.154185.c0000 0004 0512 597XPsychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Marcella Rietschel
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany
| | - Gerald Pfeffer
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada ,grid.22072.350000 0004 1936 7697Alberta Child Health Research Institute & Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Stacey Hume
- grid.17089.370000 0001 2190 316XDepartment of Medical Genetics, University of Alberta, Edmonton, Canada ,Alberta Precision Laboratories, Edmonton, Canada
| | - Katherine J. Aitchison
- grid.17089.370000 0001 2190 316XDepartment of Psychiatry, University of Alberta, Edmonton, Canada ,grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada ,grid.17089.370000 0001 2190 316XDepartment of Medical Genetics, University of Alberta, Edmonton, Canada ,grid.413574.00000 0001 0693 8815Alberta Health Services, Edmonton, Canada ,grid.13097.3c0000 0001 2322 6764King’s College London, London, UK
| |
Collapse
|
5
|
An XX, Yu Y, Li GF, Yu G. Abundance and Associated Variations of Cytochrome P450 Drug-Metabolizing Enzymes in the Liver of East Asian Adults: A Meta-Analysis. Eur J Drug Metab Pharmacokinet 2020; 46:225-233. [PMID: 33368014 DOI: 10.1007/s13318-020-00667-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cytochrome P450 (CYP) enzymes are one of the main sources of variability in drug metabolic clearance. Information on their abundance levels is therefore crucial to optimize scaling factors for in vitro-in vivo extrapolation (IVIVE) to predict metabolic clearance. OBJECTIVE This study aims to quantify the abundance data of hepatic drug-metabolizing CYP enzymes in East Asian subjects reported from various sources in the literature using meta-analysis. METHOD We conducted a meta-analysis on the abundance of drug-metabolizing CYP enzymes in the liver of East Asian adults. Eligible reports were identified based on predefined criteria-(1) individual liver microsomal samples, and (2) absolute protein abundance data from normal tissues of East Asian adult subjects. Subgroup and sensitivity analyses were also performed. RESULTS Among the 11 CYP isoforms analyzed in East Asian subjects, CYP3A5 and CYP3A4 had the highest protein levels. In particular, the number of studies and the liver sample used to quantify the abundance of CYP3A4 were the largest. Of the isoforms involved, CYP2J2 and CYP2B6 had the lowest abundance level, i.e., <5 pmol/ mg of microsomal protein. For enzymes with abundance values available in both Chinese and Japanese subjects (CYP1A2, CYP2C9, CYP3A4, and CYP3A5), the abundance level of each CYP isoform appeared to be higher in Chinese than in Japanese subjects. The most distinct difference was observed in CYP3A5 abundance. CONCLUSION The current meta-analysis shows that the abundance levels of CYP enzymes appear to vary greatly among different East Asian individuals who have similar ethnic backgrounds and food habits. The pooled data of CYP abundance can be used as preliminary reference values along with the associated variations for the projections of pharmacokinetics through physiologically based pharmacokinetic (PBPK) approaches.
Collapse
Affiliation(s)
- Xiao-Xiao An
- Clinical Medical College, Yangzhou University, Yangzhou, China.,Institution of Drug Clinical Trial, Subei People's Hospital, Yangzhou, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yichao Yu
- Department of Pharmaceutics, University of Florida, Gainesville, FL, 32608, USA
| | - Guo-Fu Li
- Clinical Medical College, Yangzhou University, Yangzhou, China.,Institution of Drug Clinical Trial, Subei People's Hospital, Yangzhou, China
| | - Guo Yu
- Clinical Medical College, Yangzhou University, Yangzhou, China. .,Institution of Drug Clinical Trial, Subei People's Hospital, Yangzhou, China.
| |
Collapse
|
6
|
Ota M, Shimizu M, Kamiya Y, Emoto C, Fukuda T, Yamazaki H. Adult and infant pharmacokinetic profiling of dihydrocodeine using physiologically based pharmacokinetic modeling. Biopharm Drug Dispos 2019; 40:350-357. [PMID: 31691978 DOI: 10.1002/bdd.2209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 01/11/2023]
Abstract
We previously analysed the serum concentrations of dihydrocodeine in a 1-month-old infant with respiratory depression after being prescribed dihydrocodeine phosphate 2.0 mg/day divided t.i.d. for 2 days. The purpose was to develop a full physiologically based pharmacokinetic (PBPK) model that could account for these and other drug monitoring results. Based on experiments in Caco-2 cell monolayers, the effective permeability of dihydrocodeine in human jejunum was established as 1.28 × 10-4 cm/s. The in vitro Vmax /Km values for dihydrocodeine demethylation mediated by recombinant cytochrome P450 2D6 and 3A4 were 0.19 and 0.066 μl/min/pmol, respectively, and for dihydrocodeine 6-O-glucuronidation mediated by recombinant UGT2B4 and 2B7, the Vmax /Km values were 0.14 and 0.22 μl/min/mg protein, respectively. Renal clearance was calculated as 5.37 L/h on the total clearance value multiplied by the fraction recovered in urine. The reported plasma concentration-time profiles of dihydrocodeine after intravenous administration in healthy volunteers were used to adjust the tissue partitioning ratios. The developed model simulated the pharmacokinetic profiles of dihydrocodeine after single and multiple oral administrations reasonably well in the same population. Subsequently, the validated model was used to simulate pharmacokinetic profiles for five pediatric cases, including the 1-month-old Japanese boy and a 14-year-old Japanese girl who took an overdose of dihydrocodeine phosphate (37 mg). The simulated pharmacokinetic profiles for five virtual pediatric subjects matching the age, gender, and P450 2D6 phenotype of each case approximately reflected the observed values. These results suggested that our dihydrocodeine PBPK model reproduced the results of clinical cases reasonably well for subjects.
Collapse
Affiliation(s)
- Miki Ota
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Makiko Shimizu
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Yusuke Kamiya
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Chie Emoto
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Tsuyoshi Fukuda
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| |
Collapse
|
7
|
Storelli F, Desmeules J, Daali Y. Genotype-sensitive reversible and time-dependent CYP2D6 inhibition in human liver microsomes. Basic Clin Pharmacol Toxicol 2018; 124:170-180. [PMID: 30192434 DOI: 10.1111/bcpt.13124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/27/2018] [Indexed: 01/16/2023]
Abstract
Cytochrome P450 (CYP) 2D6 metabolizes a wide range of xenobiotics and is characterized by a huge interindividual variability. A recent clinical study highlighted differential magnitude of CYP inhibition as a function of CYP2D6 genotype. The aim of this study was to investigate the effect of CYP2D6 genotype on the inhibition of dextromethorphan O-demethylation by duloxetine and paroxetine in human liver microsomes (HLMs). The study focused on genotypes defined by the combination of two fully functional alleles (activity score 2, AS 2, n = 6), of one fully functional and one reduced allele (activity score 1.5, AS 1.5, n = 4) and of one fully functional and one non-functional allele (activity score 1, AS 1, n = 6), which all predict extensive metabolizer phenotype. Kinetic experiments showed that maximal reaction velocity was affected by CYP2D6 genotype, with a decrease in 33% of Vmax in AS 1 HLMs compared to AS 2 (P = 0.06). No difference in inhibition parameters Ki , KI and kinact was observed neither with the competitive inhibitor duloxetine nor with the time-dependent inhibitor paroxetine. Among the genotypes tested, we found no difference in absolute CYP2D6 microsomal levels with ELISA immunoquantification. Therefore, our results suggest that genotype-sensitive magnitude of drug-drug interactions recently observed in vivo is likely to be due to differential amounts of functional enzymes at the microsomal level rather than to a difference in inhibition potencies across genotypes, which motivates for further quantitative proteomic investigations of functional and variant CYP2D6 alleles.
Collapse
Affiliation(s)
- Flavia Storelli
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland.,Geneva-Lausanne School of Pharmacy, University of Geneva, Geneva, Switzerland
| | - Jules Desmeules
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland.,Geneva-Lausanne School of Pharmacy, University of Geneva, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland.,Geneva-Lausanne School of Pharmacy, University of Geneva, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Del Re M, Citi V, Crucitta S, Rofi E, Belcari F, van Schaik RH, Danesi R. Pharmacogenetics of CYP2D6 and tamoxifen therapy: Light at the end of the tunnel? Pharmacol Res 2016; 107:398-406. [PMID: 27060675 DOI: 10.1016/j.phrs.2016.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/06/2016] [Accepted: 03/21/2016] [Indexed: 01/08/2023]
Abstract
The clinical usefulness of assessing the enzymatic activity of CYPD6 in patients taking tamoxifen had been longly debated. In favour of preemptive evaluation of phenotypic profile of patients is the strong pharmacologic rationale, being that the formation of endoxifen, the major and clinically most important metabolite of tamoxifen, is largely dependent on the activity of CYP2D6. This enzyme is highly polymorphic for which the activity is largely depending on genetics, but that can also be inhibited by a number of drugs, i.e. antidepressants, which are frequently used in patients with cancer. Unfortunately, the clinical trials that have been published in the last years are contradicting each other on the association between CYP2D6 and significant clinical endpoints, and for this reason CYP2D6 genotyping is at present not generally recommended. Despite this, the CYP2D6 genotyping test for tamoxifen is available in many laboratories and it may still be an appropriate test to use it in specific cases.
Collapse
Affiliation(s)
- M Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy.
| | - V Citi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - S Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - E Rofi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - F Belcari
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - R H van Schaik
- Department of Clinical Chemistry, Erasmus MC, Rotterdam, The Netherlands
| | - R Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| |
Collapse
|
9
|
Okubo M, Narita M, Murayama N, Akimoto Y, Goto A, Yamazaki H. Individual differences in in vitro and in vivo metabolic clearances of the antipsychotic drug olanzapine from non-smoking and smoking Japanese subjects genotyped for cytochrome P4502D6 and flavincontaining monooxygenase 3. Hum Psychopharmacol 2016; 31:83-92. [PMID: 26856397 DOI: 10.1002/hup.2515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/10/2015] [Accepted: 12/09/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The antipsychotic olanzapine is reportedly metabolized by inducible human cytochrome P450 (CYP) 1A2 and variable copy-number CYP2D6 and polymorphic flavin-containing monooxygenase 3 (FMO3) in different pathways. We investigated individual differences in the metabolite formation and clearance of olanzapine in vitro and in vivo. METHODS Human liver microsomal olanzapine oxidation activities were evaluated, and plasma concentrations of olanzapine were determined in 21 Japanese patients (mean age: 50 years, range: 32-69 years, 14 male and 7 female, including 6 smokers) genotyped for CYP2D6 (*1, *5, and *10) and FMO3 (E158K, C197fsX, R205C, V257M, E308G, and R500X). RESULTS Furafylline (a CYP1A2 inhibitor), quinidine (a CYP2D6 inhibitor), and heat treatment (inactivates FMO3) suppressed liver microsomal metabolic clearance of olanzapine by approximately 30%. Olanzapine N-demethylation and N-oxygenation were found to be catalyzed by CYP1A2 and CYP2D6 and by CYP2D6 and FMO3, respectively, in experiments using liver microsomes and recombinant enzymes. Plasma concentrations and clearance of olanzapine were not affected by CYP2D6 or FMO3 genotypes or smoking behavior. CONCLUSIONS Olanzapine clearance was not affected by CYP2D6 or FMO3 genotypes or smoking behavior as a single factor under the present conditions because olanzapine clearance is mediated by multiple enzymes involved in two major and one minor pathways.
Collapse
Affiliation(s)
- Maho Okubo
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Momoko Narita
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | | | - Akiko Goto
- Tsurugaoka Garden Hospital, Machida, Tokyo, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| |
Collapse
|
10
|
Okubo M, Morita S, Murayama N, Akimoto Y, Goto A, Yamazaki H. Individual differences in in vitro and in vivo metabolic clearances of antipsychotic risperidone from Japanese subjects genotyped for cytochrome P450 2D6 and 3A5. Hum Psychopharmacol 2016; 31:93-102. [PMID: 26856541 DOI: 10.1002/hup.2516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/07/2015] [Accepted: 12/09/2015] [Indexed: 11/06/2022]
Abstract
OBJECTIVE There are conflicting reports regarding the effects of cytochrome P450 (P450, CYP) genotypes on the plasma concentrations of risperidone and its pharmacologically active metabolite, 9-hydroxyrisperidone (paliperidone), in clinical patients. The aim of this study was to investigate individual differences in the metabolic clearance of risperidone in vitro and in vivo. METHODS In vitro liver microsomal risperidone 9-hydroxylation activities and in vivo plasma concentrations of risperidone and paliperidone were investigated in 15 male and 12 female Japanese subjects (mean age 52 years, range: 24-75 years) genotyped for CYP2D6 and CYP3A5. RESULTS CYP2D6 intermediate and poor metabolizers showed significantly lower liver microsomal risperidone 9-hydroxylation activities than extensive metabolizers did at 5 μM of risperidone; this difference was not evident at 50 μM of risperidone. The recombinant CYP3A5 Vmax/Km value for risperidone 9-hydroxylation was 30% that of CYP3A4, and liver microsomes from CYP3A5 expressers had similar risperidone 9-hydroxylation activities to those of CYP3A5 poor expressers. The plasma concentration/dose ratios for risperidone and paliperidone in 27 Japanese patients were not significantly influenced by the CYP2D6 or CYP3A5 genotypes. CONCLUSIONS Individual differences in metabolic clearance of risperidone under the present conditions were not significantly influenced by the genotypes of CYP2D6 or CYP3A5.
Collapse
Affiliation(s)
- Maho Okubo
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Shoko Morita
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | | | - Akiko Goto
- Tsurugaoka Garden Hospital, Machida, Tokyo, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| |
Collapse
|
11
|
Cai J, Dai DP, Geng PW, Wang SH, Wang H, Zhan YY, Huang XX, Hu GX, Cai JP. Effects of 22 Novel CYP2D6 Variants Found in the Chinese Population on the Bufuralol and Dextromethorphan MetabolismsIn Vitro. Basic Clin Pharmacol Toxicol 2015; 118:190-9. [PMID: 26310775 DOI: 10.1111/bcpt.12478] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/15/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Jie Cai
- The Key Laboratory of Geriatrics; Beijing Hospital & Beijing Institute of Geriatrics; Ministry of Health; Beijing China
- Department of Pharmacology; School of Pharmacy of Wenzhou Medical University; Wenzhou China
- Department of Pharmacy; Traditional Chinese Medical Hospital of Wenling; Wenling China
| | - Da-Peng Dai
- The Key Laboratory of Geriatrics; Beijing Hospital & Beijing Institute of Geriatrics; Ministry of Health; Beijing China
| | - Pei-Wu Geng
- The Laboratory of Clinical Pharmacy; The People's Hospital of Lishui; Lishui China
| | - Shuang-Hu Wang
- The Laboratory of Clinical Pharmacy; The People's Hospital of Lishui; Lishui China
| | - Hao Wang
- Department of Pharmacology; School of Pharmacy of Wenzhou Medical University; Wenzhou China
| | - Yun-Yun Zhan
- Department of Pharmacology; School of Pharmacy of Wenzhou Medical University; Wenzhou China
| | - Xiang-Xin Huang
- Department of Pharmacology; School of Pharmacy of Wenzhou Medical University; Wenzhou China
| | - Guo-Xin Hu
- Department of Pharmacology; School of Pharmacy of Wenzhou Medical University; Wenzhou China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics; Beijing Hospital & Beijing Institute of Geriatrics; Ministry of Health; Beijing China
| |
Collapse
|
12
|
Okubo M, Murayama N, Shimizu M, Shimada T, Guengerich FP, Yamazaki H. CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with reduced CYP3A4 protein level and function in human liver microsomes. J Toxicol Sci 2013; 38:349-54. [PMID: 23665933 DOI: 10.2131/jts.38.349] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Effects of the CYP3A4 intron 6 C>T (CYP3A4*22) polymorphism, which has recently been reported to have a critical role in vivo, were investigated by measuring CYP3A4 protein expression levels and CYP3A4-dependent drug oxidation activities in individual human liver microsomes in vitro. Prior to protein analysis, analysis of DNA samples indicated that 36 Caucasian subjects were genotyped as CYP3A4*1/*1 and five subjects were CYP3A4*1/*22, with a CYP3A4*22 allelic frequency of 6.1%. No CYP3A4*22 alleles were found in the Japanese samples (106 alleles). Individual differences in CYP2D6-dependent dextromethorphan O-demethylation activities in liver microsomes from Caucasians were not affected by either the CYP3A4*1/*22 or CYP3A5*1/*3 genotype. Liver microsomes genotyped as CYP3A4*1/*22 (n = 4) showed significantly lower CYP3A-dependent dextromethorphan N-demethylation, midazolam 1'-hydroxylation, and testosterone 6β-hydroxylation activities, as well as lower expression levels of CYP3A protein (28% of control), compared with those of the CYP3A4*1/*1 group (n = 19). The other polymorphism, CYP3A5*1/*3, did not show these differences (n = 4). The CYP3A4*22 polymorphism was associated with reduced CYP3A4 protein expression levels and resulted in decreased CYP3A4-dependent activities in human livers. The present results suggest an important role of low expression of CYP3A4 protein associated with the CYP3A4*22 allele in the individual differences in drug clearance.
Collapse
Affiliation(s)
- Maho Okubo
- Showa Pharmaceutical University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Okubo M, Murayama N, Miura J, Shimizu M, Yamazaki H. A rapid multiplex PCR assay that can reliably discriminate the cytochrome P450 2D6 whole-gene deletion allele from 2D6*10 alleles. Clin Chim Acta 2012; 413:1675-7. [PMID: 22634574 DOI: 10.1016/j.cca.2012.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 05/17/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Genetic polymorphisms of the human CYP2D6 gene can affect the metabolism of many drugs in clinical use. As a first step toward identifying poor drug metabolizers in the clinical setting, we developed a new multiplex PCR-based genotyping method to detect CYP2D6 whole-gene deletion. METHODS We validated the new method by analyzing 500 genomic DNA samples from a Japanese population with the conventional long-PCR method and the new multiplex PCR method. The long-PCR system used a forward primer for CYP2D7P (a pseudogene closely related to CYP2D6) and a common reverse primer for the untranslated region. The multiplex PCR system used the same two primers as the long PCR and an additional forward primer for CYP2D6. RESULTS With the long-PCR system, DNA samples identified as containing CYP2D6*5 (whole-gene deletion) formed 3.5-kb PCR products. With the multiplex PCR system, many samples yielded 4.7-kb PCR products (implying the existence of normal CYP2D6) and some DNA samples yielded 6.2-kb PCR products (probably indicating CYP2D6*10D). The long-PCR assay detected 64 CYP2D6*5 alleles among 1000 Japanese alleles; however, the new multiplex PCR system identified 5 of these 64 alleles as CYP2D6*10D. CONCLUSIONS The new multiplex PCR method is useful for detecting CYP2D6*5. This system could reliably discriminate CYP2D6*5 from homologous pseudogene CYP2D7P and functional CYP2D6*10D.
Collapse
Affiliation(s)
- Maho Okubo
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | | | | | | | | |
Collapse
|
14
|
Yang J, He MM, Niu W, Wrighton SA, Li L, Liu Y, Li C. Metabolic capabilities of cytochrome P450 enzymes in Chinese liver microsomes compared with those in Caucasian liver microsomes. Br J Clin Pharmacol 2012; 73:268-84. [PMID: 21815912 DOI: 10.1111/j.1365-2125.2011.04076.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM The most common causes of variability in drug response include differences in drug metabolism, especially when the hepatic cytochrome P450 (CYP) enzymes are involved. The current study was conducted to assess the differences in CYP activities in human liver microsomes (HLM) of Chinese or Caucasian origin. METHODS The metabolic capabilities of CYP enzymes in 30 Chinese liver microsomal samples were compared with those of 30 Caucasian samples utilizing enzyme kinetics. Phenacetin O-deethylation, coumarin 7-hydroxylation, bupropion hydroxylation, amodiaquine N-desethylation, diclofenac 4'-hydroxylation (S)-mephenytoin 4'-hydroxylation, dextromethorphan O-demethylation, chlorzoxazone 6-hydroxylation and midazolam 1'-hydroxylation/testosterone 6β-hydroxylation were used as probes for activities of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A, respectively. Mann-Whitney U test was used to assess the differences. RESULTS The samples of the two ethnic groups were not significantly different in cytochrome-b(5) concentrations but were significantly different in total CYP concentrations and NADPH-P450 reductase activity (P < 0.05). Significant ethnic differences in intrinsic clearance were observed for CYP1A2, CYP2C9, CYP2C19 and CYP2E1; the median values of the Chinese group were 54, 58, 26, and 35% of the corresponding values of the Caucasian group, respectively. These differences were associated with differences in Michaelis constant or maximum velocity. Despite negligible difference in intrinsic clearance, the Michaelis constant of CYP2B6 appeared to have a significant ethnic difference. No ethnic difference was observed for CYP2A6, CYP2C8, CYP2D6 and CYP3A. CONCLUSIONS These data extend our knowledge on the ethnic differences in CYP enzymes and will have implications for drug discovery and drug therapy for patients from different ethnic origins.
Collapse
Affiliation(s)
- Junling Yang
- Shanghai Institute of Materia, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Teh LK, Bertilsson L. Pharmacogenomics of CYP2D6: molecular genetics, interethnic differences and clinical importance. Drug Metab Pharmacokinet 2011; 27:55-67. [PMID: 22185816 DOI: 10.2133/dmpk.dmpk-11-rv-121] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CYP2D6 has received intense attention since the beginning of the pharmacogenetic era in the 1970s. This is because of its involvement in the metabolism of more than 25% of the marketed drugs, the large geographical and inter-ethnic differences in the genetic polymorphism and possible drug-induced toxicity. Many interesting reviews have been published on CYP2D6 and this review aims to reinstate the importance of the genetic polymorphism of CYP2D6 in different populations as well as some clinical implications and important drug interactions.
Collapse
Affiliation(s)
- Lay Kek Teh
- Pharmacogenomics Centre PROMISE, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor DE, Malaysia.
| | | |
Collapse
|
16
|
Seripa D, Pilotto A, Panza F, Matera MG, Pilotto A. Pharmacogenetics of cytochrome P450 (CYP) in the elderly. Ageing Res Rev 2010; 9:457-74. [PMID: 20601196 DOI: 10.1016/j.arr.2010.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/28/2010] [Accepted: 06/01/2010] [Indexed: 12/22/2022]
Abstract
The genetics of cytochrome P450 (CYP) is a very active area of multidisciplinary research, overlapping the interest of medicine, biology and pharmacology, being the CYP enzyme system responsible for the metabolism of more than 80% of the commercially available drugs. Variations in CYP encoding genes are responsible for inter-individual differences in CYP production or function, with severe clinical consequences as therapeutic failures (TFs) and adverse drug reactions (ADRs), being ADRs worldwide primary causes of morbidity and mortality in elderly people. In fact, the prevalence of both TFs and ADRs strongly increased in the presence of multiple pharmacological treatments, a common status in subjects aging 65 years and over. The present article explored some basic concepts of human genetics that have important implications in the genetics of CYP. An attempted to transfer these basic concepts to the genetic data reported by the Home Page of The Human Cytochrome P450 (CYP) Allele Nomenclature Committee was also made, focusing on the current knowledge of CYP genetics. The status of what we know and what we need to know is the base for the clinical applications of pharmacogenetics, in which personalized drug treatments constituted the main aim, in particular in patients attending a geriatric ward.
Collapse
Affiliation(s)
- Davide Seripa
- Geriatric Unit & Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo (FG), Italy.
| | | | | | | | | |
Collapse
|
17
|
Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41:89-295. [PMID: 19514967 DOI: 10.1080/03602530902843483] [Citation(s) in RCA: 502] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pharmacogenetics is the study of how interindividual variations in the DNA sequence of specific genes affect drug response. This article highlights current pharmacogenetic knowledge on important human drug-metabolizing cytochrome P450s (CYPs) to understand the large interindividual variability in drug clearance and responses in clinical practice. The human CYP superfamily contains 57 functional genes and 58 pseudogenes, with members of the 1, 2, and 3 families playing an important role in the metabolism of therapeutic drugs, other xenobiotics, and some endogenous compounds. Polymorphisms in the CYP family may have had the most impact on the fate of therapeutic drugs. CYP2D6, 2C19, and 2C9 polymorphisms account for the most frequent variations in phase I metabolism of drugs, since almost 80% of drugs in use today are metabolized by these enzymes. Approximately 5-14% of Caucasians, 0-5% Africans, and 0-1% of Asians lack CYP2D6 activity, and these individuals are known as poor metabolizers. CYP2C9 is another clinically significant enzyme that demonstrates multiple genetic variants with a potentially functional impact on the efficacy and adverse effects of drugs that are mainly eliminated by this enzyme. Studies into the CYP2C9 polymorphism have highlighted the importance of the CYP2C9*2 and *3 alleles. Extensive polymorphism also occurs in other CYP genes, such as CYP1A1, 2A6, 2A13, 2C8, 3A4, and 3A5. Since several of these CYPs (e.g., CYP1A1 and 1A2) play a role in the bioactivation of many procarcinogens, polymorphisms of these enzymes may contribute to the variable susceptibility to carcinogenesis. The distribution of the common variant alleles of CYP genes varies among different ethnic populations. Pharmacogenetics has the potential to achieve optimal quality use of medicines, and to improve the efficacy and safety of both prospective and currently available drugs. Further studies are warranted to explore the gene-dose, gene-concentration, and gene-response relationships for these important drug-metabolizing CYPs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Bundoora, Victoria, Australia.
| | | | | |
Collapse
|
18
|
Lee SJ, Lee SS, Jung HJ, Kim HS, Park SJ, Yeo CW, Shin JG. Discovery of Novel Functional Variants and Extensive Evaluation ofCYP2D6Genetic Polymorphisms in Koreans. Drug Metab Dispos 2009; 37:1464-70. [DOI: 10.1124/dmd.108.022368] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Jin SK, Chung HJ, Chung MW, Kim JI, Kang JH, Woo SW, Bang S, Lee SH, Lee HJ, Roh J. Influence ofCYP2D6*10on the pharmacokinetics of metoprolol in healthy Korean volunteers. J Clin Pharm Ther 2008; 33:567-73. [DOI: 10.1111/j.1365-2710.2008.00945.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Implications of hepatic cytochrome P450-related biotransformation processes in veterinary sciences. Eur J Pharmacol 2008; 585:502-9. [DOI: 10.1016/j.ejphar.2008.03.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 02/07/2023]
|
21
|
Abstract
BACKGROUND Drug toxicity is the leading cause of acute liver failure in the United States. Further understanding of hepatotoxicity is becoming increasingly important as more drugs come to market. AIMS (i) To provide an update on recent advances in our understanding of hepatotoxicity of select commonly used drug classes. (ii) To assess the safety of these medications in patients with pre-existing liver disease and in the post-liver transplant setting. (iii) To review relevant advances in toxicogenomics which contribute to the current understanding of hepatotoxic drugs. METHODS A Medline search was performed to identify relevant literature using search terms including 'drug toxicity, hepatotoxicity, statins, thiazolidinediones, antibiotics, antiretroviral drugs and toxicogenomics'. RESULTS Amoxicillin-clavulanic acid is one of the most frequently implicated causes of drug-induced liver injury worldwide. Statins rarely cause clinically significant liver injury, even in patients with underlying liver disease. Newer thiazolidinediones are not associated with the degree of liver toxicity observed with troglitazone. Careful monitoring for liver toxicity is warranted in patients who are taking antiretrovirals, especially patients who are co-infected with hepatitis B and C. Genetic polymorphisms among enzymes involved in drug metabolism and HLA types may account for some of the differences in individual susceptibility to drug hepatotoxicity. CONCLUSIONS Drug-induced hepatotoxicity will remain a problem that carries both clinical and regulatory significance as long as new drugs continue to enter the market. Future results from ongoing multicentre collaborative efforts may help contribute to our current understanding of hepatotoxicity associated with drugs.
Collapse
Affiliation(s)
- C Y Chang
- The Division of Liver Diseases, Department of Internal Medicine, The Mount Sinai School of Medicine, New York, NY 10029-6574, USA.
| | | |
Collapse
|
22
|
Yamazaki H, Okayama A, Imai N, Guengerich FP, Shimizu M. Inter-individual variation of cytochrome P4502J2 expression and catalytic activities in liver microsomes from Japanese and Caucasian populations. Xenobiotica 2007; 36:1201-9. [PMID: 17162467 DOI: 10.1080/00498250600944318] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aim of this study was to investigate the inter-individual variations in cytochrome P4502J2 (CYP2J2) and its typical drug oxidation activities in human liver microsomes in both Japanese and Caucasian populations. CYP2J2 contents were determined immunochemically in liver microsomes from 20 Japanese and 29 Caucasian samples using recombinant CYP2J2 commercially available as a standard. Ebastine hydroxylation and astemizole O-demethylation activities were compared. The CYP2J2 genotype was determined by direct sequencing of liver genomic DNA. The mean expression levels of CYP2J2 determined immunochemically in liver microsomes from Japanese and Caucasian samples were 2.0 +/- 1.5 and 1.2 +/- 2.1 pmol CYP2J2 mg-1 protein (mean +/- standard deviation), respectively, accounting for 1.8 +/- 1.1% and 0.52 +/- 0.65% of the total hepatic P450 content (0.15 +/- 0.19 and 0.27 +/- 0.14 nmol P450 mg-1 protein, respectively). The individual variation of the two marker drug oxidation activities could not be fully accounted for by the CYP2J2 contents or currently known CYP2J2 genotypes. The amounts of CYP2J2 in liver microsomes with the CYP2J2*7 allele (-76G>T) were decreased to 39% compared with those of liver microsomes from other individuals. The results indicate that CYP2J2 accounts for approximately 1-2% of total P450 in human liver microsomes. The information about large inter-individual variation of the CYP2J2 suggests that this enzyme plays a significant role in the metabolism of xenobiotics and may be useful in in-silico simulations of drug disposition.
Collapse
Affiliation(s)
- H Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
23
|
Mango R, Vecchione L, Raso B, Borgiani P, Brunetti E, Mehta JL, Lauro R, Romeo F, Novelli G. Pharmacogenomics in cardiovascular disease: the role of single nucleotide polymorphisms in improving drug therapy. Expert Opin Pharmacother 2005; 6:2565-76. [PMID: 16316297 DOI: 10.1517/14656566.6.15.2565] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pharmacogenomics is the study of how an individual's genetic inheritance affects the body's response to drugs. Pharmacogenomics holds the promise that drugs might one day be tailor-made for individuals and adapted to an individual's genetic makeup. Several studies have shown that both adverse and beneficial responses to cardiovascular drugs can be influenced by single nucleotide polymorphisms in genes coding for metabolising enzymes, drug transporters and drug targets. Despite the large amount of data about gene-drug interactions, the translation of pharmacogenomics in clinical practise is slow. To improve this, there is a need of new technology and large prospective trials allowing for simultaneous analysis of multiple genetic variants in molecular pathways that could affect drug disposition and action.
Collapse
Affiliation(s)
- Ruggiero Mango
- Department of Biopathology, University of Roma Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gaedigk A, Bhathena A, Ndjountché L, Pearce RE, Abdel-Rahman SM, Alander SW, Bradford LD, Rogan PK, Leeder JS. Identification and characterization of novel sequence variations in the cytochrome P4502D6 (CYP2D6) gene in African Americans. THE PHARMACOGENOMICS JOURNAL 2005; 5:173-82. [PMID: 15768052 PMCID: PMC1440720 DOI: 10.1038/sj.tpj.6500305] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cytochrome P4502D6 (CYP2D6) genotyping reliably predicts poor metabolizer phenotype in Caucasians, but is less accurate in African Americans. To evaluate discordance we have observed in phenotype to genotype correlation studies, select African American subjects were chosen for complete resequencing of the CYP2D6 gene including 4.2 kb of the CYP2D7-2D6 intergenic region. Comparisons were made to a CYP2D6(*)1 reference sequence revealing novel SNPs in the upstream, coding and intervening sequences. These sequence variations, defining four functional alleles (CYP2D6(*)41B, (*)45A and B and (*)46), were characterized for their ability to influence splice site strength, transcription level or catalytic protein activity. Furthermore, their frequency was determined in a population of 251 African Americans. A -692(TGTG) deletion (CYP2D6(*)45B) did not significantly decrease gene expression, nor could any other upstream SNP explain a genotype-discordant case. CYP2D6(*)45 and (*)46 have a combined frequency of 4% and can be identified by a common SNP. Carriers are predicted to exhibit an extensive or intermediate CYP2D6 phenotype.
Collapse
Affiliation(s)
- A Gaedigk
- Division of Clinical Pharmacology and Experimental Therapeutics, Children's Mercy Hospital & Clinics, Kansas City, MO 64108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Allorge D, Bréant D, Harlow J, Chowdry J, Lo-Guidice JM, Chevalier D, Cauffiez C, Lhermitte M, Blaney FE, Tucker GT, Broly F, Ellis SW. Functional analysis of CYP2D6.31 variant: Homology modeling suggests possible disruption of redox partner interaction by Arg440His substitution. Proteins 2005; 59:339-46. [PMID: 15726636 DOI: 10.1002/prot.20399] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is an important human drug-metabolizing enzyme that exhibits a marked genetic polymorphism. Numerous CYP2D6 alleles have been characterized at a functional level, although the consequences for expression and/or catalytic activity of a substantial number of rare variants remain to be investigated. One such allele, CYP2D6*31, is characterized by mutations encoding three amino acid substitutions: Arg296Cys, Arg440His and Ser486Thr. The identification of this allele in an individual with an apparent in vivo poor metabolizer phenotype prompted us to analyze the functional consequence of these substitutions on enzyme activity using yeast as a heterologous expression system. We demonstrated that the Arg440His substitution, alone or in combination with Arg296Cys and/or Ser486Thr, altered the respective kinetic parameters [Km (microM) and kcat (min(-1))] of debrisoquine 4-hydroxylation (wild-type, 25; 0.92; variants, 43-68; 0.05-0.11) and dextromethorphan O-demethylation (wild-type, 1; 4.72; variants, 12-23; 0.64-1.43), such that their specificity constants (kcat/Km) were decreased by more than 95% compared to those observed with the wild-type enzyme. The rates of oxidation of rac-metoprolol at single substrate concentrations of 40 and 400 microM were also markedly decreased by approximately 90% with each CYP2D6 variant containing the Arg440His substitution. These in vitro data confirm that the CYP2D6*31 allele encodes an enzyme with a severely impaired but residual catalytic activity and, furthermore, that the Arg440His exchange alone is the inactivating mutation. A homology model of CYP2D6 based on the crystal structure of rabbit CYP2C5 locates Arg440 on the proximal surface of the protein. Docking the structure of the FMN domain of human cytochrome P450 reductase to the CYP2D6 model suggests that Arg440 is a key member of a cluster of basic amino acid residues important for reductase binding.
Collapse
|
26
|
Kim K, Johnson JA, Derendorf H. Differences in drug pharmacokinetics between East Asians and Caucasians and the role of genetic polymorphisms. J Clin Pharmacol 2005; 44:1083-105. [PMID: 15342610 DOI: 10.1177/0091270004268128] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Interethnic variability in pharmacokinetics can cause unexpected outcomes such as therapeutic failure, adverse effects, and toxicity in subjects of different ethnic origin undergoing medical treatment. It is important to realize that both genetic and environmental factors can lead to these differences among ethnic groups. The International Conference on Harmonization (ICH) published a guidance to facilitate the registration of drugs among ICH regions (European Union, Japan, the United States) by recommending a framework for evaluating the impact of ethnic factors on a drug's effect, as well as its efficacy and safety at a particular dosage and dosage regimen. This review focuses on the pharmacokinetic differences between East Asians and Caucasians. Differences in metabolism between East Asians and Caucasians are common, especially in the activity of several phase I enzymes such as CYP2D6 and the CYP2C subfamily. Before drug therapy, identification of either the genotype and/or the phenotype for these enzymes may be of therapeutic value, particularly for drugs with a narrow therapeutic index. Furthermore, these differences are relevant for international drug approval when regulatory agencies must decide if they accept results from clinical trials performed in other parts of the world.
Collapse
Affiliation(s)
- Kiman Kim
- Department of Pharmaceutics, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
27
|
Yu AM, Idle JR, Gonzalez FJ. Polymorphic cytochrome P450 2D6: humanized mouse model and endogenous substrates. Drug Metab Rev 2004; 36:243-77. [PMID: 15237854 DOI: 10.1081/dmr-120034000] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is the first well-characterized polymorphic phase I drug-metabolizing enzyme, and more than 80 allelic variants have been identified for the CYP2D6 gene, located on human chromosome 22q13.1. Human debrisoquine and sparteine metabolism is subdivided into two principal phenotypes--extensive metabolizer and poor metabolizer--that arise from variant CYP2D6 genotypes. It has been estimated that CYP2D6 is involved in the metabolism and disposition of more than 20% of prescribed drugs, and most of them act in the central nervous system or on the heart. These drug substrates are characterized as organic bases containing one nitrogen atom with a distance about 5, 7, or 10 A from the oxidation site. Aspartic acid 301 and glutamic acid 216 were determined as the key acidic residues for substrate-enzyme binding through electrostatic interactions. CYP2D6 transgenic mice, generated using a lambda phage clone containing the complete wild-type CYP2D6 gene, exhibits enhanced metabolism and disposition of debrisoquine. This transgenic mouse line and its wild-type control are models for human extensive metabolizers and poor metabolizers, respectively, and would have broad application in the study of CYP2D6 polymorphism in drug discovery and development, and in clinical practice toward individualized drug therapy. Endogenous 5-methoxyindole- thylamines derived from 5-hydroxytryptamine were identified as high-affinity substrates of CYP2D6 that catalyzes their O-demethylations with high enzymatic capacity and specificity. Thus, polymorphic CYP2D6 may play an important role in the interconversions of these psychoactive tryptamines, including a crucial step in a serotonin-melatonin cycle.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
28
|
Proctor NJ, Tucker GT, Rostami-Hodjegan A. Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors. Xenobiotica 2004; 34:151-78. [PMID: 14985145 DOI: 10.1080/00498250310001646353] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. Recombinantly expressed human cytochromes P450 (rhCYPs) have been underused for the prediction of human drug clearance (CL). 2. Differences in intrinsic activity (per unit CYP) between rhCYP and human liver enzymes complicate the issue and these discrepancies have not been investigated systematically. We define intersystem extrapolation factors (ISEFs) that allow the use of rhCYP data for the in vitro-in vivo extrapolation of human drug CL and the variance that is associated with interindividual variation of CYP abundance due to genetic and environmental effects. 3. A large database (n = 451) of metabolic stability data has been compiled and used to derive ISEFs for the most commonly used expression systems and CYP enzymes. 4. Statistical models were constructed for the ISEFs to determine major covariates in order to optimize experimental design to increase prediction accuracy. 5. Suggestions have been made for the conduct of future studies using rhCYP to predict human drug clearance.
Collapse
Affiliation(s)
- N J Proctor
- Molecular Pharmacology and Pharmacogenetics, Clinical Sciences Division (South), University of Sheffield, The Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| | | | | |
Collapse
|
29
|
Iwasa T, Sano H, Sugiura A, Uchiyama N, Hara K, Okochi H, Nakagawa K, Yasumori T, Ishizaki T. An in vitro interethnic comparison of monoamine oxidase activities between Japanese and Caucasian livers using rizatriptan, a serotonin receptor 1B/1D agonist, as a model drug. Br J Clin Pharmacol 2004; 56:537-44. [PMID: 14651728 PMCID: PMC1884399 DOI: 10.1046/j.1365-2125.2003.01922.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AIMS Monoamine oxidase (MAO) is located in human liver, and catalyses the oxidative deamination step of many xenobiotics. However, whether there exists an interethnic difference in MAO activities has, to our knowledge, not been clarified. We aimed to assess the MAO type A (MAO-A) involvement in the metabolic pathway of rizatriptan (RIZ), an antimigraine 5-hydroxytryptamine (5-HT)1B/1D agonist, and the interethnic difference in MAO activities between Caucasians and Japanese using RIZ as a model drug in in vitro experiments. METHODS Oxidative deaminase activities were determined with the subcellular fractions of Japanese livers and the microsomal fraction of Caucasian livers using RIZ, 5-HT (MAO-A substrate) and 2-phenylethylamine (PEA) (MAO-B substrate) as substrates. RESULTS The oxidative deaminase activities of RIZ vs. 5-HT were highly (r = 0.87 and 0.96, P < 0.001) correlated with each other in both the microsomal and mitochondrial fractions of Japanese livers. Subsequent results were obtained from in vitro experiments using liver microsomes based upon these findings. The oxidative deaminase activities of RIZ were inhibited completely by the nanomolar-order concentration of clorgyline and Ro 41-1049 (MAO-A selective inhibitors), but not by that of Ro 16-6491 (MAO-B selective inhibitor). The majority of the mean Michaelis-Menten values for three substrates toward MAO obtained from six Japanese and six Caucasian liver microsomes reached no significant differences between the two ethnic groups. The mean microsomal oxidative deaminase activities assessed in 18 Japanese and 20 Caucasian livers using the three substrates also showed no significant differences between the two ethnic groups. CONCLUSIONS RIZ is mainly metabolized by MAO-A and the in vitro oxidative deaminase activities mediated via MAO-A and -B do not appear to differ between Japanese and Caucasians.
Collapse
Affiliation(s)
- T Iwasa
- Drug Metabolism, Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd, 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Santorini Biologie Prospective Conference 2004 “From Human Genetic Variations to Prediction of Risks and Responses to the Environment”, Santorini, Greece, September 30–October 4, 2004. Clin Chem Lab Med 2004. [DOI: 10.1515/cclm.2004.42.8.a22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Ozawa S, Soyama A, Saeki M, Fukushima-Uesaka H, Itoda M, Koyano S, Sai K, Ohno Y, Saito Y, Sawada JI. Ethnic Differences in Genetic Polymorphisms of CYP2D6, CYP2C19, CYP3As and MDR1/ABCB1. Drug Metab Pharmacokinet 2004; 19:83-95. [PMID: 15499174 DOI: 10.2133/dmpk.19.83] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic capacities for debrisoquin, sparteine, mephenytoin, nifedipine, and midazolam, which are substrates of polymorphic CYP2D6, CYP2C19, and CYP3A, have been reported to exhibit, in many cases, remarkable interindividual and ethnic differences. These ethnic differences are partly associated with genetic differences. In the case of the drug transporter ABCB1/MDR1, interindividual differences in its transporter activities toward various clinical drugs are also attributed to several ABCB1/MDR1 genetic polymorphisms. In this review, the existence and frequency of various low-activity alleles of drug metabolizing enzymes as well as populational drug metabolic capacities are compared among several different races or ethnicities. Distribution of nonsynonymous ABCB1/MDR1 SNPs and haplotype frequency in various races are summarized, with the association of nonsynonymous SNPs with large functional alterations as a rare event.
Collapse
Affiliation(s)
- Shogo Ozawa
- Division of Pharmacology, National Institute of Health Sciences, Tokyo.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Many administered drugs are first activated by phase I drug-metabolizing enzymes, such as cytochrome P450 (CYP), and then conjugated with ligands such as UDPGA, PAPS, and glutathione by phase II drug-metabolizing enzymes, and finally excreted by transporters. There are some defective activity mutants due to CYP polymorphisms. In these cases, drugs are not metabolized [poor metabolizer (PM)], the high drug levels in blood are maintained, and toxic effects appear in the patients. To clarify the ratio of PMs, in the general population, it is necessary to estimate the drug level to not only prevent toxic reactions, but also to provide more efficient drug therapies, according to their polymorphic information about CYPs. In Caucasians and Asians, PM and allele frequency levels of CYPs (CYP2A6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) are summarized from previous findings. In Caucasians, high PM ratios (7%) of CYP2D6 deriving from the high frequency of CYP2D6*4 and CYP2D6*5, and 2% CYP2C19 from CYP2C19*2, were found. Meanwhile, in Asians, high PM ratios (19%) of CYP2C19 from high frequencies of CYP2C19*2 and CYP2C19*3, and 2% to 4% CYP2A6 from CYP2A6*4, were found. In both populations, the PM frequencies of the CYP3A4 of major drug-metabolizing CYP and CYP2C9 were low.
Collapse
Affiliation(s)
- Takaharu Mizutani
- Department of Drug Metabolism and Disposition, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
33
|
Yu A, Kneller BM, Rettie AE, Haining RL. Expression, purification, biochemical characterization, and comparative function of human cytochrome P450 2D6.1, 2D6.2, 2D6.10, and 2D6.17 allelic isoforms. J Pharmacol Exp Ther 2002; 303:1291-300. [PMID: 12438554 DOI: 10.1124/jpet.102.039891] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Polymorphism at the cytochrome P450 2D6 (CYP2D6) locus is one of the most widely known causes of pharmacogenetic variability in humans. Our goal is to investigate the intrinsic enzymatic differences that exist among active CYP2D6 isoforms to test the hypothesis that these enzymatic differences are substrate-dependent. Active CYP2D6.1, 2, 10, and 17 holo-enzymes were expressed in vitro and purified to a high degree of homogeneity as confirmed with SDS-polyacrylamide gel electrophoresis, CO-difference spectroscopy, and mass spectral analysis. Purified enzyme was reconstituted with lipid and cytochrome P450 reductase in a 2:1 ratio before kinetic analysis. The reaction rate for dextromethorphan (DXM) O-demethylation, DXM N-demethylation, codeine O-demethylation, and fluoxetine N-demethylation catalyzed by each of the variants was determined. The CYP2D6.10 enzyme was the most impaired, exhibiting an estimated enzyme efficiency (as V(max)/K(m)) 50-fold lower for DXM O-demethylation and 100-fold lower for fluoxetine N-demethylation when compared with CYP2D6.1, whereas no measurable catalytic activity was observed for this variant toward codeine. The atypical DXM N-demethylation pathway catalyzed by this variant decreased only 2-fold in comparison. In the case of CYPD6.17, estimated clearances for each metabolite were decreased 6 to 33%. Likewise, the intrinsic clearance of CYP2D6.2 enzyme was consistently decreased for each reaction examined, indicating that the ultra-rapid metabolizer phenotype sometimes associated with this genotype is not a function of the underlying amino acid substitutions. Overall enzyme efficiencies for the metabolism of each substrate therefore decreased in the order of 2D6.1 > 2D6.2 > 2D6.17 > 2D6.10.
Collapse
Affiliation(s)
- Aiming Yu
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506-9530, USA
| | | | | | | |
Collapse
|
34
|
Shiraishi T, Hosokawa M, Kobayashi K, Tainaka H, Yamaura Y, Taguchi M, Chiba K. Effects of G169R and P34S substitutions produced by mutations of CYP2D6*14 on the functional properties of CYP2D6 expressed in V79 cells. Drug Metab Dispos 2002; 30:1201-5. [PMID: 12386125 DOI: 10.1124/dmd.30.11.1201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP2D6 is a polymorphic enzyme that catalyzes the oxidation of various drugs. At least 40-mutant alleles of CYP2D6 have been reported. CYP2D6*14, which is one of them found in Asian populations, causes deficient activity of CYP2D6. Four amino acid substitutions, P34S, G169R, R296C, and S486T, are present in the protein encoded by CYP2D6*14 (CYP2D6 14). Among them, G169R is thought to be a definitive substitution because it is unique to CYP2D6 14. However, a previous study showed that the activity of G169R-substituted CYP2D6 was about 40% of wild-type CYP2D6, suggesting that a combination of G169R and other substitutions may be required to abolish the activity of CYP2D6. In the present study, we examined the effects of combined substitutions of G169R and P34S on the functional properties of CYP2D6 and compared them with those of a single substitution of G169R or P34S using a cDNA expression system of V79 cells. The results showed that a combined substitution of G169R and P34S reduced the activities of CYP2D6 to less than the detection limit of our analytical method for bufuralol 1'-hydroxylation and dextromethorphan O-demethylation. However, these activities were not completely abolished by a single substitution of P34S or G169R. The findings suggest that simultaneous substitution of G169R and P34S is crucial for almost completely abolishing the activity of CYP2D6 at least in V79 cells, although whether the absence of metabolism is due to the absence of functional protein or catalytic incompetency remains unclear because the levels of CYP2D6 protein expressed in V79 cells were too low to be determined by difference CO-reduced spectra.
Collapse
Affiliation(s)
- Tomoko Shiraishi
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba-shi, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Miyazawa M, Shindo M, Shimada T. Metabolism of (+)- and (-)-limonenes to respective carveols and perillyl alcohols by CYP2C9 and CYP2C19 in human liver microsomes. Drug Metab Dispos 2002; 30:602-7. [PMID: 11950794 DOI: 10.1124/dmd.30.5.602] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Limonene, a monocyclic monoterpene, is present in orange peel and other plants and has been shown to have chemopreventive activities. (+)- and (-)-Limonene enantiomers were incubated with human liver microsomes and the oxidative metabolites thus formed were analyzed using gas chromatography-mass spectrometry. Two kinds of metabolites, (+)- and (-)-trans-carveol (a product by 6-hydroxylation) and (+)- and (-)-perillyl alcohol (a product by 7-hydroxylation), were identified, and the latter metabolites were found to be formed more extensively, the former ones with liver microsomes prepared from different human samples. Sulfaphenazole, flavoxamine, and antibodies raised against purified liver cytochrome P450 (P450) 2C9 that inhibit both CYP2C9- and 2C19-dependent activities, significantly inhibited microsomal oxidations of (+)- and (-)-limonene enantiomers. The limonene oxidation activities correlated well with contents of CYP2C9 and activities of tolbutamide methyl hydroxylation in liver microsomes of 62 human samples, whereas these activities did not correlate with contents of CYP2C19 and activities of S-mephenytoin 4-hydroxylation. Of 11 recombinant human P450 enzymes (expressed in Trichoplusia ni cells) tested, CYP2C8, 2C9, 2C18, 2C19, and CYP3A4 catalyzed oxidations of (+)- and (-)-limonenes to respective carveols and perillyl alcohol. Interestingly, human CYP2B6 did not catalyze limonene oxidations, whereas rat CYP2B1 had high activities in catalyzing limonene oxidations. These results suggest that both (+)- and (-)-limonene enantiomers are oxidized at 6- and 7-positions by CYP2C9 and CYP2C19 in human liver microsomes. CYP2C9 may be more important than CYP2C19 in catalyzing limonene oxidations in human liver microsomes, since levels of the former protein are more abundant than CYP2C19 in these human samples. Species-related differences exist in the oxidations of limonenes in CYP2B subfamily in rats and humans.
Collapse
Affiliation(s)
- Mitsuo Miyazawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, Kowakae, Higashiosaka, Osaka, Japan.
| | | | | |
Collapse
|
36
|
Abstract
P450 enzymes comprise a superfamily of heme-containing proteins that catalyze oxidative metabolism of structurally diverse chemicals. Over the past few years, there has been significant progress in P450 research on many fronts and the information gained is currently being applied to both drug development and clinical practice. Recently, a major accomplishment occurred when the structure of a mammalian P450 was determined by crystallography. Results from these studies will have a major impact on understanding structure-activity relationships of P450 enzymes and promote prediction of drug interactions. In addition, new technologies have facilitated the identification of several new P450 alleles. This information will profoundly affect our understanding of the causes attributed to interindividual variations in drug responses and link these differences to efficacy or toxicity of many therapeutic agents. Finally, the recent accomplishments towards constructing P450 null animals have afforded determination of the role of these enzymes in toxicity. Moreover, advances have been made towards the construction of humanized transgenic animals and plants. Overall, the outcome of recent developments in the P450 arena will be safer and more efficient drug therapies.
Collapse
Affiliation(s)
- J L Raucy
- La Jolla Institute for Molecular Medicine, San Diego, CA 92121, USA.
| | | |
Collapse
|
37
|
Nagata K, Yamazoe Y. Genetic Polymorphism of Human Cytochrome P450 Involved in Drug Metabolism. Drug Metab Pharmacokinet 2002; 17:167-89. [PMID: 15618668 DOI: 10.2133/dmpk.17.167] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in human gene analysis promoted by the human genome project have brought us a massive amount of information. These data can be seen and analyzed by personal computer through individual Web sites. As a result, the best use of bioinformatic is essential for recent molecular biology research. Genetic polymorphism of drug-metabolizing enzymes influences individual drug efficacy and safety through the alteration of pharmacokinetics and disposition of drugs. Considerable amounts of data have now accumulated as allelic differences of various drug metabolizing enzymes. Current understanding of genotype information on cytochrome P450 is hereby summarized, based on the Web site for their use in individual optimization of drug therapy.
Collapse
Affiliation(s)
- Kiyoshi Nagata
- Department of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | | |
Collapse
|
38
|
Shimada T, Shindo M, Miyazawa M. Species Differences in the Metabolism of (+)- and (−)-Limonenes and their Metabolites, Carveols and Carvones, by Cytochrome P450 Enzymes in Liver Microsomes of Mice, Rats, Guinea Pigs, Rabbits, Dogs, Monkeys, and Humans. Drug Metab Pharmacokinet 2002; 17:507-15. [PMID: 15618705 DOI: 10.2133/dmpk.17.507] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(+)-Limonene is shown to cause renal toxicity in male rats, but not in female rats and other species of animals including mice, guinea pigs, rabbits, and dogs. We have previously shown that male-specific rat CYP2C11 (but not female-specific CYP2C12) is able to convert limonenes to carveols and perillyl alcohols (M. Miyazawa, M. Shindo, and T. Shimada: Chem. Res. Toxicol., 15, 15-20, 2002). Here, we investigated whether (+)- and (-)-limonene enantiomers are differentially metabolized by P450 enzymes in liver microsomes of mice, rats, guinea pigs, rabbits, dogs, monkeys, and humans. Limonene enantiomers were converted to respective carveols, perillyl alcohols, and carvones (oxidative metabolites of carveols) by liver microsomes of dogs, rabbits, and guinea pigs. Mice, rats, monkeys, and humans produced carveols and perilly alcohols, but not carvones. Reconstituted monooxygenase systems containing purified rabbit CYP1A2 and 2B4 and NADPH-P450 reductase were found to catalyze (+)-limonene to (+)-carveol, (+)-carvone, and (+)-perillyl alcohol, being more active with CYP2B4. When (+)-carveol and (+)-carvone were used as substrates, dogs, rabbits, and guinea pigs metabolized them to (+)-carvone and (+)-carveol, respectively. Again humans, monkeys, rats, and mice did not convert (+)-carveol to (+)-carvone, but metabolized (+)-carvone to (+)-carveol, with male rats having the highest rates. CYP2C enzymes were suggested to play major roles in metabolizing (+)-carveol to (+)-carvone and (+)-carvone to (+)-carveol by liver microsomes, since the activities were inhibited significantly by anti-human CYP2C9 antibodies in these animal species. Studies with recombinant P450 enzymes suggested that CYP2C9 and 2C19 in humans and CYP2C11 in untreated male rats were the major enzymes in metabolizing (+)-carvone. These results suggest that there are species-related differences in the metabolism of limonenes by P450 enzymes, particularly in the way from (+)-carveol to (+)-carvone. However, it remains unclear whether these differences in limonene metabolism by these animal species explain species-related differences in limonene-induced renal toxicity.
Collapse
|