1
|
Zhao J, Conklin DJ, Guo Y, Zhang X, Obal D, Guo L, Jagatheesan G, Katragadda K, He L, Yin X, Prodhan MAI, Shah J, Hoetker D, Kumar A, Kumar V, Wempe MF, Bhatnagar A, Baba SP. Cardiospecific Overexpression of ATPGD1 (Carnosine Synthase) Increases Histidine Dipeptide Levels and Prevents Myocardial Ischemia Reperfusion Injury. J Am Heart Assoc 2020; 9:e015222. [PMID: 32515247 PMCID: PMC7429021 DOI: 10.1161/jaha.119.015222] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Myocardial ischemia reperfusion (I/R) injury is associated with complex pathophysiological changes characterized by pH imbalance, the accumulation of lipid peroxidation products acrolein and 4-hydroxy trans-2-nonenal, and the depletion of ATP levels. Cardioprotective interventions, designed to address individual mediators of I/R injury, have shown limited efficacy. The recently identified enzyme ATPGD1 (Carnosine Synthase), which synthesizes histidyl dipeptides such as carnosine, has the potential to counteract multiple effectors of I/R injury by buffering intracellular pH and quenching lipid peroxidation products and may protect against I/R injury. METHODS AND RESULTS We report here that β-alanine and carnosine feeding enhanced myocardial carnosine levels and protected the heart against I/R injury. Cardiospecific overexpression of ATPGD1 increased myocardial histidyl dipeptides levels and protected the heart from I/R injury. Isolated cardiac myocytes from ATPGD1-transgenic hearts were protected against hypoxia reoxygenation injury. The overexpression of ATPGD1 prevented the accumulation of acrolein and 4-hydroxy trans-2-nonenal-protein adducts in ischemic hearts and delayed acrolein or 4-hydroxy trans-2-nonenal-induced hypercontracture in isolated cardiac myocytes. Changes in the levels of ATP, high-energy phosphates, intracellular pH, and glycolysis during low-flow ischemia in the wild-type mice hearts were attenuated in the ATPGD1-transgenic hearts. Two natural dipeptide analogs (anserine and balenine) that can either quench aldehydes or buffer intracellular pH, but not both, failed to protect against I/R injury. CONCLUSIONS Either exogenous administration or enhanced endogenous formation of histidyl dipeptides prevents I/R injury by attenuating changes in intracellular pH and preventing the accumulation of lipid peroxidation derived aldehydes.
Collapse
Affiliation(s)
- Jingjing Zhao
- Diabetes and Obesity CenterUniversity of LouisvilleKY
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleKY
| | - Daniel J. Conklin
- Diabetes and Obesity CenterUniversity of LouisvilleKY
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleKY
| | - Yiru Guo
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of LouisvilleKY
| | - Xiang Zhang
- Department of ChemistryUniversity of LouisvilleKY
| | - Detlef Obal
- Department of Anesthesiology and Perioperative and Pain MedicineStanford UniversityPalo AltoCA
| | - Luping Guo
- Diabetes and Obesity CenterUniversity of LouisvilleKY
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleKY
| | - Ganapathy Jagatheesan
- Diabetes and Obesity CenterUniversity of LouisvilleKY
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleKY
| | - Kartik Katragadda
- Diabetes and Obesity CenterUniversity of LouisvilleKY
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleKY
| | - Liqing He
- Department of ChemistryUniversity of LouisvilleKY
| | - Xinmin Yin
- Department of ChemistryUniversity of LouisvilleKY
| | | | - Jasmit Shah
- Department of MedicineThe Aga Khan UniversityMedical CollegeNairobiKenya
| | - David Hoetker
- Diabetes and Obesity CenterUniversity of LouisvilleKY
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleKY
| | - Amit Kumar
- Department of Pharmaceutical SciencesUniversity of ColoradoDenverCO
| | - Vijay Kumar
- Department of Pharmaceutical SciencesUniversity of ColoradoDenverCO
| | - Michael F. Wempe
- Department of Pharmaceutical SciencesUniversity of ColoradoDenverCO
| | - Aruni Bhatnagar
- Diabetes and Obesity CenterUniversity of LouisvilleKY
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleKY
| | - Shahid P. Baba
- Diabetes and Obesity CenterUniversity of LouisvilleKY
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleKY
| |
Collapse
|
2
|
Bianchi VE. Impact of Nutrition on Cardiovascular Function. Curr Probl Cardiol 2018; 45:100391. [PMID: 30318107 DOI: 10.1016/j.cpcardiol.2018.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022]
Abstract
The metabolic sources of energy for myocardial contractility include mainly free fatty acids (FFA) for 95%, and in lesser amounts for 5% from glucose and minimal contributions from other substrates such lactate, ketones, and amino acids. However, myocardial efficiency is influenced by metabolic condition, overload, and ischemia. During cardiac stress, cardiomyocytes increase glucose oxidation and reduce FFA oxidation. In patients with ischemic coronary disease and heart failure, the low oxygen availability limits myocardial reliance on FFA and glucose utilization must increase. Although glucose uptake is fundamental to cardiomyocyte function, an excessive intracellular glucose level is detrimental. Insulin plays a fundamental role in maintaining myocardial efficiency and in reducing glycemia and inflammation; this is particularly evident in obese and type-2 diabetic patients. An excess of F availability increase fat deposition within cardiomyocytes and reduces glucose oxidation. In patients with high body mass index, a restricted diet or starvation have positive effects on cardiac metabolism and function while, in patients with low body mass index, restrictive diets, or starvation have a deleterious effect. Thus, weight loss in obese patients has positive impacts on ventricular mass and function, whereas, in underweight heart failure patients, such weight reduction adds to the risk of heart damage, predisposing to cachexia. Nutrition plays an essential role in the evolution of cardiovascular disease and should be taken into account. An energy-restricted diet improves myocardial efficiency but can represent a potential risk of heart damage, particularly in patients affected by cardiovascular disease. Micronutrient integration has a marginal effect on cardiovascular efficiency.
Collapse
|
3
|
Hannukainen JC, Lautamäki R, Mari A, Pärkkä JP, Bucci M, Guzzardi MA, Kajander S, Tuokkola T, Knuuti J, Iozzo P. Elevated Glucose Oxidation, Reduced Insulin Secretion, and a Fatty Heart May Be Protective Adaptions in Ischemic CAD. J Clin Endocrinol Metab 2016; 101:2701-10. [PMID: 27045985 PMCID: PMC4929844 DOI: 10.1210/jc.2015-4091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Insulin resistance, β-cell dysfunction, and ectopic fat deposition have been implicated in the pathogenesis of coronary artery disease (CAD) and type 2 diabetes, which is common in CAD patients. We investigated whether CAD is an independent predictor of these metabolic abnormalities and whether this interaction is influenced by superimposed myocardial ischemia. METHODS AND RESULTS We studied CAD patients with (n = 8) and without (n = 14) myocardial ischemia and eight non-CAD controls. Insulin sensitivity and secretion and substrate oxidation were measured during fasting and oral glucose tolerance testing. We used magnetic resonance imaging/spectroscopy, positron emission and computerized tomography to characterize CAD, cardiac function, pericardial and abdominal adipose tissue, and myocardial, liver, and pancreatic triglyceride contents. Ischemic CAD was characterized by elevated oxidative glucose metabolism and a proportional decline in β-cell insulin secretion and reduction in lipid oxidation. Cardiac function was preserved in CAD groups, whereas cardiac fat depots were elevated in ischemic CAD compared to non-CAD subjects. Liver and pancreatic fat contents were similar in all groups and related with surrounding adipose masses or systemic insulin sensitivity. CONCLUSIONS In ischemic CAD patients, glucose oxidation is enhanced and correlates inversely with insulin secretion. This can be seen as a mechanism to prevent glucose lowering because glucose is required in oxygen-deprived tissues. On the other hand, the accumulation of cardiac triglycerides may be a physiological adaptation to the limited fatty acid oxidative capacity. Our results underscore the urgent need of clinical trials that define the optimal/safest glycemic range in situations of myocardial ischemia.
Collapse
Affiliation(s)
- J C Hannukainen
- Turku PET Center (J.C.H., R.L., J.P.P., M.B., S.K., T.T., J.K., P.I.), University of Turku, 20014 Turku, Finland; Heart Center (R.L.), Turku University Hospital, 20520 Turku, Finland; Institute of Neuroscience (A.M.), National Research Council, 35127 Padua, Italy; and Institute of Clinical Physiology (M.A.G., P.I.), National Research Council, 56124 Pisa, Italy
| | - R Lautamäki
- Turku PET Center (J.C.H., R.L., J.P.P., M.B., S.K., T.T., J.K., P.I.), University of Turku, 20014 Turku, Finland; Heart Center (R.L.), Turku University Hospital, 20520 Turku, Finland; Institute of Neuroscience (A.M.), National Research Council, 35127 Padua, Italy; and Institute of Clinical Physiology (M.A.G., P.I.), National Research Council, 56124 Pisa, Italy
| | - A Mari
- Turku PET Center (J.C.H., R.L., J.P.P., M.B., S.K., T.T., J.K., P.I.), University of Turku, 20014 Turku, Finland; Heart Center (R.L.), Turku University Hospital, 20520 Turku, Finland; Institute of Neuroscience (A.M.), National Research Council, 35127 Padua, Italy; and Institute of Clinical Physiology (M.A.G., P.I.), National Research Council, 56124 Pisa, Italy
| | - J P Pärkkä
- Turku PET Center (J.C.H., R.L., J.P.P., M.B., S.K., T.T., J.K., P.I.), University of Turku, 20014 Turku, Finland; Heart Center (R.L.), Turku University Hospital, 20520 Turku, Finland; Institute of Neuroscience (A.M.), National Research Council, 35127 Padua, Italy; and Institute of Clinical Physiology (M.A.G., P.I.), National Research Council, 56124 Pisa, Italy
| | - M Bucci
- Turku PET Center (J.C.H., R.L., J.P.P., M.B., S.K., T.T., J.K., P.I.), University of Turku, 20014 Turku, Finland; Heart Center (R.L.), Turku University Hospital, 20520 Turku, Finland; Institute of Neuroscience (A.M.), National Research Council, 35127 Padua, Italy; and Institute of Clinical Physiology (M.A.G., P.I.), National Research Council, 56124 Pisa, Italy
| | - M A Guzzardi
- Turku PET Center (J.C.H., R.L., J.P.P., M.B., S.K., T.T., J.K., P.I.), University of Turku, 20014 Turku, Finland; Heart Center (R.L.), Turku University Hospital, 20520 Turku, Finland; Institute of Neuroscience (A.M.), National Research Council, 35127 Padua, Italy; and Institute of Clinical Physiology (M.A.G., P.I.), National Research Council, 56124 Pisa, Italy
| | - S Kajander
- Turku PET Center (J.C.H., R.L., J.P.P., M.B., S.K., T.T., J.K., P.I.), University of Turku, 20014 Turku, Finland; Heart Center (R.L.), Turku University Hospital, 20520 Turku, Finland; Institute of Neuroscience (A.M.), National Research Council, 35127 Padua, Italy; and Institute of Clinical Physiology (M.A.G., P.I.), National Research Council, 56124 Pisa, Italy
| | - T Tuokkola
- Turku PET Center (J.C.H., R.L., J.P.P., M.B., S.K., T.T., J.K., P.I.), University of Turku, 20014 Turku, Finland; Heart Center (R.L.), Turku University Hospital, 20520 Turku, Finland; Institute of Neuroscience (A.M.), National Research Council, 35127 Padua, Italy; and Institute of Clinical Physiology (M.A.G., P.I.), National Research Council, 56124 Pisa, Italy
| | - J Knuuti
- Turku PET Center (J.C.H., R.L., J.P.P., M.B., S.K., T.T., J.K., P.I.), University of Turku, 20014 Turku, Finland; Heart Center (R.L.), Turku University Hospital, 20520 Turku, Finland; Institute of Neuroscience (A.M.), National Research Council, 35127 Padua, Italy; and Institute of Clinical Physiology (M.A.G., P.I.), National Research Council, 56124 Pisa, Italy
| | - P Iozzo
- Turku PET Center (J.C.H., R.L., J.P.P., M.B., S.K., T.T., J.K., P.I.), University of Turku, 20014 Turku, Finland; Heart Center (R.L.), Turku University Hospital, 20520 Turku, Finland; Institute of Neuroscience (A.M.), National Research Council, 35127 Padua, Italy; and Institute of Clinical Physiology (M.A.G., P.I.), National Research Council, 56124 Pisa, Italy
| |
Collapse
|
4
|
Görgens C, Guddat S, Dib J, Geyer H, Schänzer W, Thevis M. Mildronate (Meldonium) in professional sports - monitoring doping control urine samples using hydrophilic interaction liquid chromatography - high resolution/high accuracy mass spectrometry. Drug Test Anal 2015; 7:973-9. [PMID: 25847280 PMCID: PMC5066279 DOI: 10.1002/dta.1788] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 12/20/2022]
Abstract
To date, substances such as Mildronate (Meldonium) are not on the radar of anti‐doping laboratories as the compound is not explicitly classified as prohibited. However, the anti‐ischemic drug Mildronate demonstrates an increase in endurance performance of athletes, improved rehabilitation after exercise, protection against stress, and enhanced activations of central nervous system (CNS) functions. In the present study, the existing evidence of Mildronate's usage in sport, which is arguably not (exclusively) based on medicinal reasons, is corroborated by unequivocal analytical data allowing the estimation of the prevalence and extent of misuse in professional sports. Such data are vital to support decision‐making processes, particularly regarding the ban on drugs in sport. Due to the growing body of evidence (black market products and athlete statements) concerning its misuse in sport, adequate test methods for the reliable identification of Mildronate are required, especially since the substance has been added to the 2015 World Anti‐Doping Agency (WADA) monitoring program. In the present study, two approaches were established using an in‐house synthesized labelled internal standard (Mildronate‐D3). One aimed at the implementation of the analyte into routine doping control screening methods to enable its monitoring at the lowest possible additional workload for the laboratory, and another that is appropriate for the peculiar specifics of the analyte, allowing the unequivocal confirmation of findings using hydrophilic interaction liquid chromatography‐high resolution/high accuracy mass spectrometry (HILIC‐HRMS). Here, according to applicable regulations in sports drug testing, a full qualitative validation was conducted. The assay demonstrated good specificity, robustness (rRT=0.3%), precision (intra‐day: 7.0–8.4%; inter‐day: 9.9–12.9%), excellent linearity (R>0.99) and an adequate lower limit of detection (<10 ng/mL). © 2015 The Authors. Drug Testing and Analysis published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Christian Görgens
- Institute of Biochemistry - Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Sven Guddat
- Institute of Biochemistry - Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Josef Dib
- Institute of Biochemistry - Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Hans Geyer
- Institute of Biochemistry - Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Wilhelm Schänzer
- Institute of Biochemistry - Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Mario Thevis
- Institute of Biochemistry - Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany
| |
Collapse
|
5
|
Rau TF, Lu Q, Sharma S, Sun X, Leary G, Beckman ML, Hou Y, Wainwright MS, Kavanaugh M, Poulsen DJ, Black SM. Oxygen glucose deprivation in rat hippocampal slice cultures results in alterations in carnitine homeostasis and mitochondrial dysfunction. PLoS One 2012; 7:e40881. [PMID: 22984394 PMCID: PMC3439445 DOI: 10.1371/journal.pone.0040881] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 06/18/2012] [Indexed: 12/02/2022] Open
Abstract
Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI) in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neuroprotective. Thus, this study was undertaken to elucidate the molecular mechanisms by which HI alters carnitine metabolism and to begin to elucidate the mechanism underlying the neuroprotective effect of L-carnitine (LCAR) supplementation. Utilizing neonatal rat hippocampal slice cultures we found that oxygen glucose deprivation (OGD) decreased the levels of free carnitines (FC) and increased the acylcarnitine (AC): FC ratio. These changes in carnitine homeostasis correlated with decreases in the protein levels of carnitine palmitoyl transferase (CPT) 1 and 2. LCAR supplementation prevented the decrease in CPT1 and CPT2, enhanced both FC and the AC∶FC ratio and increased slice culture metabolic viability, the mitochondrial membrane potential prior to OGD and prevented the subsequent loss of neurons during later stages of reperfusion through a reduction in apoptotic cell death. Finally, we found that LCAR supplementation preserved the structural integrity and synaptic transmission within the hippocampus after OGD. Thus, we conclude that LCAR supplementation preserves the key enzymes responsible for maintaining carnitine homeostasis and preserves both cell viability and synaptic transmission after OGD.
Collapse
Affiliation(s)
- Thomas F. Rau
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
| | - Qing Lu
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Shruti Sharma
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Xutong Sun
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Gregory Leary
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
| | - Matthew L. Beckman
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
| | - Yali Hou
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Mark S. Wainwright
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Children's Memorial Hospital, 2300 Children's Plaza, Chicago, Illinois, United States of America
| | - Michael Kavanaugh
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
| | - David J. Poulsen
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
- * E-mail: (SMB); (DJP)
| | - Stephen M. Black
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia, United States of America
- * E-mail: (SMB); (DJP)
| |
Collapse
|
6
|
Witham W, Yester K, O'Donnell CP, McGaffin KR. Restoration of glucose metabolism in leptin-resistant mouse hearts after acute myocardial infarction through the activation of survival kinase pathways. J Mol Cell Cardiol 2012; 53:91-100. [PMID: 22507542 DOI: 10.1016/j.yjmcc.2012.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/26/2012] [Accepted: 03/28/2012] [Indexed: 02/07/2023]
Abstract
In the normal heart, leptin modulates cardiac metabolism. It is unknown, however, what effect leptin has on cardiac metabolism and outcomes in acute myocardial infarction (MI). This study was performed to test the hypothesis that leptin signaling increases glucose metabolism and attenuates injury in the acutely infarcted heart. Mice with (ObR(+/+)) and without (ObR(-/-)) cardiomyocyte specific expression of leptin receptor (ObR) were randomly assigned to experimental MI or sham procedure, and studied 3 days later. ObR(+/+) and ObR(-/-) sham mice were not significantly different in any measured outcome. However, after MI, ObR(-/-) mice had greater cardiac dysfunction, left ventricular dilation, and levels of oxidative stress. These worse indices of cardiac injury in ObR(-/-) mice were associated with attenuated signal transducer and activator of transcription (STAT) 3, phosphatidylinositol-3-kinase (PI3K), and Akt signaling, decreased malonyl CoA content, and reduced mitochondrial pyruvate dehydrogenase and electron transport Complex I, II and IV activities. Furthermore, ObR(-/-) mice maintained high rates of cardiac fatty acid oxidation after MI, whereas ObR(+/+) mice demonstrated a switch away from fatty acid oxidation to glucose metabolism. Restoration of cardiac STAT3, PI3K and Akt activity and mitochondrial function in ObR(-/-) mice post-MI was accomplished by ciliary neurotrophic factor (CNTF), an established STAT3 activator, administered immediately after MI. Moreover, CNTF therapy resulted in mitigation of cardiac structural and functional injury, attenuated levels of oxidative stress, and rescued glucose metabolism in the infarcted ObR(-/-) heart. These data demonstrate that impaired cardiac leptin signaling results in metabolic inflexibility for glucose utilization in the face of cardiac stress, and greater morbidity after MI. Further, these studies show that cardiac glucose metabolism can be restored in leptin-resistant hearts by CNTF-mediated activation of survival kinases, resulting in multiple improved structural and functional outcomes post-MI.
Collapse
Affiliation(s)
- William Witham
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
7
|
Altmaier E, Kastenmüller G, Römisch-Margl W, Thorand B, Weinberger KM, Adamski J, Illig T, Döring A, Suhre K. Variation in the human lipidome associated with coffee consumption as revealed by quantitative targeted metabolomics. Mol Nutr Food Res 2010; 53:1357-65. [PMID: 19810022 DOI: 10.1002/mnfr.200900116] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The effect of coffee consumption on human health is still discussed controversially. Here, we report results from a metabolomics study of coffee consumption, where we measured 363 metabolites in blood serum of 284 male participants of the Cooperative Health Research in the Region of Augsburg study population, aged between 55 and 79 years. A statistical analysis of the association of metabolite concentrations and the number of cups of coffee consumed per day showed that coffee intake is positively associated with two classes of sphingomyelins, one containing a hydroxy-group (SM(OH)) and the other having an additional carboxy-group (SM(OH,COOH)). In contrast, long- and medium-chain acylcarnitines were found to decrease with increasing coffee consumption. It is noteworthy that the concentration of total cholesterol also rises with an increased coffee intake in this study group. The association observed here between these hydroxylated and carboxylated sphingolipid species and coffee intake may be induced by changes in the cholesterol levels. Alternatively, these molecules may act as scavengers of oxidative species, which decrease with higher coffee intake. In summary, we demonstrate strong positive associations between coffee consumption and two classes of sphingomyelins and a negative association between coffee consumption and long- and medium-chain acylcarnitines.
Collapse
Affiliation(s)
- Elisabeth Altmaier
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Xie J, Zeng Q, Wang L. The protective effect of L-carnitine on ischemia-reperfusion heart. ACTA ACUST UNITED AC 2008; 26:188-91. [PMID: 16850743 DOI: 10.1007/bf02895812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To investigate the protective effect of L-carnitine on myocardial ischemia-reperfusion injury in rat heart,all harvested isolated hearts were perfused on Langendorff apparatus with oxygenized K-H solution for 20 min. The hearts were then exposed to ischemia for 30 min. Following the ischemia the hearts were re-perfused with K-H solution for 120 min to serve as the control group A. Either 5 or 10 mmol/L of L-carnitine was added into the K-H solution for 20 min at the beginning of reperfusion to generate group B and group C, respectively. The derivatives of the intraventricular pressure curve (DP/DT), left ventricular developed pressure (LVDP), and coronary flux were monitored during the entire experiment. The levels of ATP, hepatin, malondialdehyde (MDA), and superoxide dismutase (SOD) in tissue, and lactic dehydrogenase (LDH), creatine phosphate kinase (CPK), malondialdehyde (MDA), and superoxide dismutase (SOD) concentration in the coronary efflux were all measured. Compared with the control group, the treatment with L-carnitine resulted in better results, i. e., higher DP/DTmax and LVDP. At the same time, ventricular fibrillation was reduced, and the levels of ATP, hepatin and SOD were all elevated. However, the concentrations of MDA, CPK and LDH were all reduced. In conclusion, L-carnitine has a protective effect on ischemia-reperfusion injury, which is partly due to its prevention of energy loss and its antioxidant activity.
Collapse
Affiliation(s)
- Jiang Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | | | | |
Collapse
|
9
|
Abstract
The metabolic pathways of the heart during normoxia and ischemia have been well studied. High plasma fatty acid concentrations and the myocardial accumulation of long-chain fatty acyl metabolites during ischemia correlate with increased morbidity and mortality. However, enhanced glucose use can maintain cell homeostasis, diminish ischemic injury, and be clinically beneficial. Metabolic modulators represent a new class of drugs with the potential to treat myocardial ischemia. They are ideal as adjunctive anti-ischemic therapy because they lack the hemodynamic consequences of traditional therapy and treat the underlying metabolic dysfunction that leads to contractile failure and arrhythmias. Clinical studies have demonstrated their efficacy in acute and chronic settings. It is anticipated that there will be greater utilization of this new class of agents in the near future.
Collapse
Affiliation(s)
- Sonal Jani
- Division of Cardiology, Beth Israel Medical Center, Baird 5, 16th Street and First Avenue, New York, NY 10003, USA
| | | |
Collapse
|
10
|
Sjakste N, Gutcaits A, Kalvinsh I. Mildronate: an antiischemic drug for neurological indications. CNS DRUG REVIEWS 2005; 11:151-68. [PMID: 16007237 PMCID: PMC6741751 DOI: 10.1111/j.1527-3458.2005.tb00267.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mildronate (3-(2,2,2-trimethylhydrazinium)propionate; MET-88; meldonium, quaterine) is an antiischemic drug developed at the Latvian Institute of Organic Synthesis. Mildronate was designed to inhibit carnitine biosynthesis in order to prevent accumulation of cytotoxic intermediate products of fatty acid beta-oxidation in ischemic tissues and to block this highly oxygen-consuming process. Mildronate is efficient in the treatment of heart ischemia and its consequences. Extensive evaluation of pharmacological activities of mildronate revealed its beneficial effect on cerebral circulation disorders and central nervous system (CNS) functions. The drug is used in neurological clinics for the treatment of brain circulation disorders. It appears to improve patients' mood; they become more active, their motor dysfunction decreases, and asthenia, dizziness and nausea become less pronounced. Since the brain does not utilize fatty acids as fuel other mechanisms of action of mildronate in CNS should be considered. Several reports indicate the possible existence of an alternative, non-carnitine dependent mechanism of action of mildronate. Our recent findings suggest that CNS effects of mildronate could be mediated by stimulation of the nitric oxide production in the vascular endothelium by modification of the gamma-butyrobetaine and its esters pools. It is hypothesized that mildronate may increase the formation of the gamma-butyrobetaine esters. The latter are potent cholinomimetics and may activate eNOS via acetylcholine receptors or specific gamma-butyrobetaine ester receptors. This article summarizes known pharmacological effects of mildronate, its pharmacokinetics, toxicology, as well as the proposed mechanisms of action.
Collapse
|
11
|
Liu CN, Yang C, Liu XY, Li S. In vivo protective effects of urocortin on ischemia-reperfusion injury in rat heart via free radical mechanisms. Can J Physiol Pharmacol 2005; 83:459-65. [PMID: 16049545 DOI: 10.1139/y05-033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to investigate the effects of urocortin (UCN) on oxidative stress and the mechanisms of urocortin on ischemia–reperfusion injury in vivo in the rat model. Thirty-six Sprague–Dawley rats were divided into 6 groups, including sham, control (normal saline solution), UCN1, UCN2, UCN3, and verapamil groups. The left anterior descending coronary artery of all rats except those in the sham group was treated with a 30-min occlusion followed by a 60-min reperfusion. Just before the occlusion, normal saline solution, UCN (5, 10, and 20 µg/kg body mass), or verapamil (1 mg/kg body mass) was administered. Heart rates, beating rhythm, and S-T segments were constantly monitored using an ECG. At the completion of the drug adminstration, blood samples were taken to measure the activity of superoxide dismutase (SOD), malonaldehyde (MDA), glutathione peroxidase (GSH-PX), and nitric oxide (NO) to evaluate the effects of UCN on oxidative stress. Finally, the size of infarction was measured. Arrhythmia rates were significantly lower, and the infarction size was significantly smaller (p < 0.01), in the UCN groups vs. the control group. Verapamil also significantly reduced arrhythmia rates and infarction size. The MDA activities were remarkably diminished, whereas the SOD, GSH-PX, and NO activities were significantly higher in the UCN and VER groups (p < 0.01). MDA, SOD, and NO activities were strongly correlated with UCN doses. These results suggest that UCN may play a protective role in ischemia–reperfusion injury in rat hearts against the oxidative stress by inhibiting free radicals' activities. Key words: urocortin, ischemia–reperfusion injury, arrhythmias, free radical anti-oxidative enzymes, oxidative stress.
Collapse
Affiliation(s)
- Chun-Na Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | | | | | | |
Collapse
|