1
|
Antipova V, Heimes D, Seidel K, Schulz J, Schmitt O, Holzmann C, Rolfs A, Bidmon HJ, González de San Román Martín E, Huesgen PF, Amunts K, Keiler J, Hammer N, Witt M, Wree A. Differently increased volumes of multiple brain areas in Npc1 mutant mice following various drug treatments. Front Neuroanat 2024; 18:1430790. [PMID: 39081805 PMCID: PMC11286580 DOI: 10.3389/fnana.2024.1430790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background Niemann-Pick disease type C1 (NPC1, MIM 257220) is a heritable lysosomal storage disease characterized by a progressive neurological degeneration that causes disability and premature death. A murine model of Npc1-/- displays a rapidly progressing form of Npc1 disease, which is characterized by weight loss, ataxia, and increased cholesterol storage. Npc1-/- mice receiving a combined therapy (COMBI) of miglustat (MIGLU), the neurosteroid allopregnanolone (ALLO) and the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (HPßCD) showed prevention of Purkinje cell loss, improved motor function and reduced intracellular lipid storage. Although therapy of Npc1-/- mice with COMBI, MIGLU or HPßCD resulted in the prevention of body weight loss, reduced total brain weight was not positively influenced. Methods In order to evaluate alterations of different brain areas caused by pharmacotherapy, fresh volumes (volumes calculated from the volumes determined from paraffin embedded brain slices) of various brain structures in sham- and drug-treated wild type and mutant mice were measured using stereological methods. Results In the wild type mice, the volumes of investigated brain areas were not significantly altered by either therapy. Compared with the respective wild types, fresh volumes of specific brain areas, which were significantly reduced in sham-treated Npc1-/- mice, partly increased after the pharmacotherapies in all treatment strategies; most pronounced differences were found in the CA1 area of the hippocampus and in olfactory structures. Discussion Volumes of brain areas of Npc1-/- mice were not specifically changed in terms of functionality after administering COMBI, MIGLU, or HPßCD. Measurements of fresh volumes of brain areas in Npc1-/- mice could monitor region-specific changes and response to drug treatment that correlated, in part, with behavioral improvements in this mouse model.
Collapse
Affiliation(s)
- Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Diana Heimes
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Katharina Seidel
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Klinik für Frauenheilkunde und Geburtshilfe, Dietrich-Bonhoeffer-Klinikum, Neubrandenburg, Germany
| | - Jennifer Schulz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, Rostock, Germany
- Centre of Transdisciplinary Neuroscience Rostock, Rostock, Germany
| | - Arndt Rolfs
- Medical Faculty, University of Rostock, Rostock, Germany
| | - Hans-Jürgen Bidmon
- Institute of Neurosciences and Medicine, Structural and Functional Organisation of the Brain (INM-1), Forschungszentrum Jülich, Jülich, Germany
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | | | - Pitter F. Huesgen
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Institut für Biologie II, AG Funktional Proteomics, Freiburg, Germany
| | - Katrin Amunts
- Institute of Neurosciences and Medicine, Structural and Functional Organisation of the Brain (INM-1), Forschungszentrum Jülich, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, University Hospital Düsseldorf, University Düsseldorf, Düsseldorf, Germany
| | - Jonas Keiler
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany
- Division of Biomechatronics, Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany
| | - Martin Witt
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy, Technische Universität Dresden, Dresden, Germany
- Department of Anatomy, Institute of Biostructural Basics of Medical Sciences, Poznan Medical University, Poznan, Poland
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Centre of Transdisciplinary Neuroscience Rostock, Rostock, Germany
| |
Collapse
|
2
|
Pan X. Cholesterol Metabolism in Chronic Kidney Disease: Physiology, Pathologic Mechanisms, and Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:119-143. [PMID: 35503178 PMCID: PMC11106795 DOI: 10.1007/978-981-19-0394-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High plasma levels of lipids and/or lipoproteins are risk factors for atherosclerosis, nonalcoholic fatty liver disease (NAFLD), obesity, and diabetes. These four conditions have also been identified as risk factors leading to the development of chronic kidney disease (CKD). Although many pathways that generate high plasma levels of these factors have been identified, most clinical and physiologic dysfunction results from aberrant assembly and secretion of lipoproteins. The results of several published studies suggest that elevated levels of low-density lipoprotein (LDL)-cholesterol are a risk factor for atherosclerosis, myocardial infarction, coronary artery calcification associated with type 2 diabetes, and NAFLD. Cholesterol metabolism has also been identified as an important pathway contributing to the development of CKD; clinical treatments designed to alter various steps of the cholesterol synthesis and metabolism pathway are currently under study. Cholesterol synthesis and catabolism contribute to a multistep process with pathways that are regulated at the cellular level in renal tissue. Cholesterol metabolism may also be regulated by the balance between the influx and efflux of cholesterol molecules that are capable of crossing the membrane of renal proximal tubular epithelial cells and podocytes. Cellular accumulation of cholesterol can result in lipotoxicity and ultimately kidney dysfunction and failure. Thus, further research focused on cholesterol metabolism pathways will be necessary to improve our understanding of the impact of cholesterol restriction, which is currently a primary intervention recommended for patients with dyslipidemia.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA.
| |
Collapse
|
3
|
Shukla S, Tekwani BL. Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation. Front Pharmacol 2020; 11:537. [PMID: 32390854 PMCID: PMC7194116 DOI: 10.3389/fphar.2020.00537] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HADC) are the enzymes that remove acetyl group from lysine residue of histones and non-histone proteins and regulate the process of transcription by binding to transcription factors and regulating fundamental cellular process such as cellular proliferation, differentiation and development. In neurodegenerative diseases, the histone acetylation homeostasis is greatly impaired, shifting towards a state of hypoacetylation. The histone hyperacetylation produced by direct inhibition of HDACs leads to neuroprotective actions. This review attempts to elaborate on role of small molecule inhibitors of HDACs on neuronal differentiation and throws light on the potential of HDAC inhibitors as therapeutic agents for treatment of neurodegenerative diseases. The role of HDACs in neuronal cellular and disease models and their modulation with HDAC inhibitors are also discussed. Significance of these HDAC inhibitors has been reviewed on the process of neuronal differentiation, neurite outgrowth and neuroprotection regarding their potential therapeutic application for treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Surabhi Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, United States
| | - Babu L Tekwani
- Division of Drug Discovery, Department of Infectious Diseases, Southern Research, Birmingham, AL, United States
| |
Collapse
|
4
|
Donida B, Jacques CED, Mescka CP, Rodrigues DGB, Marchetti DP, Ribas G, Giugliani R, Vargas CR. Oxidative damage and redox in Lysosomal Storage Disorders: Biochemical markers. Clin Chim Acta 2017; 466:46-53. [DOI: 10.1016/j.cca.2017.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 02/03/2023]
|
5
|
Eltoukhy AA, Sahay G, Cunningham JM, Anderson DG. Niemann-Pick C1 affects the gene delivery efficacy of degradable polymeric nanoparticles. ACS NANO 2014; 8:7905-13. [PMID: 25010491 PMCID: PMC4148171 DOI: 10.1021/nn501630h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/10/2014] [Indexed: 05/15/2023]
Abstract
Despite intensive research effort, the rational design of improved nanoparticulate drug carriers remains challenging, in part due to a limited understanding of the determinants of nanoparticle entry and transport in target cells. Recent studies have shown that Niemann-Pick C1 (NPC1), the lysosome membrane protein that mediates trafficking of cholesterol in cells, is involved in the endosomal escape and subsequent infection caused by filoviruses, and that its absence promotes the retention and efficacy of lipid nanoparticles encapsulating siRNA. Here, we report that NPC1 deficiency results in dramatic reduction in internalization and transfection efficiency mediated by degradable cationic gene delivery polymers, poly(β-amino ester)s (PBAEs). PBAEs utilized cholesterol and dynamin-dependent endocytosis pathways, and these were found to be heavily compromised in NPC1-deficient cells. In contrast, the absence of NPC1 had minor effects on DNA uptake mediated by polyethylenimine or Lipofectamine 2000. Strikingly, stable overexpression of human NPC1 in chinese hamster ovary cells was associated with enhanced gene uptake (3-fold) and transfection (10-fold) by PBAEs. These findings reveal a role of NPC1 in the regulation of endocytic mechanisms affecting nanoparticle trafficking. We hypothesize that in-depth understanding sites of entry and endosomal escape may lead to highly efficient nanotechnologies for drug delivery.
Collapse
Affiliation(s)
- Ahmed A. Eltoukhy
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gaurav Sahay
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - James M. Cunningham
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Daniel G. Anderson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Harvard-MIT Division of Health Sciences and Technology, and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Argüello G, Martinez P, Peña J, Chen O, Platt F, Zanlungo S, González M. Hepatic metabolic response to restricted copper intake in a Niemann–Pick C murine model. Metallomics 2014; 6:1527-39. [DOI: 10.1039/c4mt00056k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Niemann–Pick C disease (NPC) is a vesicular trafficking disorder primarily caused by mutations in theNpc1gene and characterized by liver dysfunction and neuropathology.
Collapse
Affiliation(s)
- Graciela Argüello
- INTA
- Laboratorio de Bioinformática y Expresión Génica
- Universidad de Chile
- Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR)
| | - Pablo Martinez
- Departamento de Gastroenterología
- Facultad de Medicina
- Pontificia Universidad Católica de Chile
- Santiago, Chile
| | - Juan Peña
- INTA
- Laboratorio de Bioinformática y Expresión Génica
- Universidad de Chile
- Santiago, Chile
| | - Oscar Chen
- Department of Pharmacology
- University of Oxford
- Oxford OX1 3QT, UK
| | - Frances Platt
- Department of Pharmacology
- University of Oxford
- Oxford OX1 3QT, UK
| | - Silvana Zanlungo
- FONDAP-Center of Genome Regulation (CGR)
- Santiago, Chile
- Departamento de Gastroenterología
- Facultad de Medicina
- Pontificia Universidad Católica de Chile
| | - Mauricio González
- INTA
- Laboratorio de Bioinformática y Expresión Génica
- Universidad de Chile
- Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR)
| |
Collapse
|
7
|
Jones RJ, Gu D, Bjorklund CC, Kuiatse I, Remaley AT, Bashir T, Vreys V, Orlowski RZ. The novel anticancer agent JNJ-26854165 induces cell death through inhibition of cholesterol transport and degradation of ABCA1. J Pharmacol Exp Ther 2013; 346:381-92. [PMID: 23820125 DOI: 10.1124/jpet.113.204958] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
JNJ-26854165 (serdemetan) has previously been reported to inhibit the function of the E3 ligase human double minute 2, and we initially sought to characterize its activity in models of mantle cell lymphoma (MCL) and multiple myeloma (MM). Serdemetan induced a dose-dependent inhibition of proliferation in both wild-type (wt) and mutant (mut) p53 cell lines, with IC50 values from 0.25 to 3 μM/l, in association with an S phase cell cycle arrest. Caspase-3 activation was primarily seen in wtp53-bearing cells but also occurred in mutp53-bearing cells, albeit to a lesser extent. 293T cells treated with JNJ-26854165 and serdemetan-resistant fibroblasts displayed accumulation of cholesterol within endosomes, a phenotype reminiscent of that seen in the ATP-binding cassette subfamily A member-1 (ABCA1) cholesterol transport disorder, Tangiers disease. MM and MCL cells had decreased cholesterol efflux and electron microscopy demonstrated the accumulation of lipid whorls, confirming the lysosomal storage disease phenotype. JNJ-26854165 induced induction of cholesterol regulatory genes, sterol regulatory element-binding transcription factor-1 and -2, liver X receptors α and β, along with increased expression of Niemann-Pick disease type-C1 and -C2. However, JNJ-26854165 induced enhanced ABCA1 turnover despite enhancing transcription. Finally, ABCA1 depletion resulted in enhanced sensitivity to JNJ-26854165. Overall, these findings support the hypothesis that serdemetan functions in part by inhibiting cholesterol transport and that this pathway is a potential new target for the treatment of MCL and MM.
Collapse
Affiliation(s)
- Richard J Jones
- The Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Oxidative stress: a pathogenic mechanism for Niemann-Pick type C disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:205713. [PMID: 22720116 PMCID: PMC3374944 DOI: 10.1155/2012/205713] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 01/01/2023]
Abstract
Niemann-Pick type C (NPC) disease is a neurovisceral atypical lipid storage disorder involving the accumulation of cholesterol and other lipids in the late endocytic pathway. The pathogenic mechanism that links the accumulation of intracellular cholesterol with cell death in NPC disease in both the CNS and the liver is currently unknown. Oxidative stress has been observed in the livers and brains of NPC mice and in different NPC cellular models. Moreover, there is evidence of an elevation of oxidative stress markers in the serumof NPC patients. Recent evidence strongly suggests that mitochondrial dysfunction plays an important role in NPC pathogenesis and that mitochondria could be a significant source of oxidative stress in this disease. In this context, the accumulation of vitamin E in the late endosomal/lysosomal compartments in NPC could lead to a potential decrease of its bioavailability and could be another possible cause of oxidative damage. Another possible source of reactive species in NPC is the diminished activity of different antioxidant enzymes. Moreover, because NPC is mainly caused by the accumulation of free cholesterol, oxidized cholesterol derivatives produced by oxidative stress may contribute to the pathogenesis of the disease.
Collapse
|
9
|
Soufi M, Ruppert V, Kurt B, Schaefer JR. The impact of severe LDL receptor mutations on SREBP-pathway regulation in homozygous familial hypercholesterolemia (FH). Gene 2012; 499:218-22. [DOI: 10.1016/j.gene.2012.02.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 02/16/2012] [Indexed: 11/26/2022]
|
10
|
Cabeza C, Figueroa A, Lazo OM, Galleguillos C, Pissani C, Klein A, Gonzalez-Billault C, Inestrosa NC, Alvarez AR, Zanlungo S, Bronfman FC. Cholinergic abnormalities, endosomal alterations and up-regulation of nerve growth factor signaling in Niemann-Pick type C disease. Mol Neurodegener 2012; 7:11. [PMID: 22458984 PMCID: PMC3395862 DOI: 10.1186/1750-1326-7-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 03/29/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Neurotrophins and their receptors regulate several aspects of the developing and mature nervous system, including neuronal morphology and survival. Neurotrophin receptors are active in signaling endosomes, which are organelles that propagate neurotrophin signaling along neuronal processes. Defects in the Npc1 gene are associated with the accumulation of cholesterol and lipids in late endosomes and lysosomes, leading to neurodegeneration and Niemann-Pick type C (NPC) disease. The aim of this work was to assess whether the endosomal and lysosomal alterations observed in NPC disease disrupt neurotrophin signaling. As models, we used i) NPC1-deficient mice to evaluate the central cholinergic septo-hippocampal pathway and its response to nerve growth factor (NGF) after axotomy and ii) PC12 cells treated with U18666A, a pharmacological cellular model of NPC, stimulated with NGF. RESULTS NPC1-deficient cholinergic cells respond to NGF after axotomy and exhibit increased levels of choline acetyl transferase (ChAT), whose gene is under the control of NGF signaling, compared to wild type cholinergic neurons. This finding was correlated with increased ChAT and phosphorylated Akt in basal forebrain homogenates. In addition, we found that cholinergic neurons from NPC1-deficient mice had disrupted neuronal morphology, suggesting early signs of neurodegeneration. Consistently, PC12 cells treated with U18666A presented a clear NPC cellular phenotype with a prominent endocytic dysfunction that includes an increased size of TrkA-containing endosomes and reduced recycling of the receptor. This result correlates with increased sensitivity to NGF, and, in particular, with up-regulation of the Akt and PLC-γ signaling pathways, increased neurite extension, increased phosphorylation of tau protein and cell death when PC12 cells are differentiated and treated with U18666A. CONCLUSIONS Our results suggest that the NPC cellular phenotype causes neuronal dysfunction through the abnormal up-regulation of survival pathways, which causes the perturbation of signaling cascades and anomalous phosphorylation of the cytoskeleton.
Collapse
Affiliation(s)
- Carolina Cabeza
- Physiology Department, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vázquez MC, del Pozo T, Robledo FA, Carrasco G, Pavez L, Olivares F, González M, Zanlungo S. Alteration of gene expression profile in Niemann-Pick type C mice correlates with tissue damage and oxidative stress. PLoS One 2011; 6:e28777. [PMID: 22216111 PMCID: PMC3245218 DOI: 10.1371/journal.pone.0028777] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/15/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Niemann-Pick type C disease (NPC) is a neurovisceral lipid storage disorder mainly characterized by unesterified cholesterol accumulation in lysosomal/late endosomal compartments, although there is also an important storage for several other kind of lipids. The main tissues affected by the disease are the liver and the cerebellum. Oxidative stress has been described in various NPC cells and tissues, such as liver and cerebellum. Although considerable alterations occur in the liver, the pathological mechanisms involved in hepatocyte damage and death have not been clearly defined. Here, we assessed hepatic tissue integrity, biochemical and oxidative stress parameters of wild-type control (Npc1(+/+); WT) and homozygous-mutant (Npc1(-/-); NPC) mice. In addition, the mRNA abundance of genes encoding proteins associated with oxidative stress, copper metabolism, fibrosis, inflammation and cholesterol metabolism were analyzed in livers and cerebella of WT and NPC mice. METHODOLOGY/PRINCIPAL FINDINGS We analyzed various oxidative stress parameters in the liver and hepatic and cerebellum gene expression in 7-week-old NPC1-deficient mice compared with control animals. We found signs of inflammation and fibrosis in NPC livers upon histological examination. These signs were correlated with increased levels of carbonylated proteins, diminished total glutathione content and significantly increased total copper levels in liver tissue. Finally, we analyzed liver and cerebellum gene expression patterns by qPCR and microarray assays. We found a correlation between fibrotic tissue and differential expression of hepatic as well as cerebellar genes associated with oxidative stress, fibrosis and inflammation in NPC mice. CONCLUSIONS/SIGNIFICANCE In NPC mice, liver disease is characterized by an increase in fibrosis and in markers associated with oxidative stress. NPC is also correlated with altered gene expression, mainly of genes involved in oxidative stress and fibrosis. These findings correlate with similar parameters in cerebellum, as has been previously reported in the NPC mice model.
Collapse
Affiliation(s)
- Mary C. Vázquez
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Talía del Pozo
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
| | - Fermín A. Robledo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Leonardo Pavez
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Felipe Olivares
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
- Laboratorio de Bioinformática y Matemáticas del Genoma, Centro de Modelamiento Matemático (CMM), Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
- * E-mail:
| |
Collapse
|
12
|
Hovakimyan M, Petersen J, Maass F, Reichard M, Witt M, Lukas J, Stachs O, Guthoff R, Rolfs A, Wree A. Corneal alterations during combined therapy with cyclodextrin/allopregnanolone and miglustat in a knock-out mouse model of NPC1 disease. PLoS One 2011; 6:e28418. [PMID: 22163015 PMCID: PMC3232193 DOI: 10.1371/journal.pone.0028418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 11/08/2011] [Indexed: 12/04/2022] Open
Abstract
Background Niemann Pick disease type C1 is a neurodegenerative disease caused by mutations in the NPC1 gene, which result in accumulation of unesterified cholesterol and glycosphingolipids in the endosomal-lysosomal system as well as limiting membranes. We have previously shown the corneal involvement in NPC1 pathology in form of intracellular inclusions in epithelial cells and keratocytes. The purpose of the present study was to clarify if these inclusions regress during combined substrate reduction- and by-product therapy (SRT and BPT). Methodology/Principal Findings Starting at postnatal day 7 (P7) and thereafter, NPC1 knock-out mice (NPC1−/−) and wild type controls (NPC1+/+) were injected with cyclodextrin/allopregnanolone weekly. Additionally, a daily miglustat injection started at P10 until P23. Starting at P23 the mice were fed powdered chow with daily addition of miglustat. The sham group was injected with 0.9% NaCl at P7, thereafter daily starting at P10 until P23, and fed powdered chow starting at P23. For corneal examination, in vivo confocal laser-scanning microscopy (CLSM) was performed one day before experiment was terminated. Excised corneas were harvested for lipid analysis (HPLC/MS) and electron microscopy. In vivo CLSM demonstrated a regression of hyperreflective inclusions in all treated NPC1−/−mice. The findings varied between individual mice, demonstrating a regression, ranging from complete absence to pronounced depositions. The reflectivity of inclusions, however, was significantly lower when compared to untreated and sham-injected NPC1−/− mice. These confocal findings were confirmed by lipid analysis and electron microscopy. Another important CLSM finding revealed a distinct increase of mature dendritic cell number in corneas of all treated mice (NPC1−/− and NPC1+/+), including sham-treated ones. Conclusions/Significance The combined substrate reduction- and by-product therapy revealed beneficial effects on the cornea. In vivo CLSM is a non-invasive tool to monitor disease progression and treatment effects in NPC1 disorder.
Collapse
Affiliation(s)
- Marine Hovakimyan
- Department of Ophthalmology, University of Rostock, Rostock, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Langlois D, Forcheron F, Li JY, del Carmine P, Neggazi S, Beylot M. Increased atherosclerosis in mice deficient in perilipin1. Lipids Health Dis 2011; 10:169. [PMID: 21943217 PMCID: PMC3187733 DOI: 10.1186/1476-511x-10-169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/24/2011] [Indexed: 01/10/2023] Open
Abstract
Background Perilipin1, a lipid droplet associated protein has an important role in the regulation of lipolysis and lipid storage in adipocytes. Perilipin1 is also expressed in foam cells of atheroma plaques and could therefore play a role in the accumulation of lipids in arterial wall and in the development of atherosclerosis. The aim of the study was to investigate this possible role of perilipin1 in atherogenesis. Methods Mice deficient in perilipin1 (Plin1-/-) were crossed with Ldlr-/- mice. Ldlr-/- and Plin1-/- Ldlr-/- mice received an atherogenic diet during 10 or 20 weeks. Blood pressure and plasma lipids concentrations were measured. Aortas were collected at the end of the atherogenic diet periods for quantification of atheroma lesions (en face method), histological and immunohistological studies Results Ldlr-/- and Plin1-/- Ldlr-/- mice had comparable blood pressure and plasma lipids levels. Plin1-/- Ldlr-/- mice had a lower body weight and decreased adiposity. The atherosclerotic lesion area in Plin1-/-Ldlr-/- mice was moderately increased after 10 weeks of atherogenic diet (ns) and significantly higher after 20 weeks (p < 0.01). Histology of atheroma plaques was comparable with no sign of increased inflammation in Plin1-/- Ldlr-/- mice. Conclusion Perilipin1 ablation in mice results in increased atherosclerosis independently of modifications of risk factors such as raised blood pressure or plasma lipids levels. These data strongly support an atheroprotective role for perilipin1.
Collapse
Affiliation(s)
- Dominique Langlois
- ERI22-EA4173, Faculté Rockefeller, University C Bernard Lyon1, 8 av Rockefeller, Lyon, 69008, France
| | | | | | | | | | | |
Collapse
|
14
|
Parra J, Klein AD, Castro J, Morales MG, Mosqueira M, Valencia I, Cortés V, Rigotti A, Zanlungo S. Npc1 deficiency in the C57BL/6J genetic background enhances Niemann-Pick disease type C spleen pathology. Biochem Biophys Res Commun 2011; 413:400-6. [PMID: 21910975 DOI: 10.1016/j.bbrc.2011.08.096] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 08/19/2011] [Indexed: 11/28/2022]
Abstract
Niemann-Pick type C (NPC) disease is an autosomal recessive neurovisceral lipid storage disorder. The affected genes are NPC1 and NPC2. Mutations in either gene lead to intracellular cholesterol accumulation. There are three forms of the disease, which are categorized based on the onset and severity of the disease: the infantile form, in which the liver and spleen are severely affected, the juvenile form, in which the liver and brain are affected, and the adult form, which affects the brain. In mice, a spontaneous mutation in the Npc1 gene originated in the BALB/c inbred strain mimics the juvenile form of the disease. To study the influence of genetic background on the expression of NPC disease in mice, we transferred the Npc1 mutation from the BALB/c to C57BL/6J inbred background. We found that C57BL/6J-Npc1(-/-) mice present with a much more aggressive form of the disease, including a shorter lifespan than BALB/c-Npc1(-/-) mice. Surprisingly, there was no difference in the amount of cholesterol in the brains of Npc1(-/-) mice of either mouse strain. However, Npc1(-/-) mice with the C57BL/6J genetic background showed striking spleen damage with a marked buildup of cholesterol and phospholipids at an early age, which correlated with large foamy cell clusters. In addition, C57BL/6J Npc1(-/-) mice presented red cell abnormalities and abundant ghost erythrocytes that correlated with a lower hemoglobin concentration. We also found abnormalities in white cells, such as cytoplasmic granulation and neutrophil hypersegmentation that included lymphopenia and atypias. In conclusion, Npc1 deficiency in the C57BL6/J background is associated with spleen, erythrocyte, and immune system abnormalities that lead to a reduced lifespan.
Collapse
Affiliation(s)
- Julio Parra
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Devlin C, Pipalia NH, Liao X, Schuchman EH, Maxfield FR, Tabas I. Improvement in lipid and protein trafficking in Niemann-Pick C1 cells by correction of a secondary enzyme defect. Traffic 2010; 11:601-15. [PMID: 20412078 DOI: 10.1111/j.1600-0854.2010.01046.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Different primary lysosomal trafficking defects lead to common alterations in lipid trafficking, suggesting cooperative interactions among lysosomal lipids. However, cellular analysis of the functional consequences of this phenomenon is lacking. As a test case, we studied cells with defective Niemann-Pick C1 (NPC1) protein, a cholesterol trafficking protein whose defect gives rise to lysosomal accumulation of cholesterol and other lipids, leading to NPC disease. NPC1 cells also develop a secondary defect in acid sphingomyelinase (SMase) activity despite a normal acid SMase gene (SMPD1). When acid SMase activity was restored to normal levels in NPC1-deficient CHO cells through SMPD1 transfection, there was a dramatic reduction in lysosomal cholesterol. Two other defects, excess lysosomal bis-(monoacylglycerol) phosphate (BMP) and defective transferrin receptor (TfR) recycling, were also markedly improved. To test its relevance in human cells, the acid SMase activity defect in fibroblasts from NPC1 patients was corrected by SMPD1 transfection or acid SMase enzyme replacement. Both treatments resulted in a dramatic reduction in lysosomal cholesterol. These data show that correcting one aspect of a complex lysosomal lipid storage disease can reduce the cellular consequences even if the primary genetic defect is not corrected.
Collapse
Affiliation(s)
- Cecilia Devlin
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
16
|
Busso D, Oñate-Alvarado MJ, Balboa E, Zanlungo S, Moreno RD. Female infertility due to anovulation and defective steroidogenesis in NPC2 deficient mice. Mol Cell Endocrinol 2010; 315:299-307. [PMID: 19883728 DOI: 10.1016/j.mce.2009.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/16/2009] [Accepted: 10/20/2009] [Indexed: 11/25/2022]
Abstract
Niemann Pick C2 (NPC2) and NPC1 proteins function cooperatively to catalyze cholesterol efflux from lysosomes. NPC1 is expressed in ovarian cells and female NPC1 mice are infertile. This work addressed for the first time the localization and function of murine NPC2 protein in the ovary. Ovarian NPC2 was localized to theca and luteal cells, which use cholesterol as a substrate to produce estradiol and progesterone, respectively. NPC2 deficient (NPC2-/-) females had abnormal estrous cycles and were infertile, with normal folliculogenesis until the antral stage, but a complete absence of corpora lutea and many zonae pellucidae remnants, indicative of anovulation. Serum estradiol was reduced and ovarian cholesterol was accumulated in NPC2-/- mice, suggesting a defect in cholesterol export from intracellular stores. After superovulation, NPC2-/- mice ovulated less eggs than their wild type littermates, showed ovaries with less corpora lutea and numerous unruptured follicles, and lower serum progesterone concentration. Together, these results suggest that NPC2 participates in the traffic of ovarian cholesterol required to provide the substrate for steroid synthesis and support follicle maturation, ovulation and luteinization.
Collapse
Affiliation(s)
- D Busso
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Bernarndo O'Higgins 340, 8331010 Santiago, Chile.
| | | | | | | | | |
Collapse
|
17
|
Hullin-Matsuda F, Luquain-Costaz C, Bouvier J, Delton-Vandenbroucke I. Bis(monoacylglycero)phosphate, a peculiar phospholipid to control the fate of cholesterol: Implications in pathology. Prostaglandins Leukot Essent Fatty Acids 2009; 81:313-24. [PMID: 19857945 DOI: 10.1016/j.plefa.2009.09.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/21/2009] [Accepted: 09/21/2009] [Indexed: 12/15/2022]
Abstract
Bis(monoacylglycero)phosphate (BMP) is a structural isomer of phosphatidylglycerol that exhibits an unusual sn1:sn1' stereoconfiguration, based on the position of the phosphate moiety on its two glycerol units. Early works have underlined the high concentration of BMP in the lysosomal compartment, especially during some lysosomal storage disorders and drug-induced phospholipidosis. Despite numerous studies, both biosynthetic and degradative pathways of BMP remained not completely elucidated. More recently, BMP has been localized in the internal membranes of late endosomes where it forms specialized lipid domains. Its involvement in both dynamics and lipid/protein sorting functions of late endosomes has started to be documented, especially in the control of cellular cholesterol distribution. BMP also plays an important role in the late endosomal/lysosomal degradative pathway. Another peculiarity of BMP is to be naturally enriched in docosahexaenoic acid and/or to specifically incorporate this fatty acid compared to other polyunsaturated fatty acids, which may confer specific biophysical and functional properties to this phospholipid. This review summarizes and updates our knowledge on BMP with an emphasis on its possible implication in human health and diseases, especially in relation to cholesterol homeostasis.
Collapse
Affiliation(s)
- F Hullin-Matsuda
- Université de Lyon, UMR 870 Inserm, Insa-Lyon, UMR 1135 Inra, Univ Lyon 1, Hospices Civils de Lyon, IMBL, 20 Ave A. Einstein, 69621 Villeurbanne, France
| | | | | | | |
Collapse
|
18
|
Biomarkers of human gastrointestinal tract regions. Mamm Genome 2009; 20:516-27. [PMID: 19711126 DOI: 10.1007/s00335-009-9212-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 07/23/2009] [Indexed: 12/29/2022]
Abstract
Dysregulation of intestinal epithelial cell performance is associated with an array of pathologies whose onset mechanisms are incompletely understood. While whole-genomics approaches have been valuable for studying the molecular basis of several intestinal diseases, a thorough analysis of gene expression along the healthy gastrointestinal tract is still lacking. The aim of this study was to map gene expression in gastrointestinal regions of healthy human adults and to implement a procedure for microarray data analysis that would allow its use as a reference when screening for pathological deviations. We analyzed the gene expression signature of antrum, duodenum, jejunum, ileum, and transverse colon biopsies using a biostatistical method based on a multivariate and univariate approach to identify region-selective genes. One hundred sixty-six genes were found responsible for distinguishing the five regions considered. Nineteen had never been described in the GI tract, including a semaphorin probably implicated in pathogen invasion and six novel genes. Moreover, by crossing these genes with those retrieved from an existing data set of gene expression in the intestine of ulcerative colitis and Crohn's disease patients, we identified genes that might be biomarkers of Crohn's and/or ulcerative colitis in ileum and/or colon. These include CLCA4 and SLC26A2, both implicated in ion transport. This study furnishes the first map of gene expression along the healthy human gastrointestinal tract. Furthermore, the approach implemented here, and validated by retrieving known gene profiles, allowed the identification of promising new leads in both healthy and disease states.
Collapse
|
19
|
Cholesterol synthesis inhibitor U18666A and the role of sterol metabolism and trafficking in numerous pathophysiological processes. Lipids 2009; 44:477-87. [PMID: 19440746 DOI: 10.1007/s11745-009-3305-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/16/2008] [Indexed: 01/16/2023]
Abstract
The multiple actions of U18666A have enabled major discoveries in lipid research and contributed to understanding the pathophysiology of multiple diseases. This review describes these advances and the utility of U18666A as a tool in lipid research. Harry Rudney's recognition that U18666A inhibited oxidosqualene cyclase led him to discover a pathway for formation of polar sterols that he proved to be important regulators of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase. Laura Liscum's recognition that U18666A inhibited the egress of cholesterol from late endosomes and lysosomes led to greatly improved perspective on the major pathways of intracellular cholesterol trafficking. The inhibition of cholesterol trafficking by U18666A mimicked the loss of functional Niemann-Pick type C protein responsible for NPC disease and thus provided a model for this disorder. U18666A subsequently became a tool for assessing the importance of molecular trafficking through the lysosomal pathway in other conditions such as atherosclerosis, Alzheimer's disease, and prion infections. U18666A also provided animal models for two important disorders: petite mal (absence) epilepsy and cataracts. This was the first chronic model of absence epilepsy. U18666A is also being used to address the role of oxidative stress in apoptosis. How can one molecule have so many effects? Perhaps because of its structure as an amphipathic cationic amine it can interact and inhibit diverse proteins. Restricting the availability of cholesterol for membrane formation through inhibition of cholesterol synthesis and intracellular trafficking could also be a mechanism for broadly affecting many processes. Another possibility is that through intercalation into membrane U18666A can alter membrane order and therefore the function of resident proteins. The similarity of the effects of natural and enantiomeric U18666A on cells and the capacity of intercalated U18666A to increase membrane order are arguments in favor of this possibility.
Collapse
|
20
|
Watabe K, Ida H, Uehara K, Oyanagi K, Sakamoto T, Tanaka J, Garver WS, Miyawaki S, Ohno K, Eto Y. Establishment and characterization of immortalized Schwann cells from murine model of Niemann-Pick disease type C (spm/spm). J Peripher Nerv Syst 2008. [DOI: 10.1111/j.1529-8027.2001.01012.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Alvarez AR, Klein A, Castro J, Cancino GI, Amigo J, Mosqueira M, Vargas LM, Yévenes LF, Bronfman FC, Zanlungo S. Imatinib therapy blocks cerebellar apoptosis and improves neurological symptoms in a mouse model of Niemann-Pick type C disease. FASEB J 2008; 22:3617-27. [PMID: 18591368 DOI: 10.1096/fj.07-102715] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Niemann-Pick type C (NPC) disease is a fatal autosomal recessive disorder characterized by the accumulation of free cholesterol and glycosphingolipids in the endosomal-lysosomal system. Patients with NPC disease have markedly progressive neuronal loss, mainly of cerebellar Purkinje neurons. There is strong evidence indicating that cholesterol accumulation and trafficking defects activate apoptosis in NPC brains. The purpose of this study was to analyze the relevance of apoptosis and particularly the proapoptotic c-Abl/p73 system in cerebellar neuron degeneration in NPC disease. We used the NPC1 mouse model to evaluate c-Abl/p73 expression and activation in the cerebellum and the effect of therapy with the c-Abl-specific inhibitor imatinib. The proapoptotic c-Abl/p73 system and the p73 target genes are expressed in the cerebellums of NPC mice. Furthermore, inhibition of c-Abl with imatinib preserved Purkinje neurons and reduced general cell apoptosis in the cerebellum, improved neurological symptoms, and increased the survival of NPC mice. Moreover, this prosurvival effect correlated with reduced mRNA levels of p73 proapoptotic target genes. Our results suggest that the c-Abl/p73 pathway is involved in NPC neurodegeneration and show that treatment with c-Abl inhibitors is useful in delaying progressive neurodegeneration, supporting the use of imatinib for clinical treatment of patients with NPC disease.
Collapse
Affiliation(s)
- Alejandra R Alvarez
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, casilla 114-D, Santiago, Chile.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tiwari R, Singh V, Barthwal M. Macrophages: An elusive yet emerging therapeutic target of atherosclerosis. Med Res Rev 2008; 28:483-544. [DOI: 10.1002/med.20118] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Pipalia NH, Hao M, Mukherjee S, Maxfield FR. Sterol, protein and lipid trafficking in Chinese hamster ovary cells with Niemann-Pick type C1 defect. Traffic 2006; 8:130-41. [PMID: 17156101 DOI: 10.1111/j.1600-0854.2006.00513.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We studied the trafficking of sterols, lipids and proteins in Niemann-Pick type C (NPC) cells. The NPC is an inherited disorder involving the accumulation of sterol and lipids in modified late-endosome/lysosome-like storage organelles. Most sterol accumulation studies in NPC cells have been carried out using low-density lipoprotein (LDL) as the sterol source, and it has been shown that sterol efflux from late endosomes is impaired in NPC cells. In this study, we used a fluorescent sterol analog, dehydroergosterol, which can be quickly and efficiently delivered to the plasma membrane. Thus, we were able to study the trafficking kinetics of the non-LDL-derived sterol pool, and we found that dehydroergosterol accumulates in the storage organelles over the course of several hours in NPC cells. We also found that dialkylindocarbocyanine lipid-mimetic analogs that recycle efficiently from early endosomes in wild-type cells are targeted to late endosomal organelles in NPC cells, and transferrin receptors recycle slowly and inefficiently in NPC cells. These data are consistent with multiple trafficking defects in both early and late endosomes in NPC cells.
Collapse
Affiliation(s)
- Nina H Pipalia
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Compared with other organs, the brain is highly enriched in cholesterol. Essentially all cholesterol in the brain is synthesized within the brain; the blood-brain barrier prevents the import of plasma lipoproteins into the brain. Consequently, the brain operates an independent lipoprotein transport system in which glial cells produce ApoE (apolipoprotein E)-containing lipoproteins that are thought to deliver cholesterol to neurons for axonal growth and repair. We have shown that ApoE-containing lipoproteins generated by glial cells stimulate axon extension. ApoE associated with lipoprotein particles, and a receptor of the low-density lipoprotein receptor family, are required for stimulation of axon growth. NPC (Niemann-Pick type C) disease is a severe neurological disorder caused by mutations in the NPC1 or NPC2 gene. A hallmark of this disease is impaired transport of cholesterol out of late endosomes/lysosomes and the accumulation of cholesterol in these organelles. Although cholesterol accumulates in cell bodies of neurons from NPC1-deficient mice, the cholesterol content of axons is reduced. The presence of NPC1 in endosomal structures in nerve terminals, and the finding of aberrant synaptic vesicles, suggest that defects in synaptic vesicle recycling contribute to neurological abnormalities characteristic of NPC disease. We have also shown that ApoE-containing lipoproteins produced by glial cells from NCP1-deficient mice are of normal composition and stimulate axon extension.
Collapse
Affiliation(s)
- J E Vance
- Canadian Institutes for Health Research Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton.
| | | | | |
Collapse
|
25
|
Forcheron F, Legedz L, Chinetti G, Feugier P, Letexier D, Bricca G, Beylot M. Genes of cholesterol metabolism in human atheroma: overexpression of perilipin and genes promoting cholesterol storage and repression of ABCA1 expression. Arterioscler Thromb Vasc Biol 2005; 25:1711-7. [PMID: 15961705 DOI: 10.1161/01.atv.0000174123.19103.52] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Accumulation of cholesterol in foam cells of atheroma plaques depends on the balance between uptake and efflux of cholesterol. It may also depend on proteins surrounding lipid droplets, adipophilin, and perilipins. They favor triglyceride storage in adipocytes and could play a similar role for cholesterol in atheroma. METHODS AND RESULTS We measured in human atheroma and nearby macroscopically intact tissue (MIT) the expression of perilipin, adipophilin, and regulatory factors of cholesterol metabolism. We identified perilipin A in human arterial wall. Its expression was largely increased in atheroma compared with MIT, and perilipin was present in macrophages and vascular smooth muscle cells. Adipophilin, ACAT1, and CD36 were also overexpressed in atheroma. mRNA levels of low-density lipoprotein receptor, 3-hydroxy-3-methylglutaryl coenzyme A reductase, and SREBP-2 were unchanged. With respect to efflux of cholesterol, the mRNA levels of NCEH and ABCA-1 were unchanged, whereas CLA-1 mRNA was slightly higher in atheroma. Importantly, immunoblotting of ABCA-1 showed a dramatic decrease of ABCA1 protein, the key molecule of cholesterol efflux, in atheroma compared with MIT. CONCLUSIONS We show the presence and induction of perilipin in atheroma. This overexpression and the coordinated modifications of expression of key regulatory factors for cholesterol metabolism could favor cholesterol accumulation.
Collapse
|
26
|
Pike LJ. Growth factor receptors, lipid rafts and caveolae: an evolving story. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:260-73. [PMID: 15951036 DOI: 10.1016/j.bbamcr.2005.05.005] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/25/2005] [Accepted: 05/13/2005] [Indexed: 11/16/2022]
Abstract
Growth factor receptors have been shown to be localized to lipid rafts and caveolae. Consistent with a role for these cholesterol-enriched membrane domains in growth factor receptor function, the binding and kinase activities of growth factor receptors are susceptible to regulation by changes in cholesterol content. Furthermore, knockouts of caveolin-1, the structural protein of caveolae, have confirmed that this protein, and by implication caveolae, modulate the ability of growth factor receptors to signal. This article reviews the findings pertinent to the relationship between growth factor receptors, lipid rafts and caveolae and presents a model for understanding the disparate observations regarding the role of membrane microdomains in the regulation of growth factor receptor function.
Collapse
Affiliation(s)
- Linda J Pike
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 So. Euclid, Box 8231, St. Louis, MO 63110, USA.
| |
Collapse
|
27
|
Yu W, Ko M, Yanagisawa K, Michikawa M. Neurodegeneration in heterozygous Niemann-Pick type C1 (NPC1) mouse: implication of heterozygous NPC1 mutations being a risk for tauopathy. J Biol Chem 2005; 280:27296-302. [PMID: 15919659 DOI: 10.1074/jbc.m503922200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is an autosomal recessive, fatal disorder characterized by a defect in cholesterol trafficking and progressive neurodegeneration. The disease is predominantly caused by mutations in the NPC1 gene; however, it has been assumed that heterozygous NPC1 mutations do not cause any symptoms. Here we demonstrate that cholesterol accumulation does not occur in young mouse brains; however, it does in aged (104-106-week-old) NPC1+/- mouse brains. In addition, Purkinje cell loss was observed in aged NPC1+/- mouse cerebellums. Immunoblot analysis using anti-phospho-tau antibodies (AT-8, AT-100, AT-180, AT-270, PHF-1, and SMI-31) demonstrates the site-specific phosphorylation of tau at Ser-199, Ser-202, Ser-212, and Thr-214 in the brains of aged NPC1+/- mice. Mitogen-activated protein kinase, a potential serine kinase known to phosphorylate tau, was activated, whereas other serine kinases, including glycogen synthase kinase 3beta, cyclin-dependent kinase 5, or stress-activated protein kinase/c-Jun N-terminal kinase were not activated. Cholesterol level in the lipid raft isolated from the cerebral cortices, ATP level, and ATP synthase activity in the cerebral cortices significantly decreased in the aged NPC1+/- brains compared with those in the NPC1+/+ brains. All of these changes observed in NPC1+/- brains were determined to be associated with aging and were not observed in the age-matched NPC1+/+ brains. These results clearly demonstrate that heterozygous NPC1 impairs neuronal functions and causes neurodegeneration in aged mouse brains, suggesting that human heterozygous NPC1 mutations may be a risk factor for neurodegenerative disorders, such as tauopathy, in the aged population.
Collapse
Affiliation(s)
- Wenxin Yu
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan
| | | | | | | |
Collapse
|
28
|
Yu W, Gong JS, Ko M, Garver WS, Yanagisawa K, Michikawa M. Altered cholesterol metabolism in Niemann-Pick type C1 mouse brains affects mitochondrial function. J Biol Chem 2005; 280:11731-9. [PMID: 15644330 DOI: 10.1074/jbc.m412898200] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is a fatal hereditary disorder characterized by a defect in cholesterol trafficking and progressive neurodegeneration. Although the NPC1 gene has been identified, the molecular mechanism responsible for neuronal dysfunction in brains of patients with NPC1 disease remains unknown. This study demonstrates that the amount of cholesterol within mitochondria membranes is significantly elevated in NPC1 mouse brains and neural cells. In addition, the mitochondrial membrane potential, the activity of ATP synthase, and henceforth the level of ATP are markedly decreased in NPC1 mouse brains and neurons. Importantly, reducing the level of cholesterol within mitochondrial membranes using methyl-beta-cyclodextrin can restore the activity of ATP synthase. Finally, NPC1 neurons show an impaired neurite outgrowth, which can be rescued by exogenous ATP. These results suggest that mitochondrial dysfunctions and subsequent ATP deficiency, which are induced by altered cholesterol metabolism in mitochondria, may be responsible for neuronal impairment in NPC1 disease.
Collapse
Affiliation(s)
- Wenxin Yu
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan
| | | | | | | | | | | |
Collapse
|
29
|
White NM, Corey DA, Kelley TJ. Mechanistic Similarities between Cultured Cell Models of Cystic Fibrosis and Niemann-Pick Type C. Am J Respir Cell Mol Biol 2004; 31:538-43. [PMID: 15256387 DOI: 10.1165/rcmb.2004-0117oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent data demonstrate that inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase restores normal signal transducer and activator of transcription-1 and inducible nitric oxide synthase expression regulation in cystic fibrosis (CF) cells through the modulation of RhoA function. These findings lead to the hypothesis that alterations in the cholesterol synthesis pathway may be an initiating factor in CF-related cell signaling regulation. A disease with a known lesion in the cholesterol synthesis pathway is Niemann-Pick type C (NPC). The hypothesis of this study is that CF cells and NPC fibroblasts share a common mechanistic lesion and should exhibit similar cell signaling alterations. NPC fibroblasts exhibit similar alterations in signal transducer and activator of transcription-1, RhoA, SMAD3, and nitric oxide synthase protein expression that characterize CF. Further comparison reveals NPC-like accumulation of free cholesterol in two cultured models of CF epithelial cells. These data identify novel signaling changes in NPC, demonstrate the cholesterol-synthesis pathway is a likely source of CF-related cell signaling changes, and that cultured CF cells exhibit impaired cholesterol processing.
Collapse
Affiliation(s)
- Nicole M White
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106-4948, USA
| | | | | |
Collapse
|
30
|
Abstract
Niemann-Pick type C, or NPC for short, is an early childhood disease exhibiting progressive neurological degeneration, associated with hepatosplenomegaly in some cases. The disease, at the cellular level, is a result of improper trafficking of lipids such as cholesterol and glycosphingolipids (GSLs) to lysosome-like storage organelles (LSOs), which become engorged with these lipids. It is believed that the initial defect in trafficking, whether of cholesterol or a GSL, results in an eventual traffic jam in these LSOs. This leads to the retention of not only other lipids, but also of transmembrane proteins that transiently associate with the late endosomes (LE) in normal cells, on their way to other cellular destinations such as the trans-Golgi network (TGN). In this review, we discuss the biophysical properties of lipids and cholesterol that might determine their intracellular itineraries, and how these itineraries are altered in NPC cells, which have defects in the proteins NPC1 or NPC2. We also discuss some potential therapeutic directions being suggested by recent research.
Collapse
Affiliation(s)
- Sushmita Mukherjee
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
31
|
Sturley SL, Patterson MC, Balch W, Liscum L. The pathophysiology and mechanisms of NP-C disease. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1685:83-7. [PMID: 15465429 DOI: 10.1016/j.bbalip.2004.08.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The molecular isolation of NPC1 and NPC2, the genes defective in patients with Niemann-Pick disease type C (NP-C), has heralded in an exponential increase in our understanding of this syndrome and thus of human intracellular sterol transport. Despite this, neither the mechanisms of action nor the substrates for these putative transporters have been defined. In this overview, we describe our perspectives on the current awareness of the genetic determination and cellular biology of this syndrome, with emphasis on the underlying events that lead to neurodegeneration and the manner in which they might eventually be treated.
Collapse
Affiliation(s)
- Stephen L Sturley
- Institute of Human Nutrition, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
32
|
Serbanescu I, Ryan MA, Shukla R, Cortez MA, Snead OC, Cunnane SC. Lovastatin exacerbates atypical absence seizures with only minimal effects on brain sterols. J Lipid Res 2004; 45:2038-43. [PMID: 15314096 DOI: 10.1194/jlr.m400097-jlr200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AY-9944 (AY) exacerbates chronic recurrent seizures in rats that are analogous to atypical absence epilepsy in humans. The mechanism by which AY affects the slow spike-and-wave discharges associated with these seizures is not known, but is thought to involve inhibition of cholesterol synthesis. We tested the hypothesis that seizures seen with AY are due to significant reduction in brain cholesterol and/or elevated brain 7-dehydrocholesterol by assessing whether three other cholesterol synthesis inhibitors mimic AY seizures in rats. Effects of AY on brain sterols and spike-and-wave discharge duration were compared with those of two other late-stage cholesterol inhibitors [BM 15.766 (BM) and U18666A (UA)] and to an HMG-CoA reductase (early-stage cholesterol) inhibitor, lovastatin. With BM or UA, prolongation of seizure duration and brain sterol changes was similar to that caused by AY. AY effects on both brain sterols and seizure duration were dose-related. Lovastatin, with or without concurrent AY, mimicked AY seizures but reduced brain cholesterol by <10% and did not significantly change brain 7-dehydrocholesterol. Either lovastatin has a different mechanism of action than these late-stage cholesterol inhibitors or the brain sterol changes are not directly responsible for seizures in this model.
Collapse
Affiliation(s)
- Irina Serbanescu
- Division of Neurology, Brain and Behavior Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Bananis E, Nath S, Gordon K, Satir P, Stockert RJ, Murray JW, Wolkoff AW. Microtubule-dependent movement of late endocytic vesicles in vitro: requirements for Dynein and Kinesin. Mol Biol Cell 2004; 15:3688-97. [PMID: 15181154 PMCID: PMC491828 DOI: 10.1091/mbc.e04-04-0278] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Our previous studies demonstrated that fluorescent early endocytic vesicles prepared from rat liver after injection of Texas red asialoorosomucoid contain asialoglycoprotein and its receptor and move and undergo fission along microtubules using kinesin I and KIFC2, with Rab4 regulating KIFC2 activity (J. Cell Sci. 116, 2749, 2003). In the current study, procedures to prepare fluorescent late endocytic vesicles were devised. In addition, flow cytometry was utilized to prepare highly purified fluorescent endocytic vesicles, permitting validation of microscopy-based experiments as well as direct biochemical analysis. These studies revealed that late vesicles bound to and moved along microtubules, but in contrast to early vesicles, did not undergo fission. As compared with early vesicles, late vesicles had reduced association with receptor, Rab4, and kinesin I but were highly associated with dynein, Rab7, dynactin, and KIF3A. Dynein and KIF3A antibodies inhibited late vesicle motility, whereas kinesin I and KIFC2 antibodies had no effect. Dynamitin antibodies prevented the association of late vesicles with microtubules. These results indicate that acquisition and exchange of specific motor and regulatory proteins characterizes and may regulate the transition of early to late endocytic vesicles. Flow cytometric purification should ultimately facilitate detailed proteomic analysis and mapping of endocytic vesicle-associated proteins.
Collapse
Affiliation(s)
- Eustratios Bananis
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Jin LW, Shie FS, Maezawa I, Vincent I, Bird T. Intracellular accumulation of amyloidogenic fragments of amyloid-beta precursor protein in neurons with Niemann-Pick type C defects is associated with endosomal abnormalities. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:975-85. [PMID: 14982851 PMCID: PMC1614713 DOI: 10.1016/s0002-9440(10)63185-9] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Niemann-Pick type C disease (NPC) is characterized by neurodegeneration secondary to impaired cholesterol trafficking and excessive glycosphingolipid storage. Abnormal cholesterol and ganglioside metabolism may influence the generation and aggregation of amyloidogenic fragments (ie, C99 and Abeta) from amyloid-beta precursor protein (APP), crucial factors causing neurodegeneration in Alzheimer's disease. To reveal whether abnormal accumulation and aggregation of APP fragments also occurs in NPC, we studied their expression in cultured cortical neurons treated with U18666A, a compound widely used to induce NPC defects, and also in brain tissues from NPC patients. U18666A treatment resulted in increased intraneuronal levels of C99 and insoluble Abeta42, which were distributed among early and late endosomes, in compartments distinct from where endogenous cholesterol accumulates. Analyses of NPC brains revealed that C99 or other APP C-terminal fragments (APP-CTF), but not Abeta42, accumulated in Purkinje cells, mainly in early endosomes. In contrast, in hippocampal pyramidal neurons, the major accumulated species was Abeta42, in late endosomes. Similar to what has been shown in Alzheimer's disease, cathepsin D, a lysosomal hydrolase, was redistributed to early endosomes in NPC Purkinje cells, where it co-localized with C99/APP-CTF. Our results suggest that endosomal abnormalities related to abnormal lipid trafficking in NPC may contribute to abnormal APP processing and Abeta42/C99/APP-CTF deposition.
Collapse
Affiliation(s)
- Lee-Way Jin
- Department of Pathology, University of Washington, Seattle, Washington 98104-2499, USA.
| | | | | | | | | |
Collapse
|
35
|
Leventhal AR, Leslie CC, Tabas I. Suppression of Macrophage Eicosanoid Synthesis by Atherogenic Lipoproteins Is Profoundly Affected by Cholesterol-Fatty Acyl Esterification and the Niemann-Pick C Pathway of Lipid Trafficking. J Biol Chem 2004; 279:8084-92. [PMID: 14638686 DOI: 10.1074/jbc.m310672200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atheroma macrophages internalize large quantities of lipoprotein-derived lipids. While most emphasis has been placed on cholesterol, lipoprotein-derived fatty acids may also play important roles in lesional macrophage biology. Little is known, however, about the trafficking or metabolism of these fatty acids. In this study, we first show that the cholesterol-fatty acyl esterification reaction, catalyzed by acyl-CoA:cholesterol acyltransferase (ACAT), competes for the incorporation of lipoprotein-derived fatty acids into cellular phospholipids. Furthermore, conditions that inhibit trafficking of cholesterol from late endosomes/lysosomes to the endoplasmic reticulum (ER), such as the amphipathic amine U18666A and the Npc1+/- mutation, also inhibit incorporation of lipoprotein-derived fatty acids into phospholipids. The biological relevance of these findings was investigated by studying the suppression of agonist-induced prostaglandin E(2) (PGE(2)) and leukotriene C(4)/D(4)/E(4) production during lipoprotein uptake by macrophages, which has been postulated to involve enrichment of cellular phospholipids with non-arachidonic fatty acids (NAAFAs). We found that eicosanoid suppression was markedly enhanced when ACAT was inhibited and prevented when late endosomal/lysosomal lipid trafficking was blocked. Moreover, PGE(2) suppression depended entirely on acetyl-LDL-derived NAAFAs, not on acetyl-LDL-cholesterol, and was not due to decreased cPLA(2) activity per se. These data support the following model: lipoprotein-derived NAAFAs traffic via the NPC1 pathway from late endosomes/lysosomes to a critical pool of phospholipids. In competing reactions, these NAAFAs can be either esterified to cholesterol or incorporated into phospholipids, resulting in suppression of eicosanoid biosynthesis. In view of recent evidence suggesting dysfunctional cholesterol esterification in late lesional macrophages, these data predict that such cells would have highly suppressed eicosanoid synthesis, thus affecting eicosanoid-mediated cell signaling in advanced atherosclerosis.
Collapse
Affiliation(s)
- Andrew R Leventhal
- Department of Medicine and Anatomy and Cell Biology, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
36
|
Feng B, Zhang D, Kuriakose G, Devlin CM, Kockx M, Tabas I. Niemann-Pick C heterozygosity confers resistance to lesional necrosis and macrophage apoptosis in murine atherosclerosis. Proc Natl Acad Sci U S A 2003; 100:10423-8. [PMID: 12923293 PMCID: PMC193577 DOI: 10.1073/pnas.1732494100] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2003] [Indexed: 12/30/2022] Open
Abstract
Macrophage death in advanced atherosclerotic lesions leads to lesional necrosis and likely promotes plaque instability, a precursor of acute vascular events. Macrophages in advanced lesions accumulate large amounts of unesterified cholesterol, which is a potent inducer of macrophage apoptosis. We have shown recently that induction of apoptosis in cultured macrophages requires cholesterol trafficking to the endoplasmic reticulum (ER). Moreover, macrophages from mice with a heterozygous mutation in the cholesterol-trafficking protein Npc1 have a selective defect in cholesterol trafficking to the ER and are protected from cholesterol-induced apoptosis. The goal of the present study was to test the importance of intracellular cholesterol trafficking in atherosclerotic lesional macrophage death by comparing lesion morphology in Npc1+/+;Apoe-/- and Npc1+/-;Apoe-/- mice. Although advanced lesions in Npc1+/+;Apoe-/- mice had extensive acellular areas that were rich in unesterified cholesterol and macrophage debris, the lesions of Npc1+/-;Apoe-/- mice were substantially more cellular and less necrotic. Moreover, compared with Npc1+/-;Apoe-/- lesions, Npc1+/+;Apoe-/- lesions had a greater number of large, TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling)-positive areas surrounding necrotic areas, indicative of macrophage apoptosis. These differences were observed despite similar total lesion area and similar plasma lipid levels in the two groups of mice. These data provide in vivo evidence that intact intracellular cholesterol trafficking is important for macrophage apoptosis in advanced atherosclerotic lesions and that the ER-based model of cholesterol-induced cytotoxicity is physiologically relevant. Moreover, by showing that lesional necrosis can be diminished by a subtle defect in intracellular trafficking, these findings suggest therapeutic strategies to stabilize atherosclerotic plaques.
Collapse
Affiliation(s)
- Bo Feng
- Department of Medicine, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
37
|
Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, Sweeney M, Rong JX, Kuriakose G, Fisher EA, Marks AR, Ron D, Tabas I. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 2003; 5:781-92. [PMID: 12907943 DOI: 10.1038/ncb1035] [Citation(s) in RCA: 669] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2003] [Accepted: 07/10/2003] [Indexed: 11/09/2022]
Abstract
Excess cellular cholesterol induces apoptosis in macrophages, an event likely to promote progression of atherosclerosis. The cellular mechanism of cholesterol-induced apoptosis is unknown but had previously been thought to involve the plasma membrane. Here we report that the unfolded protein response (UPR) in the endoplasmic reticulum is activated in cholesterol-loaded macrophages, resulting in expression of the cell death effector CHOP. Cholesterol loading depletes endoplasmic reticulum calcium stores, an event known to induce the UPR. Furthermore, endoplasmic reticulum calcium depletion, the UPR, caspase-3 activation and apoptosis are markedly inhibited by selective inhibition of cholesterol trafficking to the endoplasmic reticulum, and Chop-/- macrophages are protected from cholesterol-induced apoptosis. We propose that cholesterol trafficking to endoplasmic reticulum membranes, resulting in activation of the CHOP arm of the UPR, is the key signalling step in cholesterol-induced apoptosis in macrophages.
Collapse
Affiliation(s)
- Bo Feng
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mayran N, Parton RG, Gruenberg J. Annexin II regulates multivesicular endosome biogenesis in the degradation pathway of animal cells. EMBO J 2003; 22:3242-53. [PMID: 12839987 PMCID: PMC165635 DOI: 10.1093/emboj/cdg321] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proteins of the annexin family are believed to be involved in membrane-related processes, but their precise functions remain unclear. Here, we have made use of several experimental approaches, including pathological conditions, RNA interference and in vitro transport assays, to study the function of annexin II in the endocytic pathway. We find that annexin II is required for the biogenesis of multivesicular transport intermediates destined for late endosomes, by regulating budding from early endosomes-but not the membrane invagination process. Hence, the protein appears to be a necessary component of the machinery controlling endosomal membrane dynamics and multivesicular endosome biogenesis. We also find that annexin II interacts with cholesterol and that its subcellular distribution is modulated by the subcellular distribution of cholesterol, including in cells from patients with the cholesterol-storage disorder Niemann-Pick C. We conclude that annexin II forms cholesterol-containing platforms on early endosomal membranes, and that these platforms regulate the onset of the degradation pathway in animal cells.
Collapse
Affiliation(s)
- Nathalie Mayran
- Department of Biochemistry, University of Geneva, 30 quai E Ansermet, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
39
|
Abstract
What makes a heavy metal resistant bacterium heavy metal resistant? The mechanisms of action, physiological functions, and distribution of metal-exporting proteins are outlined, namely: CBA efflux pumps driven by proteins of the resistance-nodulation-cell division superfamily, P-type ATPases, cation diffusion facilitator and chromate proteins, NreB- and CnrT-like resistance factors. The complement of efflux systems of 63 sequenced prokaryotes was compared with that of the heavy metal resistant bacterium Ralstonia metallidurans. This comparison shows that heavy metal resistance is the result of multiple layers of resistance systems with overlapping substrate specificities, but unique functions. Some of these systems are widespread and serve in the basic defense of the cell against superfluous heavy metals, but some are highly specialized and occur only in a few bacteria. Possession of the latter systems makes a bacterium heavy metal resistant.
Collapse
Affiliation(s)
- Dietrich H Nies
- Institute of Microbiology, Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06099 Halle/Saale, Germany.
| |
Collapse
|
40
|
|
41
|
Watabe K, Sakamoto T, Kawazoe Y, Michikawa M, Miyamoto K, Yamamura T, Saya H, Araki N. Tissue culture methods to study neurological disorders: establishment of immortalized Schwann cells from murine disease models. Neuropathology 2003; 23:68-78. [PMID: 12722929 DOI: 10.1046/j.1440-1789.2003.00478.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, the authors have established spontaneously immortalized cell lines from long-term cultures of normal adult mouse Schwann cells. Establishment of such Schwann cell lines derived from murine disease models may greatly facilitate studies of the cellular mechanisms of their peripheral nervous system lesions in the relevant diseases. Recently, the authors have established immortalized Schwann cell lines derived from Niemann-Pick disease type C mice (NPC; spm/spm) and globoid cell leukodystrophy mice (twitcher). In the present study, long-term cultures were maintained of Schwann cells derived from dorsal root ganglia and consecutive peripheral nerves of another NPC mouse (npc(nih)/npc(nih), npc(nih)/+), myelin P0 protein-deficient mice (P0-/-, P0+/-) with their wild-type littermates (P0+/+), and neurofibromatosis type 1 gene (NF1)-deficient mice (Nf1(FCr)/+) for 8-10 months, and immortalized cell lines from all these animals established spontaneously. These cell lines had spindle-shaped Schwann cell morphology and distinct Schwann cell phenotypes and retained genomic and biochemical abnormalities, sufficiently representing the in vivo pathological features of the mutant mice. These immortalized Schwann cell lines can be useful in studies of nervous system lesions in these mutant mice and relevant human disorders.
Collapse
Affiliation(s)
- Kazuhiko Watabe
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Sawamura N, Gong JS, Chang TY, Yanagisawa K, Michikawa M. Promotion of tau phosphorylation by MAP kinase Erk1/2 is accompanied by reduced cholesterol level in detergent-insoluble membrane fraction in Niemann-Pick C1-deficient cells. J Neurochem 2003; 84:1086-96. [PMID: 12603832 DOI: 10.1046/j.1471-4159.2003.01596.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Niemann-Pick type C (NPC) disease is a cholesterol-storage disease accompanied by neurodegeneration with the formation of neurofibrillary tangles, the major component of which is the hyperphosphorylated tau. Here, we examined the mechanism underlying hyperphosphorylation of tau using mutant Chinese hamster ovary (CHO) cell line defective in NPC1 (CT43) as a tool. Immunoblot analysis revealed that tau was hyperphosphorylated at multiple sites in CT43 cells, but not in their parental cells (25RA) or the wild-type CHO cells. In CT43 cells, mitogen-activated protein (MAP) kinase Erk1/2 was activated and the specific MAPK inhibitor, PD98059, attenuated the hyperphosphorylation of tau. The amount of protein phosphatase 2A not bound to microtubules was decreased in CT43 cells. CT43 cells but not 25RA cells were amphotericin B-resistant, indicating that cholesterol level in the plasma membrane of CT43 is decreased. In addition, the level of cholesterol in the detergent-insoluble, low-density membrane (LDM) fraction of CT43 cells was markedly reduced compared with the other two types of CHO cells. As LDM domain plays critical role in signaling pathways, these results suggest that the reduced cholesterol level in LDM domain due to the lack of NPC1 may activate MAPK, which subsequently promotes tau phosphorylation in NPC1-deficient cells.
Collapse
Affiliation(s)
- Naoya Sawamura
- Department of Dementia Research, National Institute for Longevity Sciences, 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan
| | | | | | | | | |
Collapse
|
43
|
Suzuki H, Sakiyama T, Harada N, Abe M, Tadokoro M. Pathologic changes of glial cells in murine model of Niemann-Pick disease type C: immunohistochemical, lectin-histochemical and ultrastructural observations. Pediatr Int 2003; 45:1-4. [PMID: 12654060 DOI: 10.1046/j.1442-200x.2003.01651.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In recent years, morbid states of glial cells have been reported in several neurodegenerative diseases. We studied neuropathologically the glial cells in a murine model of Niemann-Pick disease type C (NPC) to clarify involvement of glias, the most important supportive cells in the central nervous system, by the disease. METHODS The brains of sphingomyelinosis mice (spm/spm), aged from 5 to 13 weeks, and 15 of their age-matched normal siblings were studied histopathologically, immunohistochemically and electron micro-scopically. RESULTS Accumulation of ubiquitin-positive materials was found in the cytoplasm of foam cells and ballooned neurons immunohistochemically. In addition to the morphologically abnormal cells, double immunostaining of ubiquitin and glial fibrillary acidic protein (GFAP) revealed the deposition of ubiquitinated substances in the cytoplasm of astrocytes. Ultrastructurally, numerous concentric lamellar inclusions, so-called 'myelin figures', appeared in the neurons and phagocytotic cells. Some oligodendrocytes also contained 'myelin figure' inclusions and multivesicular inclusions. Astrocytes contained abnormal irregularily-shaped electron dense materials. CONCLUSIONS In the murine model of NPC, astrocytes and oligodendrocytes are also involved in the morbid processes. Thus, it might be relevant to investigate the glial dysfunction to understand the pathological processes of the disease and to prepare an adjunct therapeutic strategy to manage the patients with NPC.
Collapse
Affiliation(s)
- Hiroyoshi Suzuki
- Department of Pathology, St Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | |
Collapse
|
44
|
Alpy F, Wendling C, Rio MC, Tomasetto C. MENTHO, a MLN64 homologue devoid of the START domain. J Biol Chem 2002; 277:50780-7. [PMID: 12393907 DOI: 10.1074/jbc.m208290200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MLN64 is a late endosomal membrane protein containing a carboxyl-terminal cholesterol binding START domain and is presumably involved in intracellular cholesterol transport. In the present study, we have cloned a human cDNA encoding a novel protein that we called MENTHO as an acronym for MLN64 N-terminal domain homologue because this protein is closely related to the amino-terminal half of MLN64. MLN64 and MENTHO share 70% identity and 83% similarity in an original protein domain encompassing 171 amino acids that we designated as the MENTAL (MLN64 N-terminal) domain. By translation initiation scanning MENTHO is synthesized as two isoforms of 234 (alpha) and 227 (beta) amino acids that can be phosphorylated. As MLN64, MENTHO is ubiquitously expressed and is located in the membrane of late endosomes, its amino and carboxyl-terminal extremities projecting toward the cytoplasm. We show that MENTHO overexpression does not rescue the Niemann-Pick type C lipid storage phenotype. However, MENTHO overexpression alters severely the endocytic compartment by leading at steady state to the accumulation of enlarged endosomes. These results indicate that in addition to its previously established function in addressing and anchoring proteins to the membrane of late endosomes, the MENTAL domain possesses an intrinsic biological function in endocytic transport.
Collapse
Affiliation(s)
- Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ Université Louis Pasteur, BP 10142, 67404 Illkirch, C. U. de Strasbourg, France
| | | | | | | |
Collapse
|
45
|
Amigo L, Mendoza H, Castro J, Quiñones V, Miquel JF, Zanlungo S. Relevance of Niemann-Pick type C1 protein expression in controlling plasma cholesterol and biliary lipid secretion in mice. Hepatology 2002; 36:819-28. [PMID: 12297829 DOI: 10.1053/jhep.2002.35617] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Receptor-mediated endocytosis is one of the major mechanisms for uptake of lipoprotein cholesterol in the liver. Because Niemann-Pick C1 (NPC1) protein is a key component in the intracellular distribution of cholesterol obtained from lipoproteins by the endocytic pathway, it may play a critical role in controlling plasma lipoprotein cholesterol and its biliary secretion. A murine model of Niemann-Pick type C disease (NPC), the NPC1-deficient [NPC1 (-/-)] mouse, was used to evaluate the relevance of hepatic NPC1 expression in regulating plasma lipoprotein cholesterol profile and biliary lipid secretion under chow and high-cholesterol diets. Total plasma cholesterol concentrations were increased in NPC1 (-/-) mice compared with wild-type mice when both mouse strains were fed chow or high-cholesterol diets. The increased plasma cholesterol levels found in NPC1 (-/-) mice were mostly due to elevated cholesterol content in larger and more heterogeneous HDL particles. On the chow diet, biliary lipid secretion was not impaired by NPC1 deficiency. Furthermore, chow-fed NPC1 (-/-) mice showed a small, but significant, increase in biliary cholesterol secretion. On the high-cholesterol diet, wild-type mice increased biliary cholesterol output, whereas NPC1 (-/-) mice did not. Finally, hepatic NPC1 overexpression by adenovirus-mediated gene transfer increased biliary cholesterol secretion by 100% to 150% in both wild-type mice and cholesterol-fed NPC1 (-/-) mice. In conclusion, hepatic NPC1 expression is an important factor for regulating plasma HDL cholesterol levels and biliary cholesterol secretion in mice.
Collapse
Affiliation(s)
- Ludwig Amigo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
46
|
Liscum L, Arnio E, Anthony M, Howley A, Sturley SL, Agler M. Identification of a pharmaceutical compound that partially corrects the Niemann-Pick C phenotype in cultured cells. J Lipid Res 2002; 43:1708-17. [PMID: 12364555 DOI: 10.1194/jlr.m200179-jlr200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Niemann-Pick C (NPC) is an autosomal recessive lysosomal lipid storage disease characterized by progressive central nervous system degeneration. In cultured human NPC fibroblasts, LDL-derived cholesterol accumulates in lysosomes and endosomes, LDL-cholesterol transport from endocytic compartments to other cellular compartments is delayed, and LDL does not elicit normal homeostatic responses. Currently, there is no therapy that delays the onset of neurological symptoms or prolongs the life span of NPC children. We have developed and implemented an amphotericin B-mediated cytotoxicity assay to screen for potential therapeutic drugs that induce cholesterol movement in cultured NPC cells. NPC cells are relatively resistant to amphotericin B killing due to intracellular sequestration of cellular cholesterol. The screen was carried out using simian virus 40-transformed ovarian granulosa cells from the npc (nih) mouse model of NPC disease. A library of 44240 compounds was screened and 55 compounds were identified that promote amphotericin B-mediated killing of NPC cells. One compound, NP-27, corrected the NPC phenotype by four different measures of cholesterol homeostasis. In addition to making NPC cells more sensitive to amphotericin B, NP-27 stimulated two separate cholesterol transport pathways and restored LDL stimulation of cholesterol esterification to near normal levels.
Collapse
Affiliation(s)
- Laura Liscum
- Department of Physiology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Watarai M, Makino SI, Michikawa M, Yanagisawa K, Murakami S, Shirahata T. Macrophage plasma membrane cholesterol contributes to Brucella abortus infection of mice. Infect Immun 2002; 70:4818-25. [PMID: 12183525 PMCID: PMC128274 DOI: 10.1128/iai.70.9.4818-4825.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella abortus is a facultative intracellular bacterium capable of surviving inside macrophages. Intracellular replication of B. abortus requires the VirB complex, which is highly similar to conjugative DNA transfer systems. In this study, we show that plasma membrane cholesterol of macrophages is required for the VirB-dependent internalization of B. abortus and also contributes to the establishment of bacterial infection in mice. The internalization of B. abortus was accelerated by treating macrophages with acetylated low-density lipoprotein (acLDL). Treatment of acyl coenzyme A:cholesterol acyltransferase inhibitor, HL-004, to macrophages preloaded with acLDL accelerated the internalization of B. abortus. Ketoconazole, which inhibits cholesterol transport from lysosomes to the cell surface, inhibited the internalization and intracellular replication of B. abortus in macrophages. The Niemann-Pick C1 gene (NPC1), the gene for Niemann-Pick type C disease, characterized by an accumulation of cholesterol in most tissues, promoted B. abortus infection. NPC1-deficient mice were resistant to the bacterial infection. Molecules associated with cholesterol-rich microdomains, "lipid rafts," accumulate in intracellular vesicles of macrophages isolated from NPC1-deficient mice, and the macrophages yielded no intracellular replication of B. abortus. Thus, trafficking of cholesterol-associated microdomains controlled by NPC1 is critical for the establishment of B. abortus infection.
Collapse
Affiliation(s)
- Masahisa Watarai
- Department of Veterinary Microbiology, Obihiro University of Agriculture and Veterinary Medicine, Obihiro-shi, Hokkaido 080-8555, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Cruz JC, Thomas M, Wong E, Ohgami N, Sugii S, Curphey T, Chang CC, Chang TY. Synthesis and biochemical properties of a new photoactivatable cholesterol analog 7,7-azocholestanol and its linoleate ester in Chinese hamster ovary cell lines. J Lipid Res 2002. [DOI: 10.1194/jlr.m200015-jlr200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Ringerike T, Blystad FD, Levy FO, Madshus IH, Stang E. Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae. J Cell Sci 2002; 115:1331-40. [PMID: 11884532 DOI: 10.1242/jcs.115.6.1331] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the localization and function of the epidermal growth factor receptor (EGFR) in normal cells, in cholesterol-depleted cells and in cholesterol enriched cells. Using immunoelectron microscopy we find that the EGFR is randomly distributed at the plasma membrane and not enriched in caveolae. Binding of EGF at 4°C does not change the localization of EGFR,and by immunoelectron microscopy we find that only small amounts of bound EGF localize to caveolae. However, upon patching of lipid rafts, we find that a significant amount of the EGFR is localized within rafts. Depletion of the plasma membrane cholesterol causes increased binding of EGF, increased dimerization of the EGFR, and hyperphosphorylation of the EGFR. Addition of cholesterol was found to reduce EGF binding and reduce EGF-induced EGFR activation. Our results suggest that the plasma membrane cholesterol content directly controls EGFR activation.
Collapse
Affiliation(s)
- Tove Ringerike
- Institute of Pathology, University of Oslo, Rikshospitalet University Hospital, N-0027 Oslo, Norway
| | | | | | | | | |
Collapse
|
50
|
Lebrand C, Corti M, Goodson H, Cosson P, Cavalli V, Mayran N, Fauré J, Gruenberg J. Late endosome motility depends on lipids via the small GTPase Rab7. EMBO J 2002; 21:1289-300. [PMID: 11889035 PMCID: PMC125356 DOI: 10.1093/emboj/21.6.1289] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report that lipids contribute to regulate the bidirectional motility of late endocytic compartments. Late endocytic vesicles loaded with cholesterol lose their dynamic properties, and become essentially immobile, including in cells from Niemann-Pick C patients. These vesicles then retain cytoplasmic dynein activity, but seem to be unable to acquire kinesin activity, eventually leading to paralysis. Our data suggest that this defect depends on the small GTPase Rab7, since the motility of vesicles loaded with cholesterol can be restored by the Rab7 inhibitory mutant N125I. Conversely, wild-type Rab7 overexpression mimics the effects of cholesterol on motility in control cells. Consistently, cholesterol accumulation increases the amounts of membrane-associated Rab7, and inhibits Rab7 membrane extraction by the guanine nucleotide dissociation inhibitor. Our observations thus indicate that cholesterol contributes to regulate the Rab7 cycle, and that Rab7 in turn controls the net movement of late endocytic elements. We conclude that motor functions can be regulated by the membrane lipid composition via the Rab7 cycle.
Collapse
Affiliation(s)
- Cécile Lebrand
- Department of Biochemistry, University of Geneva, Sciences II, Department of Cell Biology, University of Geneva, Sciences III, 30 quai E.Ansermet and Centre Medical Universitaire, Departement de Morphologie, 1 rue Michel Servet, 1211 Geneva 4, Switzerland Present address: University of Notre Dame, Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA Corresponding author e-mail: C.Lebrand and M.Corti contributed equally to this work
| | - Michela Corti
- Department of Biochemistry, University of Geneva, Sciences II, Department of Cell Biology, University of Geneva, Sciences III, 30 quai E.Ansermet and Centre Medical Universitaire, Departement de Morphologie, 1 rue Michel Servet, 1211 Geneva 4, Switzerland Present address: University of Notre Dame, Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA Corresponding author e-mail: C.Lebrand and M.Corti contributed equally to this work
| | - Holly Goodson
- Department of Biochemistry, University of Geneva, Sciences II, Department of Cell Biology, University of Geneva, Sciences III, 30 quai E.Ansermet and Centre Medical Universitaire, Departement de Morphologie, 1 rue Michel Servet, 1211 Geneva 4, Switzerland Present address: University of Notre Dame, Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA Corresponding author e-mail: C.Lebrand and M.Corti contributed equally to this work
| | - Pierre Cosson
- Department of Biochemistry, University of Geneva, Sciences II, Department of Cell Biology, University of Geneva, Sciences III, 30 quai E.Ansermet and Centre Medical Universitaire, Departement de Morphologie, 1 rue Michel Servet, 1211 Geneva 4, Switzerland Present address: University of Notre Dame, Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA Corresponding author e-mail: C.Lebrand and M.Corti contributed equally to this work
| | - Valeria Cavalli
- Department of Biochemistry, University of Geneva, Sciences II, Department of Cell Biology, University of Geneva, Sciences III, 30 quai E.Ansermet and Centre Medical Universitaire, Departement de Morphologie, 1 rue Michel Servet, 1211 Geneva 4, Switzerland Present address: University of Notre Dame, Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA Corresponding author e-mail: C.Lebrand and M.Corti contributed equally to this work
| | - Nathalie Mayran
- Department of Biochemistry, University of Geneva, Sciences II, Department of Cell Biology, University of Geneva, Sciences III, 30 quai E.Ansermet and Centre Medical Universitaire, Departement de Morphologie, 1 rue Michel Servet, 1211 Geneva 4, Switzerland Present address: University of Notre Dame, Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA Corresponding author e-mail: C.Lebrand and M.Corti contributed equally to this work
| | - Julien Fauré
- Department of Biochemistry, University of Geneva, Sciences II, Department of Cell Biology, University of Geneva, Sciences III, 30 quai E.Ansermet and Centre Medical Universitaire, Departement de Morphologie, 1 rue Michel Servet, 1211 Geneva 4, Switzerland Present address: University of Notre Dame, Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA Corresponding author e-mail: C.Lebrand and M.Corti contributed equally to this work
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, Sciences II, Department of Cell Biology, University of Geneva, Sciences III, 30 quai E.Ansermet and Centre Medical Universitaire, Departement de Morphologie, 1 rue Michel Servet, 1211 Geneva 4, Switzerland Present address: University of Notre Dame, Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA Corresponding author e-mail: C.Lebrand and M.Corti contributed equally to this work
| |
Collapse
|