1
|
Chaves JCS, Dando SJ, White AR, Oikari LE. Blood-brain barrier transporters: An overview of function, dysfunction in Alzheimer's disease and strategies for treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166967. [PMID: 38008230 DOI: 10.1016/j.bbadis.2023.166967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
The blood-brain-barrier (BBB) has a major function in maintaining brain homeostasis by regulating the entry of molecules from the blood to the brain. Key players in BBB function are BBB transporters which are highly expressed in brain endothelial cells (BECs) and critical in mediating the exchange of nutrients and waste products. BBB transporters can also influence drug delivery into the brain by inhibiting or facilitating the entry of brain targeting therapeutics for the treatment of brain disorders, such as Alzheimer's disease (AD). Recent studies have shown that AD is associated with a disrupted BBB and transporter dysfunction, although their roles in the development in AD are not fully understand. Modulation of BBB transporter activity may pose a novel approach to enhance the delivery of drugs to the brain for enhanced treatment of AD. In this review, we will give an overview of key functions of BBB transporters and known changes in AD. In addition, we will discuss current strategies for transporter modulation for enhanced drug delivery into the brain.
Collapse
Affiliation(s)
- Juliana C S Chaves
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Samantha J Dando
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Lotta E Oikari
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Nordestgaard LT, Christoffersen M, Afzal S, Nordestgaard BG, Tybjærg-Hansen A, Frikke-Schmidt R. Genetic variants in the adenosine triphosphate-binding cassette transporter A1 and risk of age-related macular degeneration. Eur J Epidemiol 2023; 38:985-994. [PMID: 37335386 PMCID: PMC10501952 DOI: 10.1007/s10654-023-01021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/25/2023] [Indexed: 06/21/2023]
Abstract
Genetic variants in ABCA1 are associated with higher concentrations of high-density lipoprotein (HDL) cholesterol. Higher HDL cholesterol concentrations are observationally and genetically associated with higher risk of age-related macular degeneration (AMD). However, whether amino acid-changing genetic variants in ABCA1 associated with high HDL cholesterol concentrations confer a higher risk of AMD in the general population is currently unknown. We tested this hypothesis. The study included 80,972 individuals (1,370 AMD cases) from the Copenhagen General Population Study (CGPS) and 9,584 individuals (142 AMD cases) from the Copenhagen City Heart Study (CCHS) with 10 to 18 years of follow-up. We created an HDL cholesterol weighted allele score based on amino acid-changing ABCA1 variants with a minor allele frequency above 0.001 and divided it into tertiles. The study included 55% women. Mean age was 58 years. The ABCA1 allele score for the third versus the first tertile was associated with HRs (95% confidence intervals (CIs)) of 1.30 (1.14-1.49) for all-cause AMD, 1.26 (1.06-1.50) for nonneovascular AMD, and 1.31 (1.12-1.53) for neovascular AMD in a multivariable adjusted model. On a continuous scale, higher concentrations of genetically determined HDL cholesterol were associated with higher risk of all-cause AMD, nonneovascular AMD, and neovascular AMD in an age- and sex adjusted model and in a multivariable adjusted model. In conclusion, amino acid-changing genetic variants in ABCA1 associated with higher HDL cholesterol concentrations were also associated with higher risk of AMD, suggesting a role for ABCA1 in AMD pathogenesis.
Collapse
Affiliation(s)
- Liv Tybjærg Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mette Christoffersen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Shoaib Afzal
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Copenhagen General Population Study, Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- The Copenhagen City Heart Study, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Copenhagen General Population Study, Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- The Copenhagen City Heart Study, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- The Copenhagen General Population Study, Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark.
| |
Collapse
|
3
|
Abstract
The brain, as one of the most lipid-rich organs, heavily relies on lipid transport and distribution to maintain homeostasis and neuronal function. Lipid transport mediated by lipoprotein particles, which are complex structures composed of apolipoproteins and lipids, has been thoroughly characterized in the periphery. Although lipoproteins in the central nervous system (CNS) were reported over half a century ago, the identification of APOE4 as the strongest genetic risk factor for Alzheimer's disease has accelerated investigation of the biology and pathobiology of lipoproteins in the CNS. This review provides an overview of the different components of lipoprotein particles, in particular apolipoproteins, and their involvements in both physiological functions and pathological mechanisms in the CNS.
Collapse
Affiliation(s)
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA;
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA;
| |
Collapse
|
4
|
Finding relationships among biological entities. LOGIC AND CRITICAL THINKING IN THE BIOMEDICAL SCIENCES 2020. [PMCID: PMC7499094 DOI: 10.1016/b978-0-12-821364-3.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Confusion over the concepts of “relationships” and “similarities” lies at the heart of many battles over the direction and intent of research projects. Here is a short story that demonstrates the difference between the two concepts: You look up at the clouds, and you begin to see the shape of a lion. The cloud has a tail, like a lion’s tale, and a fluffy head, like a lion’s mane. With a little imagination the mouth of the lion seems to roar down from the sky. You have succeeded in finding similarities between the cloud and a lion. If you look at a cloud and you imagine a tea kettle producing a head of steam and you recognize that the physical forces that create a cloud and the physical forces that produced steam from a heated kettle are the same, then you have found a relationship. Most popular classification algorithms operate by grouping together data objects that have similar properties or values. In so doing, they may miss finding the true relationships among objects. Traditionally, relationships among data objects are discovered by an intellectual process. In this chapter, we will discuss the scientific gains that come when we classify biological entities by relationships, not by their similarities.
Collapse
|
5
|
Impact of Cholesterol on Ischemic Stroke in Different Human-Like Hamster Models: A New Animal Model for Ischemic Stroke Study. Cells 2019; 8:cells8091028. [PMID: 31487778 PMCID: PMC6770656 DOI: 10.3390/cells8091028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/03/2022] Open
Abstract
Rationale: While high low-density lipoprotein cholesterol (LDL-C) and low high-density lipoprotein cholesterol (HDL-C) levels are positively associated with cardiovascular events, it is still unclear whether familial hypercholesterolemia (FH) and Tangier’s disease (TD), caused by mutations in LDLR and ABCA1, respectively, influence ischemic stroke (IS) in humans. Objective: We sought to establish an easier, more effective, and time-saving method to induce IS, then studied the precise effects of different types of lipoproteins on IS. Methods and Results: A new technique termed contralateral middle cerebral artery occlusion (c-MCAO) was introduced to human-like hamster models to induce IS. Compared to traditional distal MCAO (d-MCAO) induced by electrocoagulation, c-MCAO resulted in a more severe IS with larger infarct sizes and more blood–brain barrier (BBB) disruption after 24 h. It was shown that c-MCAO markedly elicited an increase in brain infarct volume and BBB leakage in both homozygous LDLR (LDLR–/–) and ABCA1 knockout (ABCA1–/–) hamsters, but not in heterozygous LDLR knockout (LDLR+/–) hamsters when compared to wild-type (WT) controls. Conclusions: Using human-like genetically engineered hamsters, our findings demonstrated that both high LDL-C level caused by homozygous LDLR deficiency and severe low HDL-C level caused by deleting ABCA1 were risk factors of IS. As such, we believe the development of this novel IS hamster model is suitable for future ischemic/reperfusion studies.
Collapse
|
6
|
Borai IH, Soliman AF, Ahmed HM, Ahmed GF, Kassim SK. Association of MTHFR C677T and ABCA1 G656A polymorphisms with obesity among Egyptian children. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Shi JF, Li YK, Ren K, Xie YJ, Yin WD, Mo ZC. Characterization of cholesterol metabolism in Sertoli cells and spermatogenesis (Review). Mol Med Rep 2018; 17:705-713. [PMID: 29115523 PMCID: PMC5780145 DOI: 10.3892/mmr.2017.8000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/31/2017] [Indexed: 01/21/2023] Open
Abstract
The Sertoli cell, which is the supporting cell of spermatogenesis, has an important role in the endocrine and paracrine control of spermatogenesis. Functionally, it provides the cells of the seminiferous epithelium with nutrition, conveys mature spermatids to the lumen of seminiferous tubules, secretes androgen‑binding protein and interacts with endocrine Leydig cells. In addition, the levels of cholesterol, as well as its intermediates, vary greatly between nongonadal tissues and the male reproductive system. Throughout spermatogenesis, a dynamic and constant alteration in the membrane lipid composition of Sertoli cells occurs. In several mammalian species, testis meiosis‑activating sterol and desmosterol, as well as other cholesterol precursors, accumulate in the testes and spermatozoa. In addition, certain cholesterogenic genes exhibit stage‑specific expression patterns during spermatogenesis, including the cytochrome P450 enzyme lanosterol 14α‑demethylase. Inconsistency in the patterns of gene expression during spermatogenesis indicates a cell‑type specific and complex temporary modulation of lipids and cholesterol, which also implicates the dynamic interactions between Sertoli cells and germ cells. Furthermore, in the female reproductive tract and during epididymal transit, which is a prerequisite for valid fertilization, the modulation of cholesterol occurring in spermatozoal membranes further indicates the functional importance of sterol compounds in spermatogenesis. However, the exact role of cholesterol metabolism in Sertoli cells in sperm production is unknown. The present review article describes the progress made in the research regarding the characteristics of the Sertoli cell, particularly the regulation of its cholesterol metabolism during spermatogenesis.
Collapse
Affiliation(s)
- Jin-Feng Shi
- Institute of Cardiovascular Disease, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
- Key Laboratory for Arteriosclerology of Hunan Province, Hengyang, Hunan 421001, P.R. China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan 421001, P.R. China
| | - Yu-Kun Li
- Department of Histology and Embryology, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Kun Ren
- Institute of Cardiovascular Disease, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
- Key Laboratory for Arteriosclerology of Hunan Province, Hengyang, Hunan 421001, P.R. China
| | - Yuan-Jie Xie
- Department of Histology and Embryology, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wei-Dong Yin
- Institute of Cardiovascular Disease, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
- Key Laboratory for Arteriosclerology of Hunan Province, Hengyang, Hunan 421001, P.R. China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan 421001, P.R. China
| | - Zhong-Cheng Mo
- Department of Histology and Embryology, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
8
|
Fournier N, Sayet G, Vedie B, Nowak M, Allaoui F, Solgadi A, Caudron E, Chaminade P, Benoist JF, Paul JL. Eicosapentaenoic acid membrane incorporation impairs cholesterol efflux from cholesterol-loaded human macrophages by reducing the cholesteryl ester mobilization from lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1079-1091. [PMID: 28739279 DOI: 10.1016/j.bbalip.2017.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/26/2022]
Abstract
A diet containing a high n-3/n-6 polyunsaturated fatty acids (PUFA) ratio has cardioprotective properties. PUFAs incorporation into membranes influences the function of membrane proteins. We investigated the impact of the membrane incorporation of PUFAs, especially eicosapentaenoic acid (EPA) (C20:5 n-3), on the anti-atherogenic cholesterol efflux pathways. We used cholesteryl esters (CE)-loaded human monocyte-derived macrophages (HMDM) to mimic foam cells exposed to the FAs for a long period of time to ensure their incorporation into cellular membranes. Phospholipid fraction of EPA cells exhibited high levels of EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which was associated with a decreased level of arachidonic acid (AA) (C20:4 n-6). EPA 70μM reduced ABCA1-mediated cholesterol efflux to apolipoprotein (apo) AI by 30% without any alteration in ABCA1 expression. The other tested PUFAs, DPA, docosahexaenoic acid (DHA) (C22:6 n-3), and AA, were also able to reduce ABCA1 functionality while the monounsaturated oleic FA slightly decreased efflux and the saturated palmitic FA had no impact. Moreover, EPA also reduced cholesterol efflux to HDL mediated by the Cla-1 and ABCG1 pathways. EPA incorporation did not hinder efflux in free cholesterol-loaded HMDM and did not promote esterification of cholesterol. Conversely, EPA reduced the neutral hydrolysis of cytoplasmic CE by 24%. The reduced CE hydrolysis was likely attributed to the increase in cellular TG contents and/or the decrease in apo E secretion after EPA treatment. In conclusion, EPA membrane incorporation reduces cholesterol efflux in human foam cells by reducing the cholesteryl ester mobilization from lipid droplets.
Collapse
Affiliation(s)
- Natalie Fournier
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France; AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Laboratoire de Biochimie, 75015 Paris, France.
| | - Guillaume Sayet
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA 4041), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Benoît Vedie
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Laboratoire de Biochimie, 75015 Paris, France
| | - Maxime Nowak
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Fatima Allaoui
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Audrey Solgadi
- Univ Paris Sud-Paris Saclay, SFR IPSIT (Institut Paris-Saclay d'Innovation Thérapeutique), UMS IPSIT Service d'Analyse des Médicaments et Métabolites, 92296 Châtenay-Malabry, France
| | - Eric Caudron
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA 4041), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Pierre Chaminade
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA 4041), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Jean-François Benoist
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Robert Debré, Laboratoire de Biochimie hormonale, 75019 Paris, France
| | - Jean-Louis Paul
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France; AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Laboratoire de Biochimie, 75015 Paris, France
| |
Collapse
|
9
|
Ganda A, Yvan-Charvet L, Zhang Y, Lai EJ, Regunathan-Shenk R, Hussain FN, Avasare R, Chakraborty B, Febus AJ, Vernocchi L, Lantigua R, Wang Y, Shi X, Hsieh J, Murphy AJ, Wang N, Bijl N, Gordon KM, de Miguel MH, Singer JR, Hogan J, Cremers S, Magnusson M, Melander O, Gerszten RE, Tall AR. Plasma metabolite profiles, cellular cholesterol efflux, and non-traditional cardiovascular risk in patients with CKD. J Mol Cell Cardiol 2017; 112:114-122. [PMID: 28478047 DOI: 10.1016/j.yjmcc.2017.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/12/2017] [Accepted: 05/02/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) experience high rates of atherosclerotic cardiovascular disease and death that are not fully explained by traditional risk factors. In animal studies, defective cellular cholesterol efflux pathways which are mediated by the ATP binding cassette transporters ABCA1 and ABCG1 are associated with accelerated atherosclerosis. We hypothesized that cholesterol efflux in humans would vary in terms of cellular components, with potential implications for cardiovascular disease. METHODS We recruited 120 CKD patients (eGFR<30mL/min/1.73m2) and 120 control subjects (eGFR ≥60mL/min/1.73m2) in order to measure cholesterol efflux using either patients' HDL and THP-1 macrophages or patients' monocytes and a flow cytometry based cholesterol efflux assay. We also measured cell-surface levels of the common β subunit of the IL-3/GM-CSF receptor (IL-3Rβ) which has been linked to defective cholesterol homeostasis and may promote monocytosis. In addition, we measured plasma inflammatory cytokines and plasma metabolite profiles. RESULTS There was a strong positive correlation between cell-surface IL-3Rβ levels and monocyte counts in CKD (P<0.001). ABCA1 mRNA was reduced in CKD vs. control monocytes (P<0.05), across various etiologies of CKD. Cholesterol efflux to apolipoprotein A1 was impaired in monocytes from CKD patients with diabetic nephropathy (P<0.05), but we found no evidence for a circulating HDL-mediated defect in cholesterol efflux in CKD. Profiling of plasma metabolites showed that medium-chain acylcarnitines were both independently associated with lower levels of cholesterol transporter mRNA in CKD monocytes at baseline (P<0.05), and with cardiovascular events in CKD patients after median 2.6years of follow-up. CONCLUSIONS Cholesterol efflux in humans varies in terms of cellular components. We report a cellular defect in ABCA1-mediated cholesterol efflux in monocytes from CKD patients with diabetic nephropathy. Unlike several traditional risk factors for atherosclerotic cardiovascular disease, plasma metabolites inversely associated with endogenous cholesterol transporters predicted cardiovascular events in CKD patients. (Funded by the National Institute of Diabetes and Digestive and Kidney DiseasesK23DK097288 and others.).
Collapse
Affiliation(s)
- Anjali Ganda
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States.
| | - Laurent Yvan-Charvet
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Yuan Zhang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Eric J Lai
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Renu Regunathan-Shenk
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Farah N Hussain
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Rupali Avasare
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Bibhas Chakraborty
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States; Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Annie J Febus
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Linda Vernocchi
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Rafael Lantigua
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Ying Wang
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Xu Shi
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Joanne Hsieh
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Andrew J Murphy
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Nan Wang
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Nora Bijl
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Kristie M Gordon
- Flow Cytometry Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| | - Maria Hamm de Miguel
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Jessica R Singer
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Jonathan Hogan
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Serge Cremers
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States; Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, United States; Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Martin Magnusson
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden; Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden; Center of Emergency Medicine, Skåne University Hospital, Malmö, Sweden
| | - Robert E Gerszten
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alan R Tall
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
10
|
Mukherjee V, Vijayalaksmi D, Gulipalli J, Premalatha R, Sufi SA, Velan A, Srikumar K. A plant oxysterol, 28-homobrassinolide binds HMGCoA reductase catalytic cleft: stereoselective avidity affects enzyme function. Mol Biol Rep 2016; 43:1049-58. [PMID: 27585573 DOI: 10.1007/s11033-016-4052-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
Abstract
Understanding the influence of ubiquitously present plant steroids on mammalian cell biology is currently of interest. Feedback inhibition of HMGCoA reductase (HMGCR) catalytic activity in the transformation of HMG-CoA to mevalonate is a significant regulatory step in sterol biosynthetic pathway. To assess the role of dietary steroids in this biochemical transformation, the phytosteroid isoform 28-homobrassinolide (28-HB), 90 % pure, obtained from Godrej Agrovet (India) was used to determine its effect on mammalian HMG-CoA reductase. Photometric assay of pure human and select rat tissue HMGCR post 28-HB oral feed, PCR-HMGCR gene expression, and in silico docking of 28-HB and HMGCoA on HMGCR protein template were carried out. Using an oral feed regimen of pure 28-HB, we noted a decrease of 16 % in liver, 17.1 % in kidney and 9.3 % in testicular HMGCR enzyme activity, 25 % in HMGCR gene expression and 44 % in the activity of pure human HMGCR due to this plant oxysterol. In silico docking studies yielded binding metrics for 28-HB-HMGCR lower than for HMGCoA-HMGCR, indicating stronger binding of HMGCR by this ligand. 28-HB exerts differential effects on rat tissue HMGCR, down regulates liver HMGCR gene expression and significantly inhibits HMGCR activity.
Collapse
Affiliation(s)
- Victor Mukherjee
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.,Interdisciplinary Program in Life Sciences, Department of Biotechnology, Govt. of India, Pondicherry University, Puducherry, 605014, India
| | - D Vijayalaksmi
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Jagadeesh Gulipalli
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - R Premalatha
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Shamim A Sufi
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.,Interdisciplinary Program in Life Sciences, Department of Biotechnology, Govt. of India, Pondicherry University, Puducherry, 605014, India
| | - Athithan Velan
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Kotteazeth Srikumar
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India. .,Interdisciplinary Program in Life Sciences, Department of Biotechnology, Govt. of India, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
11
|
Smirnova AV, Sukhorukov VN, Karagodin VP, Orekhov AN. [Epigenetic factors in atherogenesis: microRNA]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 62:134-40. [PMID: 27143369 DOI: 10.18097/pbmc20166202134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MicroRNAs (miRNAs) are small (~22 nucleotides in length) noncoding RNA sequences regulating gene expression at posttranscriptional level. MicroRNAs bind complementarily to certain mRNA and cause gene silencing. The involvement of miRNAs in the regulation of lipid metabolism, inflammatory response, cell cycle progression and proliferation, oxidative stress, platelet activation, endothelial and vascular smooth muscle cells (VSMC) function, angiogenesis and plaque formation and rapture indicates important roles in the initiation and progression of atherosclerosis. The key role of microRNAs in pathophysiology of cardiovascular diseases (CVDs), including atherosclerosis, was demonstrated in recent studies. Creating antisense oligonucleotides is a novel technique for selective changes in gene expression both in vitro and in vivo. In this review, we draw attention to the role of miRNAs in atherosclerosis progression, using miRNA as the potential biomarkers and targets in the CVDs, as well as possible application of antisense oligonucleotides.
Collapse
Affiliation(s)
- A V Smirnova
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - V N Sukhorukov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia
| | - V P Karagodin
- Plekhanov Russian University of Economics, Moscow, Russia
| | - A N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia; Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia
| |
Collapse
|
12
|
Cyrus C, Vatte C, Al-Nafie A, Chathoth S, Al-Ali R, Al-Shehri A, Akhtar MS, Almansori M, Al-Muhanna F, Keating B, Al-Ali A. The impact of common polymorphisms in CETP and ABCA1 genes with the risk of coronary artery disease in Saudi Arabians. Hum Genomics 2016; 10:8. [PMID: 26936456 PMCID: PMC4776394 DOI: 10.1186/s40246-016-0065-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
Abstract
Background Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Many genetic and environmental risk factors including atherogenic dyslipidemia contribute towards the development of CAD. Functionally relevant mutations in the dyslipidemia-related genes and enzymes involved in the reverse cholesterol transport system are associated with CAD and contribute to increased susceptibility of myocardial infarction (MI). Method Blood samples from 990 angiographically confirmed Saudi CAD patients with at least one event of myocardial infarction were collected between 2012 and 2014. A total of 618 Saudi controls with no history or family history of CAD participated in the study. Four polymorphisms, rs2230806, rs2066715 (ABCA1), rs5882, and rs708272 (CETP), were genotyped using TaqMan Assay. Results CETP rs5882 (OR = 1.45, P < 0.005) and ABCA1 rs2230806 (OR = 1.42, P = 0.017) polymorphisms were associated with increased risk of CAD. However, rs708272 polymorphism showed protective effect (B1 vs. B2: OR = 0.80, P = 0.003 and B2B2 vs. B1B1: OR = 0.68, P = 0.012) while the ABCA1 variant rs2066715 was not associated. Conclusion This study is the first to report the association of these polymorphisms with CAD in the population of the Eastern Province of Saudi Arabia. The rs5882 polymorphism (CETP) showed a significant association and therefore could be a promising marker for CAD risk estimation while the rs708272 polymorphism had a protective effect from CAD.
Collapse
Affiliation(s)
- Cyril Cyrus
- Institute for Research and Medical Consultation, University of Dammam, P.O.Box 1982, Dammam, 31441, Kingdom of Saudi Arabia.
| | - Chittibabu Vatte
- Institute for Research and Medical Consultation, University of Dammam, P.O.Box 1982, Dammam, 31441, Kingdom of Saudi Arabia
| | - Awatif Al-Nafie
- King Fahd Hospital of the University, University of Dammam, P.O.Box 4001, Al-Khobar, 31952, Kingdom of Saudi Arabia
| | - Shahanas Chathoth
- Institute for Research and Medical Consultation, University of Dammam, P.O.Box 1982, Dammam, 31441, Kingdom of Saudi Arabia
| | - Rudaynah Al-Ali
- King Fahd Hospital of the University, University of Dammam, P.O.Box 4001, Al-Khobar, 31952, Kingdom of Saudi Arabia
| | - Abdullah Al-Shehri
- King Fahd Hospital of the University, University of Dammam, P.O.Box 4001, Al-Khobar, 31952, Kingdom of Saudi Arabia
| | - Mohammed Shakil Akhtar
- King Fahd Hospital of the University, University of Dammam, P.O.Box 4001, Al-Khobar, 31952, Kingdom of Saudi Arabia
| | - Mohammed Almansori
- King Fahd Hospital of the University, University of Dammam, P.O.Box 4001, Al-Khobar, 31952, Kingdom of Saudi Arabia
| | - Fahad Al-Muhanna
- King Fahd Hospital of the University, University of Dammam, P.O.Box 4001, Al-Khobar, 31952, Kingdom of Saudi Arabia
| | - Brendan Keating
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amein Al-Ali
- Institute for Research and Medical Consultation, University of Dammam, P.O.Box 1982, Dammam, 31441, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Yao MH, He J, Ma RL, Ding YS, Guo H, Yan YZ, Zhang JY, Liu JM, Zhang M, Rui DS, Niu Q, Guo SX. Association between Polymorphisms and Haplotype in the ABCA1 Gene and Overweight/Obesity Patients in the Uyghur Population of China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:220. [PMID: 26891315 PMCID: PMC4772240 DOI: 10.3390/ijerph13020220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/13/2016] [Accepted: 01/27/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study aimed to detect the association between polymorphisms and haplotype in the ATP-binding cassette transporter A1 (ABCA1) gene and overweight/obese Uyghur patients in China. METHODS A total of 259 overweight/obese patients and 276 normal weight subjects, which were randomly selected from among 3049 adult Uyghurs, were matched for age. We genotyped ABCA1 single nucleotide polymorphisms of rs2515602, rs3890182, rs2275542, rs2230806, rs1800976, and rs4149313. RESULTS (1) The genotypic and allelic frequencies of rs2515602 and rs4149313 differed between the control group and case group. The genotypic frequency of rs2275542 also differed between the control group and case group (p < 0.05); (2) rs2515602, rs2230806, and rs4149313 polymorphisms were significantly related to risk of overweight/obese; (3) a significant linkage disequilibrium (LD) was observed between the ABCA1 gene rs2275542 with rs3890182 and rs2515602 with rs4149313. (4) the C-C-C-A-G-G, T-C-G-A-G-G, and T-T-G-G-G-A haplotypes were significant in normal weight and overweight/obese subjects (p < 0.05); (5) the levels of HDL-C (rs2515602, rs2275542, rs4149313) in normal weight subjects were different among the genotypes (p < 0.05); the levels of TC, LDL-C and TG (rs1800976) in overweight/obese subjects were different among the genotypes (p < 0.05). CONCLUSIONS The rs2515602, rs4149313, and rs2275542 polymorphisms were associated with overweight/obese conditions among Uyghurs. Strong LD was noted between rs2275542 with rs3890182 and rs2515602 with rs4149313. The C-C-C-A-G-G and T-C-G-A-G-G haplotypes may serve as risk factors of overweight/obesity among Uyghurs. The T-T-G-G-G-A haplotype may serve as a protective factor of overweight/obesity among Uyghurs. Rs2515602, rs2275542, rs4149313, and rs1800976 polymorphisms in the ABCA1 gene may influence lipid profiles.
Collapse
Affiliation(s)
- Ming-Hong Yao
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Jia He
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Ru-Lin Ma
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Yu-Song Ding
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Heng Guo
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Yi-Zhong Yan
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Jing-Yu Zhang
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Jia-Ming Liu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Mei Zhang
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Dong-Shen Rui
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Qiang Niu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Shu-Xia Guo
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| |
Collapse
|
14
|
Yao MH, Guo H, He J, Yan YZ, Ma RL, Ding YS, Zhang JY, Liu JM, Zhang M, Li SG, Xu SZ, Niu Q, Ma JL, Guo SX. Interactions of Six SNPs in ABCA1gene and Obesity in Low HDL-C Disease in Kazakh of China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:176. [PMID: 26828509 PMCID: PMC4772196 DOI: 10.3390/ijerph13020176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To detect the interactions between six functional polymorphisms in ABCA1 and obesity in Kazakhs with low HDL-C levels. METHODS A total of 204 patients with low HDL-C and 207 health control subjects, which were randomly selected from among 5692 adult Kazakhs, were matched for age and sex. We genotyped ABCA1 single nucleotide polymorphisms of rs2515602, rs3890182, rs2275542, rs2230806, rs1800976, and rs4149313. RESULTS (1) The genotypic and allelic frequencies of rs2515602, rs2230806 and rs4149313 were different between normal HDL-C and low HDL-C subjects, the genotypic frequency of rs2275542 was also different between normal HDL-C and low HDL-C subjects (p < 0.05); (2) the level of HDL-C (rs2515602 and rs2275542) in normal HDL-C subjects were different among the genotypes (p < 0.05); the levels of TC, LDL-C (rs2515602, rs4149313); TG (rs2515602, rs1800976, rs4149313) in low HDL-C patients were different among the genotypes (p < 0.05); (3) interactions between the rs3890182, rs2275542, rs180096, and rs4149313 polymorphisms in ABCA1 gene and obesity may be associated with low HDL-C disease; (4) the C-C-C-A-A-G, T-C-C-A-A-A, T-C-C-A-A-G, C-C-C-A-A-A, C-T-G-G-A-A, and T-T-C-G-A-A haplotypes were significant between the subjects with normal HDL-C and low HDL-C level (p < 0.05). CONCLUSIONS The differences in serum lipid levels between normal HDL-C and low HDL-C subjects among Kazakhs might partly result from ABCA1 gene polymorphisms; ABCA1 gene polymorphisms may be associated with low HDL-C disease; the low HDL-C disease might partly result from interactions between ABCA1 gene polymorphisms and obesity; the C-C-C-A-A-G, T-C-C-A-A-A, and T-C-C-A-A-G haplotypes may serve as risk factors of low HDL-C disease among Kazakhs, the C-C-C-A-A-A, C-T-G-G-A-A, and T-T-C-G-A-A haplotypes may serve as protective factor of low HDL-C disease among Kazakhs.
Collapse
Affiliation(s)
- Ming-hong Yao
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Heng Guo
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Jia He
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Yi-zhong Yan
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Ru-lin Ma
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Yu-song Ding
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Jing-yu Zhang
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Jia-ming Liu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Mei Zhang
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Shu-gang Li
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Shang-zhi Xu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Qiang Niu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Jiao-long Ma
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Shu-xia Guo
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| |
Collapse
|
15
|
Subfraction analysis of circulating lipoproteins in a patient with Tangier disease due to a novel ABCA1 mutation. Clin Chim Acta 2015; 452:167-72. [PMID: 26616730 DOI: 10.1016/j.cca.2015.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/22/2015] [Indexed: 12/30/2022]
Abstract
Tangier disease, characterized by low or absent high-density lipoprotein (HDL), is a rare hereditary lipid storage disorder associated with frequent, but not obligatory, severe premature atherosclerosis due to disturbed reverse cholesterol transport from tissues. The reasons for the heterogeneity in atherogenicity in certain dyslipidemias have not been fully elucidated. Here, using high-performance liquid chromatography with a gel filtration column (HPLC-GFC), we have studied the lipoprotein profile of a 17-year old male patient with Tangier disease who to date has not developed manifest coronary atherosclerosis. The patient was shown to be homozygous for a novel mutation (Leu1097Pro) in the central cytoplasmic region of ATP-binding cassette transporter A1 (ABCA1). Serum total and HDL-cholesterol levels were 59mg/dl and 2mg/dl, respectively. Lipoprotein electrophoretic analyses on agarose and polyacrylamide gels showed the presence of massively abnormal lipoproteins. Further analysis by HPLC-GFC identified significant amounts of lipoproteins in low-density lipoprotein (LDL) subfractions. The lipoprotein particles found in the peak subfraction were smaller than normal LDL, were rich in triglycerides, but poor in cholesterol and phospholipids. These findings in an adolescent Tangier patient suggest that patients in whom these triglyceride-rich, cholesterol- and phospholipid-poor LDL-type particles accumulate over time, would experience an increased propensity for developing atherosclerosis.
Collapse
|
16
|
Nordestgaard LT, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. Loss-of-function mutation in ABCA1 and risk of Alzheimer's disease and cerebrovascular disease. Alzheimers Dement 2015; 11:1430-1438. [PMID: 26079414 DOI: 10.1016/j.jalz.2015.04.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/23/2015] [Accepted: 04/16/2015] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The adenosine triphosphate-binding cassette transporter A1 (ABCA1) is a major cholesterol transporter highly expressed in the liver and brain. In the brain, ABCA1 lipidates apolipoprotein E (apoE), facilitates clearance of amyloid-β, and may be involved in maintenance of the blood-brain barrier via apoE-mediated pathways. METHODS We tested whether a loss-of-function mutation in ABCA1, N1800H, is associated with plasma levels of apoE and with risk of Alzheimer's disease (AD) in 92,726 individuals and with risk of cerebrovascular disease in 64,181 individuals. RESULTS N1800H AC (0.2%) versus AA (99.8%) was associated with a 13% lower plasma level of apoE (P = 1 × 10(-11)). Multifactorially adjusted hazard ratios for N1800H AC versus AA were 4.13 (95% confidence interval, 1.32-12.9) for AD, 2.46 (1.10-5.50) for cerebrovascular disease, and 8.28 (2.03-33.7) for the hemorrhagic stroke subtype. DISCUSSION A loss-of-function mutation in ABCA1, present in 1:500 individuals, was associated with low plasma levels of apoE and with high risk of AD and cerebrovascular disease in the general population.
Collapse
Affiliation(s)
- Liv Tybjærg Nordestgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark; The Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospitals, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- The Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospitals, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospitals, Herlev, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark; The Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospitals, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Rached FH, Chapman MJ, Kontush A. HDL particle subpopulations: Focus on biological function. Biofactors 2015; 41:67-77. [PMID: 25809447 DOI: 10.1002/biof.1202] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 12/12/2022]
Abstract
Low levels of high-density lipoprotein-cholesterol (HDL-C) constitute an independent biomarker of cardiovascular morbi-mortality. However, recent advances have drastically modified the classical and limited view of HDL as a carrier of 'good cholesterol', and have revealed unexpected levels of complexity in the circulating HDL particle pool. HDL particles are indeed highly heterogeneous in structure, intravascular metabolism and biological activity. This review describes recent progress in our understanding of HDL subpopulations and their biological activities, and focuses on relationships between the structural, compositional and functional heterogeneity of HDL particles.
Collapse
Affiliation(s)
- Fabiana H Rached
- National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Université Pierre et Marie Curie-Paris 6, AP-HP, Pitié-Salpétrière University Hospital, ICAN, Paris, France; Heart Institute-InCor, University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil; Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | | |
Collapse
|
18
|
A Comprehensive In Silico Analysis of the Functional and Structural Impact of Nonsynonymous SNPs in the ABCA1 Transporter Gene. CHOLESTEROL 2014; 2014:639751. [PMID: 25215231 PMCID: PMC4156994 DOI: 10.1155/2014/639751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/07/2014] [Accepted: 07/24/2014] [Indexed: 12/24/2022]
Abstract
Disease phenotypes and defects in function can be traced to nonsynonymous single nucleotide polymorphisms (nsSNPs), which are important indicators of action sites and effective potential therapeutic approaches. Identification of deleterious nsSNPs is crucial to characterize the genetic basis of diseases, assess individual susceptibility to disease, determinate molecular and therapeutic targets, and predict clinical phenotypes. In this study using PolyPhen2 and MutPred in silico algorithms, we analyzed the genetic variations that can alter the expression and function of the ABCA1 gene that causes the allelic disorders familial hypoalphalipoproteinemia and Tangier disease. Predictions were validated with published results from in vitro, in vivo, and human studies. Out of a total of 233 nsSNPs, 80 (34.33%) were found deleterious by both methods. Among these 80 deleterious nsSNPs found, 29 (12.44%) rare variants resulted highly deleterious with a probability >0.8. We have observed that mostly variants with verified functional effect in experimental studies are correctly predicted as damage variants by MutPred and PolyPhen2 tools. Still, the controversial results of experimental approaches correspond to nsSNPs predicted as neutral by both methods, or contradictory predictions are obtained for them. A total of seventeen nsSNPs were predicted as deleterious by PolyPhen2, which resulted neutral by MutPred. Otherwise, forty two nsSNPs were predicted as deleterious by MutPred, which resulted neutral by PolyPhen2.
Collapse
|
19
|
Abd El-Aziz TA, Mohamed RH, Hagrass HA. Increased risk of premature coronary artery disease in Egyptians with ABCA1 (R219K), CETP (TaqIB), and LCAT (4886C/T) genes polymorphism. J Clin Lipidol 2014; 8:381-9. [PMID: 25110219 DOI: 10.1016/j.jacl.2014.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/19/2014] [Accepted: 06/04/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Epidemiological studies have shown a strong inverse relationship between high-density lipoprotein (HDL) cholesterol (HDLc) levels and coronary artery disease (CAD), and a low concentration of plasma HDLc is considered an independent risk factor for premature atherosclerosis. Mutations in ATP-binding cassette A1 transporter (ABCA1), cholesteryl ester transfer protein (CETP), and lecithin: cholesterol acyltransferase (LCAT) reduce HDLc in humans. OBJECTIVE To date, no study had tested the association between these polymorphisms and premature CAD (PCAD) in the Egyptian population. Here we searched for ABCA1 (rs2230806), CETP (rs708272), and LCAT (rs5923) mutations in the Egyptian population and investigated the possible association between these gene polymorphisms and PCAD. We aimed to investigate the association between ABCA1, CETP, and LCAT gene polymorphisms and PCAD in Egyptians. METHODS A total of 235 Egyptians-116 with documented PCAD (PCAD group) and 119 controls-were enrolled in the study. RESULTS Mutation carriers with low HDLc had an elevated risk of PCAD (odds ratio [OR] = 11.38 for ABCA1 mutation carriers, P = .000; OR = 5.41 for CETP mutation carriers, P = .000; OR = 5.92 for LCAT mutation carriers, P = .000). Moreover, mutations in ABCA1, CETP, and LCAT were significantly associated with hyperlipidemia in this study. CONCLUSION These observations show that the R allele of ABCA1, the B1 allele of CETP, and the T allele LCAT genes are associated with PCAD in Egyptians. They have more considerable effect on patients with low HDLc.
Collapse
Affiliation(s)
- Tarek A Abd El-Aziz
- Department of Cardiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha H Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Hoda A Hagrass
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
20
|
Apolipoprotein A-II is a key regulatory factor of HDL metabolism as appears from studies with transgenic animals and clinical outcomes. Biochimie 2013; 96:56-66. [PMID: 24012775 DOI: 10.1016/j.biochi.2013.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/28/2013] [Indexed: 01/26/2023]
Abstract
The structure and metabolism of HDL are linked to their major apolipoproteins (apo) A-I and A-II. HDL metabolism is very dynamic and depends on the constant remodeling by lipases, lipid transfer proteins and receptors. HDL exert several cardioprotective effects, through their antioxidant and antiinflammatory capacities and through the stimulation of reverse cholesterol transport from extrahepatic tissues to the liver for excretion into bile. HDL also serve as plasma reservoir for C and E apolipoproteins, as transport vehicles for a great variety of proteins, and may have more physiological functions than previously recognized. In this review we will develop several aspects of HDL metabolism with emphasis on the structure/function of apo A-I and apo A-II. An important contribution to our understanding of the respective roles of apo A-I and apo A-II comes from studies using transgenic animal models that highlighted the stabilizatory role of apo A-II on HDL through inhibition of their remodeling by lipases. Clinical studies coupled with proteomic analyses revealed the presence of dysfunctional HDL in patients with cardiovascular disease. Beyond HDL cholesterol, a new notion is the functionality of HDL particles. In spite of abundant literature on HDL metabolic properties, a major question remains unanswered: which HDL particle(s) confer(s) protection against cardiovascular risk?
Collapse
|
21
|
Akiyama M. The roles of ABCA12 in epidermal lipid barrier formation and keratinocyte differentiation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:435-40. [PMID: 23954554 DOI: 10.1016/j.bbalip.2013.08.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 01/01/2023]
Abstract
ATP-binding cassette (ABC) transporters form a large superfamily of transporters that bind and hydrolyze ATP to transport various molecules across limiting membranes or into vesicles. The ABCA subfamily members are thought to transport lipid materials. ABCA12 is a keratinocyte transmembrane lipid transporter protein associated with the transport of lipids via lamellar granules. ABCA12 is considered to transport lipids including ceramides to form extracellular lipid layers in the stratum corneum of the epidermis, which is essential for skin barrier function. ABCA12 mutations are known to underlie the three major types of autosomal recessive congenital ichthyoses: harlequin ichthyosis, lamellar ichthyosis and congenital ichthyosiform erythroderma. ABCA12 mutations result in defective lipid transport via lamellar granules in the keratinocytes, leading to ichthyosis phenotypes from malformation of the stratum corneum lipid barrier. Studies on ABCA12-deficient bioengineered models have revealed that lipid transport by ABCA12 is required for keratinocyte differentiation and epidermal morphogenesis. Defective lipid transport due to loss of ABCA12 function leads to the accumulation of intracellular lipids, including glucosylceramides and gangliosides, in the epidermal keratinocytes. The accumulation of gangliosides seems to result in the apoptosis of Abca12(-/-) keratinocytes. It was reported that AKT activation occurs in Abca12(-/-) granular-layer keratinocytes, which suggests that AKT activation serves to prevent the cell death of Abca12(-/-) keratinocytes. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
22
|
Newer therapeutic strategies to alter high-density lipoprotein level and function. Cardiol Rev 2013; 22:17-24. [PMID: 23707991 DOI: 10.1097/crd.0b013e31829cac29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Measurements of low levels of high-density lipoprotein (HDL) cholesterol have been identified as a risk factor for premature coronary artery disease, however, to date, current pharmacologic approaches for raising HDL have provided little benefit, if at all, in reducing cardiovascular outcomes. It has been shown that HDL can modify many aspects of plaque pathogenesis. Its most established role is in reverse cholesterol transportation, but HDL can also affect oxidation, inflammation, cellular adhesion, and vasodilatation. Considering these potential benefits of HDL, newer treatments have been developed to modify HDL activity, which include the use of oral cholesteryl ester transfer protein inhibitors, apolipoprotein (apo)A-I infusions, apoA-I mimetics, drugs to increase apoA-I synthesis, and agonists of the liver X receptor. These new therapies are reviewed in this article.
Collapse
|
23
|
Overlapped Metabolic and Therapeutic Links between Alzheimer and Diabetes. Mol Neurobiol 2012; 47:399-424. [DOI: 10.1007/s12035-012-8352-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/12/2012] [Indexed: 12/12/2022]
|
24
|
Sankaranarayanan S, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Asztalos BF, Bittman R, Rothblat GH. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol. J Lipid Res 2011; 52:2332-2340. [PMID: 21957199 DOI: 10.1194/jlr.d018051] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantitating cholesterol efflux involves labeling cells with [(3)H]cholesterol and measuring release of the labeled sterol. Using [(3)H]cholesterol is not ideal for the development of a high-throughput assay to screen large numbers of serum as would be required in studying the link between efflux and CAD. We compared efflux using a fluorescent sterol (boron dipyrromethene difluoride linked to sterol carbon-24, BODIPY-cholesterol) with that of [(3)H]cholesterol in J774 macrophages. Fractional efflux of BODIPY-cholesterol was significantly higher than that of [(3)H]cholesterol when apo A-I, HDL(3), or 2% apoB-depleted human serum were used as acceptors. BODIPY-cholesterol efflux correlated significantly with [(3)H]cholesterol efflux (p < 0.0001) when apoB-depleted sera were used. The BODIPY-cholesterol efflux correlated significantly with preβ-1 (r(2) = 0.6) but not with total HDL-cholesterol. Reproducibility of the BODIPY-cholesterol efflux assay was excellent between weeks (r(2) = 0.98, inter-assay CV = 3.31%). These studies demonstrate that BODIPY-cholesterol provides an efficient measurement of efflux compared with [(3)H]cholesterol and is a sensitive probe for ABCA1-mediated efflux. The increased sensitivity of BODIPY-cholesterol assay coupled with the simplicity of measuring fluorescence results in a sensitive, high-throughput assay that can screen large numbers of sera, and thus establish the relationship between cholesterol efflux and atherosclerosis.
Collapse
Affiliation(s)
- Sandhya Sankaranarayanan
- Department of Pediatrics (Division of Gastroenterology, Hepatology, and Nutrition), The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Ginny Kellner-Weibel
- Department of Pediatrics (Division of Gastroenterology, Hepatology, and Nutrition), The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Margarita de la Llera-Moya
- Department of Pediatrics (Division of Gastroenterology, Hepatology, and Nutrition), The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Michael C Phillips
- Department of Pediatrics (Division of Gastroenterology, Hepatology, and Nutrition), The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Bela F Asztalos
- Lipid Metabolism Laboratory (B.F.A.), Tufts University, Boston, MA 02111; and Department of Chemistry and Biochemistry (R.B)
| | - Robert Bittman
- Department of Chemistry and Biochemistry (R.B), Queens College of The City University of New York, Flushing, NY 11367-1597
| | - George H Rothblat
- Department of Pediatrics (Division of Gastroenterology, Hepatology, and Nutrition), The Children's Hospital of Philadelphia, Philadelphia, PA 19104.
| |
Collapse
|
25
|
Abstract
Cardiovascular disease remains a major cause of morbidity and mortality in the westernized world. Atherosclerosis is the underlying cause of most cardiovascular diseases. Atherosclerosis is a slowly evolving chronic inflammatory disorder involving the intima of large and medium sized arteries that is initiated in response to high plasma lipid levels, especially LDL. Cells of both the innate and adaptive immunity are involved in this chronic inflammation. Although high plasma LDL levels are a major contributor to most stages of the evolution of atherosclerosis, HDL and its major protein apoA-I possess properties that attenuate and may even reverse atherosclerosis. Two major functions are the ability to induce the efflux of cholesterol from cells, particularly lipid-loaded macrophages, in the artery wall for transfer to the liver, a process referred to as reverse cholesterol transport, and the ability to attenuate the pro-inflammatory properties of LDL. The removal of cellular cholesterol from lipid-loaded macrophages may also be anti-inflammatory. One of the most promising therapies to enhance the anti-atherogenic, anti-inflammatory properties of HDL is apoA-I mimetic peptides. Several of these peptides have been shown to promote cellular cholesterol efflux, attenuate the production of pro-inflammatory cytokines by macrophages, and to attenuate the pro-inflammatory properties of LDL. This latter effect may be related to their high affinity for oxidized lipids present in LDL. This review discusses the functional properties of the peptides and their effect on experimental atherosclerosis and the results of initial clinical studies in humans.
Collapse
Affiliation(s)
- Godfrey S Getz
- The University of Chicago, Department of Pathology, Chicago, IL, USA
| | | |
Collapse
|
26
|
Akiyama M. The roles of ABCA12 in keratinocyte differentiation and lipid barrier formation in the epidermis. DERMATO-ENDOCRINOLOGY 2011; 3:107-12. [PMID: 21695020 PMCID: PMC3117010 DOI: 10.4161/derm.3.2.15136] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/26/2011] [Accepted: 02/14/2011] [Indexed: 11/19/2022]
Abstract
ABCA12 is a member of the large superfamily of ATP-binding cassette (ABC) transporters, which bind and hydrolyze ATP to transport various molecules across limiting membranes or into vesicles. The ABCA subfamily members are thought to be lipid transporters. ABCA12 is a keratinocyte transmembrane lipid transporter protein associated with the transport of lipids in lamellar granules to the apical surface of granular layer keratinocytes. Extracellular lipids, including ceramide, are thought to be essential for skin barrier function. ABCA12 mutations are known to underlie the three main types of autosomal recessive congenital ichthyoses: harlequin ichthyosis, lamellar ichthyosis and congenital ichthyosiform erythroderma. ABCA12 mutations lead to defective lipid transport via lamellar granules in the keratinocytes, resulting in malformation of the epidermal lipid barrier and ichthyosis phenotypes. Studies of ABCA12-deficient model mice indicate that lipid transport by ABCA12 is also indispensable for intact differentiation of keratinocytes.
Collapse
Affiliation(s)
- Masashi Akiyama
- Department of Dermatology; Nagoya University Graduate School of Medicine; Nagoya, Japan
| |
Collapse
|
27
|
Schulman IG. Nuclear receptors as drug targets for metabolic disease. Adv Drug Deliv Rev 2010; 62:1307-15. [PMID: 20655343 DOI: 10.1016/j.addr.2010.07.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 07/06/2010] [Accepted: 07/14/2010] [Indexed: 01/02/2023]
Abstract
Nuclear hormone receptors comprise a superfamily of ligand-activated transcription factors that control development, differentiation, and homeostasis. Over the last 15 years a growing number of nuclear receptors have been identified that coordinate genetic networks regulating lipid metabolism and energy utilization. Several of these receptors directly sample the levels of metabolic intermediates including fatty acids and cholesterol derivatives and use this information to regulate the synthesis, transport, and breakdown of the metabolite of interest. In contrast, other family members sense metabolic activity via the presence or absence of interacting proteins. The ability of these nuclear receptors to impact metabolism will be discussed and the challenges facing drug discovery efforts for this class of targets will be highlighted.
Collapse
|
28
|
MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci U S A 2010; 107:17321-6. [PMID: 20855588 DOI: 10.1073/pnas.1008499107] [Citation(s) in RCA: 314] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sterol regulatory element-binding protein 2 (SREBP-2) transcription factor has been identified as a key protein in cholesterol metabolism through the transactivation of the LDL receptor and cholesterol biosynthesis genes. Here, we generated mice lacking microRNA (miR)-33, encoded by an intron of the Srebp2, and showed that miR-33 repressed the expression of ATP-binding cassette transporter A1 (ABCA1) protein, a key regulator of HDL synthesis by mediating cholesterol efflux from cells to apolipoprotein A (apoA)-I. In fact, peritoneal macrophages derived from miR-33-deficient mice showed a marked increase in ABCA1 levels and higher apoA-I-dependent cholesterol efflux than those from WT mice. ABCA1 protein levels in liver were also higher in miR-33-deficient mice than in WT mice. Moreover, miR-33-deficient mice had significantly higher serum HDL cholesterol levels than WT mice. These data establish a critical role for miR-33 in the regulation of ABCA1 expression and HDL biogenesis in vivo.
Collapse
|
29
|
Hessvik NP, Boekschoten MV, Baltzersen MA, Kersten S, Xu X, Andersén H, Rustan AC, Thoresen GH. LXR{beta} is the dominant LXR subtype in skeletal muscle regulating lipogenesis and cholesterol efflux. Am J Physiol Endocrinol Metab 2010; 298:E602-13. [PMID: 19996385 DOI: 10.1152/ajpendo.00553.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liver X receptors (LXRs) are important regulators of cholesterol, lipid, and glucose metabolism and have been extensively studied in liver, macrophages, and adipose tissue. However, their role in skeletal muscle is poorly studied and the functional role of each of the LXRalpha and LXRbeta subtypes in skeletal muscle is at present unknown. To study the importance of each of the receptor subtypes, myotube cultures derived from wild-type (WT) and LXRalpha and LXRbeta knockout (KO) mice were established. The present study showed that treatment with the LXR agonist T0901317 increased lipogenesis and apoA1-dependent cholesterol efflux in LXRalpha KO and WT myotubes but not in LXRbeta KO cells. The functional studies were confirmed by T0901317-induced increase in mRNA levels of LXR target genes involved in lipid and cholesterol metabolism in myotubes established from WT and LXRalpha KO mice, whereas only minor changes were observed for these genes in myotubes from LXRbeta KO mice. Gene expression analysis using microarrays showed that very few genes other than the classical, well-known LXR target genes were regulated by LXR in skeletal muscle. The present study also showed that basal glucose uptake was increased in LXRbeta KO myotubes compared with WT myotubes, suggesting a role for LXRbeta in glucose metabolism in skeletal muscle. In conclusion, LXRbeta seems to be the main LXR subtype regulating lipogenesis and cholesterol efflux in skeletal muscle.
Collapse
Affiliation(s)
- N P Hessvik
- Dept. of Pharmaceutical Biosciences, Univ. of Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Huang HJ, Schulman IG. Regulation of metabolism by nuclear hormone receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:1-51. [PMID: 20374700 DOI: 10.1016/s1877-1173(09)87001-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The worldwide epidemic of metabolic disease indicates that a better understanding of the pathways contributing to the pathogenesis of this constellation of diseases need to be determined. Nuclear hormone receptors comprise a superfamily of ligand-activated transcription factors that control development, differentiation, and metabolism. Over the last 15 years a growing number of nuclear receptors have been identified that coordinate genetic networks regulating lipid metabolism and energy utilization. Several of these receptors directly sample the levels of metabolic intermediates and use this information to regulate the synthesis, transport, and breakdown of the metabolite of interest. In contrast, other family members sense metabolic activity via the presence or absence of interacting proteins. The ability of these nuclear receptors to impact metabolism and inflammation will be discussed and the potential of each receptor subfamily to serve as drug targets for metabolic disease will be highlighted.
Collapse
Affiliation(s)
- Huey-Jing Huang
- Department of Biology, Exelixis Inc., 4757 Nexus Centre Drive, San Diego, California 92121, USA
| | | |
Collapse
|
31
|
An innate immunity signaling process suppresses macrophage ABCA1 expression through IRAK-1-mediated downregulation of retinoic acid receptor alpha and NFATc2. Mol Cell Biol 2009; 29:5989-97. [PMID: 19752193 DOI: 10.1128/mcb.00541-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) plays a central role in promoting cholesterol efflux from macrophages, thereby reducing the risk of foam cell formation and atherosclerosis. The expression of ABCA1 is induced by members of the nuclear receptor family of transcription factors, including retinoic acid receptors (RARs). A key innate immunity signaling kinase, IRAK-1, has been associated with an increased risk of atherosclerosis in humans and mice. This prompted us to investigate the potential connection between IRAK-1 and the expression of ABCA1. Here, we demonstrate that nuclear RARalpha levels are dramatically elevated in IRAK-1(-/-) macrophages. Correspondingly, IRAK-1(-/-) macrophages exhibit increased expression of ABCA1 mRNA and protein, as well as elevated cholesterol efflux in response to the RAR ligand ATRA. Analysis of the ABCA1 proximal promoter revealed binding sites for both RAR and NFAT. Chromatin immunoprecipitation assays demonstrated increased binding of RARalpha and NFATc2 to the ABCA1 promoter in IRAK-1(-/-) macrophages compared to wild-type macrophages. Additionally, lipopolysaccharide pretreatment reduced the nuclear levels of RARalpha and decreased ABCA1 expression and cholesterol efflux in wild-type but not in IRAK-1(-/-) cells. In summary, this study reveals a novel connection between innate immunity signaling processes and the regulation of ABCA1 expression in macrophages and defines a potential therapeutic target for treating atherosclerosis.
Collapse
|
32
|
Hirsch-Reinshagen V, Burgess BL, Wellington CL. Why lipids are important for Alzheimer disease? Mol Cell Biochem 2008; 326:121-9. [DOI: 10.1007/s11010-008-0012-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
|
33
|
Wang N, Xue XH, Lin Y, Fang L, Murong S, Wu ZY. The R219K polymorphism in the ATP-binding cassette transporter 1 gene has a protective effect on atherothrombotic cerebral infarction in Chinese Han ethnic population. Neurobiol Aging 2008; 31:647-53. [PMID: 18621447 DOI: 10.1016/j.neurobiolaging.2008.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 04/29/2008] [Accepted: 05/28/2008] [Indexed: 11/15/2022]
Abstract
The association of R219K and V825I polymorphisms of ABCA1 gene with cerebral infarction has been rarely reported. Here we wish to address this issue. A total of 476 subjects from Chinese Han ethnic population were investigated, including 152 control individuals and 324 patients with cerebral infarction. Genotyping of R219K and V825I were performed by PCR-RFLP analysis. Data were analyzed using a statistical package. The R219K genotype frequency distributions were significantly different between patients with atherothrombotic cerebral infarction (ACI) and control individuals, with fewer KK genotypes and more RR genotypes in ACI patients (chi(2)=9.89, P<0.01). The K allele is less frequent among ACI patients than in controls (chi(2)=9.16, P<0.005). A significant association of KK with decreased ACI risk was exhibited, especially in male patients, aged patients and individuals with hypertension. These results indicate that the K allele of R219K polymorphism is an independent protective factor against ACI. In addition, though there is no association of V825I with ACI, this polymorphism may have certain synergistic effect with hypertension in susceptibility to ACI.
Collapse
Affiliation(s)
- Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Center of Neuroscience, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
| | | | | | | | | | | |
Collapse
|
34
|
Hooijmans CR, Kiliaan AJ. Fatty acids, lipid metabolism and Alzheimer pathology. Eur J Pharmacol 2008; 585:176-96. [PMID: 18378224 DOI: 10.1016/j.ejphar.2007.11.081] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 09/11/2007] [Accepted: 11/15/2007] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease is the most common form of dementia in the elderly. The cause of Alzheimer's disease is still unknown and there is no cure for the disease yet despite 100 years of extensive research. Cardiovascular risk factors such as high serum cholesterol, presence of the Apolipoprotein epsilon4 (APOE epsilon4) allele and hypertension, play important roles in the development of Alzheimer's disease. We postulate that a combination of diet, lifestyle, vascular, genetic, and amyloid related factors, which enhance each other's contribution in the onset and course of Alzheimer's disease, will be more likely the cause of the disease instead of one sole mechanism. The possibility that the risk for Alzheimer's disease can be reduced by diet or lifestyle is of great importance and suggests a preventative treatment in Alzheimer's disease. Because of the great importance of lipid diets and metabolism in preventative treatment against both Alzheimer's disease and cardiovascular disease, long-chain polyunsaturated fatty acids from fish oil, ApoE genotype and cholesterol metabolism in correlation with Alzheimer's disease will be reviewed.
Collapse
Affiliation(s)
- Carlijn R Hooijmans
- Department of Anatomy and Department of Cognitive Neuroscience, Donders Centre for Neuroscience, Radboud University Nijmegen Medical Centre, Room M245/0.24 PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | |
Collapse
|
35
|
Yvan-Charvet L, Ranalletta M, Wang N, Han S, Terasaka N, Li R, Welch C, Tall AR. Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest 2008; 117:3900-8. [PMID: 17992262 DOI: 10.1172/jci33372] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 09/19/2007] [Indexed: 01/26/2023] Open
Abstract
HDLs protect against the development of atherosclerosis, but the underlying mechanisms are poorly understood. HDL and its apolipoproteins can promote cholesterol efflux from macrophage foam cells via the ATP-binding cassette transporters ABCA1 and ABCG1. Experiments addressing the individual roles of ABCA1 and ABCG1 in the development of atherosclerosis have produced mixed results, perhaps because of compensatory upregulation in the individual KO models. To clarify the role of transporter-mediated sterol efflux in this disease process, we transplanted BM from Abca1(-/-)Abcg1(-/-) mice into LDL receptor-deficient mice and administered a high-cholesterol diet. Compared with control and single-KO BM recipients, Abca1(-/-)Abcg1(-/-) BM recipients showed accelerated atherosclerosis and extensive infiltration of the myocardium and spleen with macrophage foam cells. In experiments with isolated macrophages, combined ABCA1 and ABCG1 deficiency resulted in impaired cholesterol efflux to HDL or apoA-1, profoundly decreased apoE secretion, and increased secretion of inflammatory cytokines and chemokines. In addition, these cells showed increased apoptosis when challenged with free cholesterol or oxidized LDL loading. These results suggest that the combined effects of ABCA1 and ABCG1 in mediating macrophage sterol efflux are central to the antiatherogenic properties of HDL.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Division of Molecular Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sakai K, Akiyama M, Sugiyama-Nakagiri Y, McMillan JR, Sawamura D, Shimizu H. Localization of ABCA12 from Golgi apparatus to lamellar granules in human upper epidermal keratinocytes. Exp Dermatol 2008; 16:920-6. [PMID: 17927575 DOI: 10.1111/j.1600-0625.2007.00614.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABCA12 is an ATP-binding cassette transporter and is thought to act as a transmembrane lipid transporter. We reported that deleterious ABCA12 mutations cause a disturbance in lamellar granule (LG) lipid transport in the epidermal granular layer keratinocytes, resulting in harlequin ichthyosis, a severe genodermatosis. Detailed localization of ABCA12 in comparison with glucosylceramide and Golgi apparatus markers were studied in order to obtain clues to clarify the function(s) of ABCA12 in human skin. We performed double-labelling immunofluorescent staining using antibodies against ABCA12, glucosylceramide and two Golgi apparatus markers (TGN46 and GM130) in normal human skin and cultured keratinocytes. Immunogold electron microscopy for ABCA12 and glucosylceramide was studied on postembedding and cryoultrathin sections of normal human skin. Confocal laser scanning microscopy demonstrated that ABCA12 and glucosylceramide co-localized in the granular layer keratinocytes as well as in keratinocytes cultured in high Ca2+ conditions through the Golgi apparatus to the cell periphery. Postembedding immunogold electron microscopy revealed that both ABCA12 and glucosylceramide labellings were associated with the LG of the uppermost granular layer keratinocytes. Using cryoultramicrotomy, lamellar structures in the LG were more clearly observed, and ultrastructural localization of ABCA12 and glucosylceramide was better demonstrated to LG in the uppermost granular layer cells. These results indicate that ABCA12 plays an important role in lipid transport from the Golgi apparatus to LG in human granular layer keratinocytes.
Collapse
Affiliation(s)
- Kaori Sakai
- Department of Dermatology, Hokkaido University Graduate School of Medicine, N15 W7, Sapporo 060-8638, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Jacobs RL, Lingrell S, Zhao Y, Francis GA, Vance DE. Hepatic CTP:Phosphocholine Cytidylyltransferase-α Is a Critical Predictor of Plasma High Density Lipoprotein and Very Low Density Lipoprotein. J Biol Chem 2008; 283:2147-55. [DOI: 10.1074/jbc.m706628200] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
38
|
Abstract
Phagocytosis is an important component of innate and adaptive immunity. The formation of phagosomes and the subsequent maturation that capacitates them for pathogen elimination and antigen presentation are complex processes that involve signal transduction, cytoskeletal reorganization, and membrane remodeling. Lipids are increasingly appreciated to play a crucial role in these events. Sphingolipids, cholesterol, and glycerophospholipids, notably the phosphoinositides, are required for the segregation of signaling microdomains and for the generation of second messengers. They are also instrumental in the remodeling of the actin cytoskeleton and in directing membrane traffic. They accomplish these feats by congregating into liquid-ordered domains, by generating active metabolites that activate receptors, and by recruiting and anchoring specific protein ligands to the membrane, often altering their conformation and catalytic activity. A less appreciated role of acidic phospholipids is their contribution to the negative surface charge of the inner leaflet of the plasmalemma. The unique negativity of the inner aspect of the plasma membrane serves to attract and anchor key signaling and effector molecules that are required to initiate phagosome formation. Conversely, the loss of charge that accompanies phospholipid metabolism as phagosomes seal facilitates the dissociation of proteins and the termination of signaling and cytoskeleton assembly. In this manner, lipids provide a binary electrostatic switch to control phagocytosis.
Collapse
Affiliation(s)
- Tony Yeung
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
39
|
Adorni MP, Zimetti F, Billheimer JT, Wang N, Rader DJ, Phillips MC, Rothblat GH. The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res 2007; 48:2453-62. [PMID: 17761631 DOI: 10.1194/jlr.m700274-jlr200] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cholesterol efflux occurs by different pathways, including transport mediated by specific proteins. We determined the effect of enriching cells with free cholesterol (FC) on the release of FC to human serum. Loading Fu5AH cells with FC had no effect on fractional efflux, whereas enriching mouse peritoneal macrophages (MPMs) resulted in a doubling of fractional efflux. Efflux from cholesterol-normal MPM and Fu5AH cells to 15 human sera correlated well with HDL parameters. However, these relationships were reduced or lost with cholesterol-loaded MPMs. Using macrophages from scavenger receptor class B type I (SR-BI)-, ABCA1-, and ABCG1-knockout mice, together with inhibitors of SR-BI- and ABCA1-mediated efflux, we were able to quantitate efflux upon loading macrophages with excess cholesterol and to establish the contributions of the various efflux pathways in cholesterol-normal and -enriched cells. The removal of ABCA1 had essentially no effect on the total efflux when cell cholesterol levels were normal. However, in cholesterol-enriched cells, the removal of ABCA1 reduced efflux by 50%. Approximately 20% of the efflux stimulated by FC-loading MPM is attributable to ABCG1. The SR-BI contribution to efflux was small. Another pathway that is present in all cells is aqueous diffusion. Our studies demonstrate that this mechanism is one of the major contributors to efflux, particularly in cholesterol-normal cells.
Collapse
Affiliation(s)
- Maria Pia Adorni
- Gastroenterology, Hepatology, and Nutrition Division, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Sakai H, Tanaka Y, Tanaka M, Ban N, Yamada K, Matsumura Y, Watanabe D, Sasaki M, Kita T, Inagaki N. ABCA2 Deficiency Results in Abnormal Sphingolipid Metabolism in Mouse Brain. J Biol Chem 2007; 282:19692-9. [PMID: 17488728 DOI: 10.1074/jbc.m611056200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ABCA2, a member of the ATP-binding cassette (ABC) transporter family, is localized mainly to late endosome/lysosomes of oligodendrocytes in brain, but the physiological role and function of ABCA2 are unknown. In this study, we generated mutant mice (ABCA2-null) by targeting the abca2 gene. ABCA2-null mice exhibited a phenotype including lower pregnancy rate and body weight, shorter latency period on the balance beam, and sensitization to environmental stress compared with wild type mice but no abnormality in the cytoarchitectonic and compact myelin structure or oligodendroglial differentiation. Lipid analysis of brain from 11 days to 64 weeks of age revealed significant accumulation of gangliosides along with reduced sphingomyelin (SM) from 4 weeks to 64 weeks of age and accumulation of cerebrosides and sulfatides at 64 weeks of age in ABCA2-null mice compared with wild type mice. In addition, a significant accumulation of the major ganglioside GM1 and reduced SM was detected in the myelin fraction of ABCA2-null brain. Comparison of ABCA2-null and wild type mice revealed weak ABCA2 immunoreactivity in some large pyramidal cells of wild type brain. These results suggest that ABCA2 is involved in the intracellular metabolism of sphingolipids in the brain, particularly SM and gangliosides in oligodendrocytes and certain neurons.
Collapse
Affiliation(s)
- Hiromichi Sakai
- Department of Physiology, Akita University School of Medicine, Akita 010-8543, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hirsch-Reinshagen V, Wellington CL. Cholesterol metabolism, apolipoprotein E, adenosine triphosphate-binding cassette transporters, and Alzheimer's disease. Curr Opin Lipidol 2007; 18:325-32. [PMID: 17495608 DOI: 10.1097/mol.0b013e32813aeabf] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Recent evidence suggests that cholesterol metabolism participates in the pathogenesis of Alzheimer's disease. Apolipoprotein E is the main lipid carrier in the brain and the best-established risk factor for late-onset Alzheimer's disease. Intracellular cholesterol levels influence the generation of amyloid-beta peptides, the toxic species thought to be a primary cause of Alzheimer's disease. Finally, compounds that modulate cholesterol metabolism affect amyloid-beta generation. This review summarizes data linking apolipoprotein E and adenosine triphosphate-binding cassette transporters to aspects of cholesterol metabolism and Alzheimer's disease pathogenesis. RECENT FINDINGS In vivo, the lipidation status of apolipoprotein E affects amyloid-beta burden in mice with Alzheimer's disease, which appears to caused by the modulation of amyloid-beta deposition or clearance rather than amyloid-beta production. State-of-the-art in-vivo assays reveal that amyloid-beta is cleared from the brain by multiple pathways. Members of the adenosine triphosphate-binding cassette superfamily of transporters regulate lipid homeostasis and apolipoprotein metabolism in the brain, and may affect Alzheimer's disease pathogenesis by modulating apolipoprotein E lipidation as well as intracellular sterol homeostasis. SUMMARY Proteins involved in brain cholesterol metabolism may affect the pathogenesis of Alzheimer's disease. Compounds that modulate the expression of these proteins may be of therapeutic benefit in Alzheimer's disease.
Collapse
Affiliation(s)
- Veronica Hirsch-Reinshagen
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
42
|
Tansley GH, Burgess BL, Bryan MT, Su Y, Hirsch-Reinshagen V, Pearce J, Chan JY, Wilkinson A, Evans J, Naus KE, McIsaac S, Bromley K, Song W, Yang HC, Wang N, DeMattos RB, Wellington CL. The cholesterol transporter ABCG1 modulates the subcellular distribution and proteolytic processing of beta-amyloid precursor protein. J Lipid Res 2007; 48:1022-34. [PMID: 17293612 DOI: 10.1194/jlr.m600542-jlr200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although intracellular cholesterol levels are known to influence the proteolysis of beta-amyloid precursor protein (APP), the effect of specific genes that regulate cholesterol metabolism on APP processing remains poorly understood. The cholesterol transporter ABCG1 facilitates cholesterol efflux to HDL and is expressed in brain. Notably, the human ABCG1 gene maps to chromosome 21q22.3, and individuals with Down syndrome (DS) typically manifest with Alzheimer's disease (AD) neuropathology in their 30s. Here, we demonstrate that expression of ABCG1 enhances amyloid-beta protein (Abeta) production in transfected HEK cells in a manner that requires functional cholesterol transporter activity. ABCG1-expressing cells also exhibit increased secreted APP (sAPP)alpha and sAPPbeta secretion and display increased cell surface-associated APP. These results suggest that ABCG1 increases the availability of APP as a secretase substrate for both the amyloidogenic and nonamyloidogenic pathways. In vivo, ABCG1 mRNA levels are 2-fold more abundant in DS brain compared with age- and sex-matched normal controls. Finally, both Abeta and sAPPalpha levels are increased in DS cortex relative to normal controls. These findings suggest that altered cholesterol metabolism and APP trafficking mediated by ABCG1 may contribute to the accelerated onset of AD neuropathology in DS.
Collapse
Affiliation(s)
- Gavin H Tansley
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chen M, Li W, Wang N, Zhu Y, Wang X. ROS and NF-kappaB but not LXR mediate IL-1beta signaling for the downregulation of ATP-binding cassette transporter A1. Am J Physiol Cell Physiol 2006; 292:C1493-501. [PMID: 17135302 DOI: 10.1152/ajpcell.00016.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP-binding cassette transporter A1 (ABCA1), a pivotal regulator of cholesterol efflux from cells to apolipoproteins, plays an important role in cholesterol homeostasis. As an inflammatory factor, IL-1beta has been shown to downregulate ABCA1 in macrophages and facilitates foam cell formation. However, the molecular mechanism underlining the downregulated ABCA1 by IL-1beta is still elusive. In the present study, we demonstrated that IL-1beta downregulated ABCA1 but not ABCG1 at mRNA and protein levels in a time- and dose-dependent manner in THP-1 and A549 cells. IL-1beta attenuated ABCA1 promoter activity through an LXR (liver X receptor)-independent pathway, since IL-1beta did not alter the expression and activities of LXRalpha/beta, and deletion of the LXR responsive element from the ABCA1 promoter failed to reverse the IL-1beta effect. In contrast, NF-kappaB inhibition by pyrrolidine dithiocarbamate and MG132 prevented the suppression of ABCA1 by IL-1beta. Cotransfection with ABCA1 luciferase reporter and the expression plasmids of Rel A decreased ABCA1 promoter activities. An adenovirus expressing NF-kappaB inhibitor subunit-alpha inhibited NF-kappaB activities and also reversed the IL-1beta effect at the promoter activity and protein levels of ABCA1. In addition, IL-1beta could induce the production of reactive oxygen species (ROS), and N-acetyl-L-cysteine, a scavenger of ROS, reversed the decreased level of ABCA1 induced by IL-1beta. H(2)O(2) decreased ABCA1 at the mRNA and protein levels and the promoter activity. Thus our data provide strong evidence that ROS and NF-kappaB, but not LXR, mediate the IL-1beta-induced downregulation of ABCA1 via a novel transcriptional mechanism, which might play an important role of proinflammation in the alteration of lipid metabolism.
Collapse
Affiliation(s)
- Min Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100083, People's Republic of China
| | | | | | | | | |
Collapse
|
44
|
Bielinski SJ, Tang W, Pankow JS, Miller MB, Mosley TH, Boerwinkle E, Olshen RA, Curb JD, Jaquish CE, Rao DC, Weder A, Arnett DK. Genome-wide linkage scans for loci affecting total cholesterol, HDL-C, and triglycerides: the Family Blood Pressure Program. Hum Genet 2006; 120:371-80. [PMID: 16868761 DOI: 10.1007/s00439-006-0223-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 06/18/2006] [Indexed: 10/24/2022]
Abstract
Atherosclerosis accounts for 75% of all deaths from cardiovascular disease and includes coronary heart disease (CHD), stroke, and other diseases of the arteries. More than half of all CHD is attributable to abnormalities in levels and metabolism of lipids. To locate genes that affect total cholesterol, high density lipoprotein cholesterol (HDL-C), and triglycerides, genome-wide linkage scans for quantitative trait loci were performed using variance components methods as implemented in SOLAR on a large diverse sample recruited as part of the Family Blood Pressure Program. Phenotype and genetic marker data were available for 9,299 subjects in 2,953 families for total cholesterol, 8,668 subjects in 2,736 families for HDL, and 7,760 subjects in 2,499 families for triglycerides. Mean lipid levels were adjusted for the effects of sex, age, age2, age-by-sex interaction, body mass index, smoking status, and field center. HDL-C and triglycerides were further adjusted for average total alcoholic drinks per week and estrogen use. Significant linkage was found for total cholesterol on chromosome 2 (LOD=3.1 at 43 cM) in Hispanics and for HDL-C on chromosome 3 (LOD=3.0 at 182 cM) and 12 (LOD=3.5 at 124 cM) in Asians. In addition, there were 13 regions that showed suggestive linkage (LOD >or= 2.0); 7 for total cholesterol, 4 for HDL, and 2 for triglycerides. The identification of these loci affecting lipid phenotypes and the apparent congruence with previous linkage results provides increased support that these regions contain genes influencing lipid levels.
Collapse
Affiliation(s)
- Suzette J Bielinski
- University of Minnesota, Division of Epidemiology and Community Health, West Bank Office Building Suite 300, 1300 South 2nd Street, Minneapolis, MN 55454, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Akiyama M, Sakai K, Sugiyama-Nakagiri Y, Yamanaka Y, McMillan JR, Sawamura D, Niizeki H, Miyagawa S, Shimizu H. Compound heterozygous mutations including a de novo missense mutation in ABCA12 led to a case of harlequin ichthyosis with moderate clinical severity. J Invest Dermatol 2006; 126:1518-23. [PMID: 16675967 DOI: 10.1038/sj.jid.5700295] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Harlequin ichthyosis (HI) is one of the most devastating genodermatoses. Recently, ABCA12 mutations were identified as the cause of HI. A newborn Japanese male demonstrated the typical features of HI. The patient was treated with oral etretinate and his general condition has been good (now aged 1.5 years). This patient with moderate clinical severity was compound heterozygous for a novel de novo missense mutation 1160G > A (S387N) in exon 10 and a maternal deletion mutation 4158_4160delTAC (T1387del) in exon 28 of ABCA12. T1387del was a deletion of a highly conserved threonine residue within the first adenosine 5' triphosphate-binding domain and is thought to seriously affect the function of the ABCA12 protein. Conversely, the residue 387 is located outside the known active sites of ABCA12 and S387N is predicted not to lead to a serious functional deficiency in ABCA12. Electron microscopy revealed abnormal lamellar granules in the granular layer cells and a moderate number of lipid vacuoles in the cornified cells. Disturbed glucosylceramide transport was confirmed in the cultured keratinocytes from the patient. No de novo mutation in ABCA12 has yet been reported either in HI or lamellar ichthyosis. The present case suggested that a de novo ABCA12 mutation might underlie HI.
Collapse
Affiliation(s)
- Masashi Akiyama
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Waage-Baudet H, Dunty WC, Dehart DB, Hiller S, Sulik KK. Immunohistochemical and microarray analyses of a mouse model for the smith-lemli-opitz syndrome. Dev Neurosci 2006; 27:378-96. [PMID: 16280635 DOI: 10.1159/000088453] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 06/05/2005] [Indexed: 12/30/2022] Open
Abstract
The Smith-Lemli-Opitz syndrome is a mental retardation/malformation syndrome with behavioral components of autism. It is caused by a deficiency in 3beta-hydroxysteroid-Delta7-reductase (DHCR7), the enzyme required for the terminal enzymatic step of cholesterol biosynthesis. The availability of Smith-Lemli-Opitz syndrome mouse models has made it possible to investigate the genesis of the malformations associated with this syndrome. Dhcr7 gene modification (Dhcr7-/-) results in neonatal lethality and multiple organ system malformations. Pathology includes cleft palate, pulmonary hypoplasia, cyanosis, impaired cortical response to glutamate, and hypermorphic development of hindbrain serotonergic neurons. For the current study, hindbrain regions microdissected from gestational day 14 Dhcr7-/-, Dhcr7+/- and Dhcr7+/+ fetuses were processed for expression profiling analyses using Affymetrix oligonucleotide arrays and filtered using statistical significance (S-score) of change in gene expression. Of the 12,000 genes analyzed, 91 were upregulated and 98 were downregulated in the Dhcr7-/- hindbrains when compared to wild-type animals. Fewer affected genes, representing a reduced affect on these pathways, were identified in heterozygous animals. Hierarchical clustering identified altered expression of genes associated with cholesterol homeostasis, cell cycle control and apoptosis, neurodifferentiation and embryogenesis, transcription and translation, cellular transport, neurodegeneration, and neuronal cytoskeleton. Of particular interest, Dhcr7 gene modification elicited dynamic changes in genes involved in axonal guidance. In support of the microarray findings, immunohistochemical analyses of the netrin/deleted in colorectal cancer axon guidance pathway illustrated midline commissural deficiencies and hippocampal pathfinding errors in Dhcr7-/- mice. The results of these studies aid in providing insight into the genesis of human cholesterol-related birth defects and neurodevelopmental disorders and highlight specific areas for future investigation.
Collapse
Affiliation(s)
- H Waage-Baudet
- Department of Cell and Developmental Biology, The University of North Carolina, Chapel Hill, N.C. 27599-7178, USA
| | | | | | | | | |
Collapse
|
47
|
Vergani C, Lucchi T, Caloni M, Ceconi I, Calabresi C, Scurati S, Arosio B. I405V polymorphism of the cholesteryl ester transfer protein (CETP) gene in young and very old people. Arch Gerontol Geriatr 2005; 43:213-21. [PMID: 16384616 DOI: 10.1016/j.archger.2005.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 10/11/2005] [Accepted: 10/19/2005] [Indexed: 10/25/2022]
Abstract
This study was designed to analyse the prevalence of I405V polymorphism in the cholesteryl ester transfer protein (CETP) gene, the CETP serum concentration, the lipoprotein profile, and certain clinical end-points in two populations, one young and another of very old people. We recruited 100 healthy young people (median age 31 years) and 100 very old people (median age 89 years) and analysed their DNA for the presence of I405V polymorphism. The frequency of the VV genotype in very old people was more than double that in the young population. Subjects with this genotype had lower serum concentrations of CETP. Young people with the V/V genotype had a less atherogenic lipoprotein profile (lower total cholesterol, LDL cholesterol, Apo B, and Apo B/Apo A-I ratio) than those with the I/V or I/I genotypes. The older subjects, particularly the older women with the V/V genotype, had larger LDL than the young people. The prevalence of clinical endpoints was much lower among the very old people with the V/V genotype. In conclusion, the V/V genotype of the I405V CETP polymorphism is more frequent among very old people than young ones, and is associated with a lower incidence of vascular damage.
Collapse
Affiliation(s)
- Carlo Vergani
- University of Milan, Geriatrics Unit, Ospedale Maggiore Policlinico, Mangialli e Regina Elena, Fondazione IRCCS, Via Pace 9, 20122 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Ban N, Sasaki M, Sakai H, Ueda K, Inagaki N. Cloning of ABCA17, a novel rodent sperm-specific ABC (ATP-binding cassette) transporter that regulates intracellular lipid metabolism. Biochem J 2005; 389:577-85. [PMID: 15810880 PMCID: PMC1175136 DOI: 10.1042/bj20050159] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The A subclass of the ABC (ATP-binding cassette) transporter superfamily has a structural feature that distinguishes it from other ABC transporters, and is proposed to be involved in the transmembrane transport of endogenous lipids. Here we have cloned mouse and rat full-length cDNAs of ABCA17, a novel ABC transporter belonging to the A subclass. Mouse and rat ABCA17 proteins comprise 1733 and 1773 amino acid residues respectively, having 87.3% amino acid identity; mouse ABCA17 has amino acid identities of 55.3% and 36.7% with mouse ABCA3 and sea urchin ABCA respectively. RNA blot and quantitative real-time PCR analyses showed that ABCA17 mRNA is expressed exclusively in the testis. Examination of testis by in situ hybridization showed that ABCA17 mRNA is expressed in germ cells, mainly spermatocytes, in the seminiferous tubule. Immunoblot analysis using a specific antibody showed that ABCA17 is a protein of 200 kDa, and immunohistochemical analysis demonstrated that the protein is detected in the anterior head of sperm and elongated spermatids. ABCA17 was localized in the endoplasmic reticulum in transiently transfected HEK293 cells. Metabolic labelling analysis showed that intracellular esterified lipids, including cholesteryl esters, fatty acid esters and triacylglycerols, were significantly decreased in HEK293 cells stably expressing ABCA17 compared with untransfected cells. These results suggest that ABCA17 may play a role in regulating lipid composition in sperm.
Collapse
Affiliation(s)
- Nobuhiro Ban
- *Department of Physiology, Akita University School of Medicine, and CREST of Japan Science and Technology Cooperation (JST), 1-1-1, Hondo, Akita 010-8543, Japan
| | - Mayumi Sasaki
- *Department of Physiology, Akita University School of Medicine, and CREST of Japan Science and Technology Cooperation (JST), 1-1-1, Hondo, Akita 010-8543, Japan
- †Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiromichi Sakai
- *Department of Physiology, Akita University School of Medicine, and CREST of Japan Science and Technology Cooperation (JST), 1-1-1, Hondo, Akita 010-8543, Japan
| | - Kazumitsu Ueda
- ‡Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Nobuya Inagaki
- *Department of Physiology, Akita University School of Medicine, and CREST of Japan Science and Technology Cooperation (JST), 1-1-1, Hondo, Akita 010-8543, Japan
- †Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
49
|
Hirsch-Reinshagen V, Maia LF, Burgess BL, Blain JF, Naus KE, McIsaac SA, Parkinson PF, Chan JY, Tansley GH, Hayden MR, Poirier J, Van Nostrand W, Wellington CL. The absence of ABCA1 decreases soluble ApoE levels but does not diminish amyloid deposition in two murine models of Alzheimer disease. J Biol Chem 2005; 280:43243-56. [PMID: 16207707 DOI: 10.1074/jbc.m508781200] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ABCA1, a cholesterol transporter expressed in the brain, has been shown recently to be required to maintain normal apoE levels and lipidation in the central nervous system. In addition, ABCA1 has been reported to modulate beta-amyloid (Abeta) production in vitro. These observations raise the possibility that ABCA1 may play a role in the pathogenesis of Alzheimer disease. Here we report that the deficiency of ABCA1 does not affect soluble or guanidine-extractable Abeta levels in Tg-SwDI/B or amyloid precursor protein/presenilin 1 (APP/PS1) mice, but rather is associated with a dramatic reduction in soluble apoE levels in brain. Although this reduction in apoE was expected to reduce the amyloid burden in vivo, we observed that the parenchymal and vascular amyloid load was increased in Tg-SwDI/B animals and was not diminished in APP/PS1 mice. Furthermore, we observed an increase in the proportion of apoE retained in the insoluble fraction, particularly in the APP/PS1 model. These data suggested that ABCA1-mediated effects on apoE levels and lipidation influenced amyloidogenesis in vivo.
Collapse
Affiliation(s)
- Veronica Hirsch-Reinshagen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V4Z 5H5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Akiyama M, Sugiyama-Nakagiri Y, Sakai K, McMillan JR, Goto M, Arita K, Tsuji-Abe Y, Tabata N, Matsuoka K, Sasaki R, Sawamura D, Shimizu H. Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J Clin Invest 2005; 115:1777-84. [PMID: 16007253 PMCID: PMC1159149 DOI: 10.1172/jci24834] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 04/12/2005] [Indexed: 11/17/2022] Open
Abstract
Harlequin ichthyosis (HI) is a devastating skin disorder with an unknown underlying cause. Abnormal keratinocyte lamellar granules (LGs) are a hallmark of HI skin. ABCA12 is a member of the ATP-binding cassette transporter family, and members of the ABCA subfamily are known to have closely related functions as lipid transporters. ABCA3 is involved in lipid secretion via LGs from alveolar type II cells, and missense mutations in ABCA12 have been reported to cause lamellar ichthyosis type 2, a milder form of ichthyosis. Therefore, we hypothesized that HI might be caused by mutations that lead to serious ABCA12 defects. We identify 5 distinct ABCA12 mutations, either in a compound heterozygous or homozygous state, in patients from 4 HI families. All the mutations resulted in truncation or deletion of highly conserved regions of ABCA12. Immunoelectron microscopy revealed that ABCA12 localized to LGs in normal epidermal keratinocytes. We confirmed that ABCA12 defects cause congested lipid secretion in cultured HI keratinocytes and succeeded in obtaining the recovery of LG lipid secretion after corrective gene transfer of ABCA12. We concluded that ABCA12 works as an epidermal keratinocyte lipid transporter and that defective ABCA12 results in a loss of the skin lipid barrier, leading to HI. Our findings not only allow DNA-based early prenatal diagnosis but also suggest the possibility of gene therapy for HI.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/chemistry
- ATP-Binding Cassette Transporters/genetics
- Amino Acid Sequence
- Base Sequence
- Biological Transport, Active
- Cells, Cultured
- DNA Mutational Analysis
- Female
- Gene Transfer Techniques
- Humans
- Ichthyosis, Lamellar/etiology
- Ichthyosis, Lamellar/genetics
- Ichthyosis, Lamellar/metabolism
- Ichthyosis, Lamellar/therapy
- Infant, Newborn
- Keratinocytes/metabolism
- Keratinocytes/ultrastructure
- Lipid Metabolism, Inborn Errors/complications
- Lipid Metabolism, Inborn Errors/genetics
- Lipid Metabolism, Inborn Errors/metabolism
- Lipid Metabolism, Inborn Errors/therapy
- Male
- Molecular Sequence Data
- Mutation
- Pedigree
- Phenotype
- Pregnancy
- Prenatal Diagnosis
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Masashi Akiyama
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|