1
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and other detrimental metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:309-365. [PMID: 39396839 DOI: 10.1016/bs.adgen.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Increasing scientific evidence demonstrates that gut microbiota plays an essential role in the onset and development of Colorectal cancer (CRC). However, the mechanisms by which these microorganisms contribute to cancer development are complex and far from completely clarified. Specifically, the impact of gut microbiota-derived metabolites on CRC is undeniable, exerting both protective and detrimental effects. This paper examines the effects and mechanisms by which important bacterial metabolites exert detrimental effects associated with increased risk of CRC. Metabolites considered include heterocyclic amines and polycyclic aromatic hydrocarbons, heme iron, secondary bile acids, ethanol, and aromatic amines. It is necessary to delve deeper into the mechanisms of action of these metabolites in CRC and identify the microbiota members involved in their production. Furthermore, since diet is the main factor capable of modifying the intestinal microbiota, conducting studies that include detailed descriptions of dietary interventions is crucial. All this knowledge is essential for developing precision nutrition strategies to optimise a protective intestinal microbiota against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
2
|
Yuan X, Xu W, Yan Z, Xu X, Chen Y, Chen S, Wang P. Andrographolide exerted anti-inflammatory effects thereby reducing sex hormone synthesis in LPS-induced female rats, but had no effect on hormone production in healthy ones. Front Pharmacol 2022; 13:980064. [PMID: 36188549 PMCID: PMC9520912 DOI: 10.3389/fphar.2022.980064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Females have higher inflammatory tolerance because they have some special sex-related anti-inflammatory pathways. Andrographolide, a diterpene lactone compound from Andrographis paniculata (Burm.f.) Nees, has a powerful anti-inflammatory effect. But whether andrographolide regulates sex-related anti-inflammatory pathways in females has yet to be reported. A non-targeted metabonomics method was employed to investigate the metabolic pathways of andrographolide in LPS-induced inflammatory female rats. Substances and genes were then selected out of gender-related pathways discovered by metabonomics experiments and their quantities or expressions were evaluated. Furthermore, the effects of andrographolide on these chemicals or genes in non-inflammatory female rats were also examined in order to investigate the cascade interaction between anti-inflammatory mechanisms and metabolites. The biomarkers of 24 metabolites in plasma were identified. Following pathway enrichment analysis, these metabolic markers were clustered into glycerophosphate, glycerolipids, inositol phosphate and steroid hormone synthesis pathways. Validation experiments confirmed that andrographolide lowered post-inflammatory female sex hormones such as progesterone, estradiol, corticosterone, and testosterone rather than increasing them. Andrographolide may have these effects via inhibiting the overexpression of CYP11a1 and StAR. However, andrographolide had no effect on the expression of these two genes or the four types of hormones in non-inflamed female rats. Similarly, andrographolide decreased TNF-α, IL-6 and IL-1β production in inflammatory rats but showed no effect on these inflammatory markers in non-inflammatory rats. LPS and other inflammatory cytokines promote hormone production, which in turn will prevent increased inflammation. Therefore, it may be hypothesized that andrographolide’s reduction of inflammatory cytokine is what generates its inhibitory action on sex hormones during inflammation. By blocking the activation of inflammatory pathways, andrographolide prevented the stimulation of inflammatory factors on the production of sex hormones. It does not, however, directly inhibit or enhance the synthesis of sex hormones.
Collapse
Affiliation(s)
| | - Wenhao Xu
- Panzhihua Central Hospital, Panzhihua, China
| | - Zijun Yan
- Panzhihua Central Hospital, Panzhihua, China
| | - Xingmeng Xu
- Panzhihua Central Hospital, Panzhihua, China
| | - Yanqing Chen
- Panzhihua Central Hospital, Panzhihua, China
- *Correspondence: Yanqing Chen, ; Simin Chen, ; Ping Wang,
| | - Simin Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yanqing Chen, ; Simin Chen, ; Ping Wang,
| | - Ping Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yanqing Chen, ; Simin Chen, ; Ping Wang,
| |
Collapse
|
3
|
Samadi A, Sabuncuoglu S, Samadi M, Isikhan SY, Chirumbolo S, Peana M, Lay I, Yalcinkaya A, Bjørklund G. A Comprehensive Review on Oxysterols and Related Diseases. Curr Med Chem 2021; 28:110-136. [PMID: 32175830 DOI: 10.2174/0929867327666200316142659] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 11/22/2022]
Abstract
The present review aims to provide a complete and comprehensive summary of current literature relevant to oxysterols and related diseases. Oxidation of cholesterol leads to the formation of a large number of oxidized products, generally known as oxysterols. They are intermediates in the biosynthesis of bile acids, steroid hormones, and 1,25- dihydroxyvitamin D3. Although oxysterols are considered as metabolic intermediates, there is a growing body of evidence that many of them are bioactive, and their absence or excess may be part of the cause of a disease phenotype. These compounds derive from either enzymatic or non-enzymatic oxidation of cholesterol. This study provides comprehensive information about the structures, formation, and types of oxysterols even when involved in certain disease states, focusing on their effects on metabolism and linkages with these diseases. The role of specific oxysterols as mediators in various disorders, such as degenerative (age-related) and cancer-related disorders, has now become clearer. Oxysterol levels may be employed as suitable markers for the diagnosis of specific diseases or in predicting the incidence rate of diseases, such as diabetes mellitus, Alzheimer's disease, multiple sclerosis, osteoporosis, lung cancer, breast cancer, and infertility. However, further investigations may be required to confirm these mentioned possibilities.
Collapse
Affiliation(s)
- Afshin Samadi
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Suna Sabuncuoglu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Mahshid Samadi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Selen Yilmaz Isikhan
- Vocational Higher School of Social Sciences, Hacettepe University, Ankara, Turkey
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Incilay Lay
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ahmet Yalcinkaya
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
4
|
Zhao G, Zhang T, Sun H, Liu JX. Copper nanoparticles induce zebrafish intestinal defects via endoplasmic reticulum and oxidative stress. Metallomics 2020; 12:12-22. [DOI: 10.1039/c9mt00210c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both CuNPs and their released Cu2+ induced intestinal developmental defects in zebrafish in a dosage-dependent manner via inducing ROS and ER stresses, and partially blocking copper traffic to mitochondria (cox17−/−) or to TGN (atp7a−/−) could not alleviate the defects.
Collapse
Affiliation(s)
- Guang Zhao
- College of Fisheries
- Key Laboratory of Freshwater Animal Breeding
- Ministry of Agriculture
- Huazhong Agricultural University
- Wuhan
| | - Ting Zhang
- College of Fisheries
- Key Laboratory of Freshwater Animal Breeding
- Ministry of Agriculture
- Huazhong Agricultural University
- Wuhan
| | - HaoJie Sun
- College of Fisheries
- Key Laboratory of Freshwater Animal Breeding
- Ministry of Agriculture
- Huazhong Agricultural University
- Wuhan
| | - Jing-Xia Liu
- College of Fisheries
- Key Laboratory of Freshwater Animal Breeding
- Ministry of Agriculture
- Huazhong Agricultural University
- Wuhan
| |
Collapse
|
5
|
Pecks U, Bornemann V, Klein A, Segger L, Maass N, Alkatout I, Eckmann-Scholz C, Elessawy M, Lütjohann D. Estimating fetal cholesterol synthesis rates by cord blood analysis in intrauterine growth restriction and normally grown fetuses. Lipids Health Dis 2019; 18:185. [PMID: 31653257 PMCID: PMC6815065 DOI: 10.1186/s12944-019-1117-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholesterol is an essential component in human development. In fetuses affected by intrauterine growth restriction (IUGR), fetal blood cholesterol levels are low. Whether this is the result of a reduced materno-fetal cholesterol transport, or due to low fetal de novo synthesis rates, remains a matter of debate. By analyzing cholesterol interbolites and plant sterols we aimed at deeper insights into transplacental cholesterol transport and fetal cholesterol handling in IUGR with potential targets for future therapy. We hypothesized that placental insufficiency results in a diminished cholesterol supply to the fetus. METHODS Venous umbilical cord sera were sampled post-partum from fetuses delivered between 24 weeks of gestation and at full term. IUGR fetuses were matched to 49 adequate-for-age delivered preterm and term neonates (CTRL) according to gestational age at delivery. Cholesterol was measured by gas chromatography-flame ionization detection using 5a-cholestane as internal standard. Cholesterol precursors and synthesis markers, such as lanosterol, lathosterol, and desmosterol, the absorption markers, 5α-cholestanol and plant sterols, such as campesterol and sitosterol, as well as enzymatically oxidized cholesterol metabolites (oxysterols), such as 24S- or 27-hydroxycholesterol, were analyzed by gas chromatography-mass spectrometry, using epicoprostanol as internal standard for the non-cholesterol sterols and deuterium labeled oxysterols for 24S- and 27-hydroxycholesterol. RESULTS Mean cholesterol levels were 25% lower in IUGR compared with CTRL (p < 0.0001). Lanosterol and lathosterol to cholesterol ratios were similar in IUGR and CTRL. In relation to cholesterol mean, desmosterol, 24S-hydroxycholesterol, and 27-hydroxycholesterol levels were higher by 30.0, 39.1 and 60.7%, respectively, in IUGR compared to CTRL (p < 0.0001). Equally, 5α-cholestanol, campesterol, and β-sitosterol to cholesterol ratios were higher in IUGR than in CTRL (17.2%, p < 0.004; 33.5%, p < 0.002; 29.3%, p < 0.021). CONCLUSIONS Cholesterol deficiency in IUGR is the result of diminished fetal de novo synthesis rates rather than diminished maternal supply. However, increased oxysterol- and phytosterol to cholesterol ratios suggest a lower sterol elimination rate. This is likely caused by a restricted hepatobiliary function. Understanding the fetal cholesterol metabolism is important, not only for neonatal nutrition, but also for the development of strategies to reduce the known risk of future cardiovascular diseases in the IUGR fetus.
Collapse
Affiliation(s)
- Ulrich Pecks
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany.
| | - Verena Bornemann
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Anika Klein
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Laura Segger
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Nicolai Maass
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Ibrahim Alkatout
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Christel Eckmann-Scholz
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Mohamed Elessawy
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Wang X, Liao X, Yang C, Huang K, Yu T, Yu L, Han C, Zhu G, Zeng X, Liu Z, Zhou X, Qin W, Su H, Ye X, Peng T. Identification of prognostic biomarkers for patients with hepatocellular carcinoma after hepatectomy. Oncol Rep 2019; 41:1586-1602. [PMID: 30628708 PMCID: PMC6365689 DOI: 10.3892/or.2019.6953] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy with high morbidity and mortality rates worldwide. The identification of prognosis-associated biomarkers is crucial to improve HCC patient survival. The present study aimed to explore potential predictive biomarkers for HCC. Differentially expressed genes (DEGs) were analyzed in the GSE36376 dataset using GEO2R. Hub genes were identified and further investigated for prognostic value in HCC patients. A risk score model and nomogram were constructed to predict HCC prognosis using the prognosis-associated genes and clinical factors. Pearson's correlation was employed to show interactions among hub genes. Gene enrichment analysis was performed to identify detailed biological processes and pathways. A total of 71 DEGs were obtained and seven (ADH4, CYP2C8, CYP2C9, CYP8B1, SLC22A1, TAT and HSD17B13, all adjusted P≤0.05) of the 10 hub genes were identified as prognosis-related genes for survival analysis in HCC patients, including alcohol dehydrogenase 4 (class II), pi polypeptide (ADH4), cytochrome p450 family 2 subfamily C member 8 (CYP2C8), cytochrome P450 family 2 subfamily C member 9 (CYP2C9), cytochrome P450 family 8 subfamily B member 1 (CYP8B1), solute carrier family 22 member 1 (SLC22A1), tyrosine aminotransferase (TAT) and hydroxysteroid 17-β dehydrogenase 13 (HSD17B13). The risk score model could predict HCC prognosis and the nomogram visualized gene expression and clinical factors of probability for HCC prognosis. The majority of genes showed significant Pearson's correlations with others (41 Pearson correlations P≤0.01, four Pearson correlations P>0.05). GO analysis revealed that terms such as ‘chemical carcinogenesis’ and ‘drug metabolism-cytochrome P450’ were enriched and may prove helpful to elucidate the mechanisms of hepatocarcinogenesis. Hub genes ADH4, CYP2C8, CYP2C9, CYP8B1, SLC22A1, TAT and HSD17B13 may be useful as predictive biomarkers for HCC prognosis.
Collapse
Affiliation(s)
- Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Long Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xianmin Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
7
|
Chimento A, Casaburi I, Avena P, Trotta F, De Luca A, Rago V, Pezzi V, Sirianni R. Cholesterol and Its Metabolites in Tumor Growth: Therapeutic Potential of Statins in Cancer Treatment. Front Endocrinol (Lausanne) 2018; 9:807. [PMID: 30719023 PMCID: PMC6348274 DOI: 10.3389/fendo.2018.00807] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
Cholesterol is essential for cell function and viability. It is a component of the plasma membrane and lipid rafts and is a precursor for bile acids, steroid hormones, and Vitamin D. As a ligand for estrogen-related receptor alpha (ESRRA), cholesterol becomes a signaling molecule. Furthermore, cholesterol-derived oxysterols activate liver X receptors (LXRs) or estrogen receptors (ERs). Several studies performed in cancer cells reveal that cholesterol synthesis is enhanced compared to normal cells. Additionally, high serum cholesterol levels are associated with increased risk for many cancers, but thus far, clinical trials with 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) have had mixed results. Statins inhibit cholesterol synthesis within cells through the inhibition of HMG-CoA reductase, the rate-limiting enzyme in the mevalonate and cholesterol synthetic pathway. Many downstream products of mevalonate have a role in cell proliferation, since they are required for maintenance of membrane integrity; signaling, as some proteins to be active must undergo prenylation; protein synthesis, as isopentenyladenine is an essential substrate for the modification of certain tRNAs; and cell-cycle progression. In this review starting from recent acquired findings on the role that cholesterol and its metabolites fulfill in the contest of cancer cells, we discuss the results of studies focused to investigate the use of statins in order to prevent cancer growth and metastasis.
Collapse
|
8
|
|
9
|
Kulig W, Cwiklik L, Jurkiewicz P, Rog T, Vattulainen I. Cholesterol oxidation products and their biological importance. Chem Phys Lipids 2016; 199:144-160. [DOI: 10.1016/j.chemphyslip.2016.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/14/2022]
|
10
|
Biotransformation of Cholesterol and 16α,17α-Epoxypregnenolone and Isolation of Hydroxylase in Burkholderia cepacia SE-1. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5727631. [PMID: 27340662 PMCID: PMC4909919 DOI: 10.1155/2016/5727631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/13/2016] [Accepted: 04/26/2016] [Indexed: 11/17/2022]
Abstract
The metabolism of cholesterol is critical in eukaryotes as a precursor for vitamins, steroid hormones, and bile acids. Some steroid compounds can be transformed into precursors of steroid medicine by some microorganisms. In this study, the biotransformation products of cholesterol and 16α,17α-epoxypregnenolone produced by Burkholderia cepacia SE-1 were investigated, and a correlative enzyme, hydroxylase, was also studied. The biotransformation products, 7β-hydroxycholesterol, 7-oxocholesterol, and 20-droxyl-16α,17α-epoxypregn-1,4-dien-3-one, were purified by silica gel and Sephadex LH-20 column chromatography and identified by nuclear magnetic resonance and mass spectroscopy. The hydroxylase was isolated from the bacterium and the partial sequences of the hydroxylase, which belong to the catalases/peroxidase family, were analyzed using MS/MS analyses. The enzyme showed activity toward cholesterol and had a specific activity of 37.2 U/mg of protein at 30°C and pH 7.0.
Collapse
|
11
|
Lovastatin reversed the enhanced sphingomyelin caused by 27-hydroxycholesterol in cultured vascular endothelial cells. Biochem Biophys Rep 2015; 5:127-133. [PMID: 28955814 PMCID: PMC5600430 DOI: 10.1016/j.bbrep.2015.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/03/2015] [Accepted: 11/30/2015] [Indexed: 11/20/2022] Open
Abstract
Statins have pleiotropic properties which are involved in inhibiting the thrombogenic response. In this study, the effects of lovastatin on two phospholipids, phosphatidylcholine and sphingomyelin, were studied in cultured endothelial cells in the presence of an oxysterol, 27-hydroxycholesterol. After the cells were cultured with 50 nM of lovastatin for 60 h, lovastatin was found to decrease the incorporation of [3H]choline into phosphatidylcholine and sphingomyelin, inhibited CTP: phosphocholine cytidylyltransferase (CT) activity without altering the activity of sphingomyelin synthase and neutral sphingomyelinase. And lovastatin was not found to have a direct inhibitive effect on activity of CT. Exogenous mevalonic acid or cholesterol reversed the reduction of cholesterol concentration that was caused by lovastatin, but had no significant effect on the diminished [3H]sphingomyelin by lovastatin. The increase of [3H]sphingomyelin by 27-hydroxycholesterol was not detected in the presence of lovastatin. These findings suggest that (1) lovastatin can reduce sphingomyelin content by means of inhibiting phosphatidylcholine synthesis; and (2) The decrease in sphingomyelin is not related to the diminished cholesterol concentration or mevalonate-derived intermediates. This inhibitive effect of lovastatin on sphingomyelin may benefit cellular calcification caused by sphingomyelin.
Collapse
|
12
|
Downer B, Estus S, Katsumata Y, Fardo DW. Longitudinal trajectories of cholesterol from midlife through late life according to apolipoprotein E allele status. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:10663-93. [PMID: 25325355 PMCID: PMC4211000 DOI: 10.3390/ijerph111010663] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND Previous research indicates that total cholesterol levels increase with age during young adulthood and middle age and decline with age later in life. This is attributed to changes in diet, body composition, medication use, physical activity, and hormone levels. In the current study we utilized data from the Framingham Heart Study Original Cohort to determine if variations in apolipoprotein E (APOE), a gene involved in regulating cholesterol homeostasis, influence trajectories of total cholesterol, HDL cholesterol, and total: HDL cholesterol ratio from midlife through late life. METHODS Cholesterol trajectories from midlife through late life were modeled using generalized additive mixed models and mixed-effects regression models. RESULTS APOE e2+ subjects had lower total cholesterol levels, higher HDL cholesterol levels, and lower total: HDL cholesterol ratios from midlife to late life compared to APOE e3 and APOE e4+ subjects. Statistically significant differences in life span cholesterol trajectories according to gender and use of cholesterol-lowering medications were also detected. CONCLUSION The findings from this research provide evidence that variations in APOE modify trajectories of serum cholesterol from midlife to late life. In order to efficiently modify cholesterol through the life span, it is important to take into account APOE allele status.
Collapse
Affiliation(s)
- Brian Downer
- Sealy Center on Aging, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA.
| | - Steven Estus
- Department of Physiology, College of Medicine, University of Kentucky, 138 Leader Avenue, Lexington, KY 40506, USA.
| | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, Suite 205, 725 Rose Street, Lexington, KY 40536, USA.
| | - David W Fardo
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Building, 800 S. Limestone Street, Lexington, KY 40536, USA.
| |
Collapse
|
13
|
Dai D, Mills PB, Footitt E, Gissen P, McClean P, Stahlschmidt J, Coupry I, Lavie J, Mochel F, Goizet C, Mizuochi T, Kimura A, Nittono H, Schwarz K, Crick PJ, Wang Y, Griffiths WJ, Clayton PT. Liver disease in infancy caused by oxysterol 7 α-hydroxylase deficiency: successful treatment with chenodeoxycholic acid. J Inherit Metab Dis 2014; 37:851-61. [PMID: 24658845 DOI: 10.1007/s10545-014-9695-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 02/03/2023]
Abstract
A child of consanguineous parents of Pakistani origin developed jaundice at 5 weeks and then, at 3 months, irritability, a prolonged prothrombin time, a low albumin, and episodes of hypoglycaemia. Investigation showed an elevated alanine aminotransferase with a normal γ-glutamyl-transpeptidase. Analysis of urine by electrospray ionisation tandem mass spectrometry (ESI-MS/MS) showed that the major peaks were m/z 480 (taurine-conjugated 3β-hydroxy-5-cholenoic acid) and m/z 453 (sulphated 3β-hydroxy-5-cholenoic acid). Analysis of plasma by gas chromatography-mass spectrometry (GC-MS) showed increased concentrations of 3β-hydroxy-5-cholenoic acid, 3β-hydroxy-5-cholestenoic acid and 27-hydroxycholesterol, indicating oxysterol 7 α-hydroxylase deficiency. The patient was homozygous for a mutation (c.1249C>T) in CYP7B1 that alters a highly conserved residue in oxysterol 7 α-hydroxylase (p.R417C) - previously reported in a family with hereditary spastic paraplegia type 5. On treatment with ursodeoxycholic acid (UDCA), his condition was worsening, but on chenodeoxycholic acid (CDCA), 15 mg/kg/d, he improved rapidly. A biopsy (after 2 weeks on CDCA), showed a giant cell hepatitis, an evolving micronodular cirrhosis, and steatosis. The improvement in liver function on CDCA was associated with a drop in the plasma concentrations and urinary excretions of the 3β-hydroxy-Δ5 bile acids which are considered hepatotoxic. At age 5 years (on CDCA, 6 mg/kg/d), he was thriving with normal liver function. Neurological development was normal apart from a tendency to trip. Examination revealed pes cavus but no upper motor neuron signs. The findings in this case suggest that CDCA can reduce the activity of cholesterol 27-hydroxylase - the first step in the acidic pathway for bile acid synthesis.
Collapse
|
14
|
Ajouz H, Mukherji D, Shamseddine A. Secondary bile acids: an underrecognized cause of colon cancer. World J Surg Oncol 2014; 12:164. [PMID: 24884764 PMCID: PMC4041630 DOI: 10.1186/1477-7819-12-164] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 05/09/2014] [Indexed: 12/14/2022] Open
Abstract
Bile acids were first proposed as carcinogens in 1939. Since then, accumulated evidence has linked exposure of cells of the gastrointestinal tract to repeated high physiologic levels of bile acids as an important risk factor for gastrointestinal cancers. High exposure to bile acids may occur in a number of settings, but most importantly, is prevalent among individuals who have a high dietary fat intake. A rapid effect on cells of high bile acid exposure is the generation of reactive oxygen species and reactive nitrogen species, disruption of the cell membrane and mitochondria, induction of DNA damage, mutation and apoptosis, and development of reduced apoptosis capability upon chronic exposure. Here, we review the substantial evidence of the mechanism of secondary bile acids and their role in colon cancer.
Collapse
Affiliation(s)
- Hana Ajouz
- Department of Hematology/Oncology, American University of Beirut Medical Center, PO Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon
| | - Deborah Mukherji
- Department of Hematology/Oncology, American University of Beirut Medical Center, PO Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon
| | - Ali Shamseddine
- Department of Hematology/Oncology, American University of Beirut Medical Center, PO Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon
| |
Collapse
|
15
|
Miyoshi N, Iuliano L, Tomono S, Ohshima H. Implications of cholesterol autoxidation products in the pathogenesis of inflammatory diseases. Biochem Biophys Res Commun 2014; 446:702-8. [DOI: 10.1016/j.bbrc.2013.12.107] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/20/2013] [Indexed: 12/12/2022]
|
16
|
Bile acid synthesis precursors in familial combined hyperlipidemia: The oxysterols 24S-hydroxycholesterol and 27-hydroxycholesterol. Biochem Biophys Res Commun 2014; 446:731-5. [DOI: 10.1016/j.bbrc.2013.12.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/25/2013] [Indexed: 11/22/2022]
|
17
|
Serviddio G, Blonda M, Bellanti F, Villani R, Iuliano L, Vendemiale G. Oxysterols and redox signaling in the pathogenesis of non-alcoholic fatty liver disease. Free Radic Res 2013; 47:881-93. [PMID: 24000796 DOI: 10.3109/10715762.2013.835048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxysterols are oxidized species of cholesterol coming from exogenous (e.g. dietary) and endogenous (in vivo) sources. They play critical roles in normal physiologic functions such as regulation of cellular cholesterol homeostasis. Most of biological effects are mediated by interaction with nuclear receptor LXRα, highly expressed in the liver as well as in many other tissues. Such interaction participates in the regulation of whole-body cholesterol metabolism, by acting as "lipid sensors". Moreover, it seems that oxysterols are also suspected to play key roles in several pathologies, including cardiovascular and inflammatory disease, cancer, and neurodegeneration. Growing evidence suggests that oxysterols may contribute to liver injury in non-alcoholic fatty liver disease. The present review focuses on the current status of knowledge on oxysterols' biological role, with an emphasis on LXR signaling and oxysterols' physiopathological relevance in NAFLD, suggesting new pharmacological development that needs to be addressed in the near future.
Collapse
Affiliation(s)
- G Serviddio
- C.U.R.E. Centre for Liver Diseases Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia , Italy
| | | | | | | | | | | |
Collapse
|
18
|
Gottfried-Blackmore A, Jellinck PH, Vecchiarelli HA, Masheeb Z, Kaufmann M, McEwen BS, Bulloch K. 7α-hydroxylation of dehydroepiandrosterone does not interfere with the activation of glucocorticoids by 11β-hydroxysteroid dehydrogenase in E(t)C cerebellar neurons. J Steroid Biochem Mol Biol 2013; 138:290-7. [PMID: 23851218 DOI: 10.1016/j.jsbmb.2013.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 06/14/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
Abstract
The neuroprotective action of dehydroepiandrosterone (DHEA) in the absence of a known specific receptor has been attributed to its metabolism by different cell types in the brain to various steroids, with a preference to its 7-hydroxylated products. The E(t)C cerebellar granule cell line converts DHEA almost exclusively to 7α-hydroxy-DHEA (7α-OH-DHEA). It has been postulated that DHEA's 7-OH and 7-oxo metabolites can decrease glucocorticoid levels by an interactive mechanism involving 11β-hydroxysteroid dehydrogenase (11β-HSD). In order to study the relationship of 7-hydroxylation of DHEA and glucocorticoid metabolism in intact brain cells, we examined whether E(t)C cerebellar neurons, which are avid producers of 7α-OH-DHEA, could also metabolize glucocorticoids. We report that E(t)C neuronal cells exhibit 11β-HSD1 reductase activity, and are able to convert 11-dehydrocorticosterone into corticosterone, whereas they do not demonstrate 11β-HSD2 dehydrogenase activity. Consequently, E(t)C cells incubated with DHEA did not yield 7-oxo- or 7β-OH-DHEA. Our findings are supported by the reductive environment of E(t)C cells through expression of hexose-6-phosphate dehydrogenase (H6PDH), which fosters 11β-HSD1 reductase activity. To further explore the role of 7α-OH-DHEA in E(t)C neuronal cells, we examined the effect of preventing its formation using the CYP450 inhibitor ketoconazole. Treatment of the cells with this drug decreased the yield of 7α-OH-DHEA by about 75% without the formation of alternate DHEA metabolites, and had minimal effects on glucocorticoid conversion. Likewise, elevated levels of corticosterone, the product of 11β-HSD1, had no effect on the metabolic profile of DHEA. This study shows that in a single population of whole-cells, with a highly reductive environment, 7α-OH-DHEA is unable to block the reducing activity of 11β-HSD1, and that 7-hydroxylation of DHEA does not interfere with the activation of glucocorticoids. Our investigation on the metabolism of DHEA in E(t)C neuronal cells suggest that other alternate mechanisms must be at play to explain the in vivo anti-glucocorticoid properties of DHEA and its 7-OH-metabolites.
Collapse
Affiliation(s)
- Andres Gottfried-Blackmore
- Harold and Margaret Milliken Hatch, Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Du L, Wang H, Xu W, Zeng Y, Hou Y, Zhang Y, Zhao X, Sun C. Application of ultraperformance liquid chromatography/mass spectrometry-based metabonomic techniques to analyze the joint toxic action of long-term low-level exposure to a mixture of organophosphate pesticides on rat urine profile. Toxicol Sci 2013; 134:195-206. [PMID: 23580312 DOI: 10.1093/toxsci/kft091] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In previously published articles, we evaluated the toxicity of four organophosphate (OP) pesticides (dichlorvos, dimethoate, acephate, and phorate) to rats using metabonomic technology at their corresponding no observed adverse effect level (NOAEL). Results show that a single pesticide elicits no toxic response. This study aimed to determine whether chronic exposure to a mixture of the above four pesticides (at their corresponding NOAEL) can lead to joint toxic action in rats using the same technology. Pesticides were administered daily to rats through drinking water for 24 weeks. The above mixture of the four pesticides showed joint toxic action at the NOAEL of each pesticide. The metabonomic profiles of rats urine were analyzed by ultraperformance liquid chromatography/mass spectrometry. The 16 metabolites statistically significantly changed in all treated groups compared with the control group. Dimethylphosphate and dimethyldithiophosphate exclusively detected in all treated groups can be used as early, sensitive biomarkers for exposure to a mixture of the OP pesticides. Moreover, exposure to the OP pesticides resulted in increased 7-methylguanine, ribothymidine, cholic acid, 4-pyridoxic acid, kynurenine, and indoxyl sulfate levels, as well as decreased hippuric acid, creatinine, uric acid, gentisic acid, C18-dihydrosphingosine, phytosphingosine, suberic acid, and citric acid. The results indicated that a mixture of OP pesticides induced DNA damage and oxidative stress, disturbed the metabolism of lipids, and interfered with the tricarboxylic acid cycle. Ensuring food safety requires not only the toxicology test data of each pesticide for the calculation of the acceptable daily intake but also the joint toxic action.
Collapse
Affiliation(s)
- Longfei Du
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Bertolotti M, Del Puppo M, Corna F, Anzivino C, Gabbi C, Baldelli E, Carulli L, Loria P, Galli Kienle M, Carulli N. Increased appearance rate of 27-hydroxycholesterol in vivo in hypercholesterolemia: a possible compensatory mechanism. Nutr Metab Cardiovasc Dis 2012; 22:823-830. [PMID: 21546230 DOI: 10.1016/j.numecd.2011.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 02/19/2011] [Accepted: 02/20/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND AIMS The first step in the alternative pathway of bile acid biosynthesis is the 27-hydroxylation of cholesterol, which takes place both in liver and extrahepatic tissues. This pathway is believed to play a role in peripheral cholesterol degradation. Aim of this study was to investigate the impact of hyperlipidemia on 27-hydroxycholesterol appearance rate, and to assess the effects induced by treatment with statins. METHODS AND RESULTS Seven patients with familial hypercholesterolemia and eight patients with familial combined hyperlipidemia underwent determination of 27-hydroxylation rates in vivo by i.v. infusion of deuterated 27-hydroxycholesterol. Isotope enrichment was assayed by gas chromatography-mass spectrometry, allowing to calculate 27-hydroxycholesterol appearance rates. Six normocholesterolemic subjects were regarded as controls. In some hypercholesterolemic patients the infusions were repeated during treatment with atorvastatin or rosuvastatin. Hydroxylation rates were higher in hypercholesterolemic patients (8.7 ± 2.5 mg/h; controls, 3.4 ± 2.0 mg/h; combined hyperlipidemia, 4.4 ± 1.6 mg/h; mean ± SD, P < 0.01 vs both). After statin treatment, both plasma cholesterol levels and hydroxylation rates dropped by nearly 50%. No difference was detectable between the two statins. A linear correlation was shown between plasma cholesterol and 27-hydroxylation rates. CONCLUSION Hypercholesterolemia associates with increased 27-hydroxycholesterol appearance rates, which decrease during hypocholesterolemic treatment. The correlation with cholesterol levels supports the view that 27-hydroxylation may act as a compensatory mechanism in a condition of larger plasma cholesterol pool. A regulatory role for hepatic and extrahepatic nuclear receptors seems reasonable. These data prompt novel pharmacological approaches for the management of hypercholesterolemia and the prevention of atherosclerosis.
Collapse
Affiliation(s)
- M Bertolotti
- Dipartimento di Medicina, Endocrinologia, Metabolismo e Geriatria, Università degli Studi di Modena e Reggio Emilia, Nuovo Ospedale Civile, via Giardini 1355, 41100 Modena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Isolation of cholesterol- and deoxycholate-degrading bacteria from soil samples: evidence of a common pathway. Appl Microbiol Biotechnol 2012; 97:891-904. [PMID: 22406861 DOI: 10.1007/s00253-012-3966-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/10/2012] [Accepted: 02/11/2012] [Indexed: 10/28/2022]
Abstract
Nineteen different steroid-degrading bacteria were isolated from soil samples by using selective media containing either cholesterol or deoxycholate as sole carbon source. Strains that assimilated cholesterol (17 COL strains) were gram-positive, belonging to the genera Gordonia, Tsukamurella, and Rhodococcus, and grew on media containing other steroids but were unable to use deoxycholate as sole carbon source. Surprisingly, some of the COL strains unable to grow using deoxycholate as sole carbon source were able to catabolize other bile salts (e.g., cholate). Conversely, strains able to grow using deoxycholate as the sole carbon source (two DOC isolates) were gram-negative, belonging to the genus Pseudomonas, and were unable to catabolize cholesterol and other sterols. COL and DOC were included into the corresponding taxonomic groups based on their morphology (cells and colonies), metabolic properties (kind of substrates that support bacterial growth), and genetic sequences (16S rDNA and rpoB). Additionally, different DOC21 Tn5 insertion mutants have been obtained. These mutants have been classified into two different groups: (1) those affected in the catabolism of bile salts but that, as wild type, can grow in other steroids and (2) those unable to grow in media containing any of the steroids tested. The identification of the insertion point of Tn5 in one of the mutants belonging to the second group (DOC21 Mut1) revealed that the gene knocked-out encodes an A-ring meta-cleavage dioxygenase needed for steroid catabolism.
Collapse
|
23
|
Oxysterols and their cellular effectors. Biomolecules 2012; 2:76-103. [PMID: 24970128 PMCID: PMC4030866 DOI: 10.3390/biom2010076] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 11/23/2022] Open
Abstract
Oxysterols are oxidized 27-carbon cholesterol derivatives or by-products of cholesterol biosynthesis, with a spectrum of biologic activities. Several oxysterols have cytotoxic and pro-apoptotic activities, the ability to interfere with the lateral domain organization, and packing of membrane lipids. These properties may account for their suggested roles in the pathology of diseases such as atherosclerosis, age-onset macular degeneration and Alzheimer’s disease. Oxysterols also have the capacity to induce inflammatory responses and play roles in cell differentiation processes. The functions of oxysterols as intermediates in the synthesis of bile acids and steroid hormones, and as readily transportable forms of sterol, are well established. Furthermore, their actions as endogenous regulators of gene expression in lipid metabolism via liver X receptors and the Insig (insulin-induced gene) proteins have been investigated in detail. The cytoplasmic oxysterol-binding protein (OSBP) homologues form a group of oxysterol/cholesterol sensors that has recently attracted a lot of attention. However, their mode of action is, as yet, poorly understood. Retinoic acid receptor-related orphan receptors (ROR) α and γ, and Epstein-Barr virus induced gene 2 (EBI2) have been identified as novel oxysterol receptors, revealing new physiologic oxysterol effector mechanisms in development, metabolism, and immunity, and evoking enhanced interest in these compounds in the field of biomedicine.
Collapse
|
24
|
García JL, Uhía I, Galán B. Catabolism and biotechnological applications of cholesterol degrading bacteria. Microb Biotechnol 2012; 5:679-99. [PMID: 22309478 PMCID: PMC3815891 DOI: 10.1111/j.1751-7915.2012.00331.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials.
Collapse
Affiliation(s)
- J L García
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, C/ Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | | | | |
Collapse
|
25
|
Chiang P, Thompson DC, Ghosh S, Heitmeier MR. A formulation‐enabled preclinical efficacy assessment of a farnesoid X receptor agonist, GW4064, in hamsters and cynomolgus monkeys. J Pharm Sci 2011; 100:4722-33. [DOI: 10.1002/jps.22664] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/14/2011] [Accepted: 05/24/2011] [Indexed: 11/08/2022]
|
26
|
Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chem Phys Lipids 2011; 164:457-68. [PMID: 21703250 DOI: 10.1016/j.chemphyslip.2011.06.006] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/12/2011] [Accepted: 06/08/2011] [Indexed: 12/31/2022]
Abstract
Cholesterol has many functions, including those that affect biophysical properties of membranes, and is a precursor to hormone synthesis. These actions are governed by enzymatic pathways that modify the sterol nucleus or the isooctyl tail. The addition of oxygen to the cholesterol backbone produces its derivatives known as oxysterols. In addition to having an enzymatic origin, oxysterols can be formed in the absence of enzymatic catalysis in a pathway usually termed "autoxidation," which has been known for almost a century and observed under various experimental conditions. Autoxidation of cholesterol can occur through reactions initiated by free radical species, such as those arising from the superoxide/hydrogen peroxide/hydroxyl radical system and by non-radical highly reactive oxygen species such as singlet oxygen, HOCl, and ozone. The susceptibility of cholesterol to non-enzymatic oxidation has raised considerable interest in the function of oxysterols as biological effectors and potential biomarkers for the non-invasive study of oxidative stress in vivo.
Collapse
|
27
|
Clayton PT. Disorders of bile acid synthesis. J Inherit Metab Dis 2011; 34:593-604. [PMID: 21229319 DOI: 10.1007/s10545-010-9259-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 12/14/2022]
Abstract
Inborn errors of bile acid synthesis can produce life-threatening cholestatic liver disease (which usually presents in infancy) and progressive neurological disease presenting later in childhood or in adult life. Both types of disease can often be treated very effectively with bile acid replacement therapy and it is therefore important to diagnose these disorders as early as possible. The cholestatic disease in infancy is characterised by conjugated hyperbilirubinaemia with raised transaminases but normal γ-glutamyl transpeptidase and a biopsy showing a giant cell hepatitis. There is usually evidence of fat-soluble vitamin malabsorption. The neurological presentation often includes signs of upper motor neurone damage (spastic paraparesis). The most useful screening test for many of these disorders is analysis of urinary cholanoids (bile acids and bile alcohols); this is usually now achieved by electrospray ionisation tandem mass spectrometry. The disorders that are discussed in this review are: 3β-hydroxysteroid-Δ5-C27-steroid dehydrogenase deficiency, Δ4-3-oxosteroid 5β-reductase deficiency, sterol 27-hydroxylase deficiency (cerberotendinous xanthomatosis, CTX), oxysterol 7α-hydroxylase deficiency (including one form of hereditary spastic paraparesis) and the amidation defects, bile acid-CoA: aminoacid N-acyltransferase (BAAT) deficiency and bile acid-CoA ligase deficiency. The disorders of peroxisome biogenesis and peroxisomal β-oxidation that affect bile acid synthesis will be covered in the review by Ferdinandusse et al.
Collapse
Affiliation(s)
- Peter Theodore Clayton
- Biochemistry Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health (and Great Ormond Street Hospital for Children), 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
28
|
Heydel JM, Holsztynska EJ, Legendre A, Thiebaud N, Artur Y, Le Bon AM. UDP-glucuronosyltransferases (UGTs) in neuro-olfactory tissues: expression, regulation, and function. Drug Metab Rev 2010; 42:74-97. [PMID: 20067364 DOI: 10.3109/03602530903208363] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work aims to review uridine diphosphate (UDP)-glucuronosyltransferase (UGT) expression and activities along different neuronal structures involved in the common physiological process of olfaction: olfactory epithelium, olfactory bulb, and olfactory cortex. For the first time, using high-throughput in situ hybridization data generated by the Allen Brain Atlas (ABA), we present quantitative analysis of spatial distribution of UGT genes in the mouse brain. The olfactory area is a central nervous system site with the highest expression of UGTs, including UGT isoforms not previously identified in the brain. Since there is evidence of the transfer of xenobiotics to the brain through the nasal pathway, circumventing the blood-brain barrier, olfactory UGTs doubtlessly share the common function of detoxification, but they are also involved in the metabolism and turnover of exogenous or endogenous compounds critical for physiological olfactory processing in these tissues. The function of olfactory UGTs will be discussed with a special focus on their participation in the perireceptor events involved in the modulation of olfactory perception.
Collapse
|
29
|
Wang J, Reijmers T, Chen L, Van Der Heijden R, Wang M, Peng S, Hankemeier T, Xu G, Van Der Greef J. Systems toxicology study of doxorubicin on rats using ultra performance liquid chromatography coupled with mass spectrometry based metabolomics. Metabolomics 2009; 5:407-418. [PMID: 20046867 PMCID: PMC2794350 DOI: 10.1007/s11306-009-0165-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Accepted: 04/28/2009] [Indexed: 01/28/2023]
Abstract
A metabolomics-based systems toxicology approach was used to profile the urinary metabolites for the toxicity related processes and pathogenesis induced by doxorubicin (DOX) to rats. Endogenous metabolite profiles were obtained with ultra performance liquid chromatography-mass spectrometry (UPLC-MS) for rats receiving different single dosages of DOX (5, 10 or 20 mg/kg) prior and at three time points after dosage. Principal components analysis (PCA) allowed detection of two major systemic metabolic changes with the time due to the induced toxicity. Furthermore, Analysis of variance (ANOVA) Simultaneous Component Analysis (ASCA) was applied to reveal the variation caused by time and dose, and their interaction in a multivariate way. Finally, various metabolites involved in the toxic processes could be identified using their accurate mass and MS(n) experiments, and possible mechanisms of the toxicity of DOX were postulated. In conclusion, metabolomics as a systems toxicology approach was able to provide comprehensive information on the dynamic process of drug induced toxicity. In addition, detection of the systemic toxic effects could be obtained with metabolomics at an earlier stage compared to the clinical chemistry and histopathological assessment.
Collapse
Affiliation(s)
- Jiangshan Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, People’s Republic of China
- Division of Analytical Biosciences, Leiden Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Theo Reijmers
- Division of Analytical Biosciences, Leiden Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Lijuan Chen
- Research and Evaluation Center for Toxicology, Beijing Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 100071 Beijing, People’s Republic of China
| | - Rob Van Der Heijden
- Division of Analytical Biosciences, Leiden Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Mei Wang
- TNO, Quality of Life and SU BioMedicine, Utrechtseweg 48, 3700 AJ Zeist, The Netherlands
| | - Shuangqing Peng
- Research and Evaluation Center for Toxicology, Beijing Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 100071 Beijing, People’s Republic of China
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, People’s Republic of China
| | - Jan Van Der Greef
- Division of Analytical Biosciences, Leiden Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- TNO, Quality of Life and SU BioMedicine, Utrechtseweg 48, 3700 AJ Zeist, The Netherlands
| |
Collapse
|
30
|
Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, Tonon MC, Pelletier G, Vaudry H. Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 2009; 30:259-301. [PMID: 19505496 DOI: 10.1016/j.yfrne.2009.05.006] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/12/2009] [Accepted: 05/21/2009] [Indexed: 01/09/2023]
Abstract
Neuroactive steroids synthesized in neuronal tissue, referred to as neurosteroids, are implicated in proliferation, differentiation, activity and survival of nerve cells. Neurosteroids are also involved in the control of a number of behavioral, neuroendocrine and metabolic processes such as regulation of food intake, locomotor activity, sexual activity, aggressiveness, anxiety, depression, body temperature and blood pressure. In this article, we summarize the current knowledge regarding the existence, neuroanatomical distribution and biological activity of the enzymes responsible for the biosynthesis of neurosteroids in the brain of vertebrates, and we review the neuronal mechanisms that control the activity of these enzymes. The observation that the activity of key steroidogenic enzymes is finely tuned by various neurotransmitters and neuropeptides strongly suggests that some of the central effects of these neuromodulators may be mediated via the regulation of neurosteroid production.
Collapse
Affiliation(s)
- Jean Luc Do Rego
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 413, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gonzalez-Cuyar LF, Morrison AL, Perry G, DeJong JJ, Smith MA, Castellani RJ. Cerebrotendinous xanthomatosis: a critical update. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.4.491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cerebrotendinous xanthomatosis (CTX) also known as van Bogaert–Scherer–Epstein syndrome, Thiebaut’s syndrome and cerebrotendinous cholesterosis, is an autosomal-recessive lipid-storage disease characterized by the triad of juvenile cataracts, tendon xanthomas and progressive neurodegeneration. Excess cholesterol and cholestanol are deposited in multiple organs, including the cerebrum, cerebellum, lens and tendons. Approximately 300 cases are reported worldwide, but it is suspected that the incidence of CTX is underestimated. The disease is attributed to approximately 50 mutations in the CYP27A1 gene coding for the enzyme sterol 27-hydoxylase, which is responsible for initial oxidation of the side chain of the cholesterol molecule in bile acid biosynthesis. CTX has varied clinical presentations, but no genotype–phenotype relationship has been documented. In some intrafamilial cases, clinical presentations may vary considerably. MRI for CTX is sensitive for diagnosis and classically demonstrates cerebral and cerebellar atrophy and xanthomatous lesions preferentially affecting the dentate nuclei. Patients have high serum levels of cholestanol with normal total cholesterol and increased urinary excretion of bile acids. Treatment of patients with chenodeoxycholic acid, particularly when used along with HMG-CoA reductase inhibitors (statins) or low-density lipoprotein apheresis, can normalize cholestanol levels as well as prevent further degeneration. Therefore, the need for early diagnosis is well documented in the literature, as it prevents the significant morbidity and mortality associated with this disease.
Collapse
Affiliation(s)
| | - Allan L Morrison
- University of Maryland, Department of Pathology, Baltimore, MD, USA
| | - George Perry
- Case Western Reserve University, Department of Pathology, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Joyce J DeJong
- Sparrow Health Systems, Division of Forensic Pathology, Lansing, MI, USA
| | - Mark A Smith
- Case Western Reserve University, Department of Pathology, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Rudy J Castellani
- University of Maryland, Department of Pathology, 22 South Greene Street, NBW81, Baltimore, MD 21201, USA
| |
Collapse
|
32
|
Wang J, Olin M, Rozell B, Björkhem I, Einarsson C, Eggertsen G, Gåfvels M. Differential hepatocellular zonation pattern of cholesterol 7α-hydroxylase (Cyp7a1) and sterol 12α-hydroxylase (Cyp8b1) in the mouse. Histochem Cell Biol 2007; 127:253-61. [PMID: 17237956 DOI: 10.1007/s00418-006-0239-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2006] [Indexed: 12/13/2022]
Abstract
The synthesis of primary bile acids is confined to the hepatocytes. This study aimed to evaluate the expression pattern within the liver architecture of the rate-limiting enzyme of the neutral pathway, cholesterol 7alpha-hydroxylase (Cyp7a1), and sterol 12alpha-hydroxylase (Cyp8b1), the enzyme necessary for the synthesis of cholic acid. Specific Cyp8b1 and Cyp7a1 peptide antiserums were used for immunohistochemical staining of livers from wild type and Cyp8b1 null mice, the latter instead expressing beta-galactosidase (beta-Gal) as a replacement reporter gene. Cyp8b1 was mainly expressed in the hepatocytes in a zonal pattern surrounding the central vein while the areas surrounding the portal zones showed much lower levels. The zonation was maintained in cholic acid-depleted mice using beta-Gal as a reporter protein. Cyp7a1 expression in wild type mice also showed a zonal distribution pattern, although less distinct, with a maximal expression within a 1-2 cell thick layer of hepatocytes surrounding the central vein. In Cyp8b1 null mice, a more intense staining was obtained, in accordance with the higher expression level of Cyp7a1, although the overall expression pattern was maintained. Our results in mice indicate possible differences in the regulation of the cellular zonation of Cyp7a1 and Cyp8b1. Also, cholic acid affects the set-point of Cyp7a1 expression but not its zonal distribution.
Collapse
Affiliation(s)
- Jin Wang
- Department of Laboratory Medicine (H3), Division of Clinical Chemistry, C1-74, Karolinska Institutet and Karolinska University Hospital, 141 86 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
This review summarizes the mechanisms of cellular cholesterol transport and monogenic human diseases caused by defects in intracellular cholesterol processing. In addition, selected mouse models of disturbed cholesterol trafficking are discussed. Current pharmacological strategies to prevent atherosclerosis are largely based on altering cellular cholesterol balance and are introduced in this context. Finally, because of the organizing potential of cholesterol in membranes, disturbances in cellular cholesterol transport have implications for a wide variety of human diseases, of which selected examples are given.
Collapse
Affiliation(s)
- Elina Ikonen
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
34
|
Omura T. Mitochondrial P450s. Chem Biol Interact 2006; 163:86-93. [DOI: 10.1016/j.cbi.2006.06.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Revised: 06/20/2006] [Accepted: 06/26/2006] [Indexed: 01/08/2023]
|
35
|
Payne CM, Crowley-Weber CL, Dvorak K, Bernstein C, Bernstein H, Holubec H, Crowley C, Garewal H. Mitochondrial perturbation attenuates bile acid-induced cytotoxicity. Cell Biol Toxicol 2006; 21:215-31. [PMID: 16323058 DOI: 10.1007/s10565-005-0166-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 06/27/2005] [Indexed: 10/25/2022]
Abstract
Hydrophobic bile acids such as deoxycholate (DOC) are known to damage liver cells during cholestasis and promote colon cancer. Cellular stresses induced by bile acids, which include mitochondrial and endoplasmic reticulum (ER) stresses, can result in apoptosis. We found that inhibition of mitochondrial complexes I-V with rotenone, thenoyltrifluoroacetone (TTFA), antimycin A, myxothiazol or oligomycin strongly protected against DOC-induced apoptosis of HCT-116 cells. To understand the mechanism of this protection, we explored the ability of these specific inhibitors to reduce DOC-induced mitochondrial and ER stresses. Different inhibitors markedly reduced DOC-induction of mitochondrial condensation, the DOC-induced decrease in mitochondrial membrane potential and the DOC-induced dilatation of the ER (evidence of ER stress). A dramatic induction of nucleolar segregation by antimycin A and myxothiazol, two distinct complex III inhibitors, was also observed. These findings strongly implicate mitochondrial crosstalk with apoptotic signaling pathways and mitochondrial-nucleolar crosstalk in the development of apoptosis resistance in the colon.
Collapse
Affiliation(s)
- C M Payne
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, 85724, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Dulos J, Boots AH. DHEA Metabolism in Arthritis: A Role for the p450 Enzyme Cyp7b at the Immune-Endocrine Crossroad. Ann N Y Acad Sci 2006; 1069:401-13. [PMID: 16855167 DOI: 10.1196/annals.1351.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
For dehydroepiandrosterone (DHEA) both immunosuppressive and immuno-stimulating properties have been described. The immunosuppressive effects may be explained by the conversion of DHEA into androgens and/or estrogens. The described immuno-stimulating effects of DHEA may be due to the conversion of DHEA into 7alpha-hydroxy-DHEA (7alpha-OH-DHEA) by the activity of the p450 enzyme, Cyp7b. 7alpha-OH-DHEA is thought to have anti-glucocoticoid activity preventing the anti-inflammatory action of endogenous glucocorticoids. To investigate a putative role of Cyp7b in the arthritic process, tissues from both the murine collagen-induce arthritis (CIA) model and from patients with rheumatoid arthritis (RA) were studied. We determined the Cyp7b expression levels in synovial tissue and the level of 7alpha-OH-DHEA in both serum and arthritic joints of mice with CIA. Our studies showed that the severity of arthritis correlates with increased Cyp7b activity. Next, we investigated Cyp7b expression and activity in RA patients where the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) are known to control the disease process. Fibroblast-like synoviocytes (FLS), isolated from RA synovial biopsies were found to express Cyp7b mRNA. In addition, Cyp7b enzymatic activity was detected in these cells. We also investigated whether Cyp7b activity is regulated by cytokines. Proinflammatory (e.g., TNF-alpha and IL-1beta) cytokines were found to stimulate Cyp7b activity and the anti-inflammatory cytokine transforming growth factor-beta (TGF-beta) was found to suppress Cyp7b activity in FLS. Next, we studied which signal transduction pathway is involved in the TNF-alpha-mediated induction of Cyp7b activity in human FLS. The results show a role for nuclear factor kappa B (NFkappaB) and activator protein-1 (AP-1) in the regulation of Cyp7b expression. Finally, we established that the effects of DHEA or 7alpha-OH-DHEA on the immune system can not be explained by glucocorticoid receptor (GR) engagement. The role of the p450 enzyme Cyp7b in DHEA metabolism and its relevance in the arthritic process will be discussed.
Collapse
Affiliation(s)
- John Dulos
- Department of Pharmacology, Section Autoimmunity, Room RE3211, N.V. Organon, PO Box 20, 5340 BH Oss, The Netherlands.
| | | |
Collapse
|
37
|
Inoue Y, Yu AM, Yim SH, Ma X, Krausz KW, Inoue J, Xiang CC, Brownstein MJ, Eggertsen G, Björkhem I, Gonzalez FJ. Regulation of bile acid biosynthesis by hepatocyte nuclear factor 4alpha. J Lipid Res 2005; 47:215-27. [PMID: 16264197 PMCID: PMC1413576 DOI: 10.1194/jlr.m500430-jlr200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) regulates many genes that are preferentially expressed in liver. Mice lacking hepatic expression of HNF4alpha (HNF4alphaDeltaL) exhibited markedly increased levels of serum bile acids (BAs) compared with HNF4alpha-floxed (HNF4alphaF/F) mice. The expression of genes involved in the hydroxylation and side chain beta-oxidation of cholesterol, including oxysterol 7alpha-hydroxylase, sterol 12alpha-hydroxylase (CYP8B1), and sterol carrier protein x, was markedly decreased in HNF4alphaDeltaL mice. Cholesterol 7alpha-hydroxylase mRNA and protein were diminished only during the dark cycle in HNF4alphaDeltaL mice, whereas expression in the light cycle was not different between HNF4alphaDeltaL and HNF4alphaF/F mice. Because CYP8B1 expression was reduced in HNF4alphaDeltaL mice, it was studied in more detail. In agreement with the mRNA levels, CYP8B1 enzyme activity was absent in HNF4alphaDeltaL mice. An HNF4alpha binding site was found in the mouse Cyp8b1 promoter that was able to direct HNF4alpha-dependent transcription. Surprisingly, cholic acid-derived BAs, produced as a result of CYP8B1 activity, were still observed in the serum and gallbladder of these mice. These studies reveal that HNF4alpha plays a central role in BA homeostasis by regulation of genes involved in BA biosynthesis, including hydroxylation and side chain beta-oxidation of cholesterol in vivo.
Collapse
Affiliation(s)
- Yusuke Inoue
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute
| | - Ai-Ming Yu
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute
| | - Sun Hee Yim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute
| | - Xiaochao Ma
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute
| | | | - Junko Inoue
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute
| | - Charlie C. Xiang
- Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael J. Brownstein
- Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Gösta Eggertsen
- Department of Medical Laboratory Sciences and Technology, Huddinge University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Ingemar Björkhem
- Department of Medical Laboratory Sciences and Technology, Huddinge University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute
| |
Collapse
|
38
|
Wang J, Greene S, Eriksson LC, Rozell B, Reihnér E, Einarsson C, Eggertsen G, Gåfvels M. Human sterol 12α-hydroxylase (CYP8B1) is mainly expressed in hepatocytes in a homogenous pattern. Histochem Cell Biol 2005; 123:441-6. [PMID: 15891895 DOI: 10.1007/s00418-005-0779-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2005] [Indexed: 11/26/2022]
Abstract
The liver is the only organ where the complete synthesis of bile acids takes place. The present study was undertaken to investigate whether regional differences exist within the individual human hepatic lobuli regarding the pattern of expression of sterol 12alpha-hydroxylase (CYP8B1), a key enzyme in bile acid synthesis. A specific anti-human CYP8B1 peptide antiserum was developed and used for Western blotting and hepatic immunostaining of livers from various patients. CYP8B1 in human liver was expressed in the cytoplasm of hepatocytes with an even nonzonal distribution within the liver lobulus. Pericentral expression was confirmed for CYP2E1. A weak staining was noted in cholangiocytes and Kupffer cells. Previous studies on hepatic CYP27A1 and CYP7A1 in rats have shown a zonal expression, primarily in the pericentral region. Our studies indicate a different pattern for CYP8B1 expression in human liver, which was even rather than zonal.
Collapse
Affiliation(s)
- Jin Wang
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital Huddinge, C1:74, 141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
39
|
CYP7B expression and activity in fibroblast-like synoviocytes from patients with rheumatoid arthritis: regulation by proinflammatory cytokines. ACTA ACUST UNITED AC 2005; 52:770-8. [PMID: 15751070 DOI: 10.1002/art.20950] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The cytochrome P450 enzyme CYP7B catalyzes the conversion of dehydroepiandrosterone (DHEA) into 7alpha-hydroxy-DHEA (7alpha-OH-DHEA). This metabolite can stimulate the immune response. We previously reported that the severity of murine collagen-induced arthritis is correlated with CYP7B messenger RNA (mRNA) expression and activity in the arthritic joint. The purpose of this study was to investigate the presence of 7alpha-OH-DHEA in synovial samples and the cytokine regulation of CYP7B activity in fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA). METHODS The presence of 7alpha-OH-DHEA was examined in synovial biopsy tissues, synovial fluid, and serum by radioimmunoassay. The effect of cytokines on CYP7B mRNA expression and CYP7B activity in FLS was examined by determining the formation of the CYP7B enzyme product 7alpha-OH-DHEA with the use of high-performance liquid chromatography. RESULTS The CYP7B enzyme product 7alpha-OH-DHEA was found in synovial biopsy tissues, synovial fluid, and serum from RA patients. The proinflammatory cytokines tumor necrosis factor alpha (TNFalpha), interleukin-1alpha (IL-1alpha), IL-1beta, and IL-17 up-regulated CYP7B activity in an FLS cell line 2-10-fold. Enhanced CYP7B activity was correlated with an increase in CYP7B mRNA. The cytokine transforming growth factor beta inhibited CYP7B activity. Moreover, CYP7B activity was detected in 10 of 13 unstimulated synovial fibroblast cell lines. Stimulation with TNFalpha increased CYP7B activity in all cell lines tested. CONCLUSION Exposure to the proinflammatory cytokines TNFalpha, IL-1alpha, IL-1beta, and IL-17 increases CYP7B activity in synovial tissue. Increased CYP7B activity leads to higher levels of the DHEA metabolite 7alpha-OH-DHEA in synovial fluid, which may contribute to the maintenance of the chronic inflammation observed in RA patients.
Collapse
|
40
|
Bernstein H, Bernstein C, Payne CM, Dvorakova K, Garewal H. Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res 2005; 589:47-65. [PMID: 15652226 DOI: 10.1016/j.mrrev.2004.08.001] [Citation(s) in RCA: 431] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 07/27/2004] [Accepted: 08/06/2004] [Indexed: 02/07/2023]
Abstract
Bile acids were first proposed to be carcinogens in 1939 and 1940. On the basis of later work with rodent models, bile acids came to be regarded as cancer promoters rather than carcinogens. However, considerable indirect evidence, obtained more recently, supports the view that bile acids are carcinogens in humans. At least 15 reports, from 1980 through 2003, indicate that bile acids cause DNA damage. The mechanism is probably indirect, involving induction of oxidative stress and production of reactive oxygen species that then damage DNA. Repeated DNA damage likely increases the mutation rate, including the mutation rate of tumor suppressor genes and oncogenes. Additional reports, from 1994 through 2002, indicate that bile acids, at the increased concentrations accompanying a high fat diet, induce frequent apoptosis. Those cells within the exposed population with reduced apoptosis capability tend to survive and selectively proliferate. That bile acids cause DNA damage and may select for apoptosis-resistant cells (both leading to increased mutation), indicates that bile acids are likely carcinogens. In humans, an increased incidence of cancer of the laryngopharyngeal tract, esophagus, stomach, pancreas, the small intestine (near the Ampulla of Vater) and the colon are associated with high levels of bile acids. The much larger number of cell generations in the colonic (and, likely, other gastrointestinal) epithelia of humans compared to rodents may allow time for induction and selection of mutations leading to cancer in humans, although not in rodents.
Collapse
Affiliation(s)
- H Bernstein
- Department of Microbiology and Immunology, College of Medicine, University of Arizona, Tucson AZ 85724, USA
| | | | | | | | | |
Collapse
|
41
|
Dulos J, Verbraak E, Bagchus WM, Boots AMH, Kaptein A. Severity of murine collagen-induced arthritis correlates with increased CYP7B activity: enhancement of dehydroepiandrosterone metabolism by interleukin-1beta. ACTA ACUST UNITED AC 2004; 50:3346-53. [PMID: 15476247 DOI: 10.1002/art.20509] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The endogenous steroid dehydroepiandrosterone (DHEA) has been reported to play a role in rheumatoid arthritis (RA). DHEA is metabolized by the P450 enzyme CYP7B into 7alpha-OH-DHEA, which has immunostimulating properties. This study was undertaken to investigate the putative role of CYP7B in arthritis using murine collagen-induced arthritis (CIA), an interleukin-1beta (IL-1beta)-dependent model. METHODS DBA/1J mice were immunized and administered a booster with type II collagen. The presence of 7alpha-OH-DHEA was determined in both arthritic and nonarthritic joints and the serum of CIA mice by radioimmunoassay. CYP7B messenger RNA (mRNA) expression was analyzed in synovial biopsy samples, and in fibroblast-like synoviocytes (FLS) isolated from these synovial biopsy samples, by reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, the regulatory role of IL-1beta on CYP7B activity in FLS was determined using RT-PCR, Western blotting, and high-performance liquid chromatography. RESULTS In knee joint synovial biopsy samples from arthritic mice, 7alpha-OH-DHEA levels were 5-fold higher than in nonarthritic mice. Elevated levels of 7alpha-OH-DHEA were accompanied by an increase in CYP7B mRNA expression and were positively correlated with disease severity. In serum, no differences in 7alpha-OH-DHEA levels were observed between arthritic and nonarthritic mice. Incubation of FLS with IL-1beta resulted in a dose-dependent increase in 7alpha-OH-DHEA formation. In addition, IL-1beta enhanced CYP7B mRNA and CYP7B protein levels in FLS. CONCLUSION Disease progression in CIA is correlated with enhanced CYP7B activity, which leads to locally enhanced 7alpha-OH-DHEA levels. Elevated IL-1beta levels within the arthritic joint may regulate this increase in CYP7B activity.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/enzymology
- Arthritis, Experimental/metabolism
- Arthritis, Rheumatoid/chemically induced
- Arthritis, Rheumatoid/enzymology
- Arthritis, Rheumatoid/metabolism
- Blotting, Western
- Chromatography, High Pressure Liquid
- Collagen
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Dehydroepiandrosterone/metabolism
- Interleukin-1/physiology
- Male
- Mice
- Mice, Inbred DBA
- RNA, Messenger/analysis
- Radioimmunoassay
- Reverse Transcriptase Polymerase Chain Reaction
- Severity of Illness Index
- Steroid Hydroxylases/genetics
- Steroid Hydroxylases/metabolism
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
Collapse
|
42
|
Dubrac S, Lear SR, Ananthanarayanan M, Balasubramaniyan N, Bollineni J, Shefer S, Hyogo H, Cohen DE, Blanche PJ, Krauss RM, Batta AK, Salen G, Suchy FJ, Maeda N, Erickson SK. Role of CYP27A in cholesterol and bile acid metabolism. J Lipid Res 2004; 46:76-85. [PMID: 15520450 DOI: 10.1194/jlr.m400219-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The CYP27A gene encodes a mitochondrial cytochrome P450 enzyme, sterol 27-hydroxylase, that is expressed in many different tissues and plays an important role in cholesterol and bile acid metabolism. In humans, CYP27A deficiency leads to cerebrotendinous xanthomatosis. To gain insight into the roles of CYP27A in the regulation of cholesterol and bile acid metabolism, cyp27A gene knockout heterozygous, homozygous, and wild-type littermate mice were studied. In contrast to homozygotes, heterozygotes had increased body weight and were mildly hypercholesterolemic, with increased numbers of lipoprotein particles in the low density lipoprotein size range. Cyp7A expression was not increased in heterozygotes but was in homozygotes, suggesting that parts of the homozygous phenotype are secondary to increased cyp7A expression and activity. Homozygotes exhibited pronounced hepatomegaly and dysregulation in hepatic cholesterol, bile acid, and fatty acid metabolism. Hepatic cholesterol synthesis and synthesis of bile acid intermediates were increased; however, side chain cleavage was impaired, leading to decreased bile salt concentrations in gallbladder bile. Expression of Na-taurocholate cotransporting polypeptide, the major sinusoidal bile salt transporter, was increased, and that of bile salt export pump, the major canalicular bile salt transporter, was decreased. Gender played a modifying role in the homozygous response to cyp27A deficiency, with females being generally more severely affected. Thus, both cyp27A genotype and gender affected the regulation of hepatic bile acid, cholesterol, and fatty acid metabolism.
Collapse
Affiliation(s)
- Sandrine Dubrac
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yang Y, Eggertsen G, Gåfvels M, Andersson U, Einarsson C, Björkhem I, Chiang JYL. Mechanisms of cholesterol and sterol regulatory element binding protein regulation of the sterol 12α-hydroxylase gene (CYP8B1). Biochem Biophys Res Commun 2004; 320:1204-10. [PMID: 15249218 DOI: 10.1016/j.bbrc.2004.06.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Indexed: 10/26/2022]
Abstract
Sterol 12alpha-hydroxylase (CYP8B1) is an obligatory enzyme for the synthesis of cholic acid and regulation of liver bile acid synthesis and intestine cholesterol absorption. The present study evaluates the roles for sterol regulatory element binding proteins (SREBPs) in the regulation of the CYP8B1 gene. Cholesterol feeding of mice and rats decreased the activity of CYP8B1, contrary to the up-regulation of cholesterol 7alpha-hydroxylase (CYP7A1). Cholesterol feeding also reduced mRNA levels for SREBP-1 but not for SREBP-2 in rat livers. Cholesterol and 25-hydroxycholesterol decreased the CYP8B1/luciferase reporter activity. Co-transfection of SREBP-1a and -1c stimulated CYP8B1 promoter activity, while SREBP-2 did not have any effects. Electrophoretic mobility shift assay and mutagenesis analyses identified several functional sterol regulatory elements (SRE) and E-box motifs in the rat CYP8B1 promoter. Our results indicate that SREBP-1a and -1c enhance transcription of the CYP8B1 gene through binding to SRE. Cholesterol loading reduces SREBP-1 mRNA expression in addition to reducing functional SREBP-1 protein, and results in decreasing CYP8B1 gene transcription.
Collapse
Affiliation(s)
- Yizeng Yang
- Division of Clinical Chemistry, Karolinska Institute at Huddinge University Hospital, Huddinge S-141 86, Sweden
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Intracellular cholesterol transport is essential for the maintenance of cholesterol homeostasis. Many aspects of cholesterol metabolism are well-known, including its synthesis in the endoplasmic reticulum, its extracellular transport in plasma lipoproteins, its uptake by the low-density lipoprotein receptor, and its regulation of SREBP and LXR transcription factors. These fundamental pathways in cholesterol metabolism all rely on its proper intracellular distribution among subcellular organelles and the plasma membrane. Transport involving the ER and endosomes is essential for cholesterol synthesis, uptake, and esterification, whereas cholesterol catabolism by enzymes in mitochondria and ER generates steroids, bile acids, and oxysterols. Cholesterol is a highly hydrophobic lipid that requires specialized transport in the aqueous cytosol, involving either vesicles or nonvesicular mechanisms. The latter includes hydrophobic cavity transporters such as StAR-related lipid transfer (START) proteins. Molecular understanding of intracellular cholesterol trafficking has lagged somewhat behind other aspects of cholesterol metabolism, but recent advances have defined some transport pathways and candidate proteins. In this review, we discuss cholesterol transport among specific intracellular compartments, emphasizing the relevance of these pathways to cholesterol homeostasis.
Collapse
Affiliation(s)
- Raymond E Soccio
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
45
|
Khovidhunkit W, Kim MS, Memon RA, Shigenaga JK, Moser AH, Feingold KR, Grunfeld C. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res 2004; 45:1169-96. [PMID: 15102878 DOI: 10.1194/jlr.r300019-jlr200] [Citation(s) in RCA: 1037] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Infection and inflammation induce the acute-phase response (APR), leading to multiple alterations in lipid and lipoprotein metabolism. Plasma triglyceride levels increase from increased VLDL secretion as a result of adipose tissue lipolysis, increased de novo hepatic fatty acid synthesis, and suppression of fatty acid oxidation. With more severe infection, VLDL clearance decreases secondary to decreased lipoprotein lipase and apolipoprotein E in VLDL. In rodents, hypercholesterolemia occurs attributable to increased hepatic cholesterol synthesis and decreased LDL clearance, conversion of cholesterol to bile acids, and secretion of cholesterol into the bile. Marked alterations in proteins important in HDL metabolism lead to decreased reverse cholesterol transport and increased cholesterol delivery to immune cells. Oxidation of LDL and VLDL increases, whereas HDL becomes a proinflammatory molecule. Lipoproteins become enriched in ceramide, glucosylceramide, and sphingomyelin, enhancing uptake by macrophages. Thus, many of the changes in lipoproteins are proatherogenic. The molecular mechanisms underlying the decrease in many of the proteins during the APR involve coordinated decreases in several nuclear hormone receptors, including peroxisome proliferator-activated receptor, liver X receptor, farnesoid X receptor, and retinoid X receptor. APR-induced alterations initially protect the host from the harmful effects of bacteria, viruses, and parasites. However, if prolonged, these changes in the structure and function of lipoproteins will contribute to atherogenesis.
Collapse
Affiliation(s)
- Weerapan Khovidhunkit
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Oxidized derivatives of cholesterol have been investigated actively for decades in the context of the oxidative hypothesis of atherosclerosis. Oxysterols arise in our tissues as a result of enzymatic or non-enzymatic oxidation reactions and are also obtained from dietary sources. Even though these compounds are found enriched in the atherosclerotic lesions in arterial walls, the plasma concentrations of oxysterols cannot, in the light of current knowledge, be regarded as a risk factor for atherosclerotic disease. However, oxysterols may still have important local effects in the arterial wall as factors that regulate the cellular lipid homeostasis and possibly the maturation of the lesions. Work during the past few years has revealed that oxysterols have a potential as signaling molecules that may play important roles in lipid metabolism, especially the reverse cholesterol transport process. This finding has recently moved oxysterols and the protein mediators of their biological effects, liver X receptors and cytosolic oxysterol binding proteins, into the center stage of atherosclerosis research.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Department of Molecular Medicine, National Public Health Institute, Helsinki, Finland
| | | |
Collapse
|
47
|
Inoue Y, Yu AM, Inoue J, Gonzalez FJ. Hepatocyte nuclear factor 4alpha is a central regulator of bile acid conjugation. J Biol Chem 2003; 279:2480-9. [PMID: 14583614 DOI: 10.1074/jbc.m311015200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) has an important role in regulating the expression of liver-specific genes. Because bile acids are produced from cholesterol in liver and many enzymes involved in their biosynthesis are preferentially expressed in liver, the role of HNF4alpha in the regulation of bile acid production was examined. In mice, unconjugated bile acids are conjugated with taurine by the liver-specific enzymes, bile acid-CoA ligase and bile acid-CoA:amino acid N-acyltransferase (BAT). Mice lacking hepatic HNF4alpha expression exhibited markedly decreased expression of the very long chain acyl-CoA synthase-related gene (VLACSR), a mouse candidate for bile acid-CoA ligase, and BAT. This was associated with markedly elevated levels of unconjugated and glycine-conjugated bile acids in gallbladder. HNF4alpha was found to bind directly to the mouse VLACSR and BAT gene promoters, and the promoter activities were dependent on HNF4alpha-binding sites and HNF4alpha expression. In conclusion, HNF4alpha plays a central role in bile acid conjugation by direct regulation of VLACSR and BAT in vivo.
Collapse
Affiliation(s)
- Yusuke Inoue
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
48
|
Meaney S, Babiker A, Lütjohann D, Diczfalusy U, Axelson M, Björkhem I. On the origin of the cholestenoic acids in human circulation. Steroids 2003; 68:595-601. [PMID: 12957664 DOI: 10.1016/s0039-128x(03)00081-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3 Beta-hydroxy-5-cholestenoic acid, 3 beta,7 alpha-dihydroxy-5-cholestenoic acid, and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid are metabolites of cholesterol present at significant concentrations (40-80 ng/ml) in human circulation. The 7 alpha-hydroxylated acids may be formed from cholesterol via two major pathways initiated by oxidations at either the 7 alpha- or 27-positions. In an attempt to clarify the origin and possible precursor-product relationships between these cholestenoic acids, we measured their deuterium enrichment in a unique experiment, after infusion of 10 g of [2H(6)]-cholesterol to a healthy volunteer. The observed extent and time-course of deuterium enrichment of circulating 3 beta-hydroxy-5-cholestenoic and 3 beta,7 alpha-dihydroxy-5-cholestenoic acid were almost identical, while different from that of cholesterol and 7 alpha-hydroxycholesterol. Notably, the deuterium enrichment of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid was similar to that of 7 alpha-hydroxycholesterol (and its metabolite 7 alpha-hydroxy-4-cholesten-3-one), though distinct from the other cholestenoic acids. Finally, the enrichment of unesterified 27-hydroxycholesterol followed a similar, though less pronounced, time curve to the delta(5)-cholestenoic acids. In conclusion, these results suggest that plasma 3 beta-hydroxy-5-cholestenoic acid is formed from a pool of cholesterol distinct from that used for the formation of the bulk of 27-hydroxycholesterol. The results are also in accordance with a formation of 3 beta,7 alpha-dihydroxy-5-cholestenoic acid directly from 3 beta-hydroxy-5-cholestenoic acid, and a formation of most of the circulating 7 alpha-hydroxy-4-cholesten-3-one from 7 alpha-hydroxycholesterol. These results are consistent with a flux of 7 alpha-hydroxycholesterol from the liver into the circulation, and an extrahepatic metabolism of this steroid into 7 alpha-hydroxy-3-oxo-4-cholestenoic acid.
Collapse
Affiliation(s)
- Steve Meaney
- Division of Clinical Chemistry, Karolinska Institutet, Huddinge University Hospital, SE-141 86 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
49
|
Erickson SK, Lear SR, Deane S, Dubrac S, Huling SL, Nguyen L, Bollineni JS, Shefer S, Hyogo H, Cohen DE, Shneider B, Sehayek E, Ananthanarayanan M, Balasubramaniyan N, Suchy FJ, Batta AK, Salen G. Hypercholesterolemia and changes in lipid and bile acid metabolism in male and female cyp7A1-deficient mice. J Lipid Res 2003; 44:1001-9. [PMID: 12588950 DOI: 10.1194/jlr.m200489-jlr200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholesterol 7alpha-hydroxylase, a rate-limiting enzyme for bile acid synthesis, has been implicated in genetic susceptibility to atherosclerosis. The gene, CYP7A1, encoding a protein with this activity, is expressed normally only in hepatocytes and is highly regulated. Our cyp7A1 gene knockout mouse colony, as young adults on a chow diet, is hypercholesterolemic. These mice were characterized extensively to understand how cyp7A1 affects lipid and bile acid homeostasis in different tissue compartments and whether gender plays a modifying role. Both male and female cyp7A1-deficient mice had decreased hepatic LDL receptors, unchanged hepatic cholesterol synthesis, increased intestinal cholesterol synthesis and bile acid transporters, and decreased fecal bile acids but increased fecal sterols. In females, cyp7A1 deficiency also caused changes in hepatic fatty acid metabolism, decreased hepatic canalicular bile acid transporter, Bsep, and gallbladder bile composition altered to a lithogenic profile. Taken together, the data suggest that cyp7A1 deficiency results in a proatherogenic phenotype in both genders and leads to a prolithogenic phenotype in females.
Collapse
Affiliation(s)
- Sandra K Erickson
- Department of Medicine, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gälman C, Arvidsson I, Angelin B, Rudling M. Monitoring hepatic cholesterol 7alpha-hydroxylase activity by assay of the stable bile acid intermediate 7alpha-hydroxy-4-cholesten-3-one in peripheral blood. J Lipid Res 2003; 44:859-66. [PMID: 12562858 DOI: 10.1194/jlr.d200043-jlr200] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe an accurate method for monitoring the enzymatic activity of hepatic cholesterol 7alpha-hydroxylase (C7alphaOH; CYP7A1), the rate-limiting and major regulatory enzyme in the synthesis of bile acids. Assay of 7alpha-hydroxy-4-cholesten-3-one (C4), an intermediate in bile acid synthesis, revealed that the level of C4 in peripheral blood serum or plasma showed a strong correlation to the enzymatic activity of hepatic C7alphaOH, both at steady-state conditions (r = 0.929) as well as during the rapid changes that occur during the diurnal phases. This assay should be of value in clarifying the regulation of bile acid synthesis in vivo in laboratory animals and humans since it allows for the monitoring of hepatic C7alphaOH activity using peripheral blood samples.
Collapse
Affiliation(s)
- Cecilia Gälman
- Metabolism Unit, Center for Metabolism and Endocrinology, S-141 86 Stockholm, Sweden
| | | | | | | |
Collapse
|