1
|
Namba K, Mutai H, Matsunaga T, Kaneko H. Structural basis for pathogenic variants of GJB2 and hearing levels of patients with hearing loss. BMC Res Notes 2024; 17:131. [PMID: 38730444 PMCID: PMC11083831 DOI: 10.1186/s13104-024-06793-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVES The crystal structure of the six protomers of gap junction protein beta 2 (GJB2) enables prediction of the effect(s) of an amino acid substitution, thereby facilitating investigation of molecular pathogenesis of missense variants of GJB2. This study mainly focused on R143W variant that causes hearing loss, and investigated the relationship between amino acid substitution and 3-D structural changes in GJB2. METHODS Patients with nonsyndromic hearing loss who appeared to have two GJB2 pathogenic variants, including the R143W variant, were investigated. Because the X-ray crystal structure of the six protomers of the GJB2 protein is known, R143W and structurally related variants of GJB2 were modeled using this crystal structure as a template. The wild-type crystal structure and the variant computer-aided model were observed and the differences in molecular interactions within the two were analyzed. RESULTS The predicted structure demonstrated that the hydrogen bond between R143 and N206 was important for the stability of the protomer structure. From this prediction, R143W related N206S and N206T variants showed loss of the hydrogen bond. CONCLUSION Investigation of the genotypes and clinical data in patients carrying the R143W variant on an allele indicated that severity of hearing loss depends largely on the levels of dysfunction of the pathogenic variant on the allele, whereas a patient with the homozygous R143W variant demonstrated profound hearing loss. We concluded that these hearing impairments may be due to destabilization of the protomer structure of GJB2 caused by the R143W variant.
Collapse
Affiliation(s)
- Kazunori Namba
- Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | - Hideki Mutai
- Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | - Tatsuo Matsunaga
- Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
- Medical Genetics Center, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | - Hiroki Kaneko
- Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.
- The Institute of Natural Sciences, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajousui, Setagaya-ku, Tokyo, 156-8550, Japan.
| |
Collapse
|
2
|
Vallian Broojeni J, Kazemi A, Rezaei H, Vallian S. Exome sequencing identifies novel variants associated with non-syndromic hearing loss in the Iranian population. PLoS One 2023; 18:e0289247. [PMID: 37561809 PMCID: PMC10414579 DOI: 10.1371/journal.pone.0289247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Autosomal recessive non-syndromic hearing loss (ARNSHL) is a public health concern in the Iranian population, with an incidence of 1 in 166 live births. In the present study, the whole exome sequencing (WES) method was applied to identify the mutation spectrum of NSHL patients negative for GJB2 gene mutations. First, using ARMS PCR followed by Sanger sequencing of the GJB2 gene, 63.15% of mutations in patients with NSHL were identified. Among the identified mutations in GJB2:p.Val43Met and p.Gly21Arg were novel. The remaining patients were subjected to WES, which identified novel mutations including MYO15A:p.Gly39LeufsTer188, ADGRV1:p.Ser5918ValfsTer23, MYO7A: c.5856+2T>c (splicing mutation), FGF3:p.Ser156Cys. The present study emphasized the application of WES as an effective method for molecular diagnosis of NSHL patients negative for GJB2 gene mutations in the Iranian population.
Collapse
Affiliation(s)
- Jalal Vallian Broojeni
- Department of Cell and Molecular Biology& Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, IR, Iran
| | - Arezu Kazemi
- Department of Cell and Molecular Biology& Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, IR, Iran
| | - Halimeh Rezaei
- Department of Cell and Molecular Biology& Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, IR, Iran
| | - Sadeq Vallian
- Department of Cell and Molecular Biology& Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, IR, Iran
| |
Collapse
|
3
|
Mao L, Wang Y, An L, Zeng B, Wang Y, Frishman D, Liu M, Chen Y, Tang W, Xu H. Molecular Mechanisms and Clinical Phenotypes of GJB2 Missense Variants. BIOLOGY 2023; 12:biology12040505. [PMID: 37106706 PMCID: PMC10135792 DOI: 10.3390/biology12040505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 03/29/2023]
Abstract
The GJB2 gene is the most common gene responsible for hearing loss (HL) worldwide, and missense variants are the most abundant type. GJB2 pathogenic missense variants cause nonsyndromic HL (autosomal recessive and dominant) and syndromic HL combined with skin diseases. However, the mechanism by which these different missense variants cause the different phenotypes is unknown. Over 2/3 of the GJB2 missense variants have yet to be functionally studied and are currently classified as variants of uncertain significance (VUS). Based on these functionally determined missense variants, we reviewed the clinical phenotypes and investigated the molecular mechanisms that affected hemichannel and gap junction functions, including connexin biosynthesis, trafficking, oligomerization into connexons, permeability, and interactions between other coexpressed connexins. We predict that all possible GJB2 missense variants will be described in the future by deep mutational scanning technology and optimizing computational models. Therefore, the mechanisms by which different missense variants cause different phenotypes will be fully elucidated.
Collapse
Affiliation(s)
- Lu Mao
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Yueqiang Wang
- Basecare Medical Device Co., Ltd., Suzhou 215000, China
| | - Lei An
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Beiping Zeng
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Yanyan Wang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| | - Dmitrij Frishman
- Wissenschaftszentrum Weihenstephan, Technische Universitaet Muenchen, Am Staudengarten 2, 85354 Freising, Germany
| | - Mengli Liu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Yanyu Chen
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
- Correspondence:
| |
Collapse
|
4
|
Lan X, Sun S, Lan X, Niu L, Zhang C, Chen X, Xia N. Case report: Novel GJB2 variant c.113T>C associated with autosomal recessive non-syndromic hearing loss (ARNSHL) in a Han family. Medicine (Baltimore) 2019; 98:e18253. [PMID: 31852093 PMCID: PMC6922571 DOI: 10.1097/md.0000000000018253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Molecular mechanism underlying the autosomal recessive non-syndromic hearing loss (ARNSHL) is still plausible. Pathogenic mutations of the gap junction beta 2 protein (GJB2) are reported to be the primary causes of ARNSHL. PATIENT CONCERNS A propositus was diagnosed as ARNSHL with bilateral congenital profound hearing loss. DIAGNOSIS With microarray and target gene sequencing testing methods, a novel GJB2 mutant was found to be associated with ARNSHL in this Han Chinese family. INTERVENTIONS/OUTCOMES Based on the finding in this research, prenatal screening of GJB2 mutation and genetic counseling are recommended to this family for their next pregnancy. Our interventions allow the family to plan informatively. LESSONS In this family, we discovered 2 heterozygous carriers of c.113T>C variation in the GJB2 gene. The propositus, who had profound hearing loss, had inherited the c.113T>C variation from his normal mother and the c.235delC from his father.
Collapse
Affiliation(s)
- Xinqiang Lan
- Department of Medical Genetics, Weihai Maternity and Child Care Hospital
- Department of Medical Genetics, Weihai Municipal Second Hospital Affiliated to Qingdao University, Weihai, Shandong Province
| | - Shiyu Sun
- Department of Medical Genetics, Weihai Maternity and Child Care Hospital
- Department of Medical Genetics, Weihai Municipal Second Hospital Affiliated to Qingdao University, Weihai, Shandong Province
| | - Xin Lan
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Linyuan Niu
- Department of Medical Genetics, Weihai Maternity and Child Care Hospital
- Department of Medical Genetics, Weihai Municipal Second Hospital Affiliated to Qingdao University, Weihai, Shandong Province
| | - Chunxiao Zhang
- Department of Medical Genetics, Weihai Maternity and Child Care Hospital
- Department of Medical Genetics, Weihai Municipal Second Hospital Affiliated to Qingdao University, Weihai, Shandong Province
| | - Xiaoli Chen
- Department of Medical Genetics, Weihai Maternity and Child Care Hospital
- Department of Medical Genetics, Weihai Municipal Second Hospital Affiliated to Qingdao University, Weihai, Shandong Province
| | - Ningning Xia
- Department of Medical Genetics, Weihai Maternity and Child Care Hospital
- Department of Medical Genetics, Weihai Municipal Second Hospital Affiliated to Qingdao University, Weihai, Shandong Province
| |
Collapse
|
5
|
Albano JMR, Mussini N, Toriano R, Facelli JC, Ferraro MB, Pickholz M. Calcium interactions with Cx26 hemmichannel: Spatial association between MD simulations biding sites and variant pathogenicity. Comput Biol Chem 2018; 77:331-342. [PMID: 30466042 DOI: 10.1016/j.compbiolchem.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/08/2018] [Accepted: 11/08/2018] [Indexed: 01/23/2023]
Abstract
Connexinophaties are a collective of diseases related to connexin channels and hemichannels. In particular many Cx26 alterations are strongly associated to human deafness. Calcium plays an important role on this structures regulation. Here, using calcium as a probe, extensive atomistic Molecular Dynamics simulations were performed on the Cx26 hemichannel embedded in a lipid bilayer. Exploring different initial conditions and calcium concentration, simulation reached ∼4 μs. Several analysis were carried out in order to reveal the calcium distribution and localization, such as electron density profiles, density maps and distance time evolution, which is directly associated to the interaction energy. Specific amino acid interactions with calcium and their stability were capture within this context. Few of these sites such as, GLU42, GLU47, GLY45 and ASP50, were already suggested in the literature. Besides, we identified novel calcium biding sites: ASP2, ASP117, ASP159, GLU114, GLU119, GLU120 and VAL226. To the best of our knowledge, this is the first time that these sites are reported within this context. Furthermore, since various pathologies involving the Cx26 hemichannel are associated with pathogenic variants in the corresponding CJB2 gene, using ClinVar, we were able to spatially associate the 3D positions of the identified calcium binding sites within the framework of this work with reported pathogenic variants in the CJB2 gene. This study presents a first step on finding associations between molecular features and pathological variants of the Cx26 hemichannel.
Collapse
Affiliation(s)
- Juan M R Albano
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, IFIBA, Buenos Aires, Argentina
| | - Nahuel Mussini
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, IFIBA, Buenos Aires, Argentina
| | - Roxana Toriano
- Facultad de Medicina, Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, IFIBIO Houssay, Buenos Aires, Argentina
| | - Julio C Facelli
- Department of Biomedical Informatics, The University of Utah, 421 Wakara Way, Suite 140, Salt Lake City, UT 84108, USA.
| | - Marta B Ferraro
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, IFIBA, Buenos Aires, Argentina
| | - Mónica Pickholz
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, IFIBA, Buenos Aires, Argentina
| |
Collapse
|
6
|
Shen N, Peng J, Wang X, Zhu Y, Liu W, Liu A, Lu Y. Association between the p.V37I variant of GJB2 and hearing loss: a pedigree and meta-analysis. Oncotarget 2018; 8:46681-46690. [PMID: 28489599 PMCID: PMC5542302 DOI: 10.18632/oncotarget.17325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/19/2017] [Indexed: 12/31/2022] Open
Abstract
Pathogenic variants in the gap junction protein beta-2 (GJB2) gene are the most common cause of hearing loss. Of these, the p.V37I variant of GJB2 has a high allele frequency (up to 10%) in East Asians. Characterization of the phenotypic spectrum associated with p.V37I, as well as the role of this variant in the onset of hearing loss could have a remarkable effect on future diagnostic strategies. Here, we performed a pedigree analysis of unrelated families exhibiting various hearing phenotypes, and then conducted a meta-analysis to comprehensively assess the association between the p.V37I and the risk of hearing loss. Pedigree analyses showed that both homozygous p.V37I variants, as well as compound heterozygous p.V37I with other GJB2 pathogenic variants, contributed to various phenotypes of hearing loss. Meanwhile, meta-analysis demonstrated that, compared with those in the wild type group, both p.V37I homozygotes and compound heterozygous p.V37I variants were at significantly higher risk of developing hearing loss (odds ratios = 7.14 and 3.63; 95% confidence intervals = 3.01-16.95 and 1.38–9.54, respectively). Conversely, heterozygous p.V37I variants alone did not increase the risk of hearing loss. Given the high allele carriage rate of p.V37I (up to 10%) within the general population, our work not only provides information that might influence future genetic screening policies, but also offers insight into clinical risk evaluation and genetic counseling regarding hearing loss.
Collapse
Affiliation(s)
- Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Peng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yaowu Zhu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiyong Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Aiguo Liu
- Department of Otorhinolaryngology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
7
|
del Castillo FJ, del Castillo I. DFNB1 Non-syndromic Hearing Impairment: Diversity of Mutations and Associated Phenotypes. Front Mol Neurosci 2017; 10:428. [PMID: 29311818 PMCID: PMC5743749 DOI: 10.3389/fnmol.2017.00428] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/07/2017] [Indexed: 02/02/2023] Open
Abstract
The inner ear is a very complex sensory organ whose development and function depend on finely balanced interactions among diverse cell types. The many different kinds of inner ear supporting cells play the essential roles of providing physical and physiological support to sensory hair cells and of maintaining cochlear homeostasis. Appropriately enough, the gene most commonly mutated among subjects with hereditary hearing impairment (HI), GJB2, encodes the connexin-26 (Cx26) gap-junction channel protein that underlies both intercellular communication among supporting cells and homeostasis of the cochlear fluids, endolymph and perilymph. GJB2 lies at the DFNB1 locus on 13q12. The specific kind of HI associated with this locus is caused by recessively-inherited mutations that inactivate the two alleles of the GJB2 gene, either in homozygous or compound heterozygous states. We describe the many diverse classes of genetic alterations that result in DFNB1 HI, such as large deletions that either destroy the GJB2 gene or remove a regulatory element essential for GJB2 expression, point mutations that interfere with promoter function or splicing, and small insertions or deletions and nucleotide substitutions that target the GJB2 coding sequence. We focus on how these alterations disrupt GJB2 and Cx26 functions and on their different effects on cochlear development and physiology. We finally discuss the diversity of clinical features of DFNB1 HI as regards severity, age of onset, inner ear malformations and vestibular dysfunction, highlighting the areas where future research should be concentrated.
Collapse
Affiliation(s)
- Francisco J. del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ignacio del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
8
|
Du Y, Huang L, Wang X, Cui Q, Cheng X, Zhao L, Ni T. Clinical data analysis of genotypes and phenotypes of deafness gene mutations in newborns: A retrospective study. Biosci Trends 2017; 11:460-468. [PMID: 28717060 DOI: 10.5582/bst.2017.01070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We retrospectively analyzed newborns with deafness gene mutations and summarized the relationship between genotype and phenotype to provide a basis for genetic counseling. We studied 582 subjects positive for deafness gene mutations that were treated in the otology outpatient department of Beijing Tongren Hospital, Capital Medical University, between April 2012 and April 2016. The subjects were divided into 3 categories: a diagnosed group (group A), which was further subdivided into subgroups A1 (homozygous and compound heterozygous GJB2 mutations) and A2 (homozygous and compound heterozygous SLC26A4 mutations); a drug-induced deafness group (group B, mitochondrial (Mt) gene mutations); and a mutation carrier group (group C), which was further subdivided into the subgroups C1 (GJB2 heterozygous mutations), C2 (SLC26A4 heterozygous mutations), C3 (GJB3 heterozygous mutations), and C4 (double gene mutations). Partial sequences positive for GJB2 or SLC26A4 were sequenced and analyzed for mutations. Subjects underwent otoscopic examination and comprehensive audiological evaluation, and temporal bone computerized tomography and/or inner ear magnetic resonance imaging were performed. GJB2 235delC was the most common mutation locus. The highest proportion of deafness detected during universal newborn hearing screening was for drug-induced deafness, whereas the lowest was for the diagnosed group. GJB2 gene mutations mainly resulted in flat-type, profound-to-severe sensorineural hearing loss (SNHL). SLC26A4 gene mutation was mainly associated with high-frequency drop-type and profound-severe SNHL and was closely related to enlargement of the vestibular aqueduct.
Collapse
Affiliation(s)
- Yating Du
- Beijing Tongren Hospital, Capital Medical University; Beijing Institute of Otolaryngology; Key Laboratory of Otolaryngology, Head and Neck Surgery, Ministry of Education
| | - Lihui Huang
- Beijing Tongren Hospital, Capital Medical University; Beijing Institute of Otolaryngology; Key Laboratory of Otolaryngology, Head and Neck Surgery, Ministry of Education
| | - Xueyao Wang
- Beijing Tongren Hospital, Capital Medical University; Beijing Institute of Otolaryngology; Key Laboratory of Otolaryngology, Head and Neck Surgery, Ministry of Education
| | - Qingjia Cui
- Beijing Tongren Hospital, Capital Medical University; Beijing Institute of Otolaryngology; Key Laboratory of Otolaryngology, Head and Neck Surgery, Ministry of Education.,Beijing Rehabilitation Hospital, Capital Medical University; Rehabilitation Centre of Otolaryngology Head and Neck Surgery
| | - Xiaohua Cheng
- Beijing Tongren Hospital, Capital Medical University; Beijing Institute of Otolaryngology; Key Laboratory of Otolaryngology, Head and Neck Surgery, Ministry of Education
| | - Liping Zhao
- Beijing Tongren Hospital, Capital Medical University; Beijing Institute of Otolaryngology; Key Laboratory of Otolaryngology, Head and Neck Surgery, Ministry of Education
| | - Tingting Ni
- Beijing Tongren Hospital, Capital Medical University; Beijing Institute of Otolaryngology; Key Laboratory of Otolaryngology, Head and Neck Surgery, Ministry of Education
| |
Collapse
|
9
|
García IE, Prado P, Pupo A, Jara O, Rojas-Gómez D, Mujica P, Flores-Muñoz C, González-Casanova J, Soto-Riveros C, Pinto BI, Retamal MA, González C, Martínez AD. Connexinopathies: a structural and functional glimpse. BMC Cell Biol 2016; 17 Suppl 1:17. [PMID: 27228968 PMCID: PMC4896260 DOI: 10.1186/s12860-016-0092-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Mutations in human connexin (Cx) genes have been related to diseases, which we termed connexinopathies. Such hereditary disorders include nonsyndromic or syndromic deafness (Cx26, Cx30), Charcot Marie Tooth disease (Cx32), occulodentodigital dysplasia and cardiopathies (Cx43), and cataracts (Cx46, Cx50). Despite the clinical phenotypes of connexinopathies have been well documented, their pathogenic molecular determinants remain elusive. The purpose of this work is to identify common/uncommon patterns in channels function among Cx mutations linked to human diseases. To this end, we compiled and discussed the effect of mutations associated to Cx26, Cx32, Cx43, and Cx50 over gap junction channels and hemichannels, highlighting the function of the structural channel domains in which mutations are located and their possible role affecting oligomerization, gating and perm/selectivity processes.
Collapse
Affiliation(s)
- Isaac E García
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pavel Prado
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Amaury Pupo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Oscar Jara
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Diana Rojas-Gómez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Paula Mujica
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jorge González-Casanova
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolina Soto-Riveros
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Bernardo I Pinto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
10
|
Yuan Y, Gao X, Huang B, Lu J, Wang G, Lin X, Qu Y, Dai P. Phenotypic Heterogeneity in a DFNA20/26 family segregating a novel ACTG1 mutation. BMC Genet 2016; 17:33. [PMID: 26832775 PMCID: PMC4736096 DOI: 10.1186/s12863-016-0333-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic factors play an important role in hearing loss, contributing to approximately 60% of cases of congenital hearing loss. Autosomal dominant deafness accounts for approximately 20% of cases of hereditary hearing loss. Diseases with autosomal dominant inheritance often show pleiotropy, different degrees of penetrance, and variable expressivity. METHODS A three-generation Chinese family with autosomal dominant nonsyndromic hearing impairment (ADNSHI) was enrolled in this study. Audiometric data and blood samples were collected from the family. In total, 129 known human deafness genes were sequenced using next-generation sequencing (NGS) to identify the responsible gene mutation in the family. Whole Exome Sequencing (WES) was performed to exclude any other variant that cosegregated with the phenotype. RESULTS The age of onset of the affected family members was the second decade of life. The condition began with high-frequency hearing impairment in all family members excluding III:2. The novel ACTG1 c.638A > G (p.K213R) mutation was found in all affected family members and was not found in the unaffected family members. A heterozygous c.638A > G mutation in ACTG1 and homozygous c.109G > A (p.V37I) mutation in GJB2 were found in III:2, who was born with hearing loss. The WES result concurred with that of targeted sequencing of known deafness genes. CONCLUSIONS The novel mutation p.K213R in ACTG1 was found to be co-segregated with hearing loss and the genetic cause of ADNSHI in this family. A homozygous mutation associated with recessive inheritance only rarely co-acts with a dominant mutation to result in hearing loss in a dominant family. In such cases, the mutations in the two genes, as in ACTG1 and GJB2 in the present study, may result in a more severe phenotype. Targeted sequencing of known deafness genes is one of the best choices to identify the genetic cause in hereditary hearing loss families.
Collapse
Affiliation(s)
- Yongyi Yuan
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China. .,Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, 572000, People's Republic of China.
| | - Xue Gao
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Bangqing Huang
- Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, 572000, People's Republic of China.
| | - Jingqiao Lu
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, 30322-3030, USA.
| | - Guojian Wang
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, 30322-3030, USA.
| | - Yan Qu
- Third hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050051, People's Republic of China.
| | - Pu Dai
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| |
Collapse
|
11
|
Svidnicki MCCM, Silva-Costa SM, Ramos PZ, dos Santos NZP, Martins FTA, Castilho AM, Sartorato EL. Screening of genetic alterations related to non-syndromic hearing loss using MassARRAY iPLEX® technology. BMC MEDICAL GENETICS 2015; 16:85. [PMID: 26399936 PMCID: PMC4581412 DOI: 10.1186/s12881-015-0232-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent advances in molecular genetics have enabled to determine the genetic causes of non-syndromic hearing loss, and more than 100 genes have been related to the phenotype. Due to this extraordinary genetic heterogeneity, a large percentage of patients remain without any molecular diagnosis. This condition imply the need for new methodological strategies in order to detect a greater number of mutations in multiple genes. In this work, we optimized and tested a panel of 86 mutations in 17 different genes screened using a high-throughput genotyping technology to determine the molecular etiology of hearing loss. METHODS The technology used in this work was the MassARRAY iPLEX® platform. This technology uses silicon chips and DNA amplification products for accurate genotyping by mass spectrometry of previous reported mutations. The generated results were validated using conventional techniques, as direct sequencing, multiplex PCR and RFLP-PCR. RESULTS An initial genotyping of control subjects, showed failures in 20 % of the selected alterations. To optimize these results, the failed tests were re-designed and new primers were synthesized. Then, the specificity and sensitivity of the panel demonstrated values above 97 %. Additionally, a group of 180 individuals with NSHL without a molecular diagnosis was screened to test the diagnostic value of our panel, and mutations were identified in 30 % of the cases. In 20 % of the individuals, it was possible to explain the etiology of the HL. Mutations in GJB2 gene were the most prevalent, followed by other mutations in in SLC26A4, CDH23, MT-RNR1, MYO15A, and OTOF genes. CONCLUSIONS The MassARRAY technology has the potential for high-throughput identification of genetic variations. However, we demonstrated that optimization is required to increase the genotyping success and accuracy. The developed panel proved to be efficient and cost-effective, being suitable for applications involving the molecular diagnosis of hearing loss.
Collapse
Affiliation(s)
- Maria Carolina Costa Melo Svidnicki
- Human Molecular Genetics Laboratory, Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Sueli Matilde Silva-Costa
- Human Molecular Genetics Laboratory, Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Priscila Zonzini Ramos
- Human Molecular Genetics Laboratory, Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Nathalia Zocal Pereira dos Santos
- Human Molecular Genetics Laboratory, Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Fábio Tadeu Arrojo Martins
- Human Molecular Genetics Laboratory, Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Arthur Menino Castilho
- ENT Department, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Edi Lúcia Sartorato
- Human Molecular Genetics Laboratory, Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
12
|
Zhu YM, Li Y, Wang YL, Bian PP, Xu BC, Liu XW, Chen XJ, Liu F, Guo YF, Wang QJ. The deafness-causing mutation c.508_511dup in the GJB2 gene and a literature review. Acta Otolaryngol 2015; 135:914-8. [PMID: 25891447 DOI: 10.3109/00016489.2015.1035796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSIONS The mutation c.508_511dup in GJB2 gene has been incorrectly named as other mutations. It is essential to standardize mutation nomenclature to describe complex mutations. OBJECTIVES This paper aimed to verify a series of patients with the frame-shift mutation c.508_511dup in the GJB2 gene and review the literature on related mutations. METHODS All the included patients with non-syndromic hearing loss (NSHL) carried the 504insAACG or c.508_511dup mutation of the GJB2 gene in the present study. Their parents were encouraged to participate. After written informed consent and clinic data had been obtained, genomic DNA was extracted from venous blood of participants. The target fragments were amplified by polymerase chain reaction (PCR) and subjected to bidirectional sequencing to identify sequence variations. RESULTS A total of 14 patients with prelingual NSHL and 6 normal parents were recruited. Genotyping revealed that one mutation, c.508_511dup (not 504insAACG), was homozygous in 1 patient, heterozygous in 2 patients and 3 parents, and compound heterozygous in 11 patients. Twelve patients had hearing loss caused by c.508_511dup in a homozygous or compound heterozygous form, and further study showed that it was wrongly named as 504insAACG. Additionally, according to the standard nomenclature, the previously reported mutations with distinct names from the literature review may be replaced by c.508_511dup.
Collapse
Affiliation(s)
- Yi-Ming Zhu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital , Lanzhou , Gansu Province
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The controversial p.Met34Thr variant in GJB2 gene: Two siblings, one genotype, two phenotypes. Int J Pediatr Otorhinolaryngol 2015; 79:1316-9. [PMID: 26117665 DOI: 10.1016/j.ijporl.2015.05.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/27/2015] [Accepted: 05/31/2015] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Recent advances in molecular genetics have increased the identification of genes and mutations responsible for inherited forms of hearing loss (HL), enabling early detection of these cases. Approximately, 60% of early-onset HL cases are due to genetic causes, of which 70% are non-syndromic. Of these, 75-80% are inherited in an autosomal recessive pattern (DFNB). Mutations in GJB2 gene, coding for connexin 26 (Cx26), are the major cause of autosomal recessive hereditary HL, but some GJB2 mutations are yet of unclear or controversial significance. OBJECTIVES The aim of the present study was to identify the etiology of hearing loss, and correlate genotype-phenotype, in two Portuguese siblings with profound and moderate non-syndromic sensorineural bilateral HL. MATERIAL AND METHODS The affected subjects and their parents underwent audiological and genetic study. Molecular analysis of GJB2 gene was performed, searching for mutations in the coding region and receptor splicing site by automated sequencing. RESULTS The onset and the degree of HL were different in the two affected subjects. However, the same GJB2 genotype [p.Met34Thr]+[p.Arg184Pro] was identified in both siblings. The c.551G>C (p.Arg184Pro) and c.101T>C (p.Met34Thr) missense variants were inherited from the father and mother, respectively, both heterozygous carriers of these variants. CONCLUSION The clinical and genetic data here presented suggest that the non-syndromic sensorineural HL of these two Portuguese siblings might be due to the presence of p.Met34Thr and p.Arg184Pro variants in compound heterozygosity. If so, p.Met34Thr variant could have function as a hypomorphic allele that may cause HL depending on the opposing GJB2 allele. The observed phenotypic variability may not, however, be solely explained by variable expression of this genotype. A putative modifier gene or mutations in another HL-associated gene could probably be contributing to the severe HL in one of the siblings.
Collapse
|
14
|
Adhikary B, Ghosh S, Paul S, Bankura B, Pattanayak AK, Biswas S, Maity B, Das M. Spectrum and frequency of GJB2, GJB6 and SLC26A4 gene mutations among nonsyndromic hearing loss patients in eastern part of India. Gene 2015; 573:239-45. [PMID: 26188157 DOI: 10.1016/j.gene.2015.07.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 07/08/2015] [Accepted: 07/14/2015] [Indexed: 11/16/2022]
Abstract
Genetically caused nonsyndromic hearing loss is highly heterogeneous. Inspite of this large heterogeneity, mutations in the genes GJB2, GJB6 and SLC26A4 are major contributors. The mutation spectrum of these genes varies among different ethnic groups. Only a handful of studies focused on the altered genetic signature of these genes in different demographic regions of India but never focused on the eastern part of the country. Our study for the first time aimed to characterize the mutation profile of these genes in hearing loss patients of West Bengal state, India. Mutations in GJB2, GJB6 and SLC26A4 genes were screened by bidirectional sequencing from 215 congenital nonsyndromic hearing loss patients. Radiological diagnosis was performed in patients with SLC26A4 mutations by temporal bone CT scan. The study revealed that 4.65% and 6.97% patients had monoallelic and biallelic GJB2 mutations respectively. Six mutations were identified, p.W24X being the most frequent one accounting for 71.05% of the mutated alleles. Mutations in GJB6 including the previously identified deletion mutation (GJB6-D13S1830) were not identified in our study. Further, no patients harbored biallelic mutations in the SLC26A4 gene or the common inner ear malformation Enlarged Vestibular Aqueduct (EVA). The mutation profile of GJB2 in our study is distinct from other parts of India, suggesting that the mutation spectrum of this gene varies with ethnicity and geographical origin. The absence of GJB6 mutations and low frequency of SLC26A4 mutations suggest that additional genetic factors may also contribute to this disease.
Collapse
Affiliation(s)
- Bidisha Adhikary
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Sudakshina Ghosh
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Silpita Paul
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Biswabandhu Bankura
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Arup Kumar Pattanayak
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Subhradev Biswas
- Department of E.N.T., Institute of Post Graduate Medical Education & Research, 244 A J C Bose Road, Kolkata 700 020, West Bengal, India
| | - Biswanath Maity
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, West Bengal, India.
| |
Collapse
|
15
|
Han XH, Fan Y, Wei QJ, Xing GQ, Cao X. Understanding of the molecular evolution of deafness-associated pathogenic mutations of connexin 26. Genetica 2014; 142:555-62. [PMID: 25447126 DOI: 10.1007/s10709-014-9803-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 11/22/2014] [Indexed: 11/28/2022]
Abstract
Connexins (Cxs) were first identified as subunit proteins of the intercellular membrane channels that cluster in the cell communication structures known as gap junctions. Mutations in the gap junction β2 (GJB2) gene encoding connexin 26 (Cx26) have been linked to sporadic and hereditary hearing loss. In some cases, the mechanisms through which these mutations lead to hearing loss have been partly elucidated using cell culture systems and animal models. The goal of this study was to re-assess the pathogenic roles of the GJB2 mutations by combining comparative evolutionary studies. We used Bayesian phylogenetic analyses to determine the relationships among 35 orthologs and to calculate the ancestral sequences of these orthologs. By aligning sequences from the 35 orthologs and their ancestors and categorizing amino acid sites by degree of conservation, we used comparative evolutionary methods to determine potential functionally important amino acid sites in Cx26 and to identify missense changes that are likely to affect function. We identified six conserved regions in Cx26, five of which are located in the Connexin_CCC, and another is in the connexin super family domain. Finally, we identified 51 missense changes that are likely to disrupt function, and the probability of these changes occurring at hydrophilic amino acid residues was twice that of occurring at hydrophobic residues in the trans-membrane regions of Cx26. Our findings, which were obtained by combining comparative evolutionary methods to predict Cx26 mutant function, are consistent with the pathogenic characteristics of Cx26 mutants. This study provides a new pathway for studying the role of aberrant Cx26 in hereditary hearing loss.
Collapse
Affiliation(s)
- Xin-Huan Han
- The School of Basic Medical Science, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
|
17
|
JIANG HUA, CHEN JIA, SHAN XINJI, LI YING, HE JIANGUO, YANG BEIBEI. Prevalence and range of GJB2 and SLC26A4 mutations in patients with autosomal recessive non-syndromic hearing loss. Mol Med Rep 2014; 10:379-86. [DOI: 10.3892/mmr.2014.2148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 03/13/2014] [Indexed: 11/05/2022] Open
|
18
|
Martines F, Salvago P, Bartolotta C, Cocuzza S, Fabiano C, Ferrara S, La Mattina E, Mucia M, Sammarco P, Sireci F, Martines E. A genotype-phenotype correlation in Sicilian patients with GJB2 biallelic mutations. Eur Arch Otorhinolaryngol 2014; 272:1857-65. [PMID: 24627074 DOI: 10.1007/s00405-014-2970-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/20/2014] [Indexed: 11/29/2022]
Abstract
The aim of this work was to study the genotype distribution of Sicilian patients with biallelic GJB2 mutations; to correlate genotype classes and/or specific mutations of GJB2 gene (35delG-non-35delG) with audiologic profiles. A total of 10 different mutations and 11 different genotypes were evidenced in 73 SNHL subjects; 35delG (90.36 % of cases) and IVS1+1 (13.69 %) were the most common mutations found in the cohort with a significant difference in the distribution between North and South Sicily. Audiological evaluation revealed a severe (16/73) to profound (47/73) hearing loss (HL) in 86.13 % of cases without significant difference between the degree of HL and the province of origin of the subjects (P = 0.727). The homozygous truncating (T/T) genotype was the most widespread (89.04 % of cases), with a severe-to-profound hearing impairment in 90.36 % of T/T class with respect to truncating/non-truncating (T/NT) and non-truncating/non-truncating (NT/NT) genotypes (P = 0.012). From the comparison of homozygous 35delG and 35delG/non-35delG genotypes, a more profound HL in the homozygous 35delG than in compound heterozygous 35delG/non-35delG (p < 0.0001) resulted. This study confirms that 35delG is the most common mutation in the Mediterranean area with a heterogeneous distribution of the genotypes between North and South Sicily; probands homozygotes for 35delG or presenting a T/T genotype are more apt to have a severe-to-profound HL.
Collapse
Affiliation(s)
- Francesco Martines
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), Sezione di Otorinolaringoiatria, Università degli Studi di Palermo, Via del Vespro, 129, 90127, Palermo, Italy,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen K, Zong L, Liu M, Wang X, Zhou W, Zhan Y, Cao H, Dong C, Tang H, Jiang H. Developing regional genetic counseling for southern Chinese with nonsyndromic hearing impairment: a unique mutational spectrum. J Transl Med 2014; 12:64. [PMID: 24612839 PMCID: PMC3975227 DOI: 10.1186/1479-5876-12-64] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Racial and regional factors are important for the clinical diagnosis of non-syndromic hearing impairment. Comprehensive genetic analysis of deaf patients in different regions of China must be performed to provide effective genetic counseling. To evaluate the mutational spectrum of south Chinese families, we performed genetic analysis for non-syndromic hearing impairment in this population. METHODS Complete clinical evaluations were performed on 701 unrelated patients with non-syndromic hearing impairment from six provinces in south China. Each subject was screened for common mutations, including SLC26A4 c.IVS7-2A > G, c.2168A > G; mitochondrial DNA m.1555A > G, m.1494C > T, m.7444G > A, m.7445A > G; GJB3 c.538C > T, c.547G > A; and WFS1 c.1901A > C, using pyrosequencing. GJB2 and SLC26A4 coding region mutation detection were performed using Sanger sequencing. RESULTS Genetic analysis revealed that among the etiology of non-syndromic hearing impairment, GJB2, SLC26A4, and mitochondrial m.1555A > G mutations accounted for 18.0%, 13.1%, and 0.9%, respectively. Common mutations included GJB2 c.235delC, c.109G > A, SLC26A4 c.IVS7-2A > G, c.1229 T > C, and mitochondrial m.1555A > G. The total mutation rate was 45.1% in all patients examined in south China. Overall, the clear contribution of GJB2, SLC26A4, and mitochondrial m.1555A > G to the etiology of the non-syndromic deafness population in south China was 32.0%. CONCLUSIONS Our study is the first genetic analysis of non-syndromic hearing impairment in south China, and revealed that a clear genetic etiology accounted for 32.0% of non-syndromic hearing cases in patients from these regions. The mutational spectrum of non-syndromic hearing impairment in the south Chinese population provides useful and targeted information to aid in genetic counseling.
Collapse
Affiliation(s)
- Kaitian Chen
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Ling Zong
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Min Liu
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Xianren Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Wei Zhou
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Yuan Zhan
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Hui Cao
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Chang Dong
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Haocheng Tang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Hongyan Jiang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| |
Collapse
|
20
|
Martins FTA, Ramos PZ, Svidnicki MCCM, Castilho AM, Sartorato EL. Optimization of simultaneous screening of the main mutations involved in non-syndromic deafness using the TaqMan® OpenArray™ Genotyping platform. BMC MEDICAL GENETICS 2013; 14:112. [PMID: 24156272 PMCID: PMC4015212 DOI: 10.1186/1471-2350-14-112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 10/14/2013] [Indexed: 11/23/2022]
Abstract
Background Hearing loss is the most common sensory deficit in humans, affecting approximately 10% of the global population. In developed countries, one in every 500 individuals suffers from severe to profound bilateral sensorineural hearing loss. For those up to 5 years old, the proportion is higher, at 2.7 in 1000 individuals, and for adolescents the average is 3.5 in 1000. Among the causes of hearing loss, more than 50% are related to genetic factors. To date, nearly 150 loci and 64 genes have been associated with hearing loss. Mutations in the GJB2 gene, which encodes connexin 26, constitute the main genetic cause. So far, more than 300 variations have been described in this gene. As a response to the clinical and genetic heterogeneity of hearing loss and the importance of correct molecular diagnosis of individuals with hereditary hearing loss, this study worked in the optimization for a diagnostic protocol employing a high-throughput genotyping technology. Methods For this work, was used the TaqMan® OpenArray™ Genotyping platform. This is a high performance, high-throughput technology based on real-time PCR, which enables the evaluation of up to 3072 SNPs (Single Nucleotide Polymorphisms), point mutations, small deletions, and insertions, using a single genotyping plate. For the study, were selected the layout allowing to analyze 32 alterations in 96 individuals simultaneously. In the end, the generated results were validated by conventional techniques, as direct sequencing, Multiplex PCR and RFLP-PCR. Results A total of 376 individuals were analyzed, of which 94 were healthy controls, totaling 4 plates in duplicate. All 31 of the changes analyzed were present in the nuclear genes GJB2, GJB6, CRYL1, TMC1, SLC26A4, miR-96, and OTOF, and in the mitochondrial genes MT-RNR1 and MT-TS1. The reactions were subsequently validated by established techniques (direct sequencing, multiplex PCR, and RFLP-PCR) that had previously been used to perform molecular screening of hearing loss at the Human Genetics Laboratory of the Center for Molecular Biology and Genetic Engineering (CBMEG), at the State University of Campinas (UNICAMP). In total, 11,656 genotyping reactions were performed. Of these, only 351 reactions failed, representing approximately 3.01% of the total. The average accuracy of genotyping using the OpenArray™ plates was 96.99%. Conclusions The results demonstrated the accuracy, low cost, and good reproducibility of the technique, indicating that the TaqMan® OpenArray™ Genotyping Platform is a useful and reliable tool for application in molecular diagnostic testing of hearing loss.
Collapse
Affiliation(s)
- Fábio Tadeu Arrojo Martins
- Human Molecular Genetics Laboratory, Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas - UNICAMP, Campinas, SP, Brazil.
| | | | | | | | | |
Collapse
|
21
|
Chan DK, Chang KW. GJB2-associated hearing loss: Systematic review of worldwide prevalence, genotype, and auditory phenotype. Laryngoscope 2013; 124:E34-53. [DOI: 10.1002/lary.24332] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Dylan K. Chan
- Department of Otolaryngology-Head and Neck Surgery; University of California; San Francisco U.S.A
| | - Kay W. Chang
- Department of Otolaryngology-Head and Neck Surgery; Stanford University School of Medicine; Stanford California U.S.A
| |
Collapse
|
22
|
Ambrosi C, Walker AE, DePriest AD, Cone AC, Lu C, Badger J, Skerrett IM, Sosinsky GE. Analysis of trafficking, stability and function of human connexin 26 gap junction channels with deafness-causing mutations in the fourth transmembrane helix. PLoS One 2013; 8:e70916. [PMID: 23967136 PMCID: PMC3744544 DOI: 10.1371/journal.pone.0070916] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/25/2013] [Indexed: 01/24/2023] Open
Abstract
Human Connexin26 gene mutations cause hearing loss. These hereditary mutations are the leading cause of childhood deafness worldwide. Mutations in gap junction proteins (connexins) can impair intercellular communication by eliminating protein synthesis, mis-trafficking, or inducing channels that fail to dock or have aberrant function. We previously identified a new class of mutants that form non-functional gap junction channels and hemichannels (connexons) by disrupting packing and inter-helix interactions. Here we analyzed fourteen point mutations in the fourth transmembrane helix of connexin26 (Cx26) that cause non-syndromic hearing loss. Eight mutations caused mis-trafficking (K188R, F191L, V198M, S199F, G200R, I203K, L205P, T208P). Of the remaining six that formed gap junctions in mammalian cells, M195T and A197S formed stable hemichannels after isolation with a baculovirus/Sf9 protein purification system, while C202F, I203T, L205V and N206S formed hemichannels with varying degrees of instability. The function of all six gap junction-forming mutants was further assessed through measurement of dye coupling in mammalian cells and junctional conductance in paired Xenopus oocytes. Dye coupling between cell pairs was reduced by varying degrees for all six mutants. In homotypic oocyte pairings, only A197S induced measurable conductance. In heterotypic pairings with wild-type Cx26, five of the six mutants formed functional gap junction channels, albeit with reduced efficiency. None of the mutants displayed significant alterations in sensitivity to transjunctional voltage or induced conductive hemichannels in single oocytes. Intra-hemichannel interactions between mutant and wild-type proteins were assessed in rescue experiments using baculovirus expression in Sf9 insect cells. Of the four unstable mutations (C202F, I203T, L205V, N206S) only C202F and N206S formed stable hemichannels when co-expressed with wild-type Cx26. Stable M195T hemichannels displayed an increased tendency to aggregate. Thus, mutations in TM4 cause a range of phenotypes of dysfunctional gap junction channels that are discussed within the context of the X-ray crystallographic structure.
Collapse
Affiliation(s)
- Cinzia Ambrosi
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, California, United States of America
| | - Amy E. Walker
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, California, United States of America
| | - Adam D. DePriest
- Biology Department, State University of New York Buffalo State, Buffalo, New York, United States of America
| | - Angela C. Cone
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, California, United States of America
| | - Connie Lu
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, California, United States of America
| | - John Badger
- DeltaG Technologies, San Diego, California, United States of America
| | - I. Martha Skerrett
- Biology Department, State University of New York Buffalo State, Buffalo, New York, United States of America
| | - Gina E. Sosinsky
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, California, United States of America
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
de la Luz Arenas-Sordo M, Menendez I, Hernández-Zamora E, Sirmaci A, Gutiérrez-Tinajero D, McGetrick M, Murphy-Ruiz P, Leyva-Juárez X, Huesca-Hernández F, Dominguez-Aburto J, Tekin M. Unique spectrum of GJB2 mutations in Mexico. Int J Pediatr Otorhinolaryngol 2012; 76:1678-80. [PMID: 22925408 DOI: 10.1016/j.ijporl.2012.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to elucidate the involvement of mutations in three relatively common deafness genes in Mexican individuals with non-syndromic hearing loss. METHODS We sequenced GJB2 for mutations, screened for two deletions involving GJB6, del(GJB6-D13S1830) and del(GJB6-D13S1854), and for the m.1555A>G mutation in the MTRNR1 gene in 76 (71 simplex and 5 multiplex) unrelated Mexican probands with prelingual non-syndromic hearing loss. Samples were obtained from the Department of Genetics at Instituto Nacional de Rehabilitacion in Mexico City. RESULTS Eight previously reported pathogenic variants and two polymorphic variants in GJB2 were identified. The two screened GJB6 deletions and the m.1555A>G mutation were not detected. Eight cases (10.6%) were found to have bi-allelic mutations in GJB2 and six (7.9%) were found to have a monoallelic GJB2 mutation. Of the six monoallelic mutations, one (p.R184Q) was a previously reported autosomal dominant variant. The most frequent pathological allele detected in this population was the c.35delG mutation in the GJB2 gene. The p.V27I polymorphic variant was also detected, with an allele frequency of 0.24. All eight probands with GJB2 mutations had symmetric profound deafness, whereas patients without GJB2 mutations had moderate, severe or profound hearing loss. CONCLUSIONS This study shows that GJB2 mutations are an important cause of prelingual deafness in the Mexican population.
Collapse
Affiliation(s)
- Maria de la Luz Arenas-Sordo
- Departamento de Genetica, Instituto Nacional de Rehabilitacion, Calzada de Mexico Xochimilco No. 289, Colonia Arenal de Guadalupe, Delegacion Tlalpan, Mexico CP 14389, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Easton JA, Donnelly S, Kamps MAF, Steijlen PM, Martin PE, Tadini G, Janssens R, Happle R, van Geel M, van Steensel MAM. Porokeratotic eccrine nevus may be caused by somatic connexin26 mutations. J Invest Dermatol 2012; 132:2184-91. [PMID: 22592158 PMCID: PMC3422696 DOI: 10.1038/jid.2012.143] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porokeratotic eccrine ostial and dermal duct nevus, or porokeratotic eccrine nevus (PEN), is a hyperkeratotic epidermal nevus. Several cases of widespread involvement have been reported, including one in association with the keratitis–ichthyosis–deafness (KID) syndrome (OMIM #148210), a rare disorder caused by mutations in the GJB2 gene coding for the gap junction protein connexin26 (Cx26). The molecular cause is, as yet, unknown. We have noted that PEN histopathology is shared by KID. The clinical appearance of PEN can resemble that of KID syndrome. Furthermore, a recent report of cutaneous mosaicism for a GJB2 mutation associated with KID describes linear hyperkeratotic skin lesions that might be consistent with PEN. From this, we hypothesized that PEN might be caused by Cx26 mutations associated with KID or similar gap junction disorders. Thus, we analyzed the GJB2 gene in skin samples from two patients referred with generalized PEN. In both, we found GJB2 mutations in the PEN lesions but not in unaffected skin or peripheral blood. One mutation was already known to cause the KID syndrome, and the other had not been previously associated with skin symptoms. We provide extensive functional data to support its pathogenicity. We conclude that PEN may be caused by mosaic GJB2 mutations.
Collapse
Affiliation(s)
- Jennifer A Easton
- Department of Dermatology, Maastricht University Medical Center, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yuan Y, Zhang X, Huang S, Zuo L, Zhang G, Song Y, Wang G, Wang H, Huang D, Han D, Dai P. Common molecular etiologies are rare in nonsyndromic Tibetan Chinese patients with hearing impairment. PLoS One 2012; 7:e30720. [PMID: 22389666 PMCID: PMC3289614 DOI: 10.1371/journal.pone.0030720] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/20/2011] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Thirty thousand infants are born every year with congenital hearing impairment in mainland China. Racial and regional factors are important in clinical diagnosis of genetic deafness. However, molecular etiology of hearing impairment in the Tibetan Chinese population living in the Tibetan Plateau has not been investigated. To provide appropriate genetic testing and counseling to Tibetan families, we investigated molecular etiology of nonsyndromic deafness in this population. METHODS A total of 114 unrelated deaf Tibetan children from the Tibet Autonomous Region were enrolled. Five prominent deafness-related genes, GJB2, SLC26A4, GJB6, POU3F4, and mtDNA 12S rRNA, were analyzed. Inner ear development was evaluated by temporal CT. A total of 106 Tibetan hearing normal individuals were included as genetic controls. For radiological comparison, 120 patients, mainly of Han ethnicity, with sensorineural hearing loss were analyzed by temporal CT. RESULTS None of the Tibetan patients carried diallelic GJB2 or SLC26A4 mutations. Two patients with a history of aminoglycoside usage carried homogeneous mtDNA 12S rRNA A1555G mutation. Two controls were homozygous for 12S rRNA A1555G. There were no mutations in GJB6 or POU3F4. A diagnosis of inner ear malformation was made in 20.18% of the Tibetan patients and 21.67% of the Han deaf group. Enlarged vestibular aqueduct, the most common inner ear deformity, was not found in theTibetan patients, but was seen in 18.33% of the Han patients. Common molecular etiologies, GJB2 and SLC26A4 mutations, were rare in the Tibetan Chinese deaf population. CONCLUSION The mutation spectrum of hearing loss differs significantly between Chinese Tibetan patients and Han patients. The incidence of inner ear malformation in Tibetans is almost as high as that in Han deaf patients, but the types of malformation vary greatly. Hypoxia and special environment in plateau may be one cause of developmental inner ear deformity in this population.
Collapse
Affiliation(s)
- Yongyi Yuan
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
- Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, People's Republic of China
| | - Xun Zhang
- Department of Otolaryngology, 3rd hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Shasha Huang
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
| | - Lujie Zuo
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
- Department of Otolaryngology, 3rd hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Guozheng Zhang
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
- Department of Otolaryngology, 3rd hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Yueshuai Song
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
| | - Guojian Wang
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
- Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, People's Republic of China
| | - Hongtian Wang
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
| | - Deliang Huang
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
| | - Dongyi Han
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
| | - Pu Dai
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
- Department of Otolaryngology, Hainan Branch of PLA General Hospital, Sanya, People's Republic of China
| |
Collapse
|
26
|
Etiology and one-year follow-up results of hearing loss identified by screening of newborn hearing in Japan. Otolaryngol Head Neck Surg 2010; 143:97-100. [DOI: 10.1016/j.otohns.2010.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/30/2010] [Accepted: 02/03/2010] [Indexed: 11/18/2022]
Abstract
Objective: To evaluate the incidence of newborn hearing loss in a Japanese population and to elucidate etiological factors and one-year prognosis. Study Design: Screening of newborn hearing. Setting: Children's tertiary referral center. Subjects and Methods: Between 1999 and 2008, 101,912 newborn infants were screened, with 693 infants (0.68%) referred. Etiology investigation included CT, detection of cytomegalovirus (CMV) DNA, and connexin 26 mutation. Results: Abnormal results (auditory brainstem response [ABR] threshold ≥ 35 normal hearing level [dB nHL] in either side) were observed in 312 infants (0.31%), and 133 subjects (0.13%) with ABR thresholds ≥ 50 dB nHL on both sides were classified into the habilitation group. In this group, inner ear/internal auditory meatus anomalies were detected in 20 of 121 subjects (17%) tested, middle/external ear anomalies in 14 of 121 subjects (12%), CMV DNA in 13 of 77 subjects (17%), and connexin 26 mutation in 28 of 89 subjects (31%). In 68 subjects undergoing all three investigations (CT, CMV, and connexin 26), 41 (60%) had positive results in at least one test. With inclusion of otitis media with effusion and perinatal problems, this rate amounted to 78% (53 subjects). Of the 97 infants in the habilitation group successfully followed up to one year, 36 (37%) showed a threshold change of 20 dB or more in either ear: 11 (11%) progression and 25 (26%) improvement, and 15 infants (15%) were reclassified into a less severe classification. Conclusion: Considering that 26 percent of infants with bilateral moderate to severe hearing loss showed improvement in one year, habilitation protocols, especially very early cochlear implantation within one year of birth, should be reconsidered.
Collapse
|
27
|
Matos TD, Simões-Teixeira H, Caria H, Rosa H, O'Neill A, Fialho G. The controversial p.Arg127His mutation in GJB2: report on three Portuguese hearing loss family cases. Genet Test Mol Biomarkers 2010; 14:141-4. [PMID: 19929408 DOI: 10.1089/gtmb.2009.0103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the GJB2 gene account for up to 50% of hereditary nonsyndromic hearing loss in several populations. Over 200 mutations are already described in this gene, and three of them, c.35delG, c.167delT, and c.235delC, are the most frequent in Caucasians, Ashkenazi Jews, and Asians, respectively. Most of GJB2 hearing loss-related mutations are recessive, but a few dominant alleles have also been described. Apart from the clearly pathogenic mutations, there are some other variants whose pathogenicity is still controversial, such as p.Met34Thr, p.Val37Ile, p.Arg127His, and p.Val153Ile. The p.Arg127His allele has been found in some mono- and biallelic hearing-impaired patients from several countries. In this article we report on some Portuguese patients harboring this mutation. Taking into consideration the analysis of these Portuguese cases as well as the genetic and functional data regarding p.Arg127His available in the literature, we conclude that this variant may be a cause of hearing loss depending on environmental factors and/or genetic background.
Collapse
Affiliation(s)
- Tiago D Matos
- Faculty of Science, Centre for Biodiversity, Functional, and Integrative Genomics (BioFIG), University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
28
|
Tsukada K, Nishio S, Usami S. A large cohort study ofGJB2mutations in Japanese hearing loss patients. Clin Genet 2010; 78:464-70. [DOI: 10.1111/j.1399-0004.2010.01407.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Guerci VI, Grasso DL, Morgutti M, Amoroso A, D'Andrea P, Bicego M, Gasparini P. Connexin 26 gene: Defining the role of the V1531 mutation. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/16513860701556253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
GJB2 mutation spectrum in 2,063 Chinese patients with nonsyndromic hearing impairment. J Transl Med 2009; 7:26. [PMID: 19366456 PMCID: PMC2679712 DOI: 10.1186/1479-5876-7-26] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 04/14/2009] [Indexed: 11/10/2022] Open
Abstract
Background Mutations in GJB2 are the most common molecular defects responsible for autosomal recessive nonsyndromic hearing impairment (NSHI). The mutation spectra of this gene vary among different ethnic groups. Methods In order to understand the spectrum and frequency of GJB2 mutations in the Chinese population, the coding region of the GJB2 gene from 2063 unrelated patients with NSHI was PCR amplified and sequenced. Results A total of 23 pathogenic mutations were identified. Among them, five (p.W3X, c.99delT, c.155_c.158delTCTG, c.512_c.513insAACG, and p.Y152X) are novel. Three hundred and seven patients carry two confirmed pathogenic mutations, including 178 homozygotes and 129 compound heterozygotes. One hundred twenty five patients carry only one mutant allele. Thus, GJB2 mutations account for 17.9% of the mutant alleles in 2063 NSHI patients. Overall, 92.6% (684/739) of the pathogenic mutations are frame-shift truncation or nonsense mutations. The four prevalent mutations; c.235delC, c.299_c.300delAT, c.176_c.191del16, and c.35delG, account for 88.0% of all mutantalleles identified. The frequency of GJB2 mutations (alleles) varies from 4% to 30.4% among different regions of China. It also varies among different sub-ethnic groups. Conclusion In some regions of China, testing of the three most common mutations can identify at least one GJB2 mutant allele in all patients. In other regions such as Tibet, the three most common mutations account for only 16% the GJB2 mutant alleles. Thus, in this region, sequencing of GJB2 would be recommended. In addition, the etiology of more than 80% of the mutant alleles for NSHI in China remains to be identified. Analysis of other NSHI related genes will be necessary.
Collapse
|
31
|
Carrier frequency of GJB2 (connexin-26) mutations causing inherited deafness in the Korean population. J Hum Genet 2008; 53:1022-1028. [DOI: 10.1007/s10038-008-0342-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 10/19/2008] [Indexed: 10/21/2022]
|
32
|
Saunders JE, Vaz S, Greinwald JH, Lai J, Morin L, Mojica K. Prevalence and Etiology of Hearing Loss in Rural Nicaraguan Children. Laryngoscope 2007; 117:387-98. [PMID: 17334299 DOI: 10.1097/mlg.0b013e31802e3726] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE/HYPOTHESIS The prevalence and causes of pediatric hearing loss (HL) in the developing world are largely unknown. Infectious sequelae, ototoxic medications, and genetic causes may play a larger role in developing countries. In addition, the significance of GJB2 mutation gene in poorly developed areas remains unclear. The intent of this study is to investigate the prevalence and etiology of HL in children living in a remote, impoverished region of northern Nicaragua. STUDY DESIGN Cross-sectional study. METHODS Clinical data from two sources were analyzed: data from screening examinations performed in rural schools in the Department of Jinotega, Nicaragua (group A) and pediatric HL patients seen at the Otolaryngology and Audiology Clinic in Jinotega, Nicaragua (group B). Patients with congenital HL were offered a genetic test for GJB2 mutations. Comparisons were made using parametric (analysis of variance) and nonparametric (Kruskal-Wallis) tests. RESULTS School-based screening examinations (group A) revealed a high prevalence of significant HL (>30 dB) of 18%. The majority of these children had normal otoscopic examinations (58%). A family history of HL was seen in 24% of children who failed screening exams. Positive family history was more common in patients with HL (P < .01) and in specific schools (P < .05). Clinic-based evaluations (group B) reveal a population with predominantly severe-profound HL. Physical dysmorphism was common, yet identifiable syndromic HL was rare. Although familial HL was common (33%), there were no pathologic GJB2 mutations. Other common risk factors in this population were maternal infection during pregnancy, neonatal distress, low birth weight or prematurity, and gentamicin exposure. CONCLUSIONS HL in this rural, third world environment is more prevalent, and the etiologies responsible in this study group are different from those encountered in industrialized nations. Poor perinatal health care, infectious causes, gentamicin exposure, and hereditary HL are potentially preventable causes that play a major role in this population.
Collapse
Affiliation(s)
- James E Saunders
- Department of ORL, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma 73190, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Huculak C, Bruyere H, Nelson TN, Kozak FK, Langlois S. V37I connexin 26 allele in patients with sensorineural hearing loss: evidence of its pathogenicity. Am J Med Genet A 2007; 140:2394-400. [PMID: 17036313 DOI: 10.1002/ajmg.a.31486] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sensorineural hearing loss (SNHL) is the most common inherited sensory disorder, reported in 1-3 of every 1,000 births. It has been estimated that 50% of all cases of prelingual SNHL are genetically determined. There is tremendous genetic heterogeneity, with multiple dominant and recessive loci. Mutations of the gap junction beta-2 gene (GJB2) emerge as a leading cause of autosomal recessive non-syndromic SNHL. Over 90 sequence alterations have been reported, the pathogenicity of some of them being unknown or unclear. The status of the V37I allele of connexin 26 (GJB2 amino acid product) with regards to its association with SNHL has been controversial. This study examines the pathogenicity of V37I by comparing the frequency of this allele in 40 patients with SNHL of Chinese and Caucasian descent with the frequency of the allele in 100 anonymized, ethnically matched controls. The V37I allele was identified in 43.75 and 11.5% of the patient and control alleles of Chinese ethnicity, respectively, but was not found in either Caucasian cohort. We also compiled the audiograms of 15 individuals with SNHL homozygous for the V37I allele, and showed that these individuals present with a mild to moderate SNHL. These results indicate that (1) the V37I allele is common in individuals of Chinese descent but rarely present in individuals of Caucasian decent; and (2) the V37I allele is pathogenic, but produces milder hearing loss compared to nonsense mutations of connexin 26 such as the 35delG mutation.
Collapse
Affiliation(s)
- C Huculak
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
34
|
Tang HY, Fang P, Ward PA, Schmitt E, Darilek S, Manolidis S, Oghalai JS, Roa BB, Alford RL. DNA sequence analysis of GJB2, encoding connexin 26: observations from a population of hearing impaired cases and variable carrier rates, complex genotypes, and ethnic stratification of alleles among controls. Am J Med Genet A 2007; 140:2401-15. [PMID: 17041943 PMCID: PMC3623690 DOI: 10.1002/ajmg.a.31525] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mutations in GJB2 are associated with hereditary hearing loss. DNA sequencing of GJB2 in a cohort of hearing impaired patients and a multi-ethnic control group is reported. Among 610 hearing impaired cases, 43 DNA sequence variations were identified in the coding region of GJB2 including 24 mutations, 8 polymorphisms, 3 unclassified variants (G4D, R127C, M163V), 1 controversial variant (V37I), and 7 novel variants (G12C, N14D, V63A, T86M, L132V, D159, 592_600delinsCAGTGTTCATGACATTC). Sixteen non-coding sequence variations were also identified among cases including the IVS1+1A>G mutation, 2 polymorphisms, and 13 novel variants. A diagnosis of GJB2-associated hearing loss was confirmed for 63 cases (10.3%). Heterozygous mutations were found in 39 cases (6.4%). Eleven cases carrying novel or unclassified variants (1.8 %) and 18 cases carrying the controversial V37I variant were identified (3%). In addition, 294 control subjects from 4 ethnic groups were sequenced for GJB2. Thirteen sequence variations in the coding region of GJB2 were identified among controls including 2 mutations, 6 polymorphisms, 2 unclassified variants (G4D, T123N), 1 controversial variant (V37I), and 2 novel variants (R127L, V207L). Nine sequence variations were identified among controls in the non-coding regions in and around GJB2 exon 2. Of particular interest among controls were the variability in carrier rates and ethnic stratification of alleles, and the complex genotypes among Asians, 47% of whom carried two to four sequence variations in the coding region of GJB2. These data provide new information about carrier rates for GJB2-based hearing loss in various ethnic groups and contribute to evaluation of the pathogenicity of the controversial V37I variant.
Collapse
Affiliation(s)
- Hsiao-Yuan Tang
- Bobby R. Alford Department of Otolaryngology—Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Ping Fang
- Medical Genetics Laboratories, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Patricia A. Ward
- Medical Genetics Laboratories, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Eric Schmitt
- Medical Genetics Laboratories, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Sandra Darilek
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Spiros Manolidis
- Department of Otolaryngology—Head and Neck Surgery, Columbia University, New York, New York
| | - John S. Oghalai
- Bobby R. Alford Department of Otolaryngology—Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Benjamin B. Roa
- Medical Genetics Laboratories, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Raye Lynn Alford
- Bobby R. Alford Department of Otolaryngology—Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
- Correspondence to: Raye Lynn Alford, Ph.D., F.A.C.M.G., Bobby R. Alford Department of Otolaryngology—Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, NA102, Houston 77030, TX.
| |
Collapse
|
35
|
Pollak A, Skórka A, Mueller-Malesińska M, Kostrzewa G, Kisiel B, Waligóra J, Krajewski P, Ołdak M, Korniszewski L, Skarżyński H, Ploski R. M34T and V37I mutations inGJB2 associated hearing impairment: Evidence for pathogenicity and reduced penetrance. Am J Med Genet A 2007; 143A:2534-43. [DOI: 10.1002/ajmg.a.31982] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Schrijver I, Chang KW. Two patients with the V37I/235delC genotype: are radiographic cochlear anomalies part of the phenotype? Int J Pediatr Otorhinolaryngol 2006; 70:2109-13. [PMID: 16952406 DOI: 10.1016/j.ijporl.2006.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 07/14/2006] [Indexed: 11/29/2022]
Abstract
We present two East Asian patients with sensorineural hearing loss (SNHL) and compound heterozygosity for the 235delC and V37I mutations in the GJB2 gene. One patient has a unilaterally enlarged vestibular aqueduct, which underscores the importance of routine CT examination in children with SNHL, even if GJB2 (connexin 26) mutations have been identified. The second patient was not available for evaluation by CT. The pathogenic role of the V37I mutation has been controversial. We review the literature and present evidence in support of pathogenicity. Larger studies in compound heterozygous individuals and co-transfection studies will allow better genotype-phenotype correlations and prognostication.
Collapse
Affiliation(s)
- Iris Schrijver
- Department of Pathology and Pediatrics, L235, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | | |
Collapse
|
37
|
Bicego M, Beltramello M, Melchionda S, Carella M, Piazza V, Zelante L, Bukauskas FF, Arslan E, Cama E, Pantano S, Bruzzone R, D’Andrea P, Mammano F. Pathogenetic role of the deafness-related M34T mutation of Cx26. Hum Mol Genet 2006; 15:2569-87. [PMID: 16849369 PMCID: PMC2829448 DOI: 10.1093/hmg/ddl184] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in the GJB2 gene, which encodes the gap junction protein connexin26 (Cx26), are the major cause of genetic non-syndromic hearing loss. The role of the allelic variant M34T in causing hereditary deafness remains controversial. By combining genetic, clinical, biochemical, electrophysiological and structural modeling studies, we have re-assessed the pathogenetic role of the M34T mutation. Genetic and audiological data indicate that the majority of heterozygous carriers and all five compound heterozygotes exhibited an impaired auditory function. Functional expression in transiently transfected HeLa cells showed that, although M34T was correctly synthesized and targeted to the plasma membrane, it inefficiently formed intercellular channels that displayed an abnormal electrical behavior and retained only 11% of the unitary conductance of the wild-type protein (HCx26wt). Moreover, M34T channels failed to support the intercellular diffusion of Lucifer Yellow and the spreading of mechanically induced intercellular Ca2+ waves. When co-expressed together with HCx26wt, M34T exerted dominant-negative effects on cell-cell coupling. Our findings are consistent with a structural model, predicting that the mutation leads to a constriction of the channel pore. These data support the view that M34T is a pathological variant of Cx26 associated with hearing impairment.
Collapse
Affiliation(s)
- Massimiliano Bicego
- Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole, University of Trieste, 34127 Trieste, Italy
| | - Martina Beltramello
- Istituto Veneto di Medicina Molecolare (VIMM), Fondazione per la Ricerca Biomedica Avanzata, 35129 Padova, Italy
| | - Salvatore Melchionda
- Servizio di Genetica Medica, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Carella
- Servizio di Genetica Medica, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Valeria Piazza
- Istituto Veneto di Medicina Molecolare (VIMM), Fondazione per la Ricerca Biomedica Avanzata, 35129 Padova, Italy
| | - Leopoldo Zelante
- Servizio di Genetica Medica, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Feliksas F. Bukauskas
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Edoardo Arslan
- Servizio di Audiologia e Foniatria, University of Padova, 35128 Padova, Italy
| | - Elona Cama
- Servizio di Audiologia e Foniatria, University of Padova, 35128 Padova, Italy
| | - Sergio Pantano
- Istituto Veneto di Medicina Molecolare (VIMM), Fondazione per la Ricerca Biomedica Avanzata, 35129 Padova, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM)
| | - Roberto Bruzzone
- Département de Neuroscience, Institut Pasteur, 75015 Paris, France
- To whom correspondence should be addressed at: Département de Neuroscience, Institut Pasteur, 25, rue du Dr Roux, 75015 Paris, France. Tel: +33 140613436; Fax: +33 140613421;
| | - Paola D’Andrea
- Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole, University of Trieste, 34127 Trieste, Italy
| | - Fabio Mammano
- Istituto Veneto di Medicina Molecolare (VIMM), Fondazione per la Ricerca Biomedica Avanzata, 35129 Padova, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM)
- Dipartimento di Fisica ‘G.Galilei’, Università di Padova, 35131 Padova, Italy
| |
Collapse
|
38
|
Cheng X, Li L, Brashears S, Morlet T, Ng SS, Berlin C, Hood L, Keats B. Connexin 26 variants and auditory neuropathy/dys-synchrony among children in schools for the deaf. Am J Med Genet A 2006; 139:13-8. [PMID: 16222667 DOI: 10.1002/ajmg.a.30929] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Genetic and auditory studies of 731 children with severe-to-profound hearing loss in US schools for the deaf and 46 additional children receiving clinical services for hearing loss ranging from moderate to profound demonstrated that mutations in the connexin 26 (GJB2) and connexin 30 (GJB6) genes explain at least 12% of those with nonsyndromic sensorineural deafness. Otoacoustic emissions (OAEs) testing to detect functional outer hair cells indicated that 76 of the children had emissions and therefore may have (as yet unconfirmed) auditory neuropathy/dys-synchrony (AN/AD). Five of these children with OAEs were GJB2 homozygotes or compound heterozygotes with the genotypes 35delG/35delG, W77X/W77X, 35delG/360delGAG, 35delG/V95M, and V84M/M34T. In particular, unilateral AN/AD was confirmed in a child with moderate hearing loss and the 35delG/V95M genotype. Detecting OAEs in individuals with GJB2 mutations suggests that lack of functional gap junctions as a result of GJB2 mutations does not necessarily destroy all outer hair cell function.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Genetics, Kresge Hearing Research Laboratory, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Matsunaga T, Hirota E, Bito S, Niimi S, Usami SI. Clinical Course of Hearing and Language Development in GJB2 and Non- GJB2 Deafness following Habilitation with Hearing Aids. Audiol Neurootol 2006; 11:59-68. [PMID: 16282682 DOI: 10.1159/000089607] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 08/17/2005] [Indexed: 11/19/2022] Open
Abstract
Mutations in the GJB2 gene (connexin 26) are the most common cause of nonsyndromic autosomal recessive sensorineural hearing loss. Genetic testing of GJB2 may offer opportunities to predict the features of hearing loss and prognostication of speech-language development in children with hearing loss. The present study assessed the clinical features of hearing and some aspects of language development in congenital deafness due either to GJB2 mutations or to other factors in Japanese patients who had been habilitated with hearing aids. Thirty-five unrelated subjects with nonsyndromic, congenital, bilateral sensorineural hearing loss were enrolled in the study. Among them, 16 had biallelic GJB2 mutations related to hearing loss and 17 lacked such mutations. As has been reported in populations of European ancestry, the present Japanese subjects with GJB2 mutations had a relatively high incidence of the flat pattern audiogram and nonprogressive pure tone thresholds compared with subjects without GJB2 mutations. Subjects with GJB2 mutations and those without GJB2 mutations both showed a similar tendency in speech perception, some aspects of language development, and communication methods. In both groups, development of reading ability tended to be normal, but vocabulary development tended to be delayed. The present results establish the basis for future studies to aid in the evaluation and follow-up of patients with congenital hearing loss associated with GJB2 mutations who are habilitated with hearing aids.
Collapse
Affiliation(s)
- Tatsuo Matsunaga
- Department of Otolaryngology/Laboratory of Auditory Disorders, National Institute of Sensory Organs, National Tokyo Medical Center, Japan.
| | | | | | | | | |
Collapse
|
40
|
Neocleous V, Aspris A, Shahpenterian V, Nicolaou V, Panagi C, Ioannou I, Kyamides Y, Anastasiadou V, Phylactou LA. High Frequency of 35delG GJB2 Mutation and Absence of del(GJB6-D13S1830) in Greek Cypriot Patients with Nonsyndromic Hearing Loss. ACTA ACUST UNITED AC 2006; 10:285-9. [PMID: 17253936 DOI: 10.1089/gte.2006.10.285] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mutations in the GJB2 (Connexin 26) gene are responsible for more than half of all cases of prelingual, recessive, inherited, nonsyndromic deafness in Europe. This paper presents a mutation analysis of the GJB2 and GJB6 (Connexin 30) genes in 30 Greek Cypriot patients with sensorineural nonsyndromic hearing loss compatible with recessive inheritance. Ten of the patients (33.3%) had the 35delG mutation in the GJB2 gene. Moreover, 9 of these were homozygous for the 35delG mutation, whereas 1 patient was in the compound heterozygous state with the disease causing E47X nonsense mutation. Another patient with severe sensorineural hearing loss was heterozygous for the V153I missense mutation. Finally, no GJB6 mutations or the known del(GJB6-D13S1830) were identified in any of the investigated Greek Cypriot nonsyndromic hearing loss patients. This work confirms that the GJB2 35delG mutation is an important pathogenic mutation for hearing loss in the Greek Cypriot population. This finding will be used toward the effective diagnosis of nonsyndromic hearing loss, improve genetic counseling, and serve as a potential therapeutic platform in the future for the affected patients in Cyprus.
Collapse
Affiliation(s)
- Vassos Neocleous
- Department of Molecular Genetics, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Snoeckx RL, Huygen PLM, Feldmann D, Marlin S, Denoyelle F, Waligora J, Mueller-Malesinska M, Pollak A, Ploski R, Murgia A, Orzan E, Castorina P, Ambrosetti U, Nowakowska-Szyrwinska E, Bal J, Wiszniewski W, Janecke AR, Nekahm-Heis D, Seeman P, Bendova O, Kenna MA, Frangulov A, Rehm HL, Tekin M, Incesulu A, Dahl HHM, du Sart D, Jenkins L, Lucas D, Bitner-Glindzicz M, Avraham KB, Brownstein Z, del Castillo I, Moreno F, Blin N, Pfister M, Sziklai I, Toth T, Kelley PM, Cohn ES, Van Maldergem L, Hilbert P, Roux AF, Mondain M, Hoefsloot LH, Cremers CWRJ, Löppönen T, Löppönen H, Parving A, Gronskov K, Schrijver I, Roberson J, Gualandi F, Martini A, Lina-Granade G, Pallares-Ruiz N, Correia C, Fialho G, Cryns K, Hilgert N, Van de Heyning P, Nishimura CJ, Smith RJH, Van Camp G. GJB2 mutations and degree of hearing loss: a multicenter study. Am J Hum Genet 2005; 77:945-57. [PMID: 16380907 PMCID: PMC1285178 DOI: 10.1086/497996] [Citation(s) in RCA: 390] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 09/08/2005] [Indexed: 01/17/2023] Open
Abstract
Hearing impairment (HI) affects 1 in 650 newborns, which makes it the most common congenital sensory impairment. Despite extraordinary genetic heterogeneity, mutations in one gene, GJB2, which encodes the connexin 26 protein and is involved in inner ear homeostasis, are found in up to 50% of patients with autosomal recessive nonsyndromic hearing loss. Because of the high frequency of GJB2 mutations, mutation analysis of this gene is widely available as a diagnostic test. In this study, we assessed the association between genotype and degree of hearing loss in persons with HI and biallelic GJB2 mutations. We performed cross-sectional analyses of GJB2 genotype and audiometric data from 1,531 persons, from 16 different countries, with autosomal recessive, mild-to-profound nonsyndromic HI. The median age of all participants was 8 years; 90% of persons were within the age range of 0-26 years. Of the 83 different mutations identified, 47 were classified as nontruncating, and 36 as truncating. A total of 153 different genotypes were found, of which 56 were homozygous truncating (T/T), 30 were homozygous nontruncating (NT/NT), and 67 were compound heterozygous truncating/nontruncating (T/NT). The degree of HI associated with biallelic truncating mutations was significantly more severe than the HI associated with biallelic nontruncating mutations (P<.0001). The HI of 48 different genotypes was less severe than that of 35delG homozygotes. Several common mutations (M34T, V37I, and L90P) were associated with mild-to-moderate HI (median 25-40 dB). Two genotypes--35delG/R143W (median 105 dB) and 35delG/dela(GJB6-D13S1830) (median 108 dB)--had significantly more-severe HI than that of 35delG homozygotes.
Collapse
Affiliation(s)
- Rikkert L Snoeckx
- Department of Medical Genetics, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Dalamón V, Béhèran A, Diamante F, Pallares N, Diamante V, Elgoyhen AB. Prevalence of GJB2 mutations and the del(GJB6-D13S1830) in Argentinean non-syndromic deaf patients. Hear Res 2005; 207:43-9. [PMID: 15964725 DOI: 10.1016/j.heares.2005.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/01/2005] [Accepted: 04/04/2005] [Indexed: 12/24/2022]
Abstract
Genetically caused congenital deafness is a common trait affecting 1 in 2000 children and it is predominantly inherited in an autosomal recessive fashion. Several mutations in the GJB2 gene and a deletion of 342 kb in GJB6 (delGJB6-D13S1830) have been identified worldwide in patients with hearing impairment. The aim of this study was to determine the prevalence of these mutations in Argentina. Non-syndromic 46 probands (17 familial and 29 sporadic cases) were genetically evaluated. Mutations in GJB2 and/or delGJB6-D13S1830 were found in 19 patients, accounting for 41.3% of the sample. Of the 46 patients investigated in this study, 12 (26.1%) were diagnosed to carry sequence variations in both alleles; all but one, were considered causative for hearing impairment in those patients. In 7 out of 46 patients (15.2%) only one mutant allele was detected. Of their 38 chromosomes, 71% resulted with mutations in the GJB2 gene and 11% in GJB6. The most frequent mutation in GJB2 (24%) was c.35delG (11% homozygous and 13% heterozygous and compound heterozygous). In addition, 11 sequence variations different from c.35delG, were identified in the coding region of the GJB2 gene: T8M, V27I, M34T, E47X, R75W, W77R, I82M, L90P, E129K, V153I, M163V. The delGJB6-D13S1830 mutation was found in 4 patients (9%), 3 of them associated with GJB2 mutations, resulting in compound heterozygous for the DFNB1 locus. The present study demonstrates that mutations in the GJB2 gene and the delGJB6-D13S1830 are prevalent in the Argentinean population.
Collapse
Affiliation(s)
- Viviana Dalamón
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Tremendous progress has been made in our understanding of the molecular basis of hearing and hearing loss. Through recent advances, we have begun to understand the fascinating biology of the auditory system and unveiled new molecular mechanisms of hearing impairment. Changes in the diagnostic impact of genetic testing have occurred, as well as exciting developments in therapeutic options. Molecular diagnosis, which is already a reality for several hearing-associated genes, will doubtlessly continue to increase in the near future, both in terms of the number of mutations tested and the spectrum of genes. Genetic analysis for hearing loss is mostly used for diagnosis and treatment, and relatively rarely for reproductive decisions, in contrast to other inherited disorders. Inherited hearing loss, however, is characterized by impressive genetic heterogeneity. An abundance of genes carry a large number of mutations, but specific mutations in a single gene may lead to syndromic or non-syndromic hearing loss. Some mutations predominate in individual ethnic groups. For clinical and laboratory diagnosticians, it is challenging to keep abreast of the unfolding discoveries. This review aims to provide the framework pertinent to diagnosticians and a practical approach to mutation analysis in the hearing impaired.
Collapse
Affiliation(s)
- Iris Schrijver
- Department of Pathology and Pediatrics, L235, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
44
|
Riga M, Psarommatis I, Lyra C, Douniadakis D, Tsakanikos M, Neou P, Apostolopoulos N. Etiological diagnosis of bilateral, sensorineural hearing impairment in a pediatric Greek population. Int J Pediatr Otorhinolaryngol 2005; 69:449-55. [PMID: 15763280 DOI: 10.1016/j.ijporl.2004.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 10/21/2004] [Accepted: 11/08/2004] [Indexed: 12/01/2022]
Abstract
Early diagnosis, evaluation and treatment of childhood deafness are essential for a child's normal growth. Etiological diagnosis of hearing loss makes prevention, family scheduling and more effective therapy feasible goals. Etiological assessment of sensorineural deafness still remains difficult although recently with the progress of genetics it has become more efficient. In this retrospective study, the etiology of bilateral, sensorineural hearing loss with indication for hearing aids has been studied in 153 hearing impaired children. Etiological diagnosis was based on family and patient record, physical, audiological and laboratory examinations. Among the 94 children who completed the diagnostic protocol etiological groups revealed the following distribution: non-hereditary acquired hearing impairment was present in 36 children (38%) and hereditary was present in 44 (47%) children. The etiology remained unknown in 14 (15%) children. Non-syndromic autosomal dominant type accounted for 13 (29% of hereditary hearing loss) children, non-syndromic autosomal recessive type for 21 (48%) children and syndromic deafness for 10 (23%) children. Modern diagnostic methods, such as genetic testing, help diminish the number of cases with hearing impairment of unknown etiology, for the benefit of children who receive early and appropriate medical, audiologic, genetic and educational counseling based on the etiology of their hearing loss.
Collapse
Affiliation(s)
- M Riga
- ENT Department, P&A Kyriakou Children's Hospital of Athens, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
45
|
Shi GZ, Gong LX, Xu XH, Nie WY, Lin Q, Qi YS. GJB2 gene mutations in newborns with non-syndromic hearing impairment in Northern China. Hear Res 2004; 197:19-23. [PMID: 15504600 DOI: 10.1016/j.heares.2004.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 06/29/2004] [Indexed: 11/18/2022]
Abstract
Mutations in GJB2 account for the majority of recessive forms of prelingual hearing loss. However, in most previous studies it was not possible to distinguish between congenital (present at birth) and non-congenital prelingual hearing loss. In the present study, the frequency of GJB2 alleles in 20 newborns with bilateral severe-to-profound non-syndromic hearing impairment (NSHI) who were found at birth through newborn hearing screening and clinical examination is reported. PCR was used to amplify the coding region of GJB2 gene followed by sequencing analyses. Fifty volunteers with normal hearing were included as controls. Results showed that three cases were 235delC/235delC homozygotes; one was 235delC/605ins46 compound heterozygotes, 605ins46 mutation was a novel mutation reported in the Chinese population; another was 235delC/299-300delAT compound heterozygotes. 25% (5/20) of the deafness in newborns studied was caused by GJB2 gene mutations. The frequency of 235delC allele carrier in patients and in control group was 22.5% and 1%, respectively. One case was identified as being a 235delC heterozygote without other mutations detected. Besides, multiple polymorphisms such as V27I, V37I, E114G, T123N were also detected. In conclusion, GJB2 analysis is an important test that identifies a major cause of newborns with bilateral severe-to-profound NSHI screened by universal newborn hearing screening in Northern China. The most common pathologic mutation of GJB2 in studied cases was 235delC. Molecular analysis and genetic counseling will be extremely important for congenital deafness present at birth.
Collapse
Affiliation(s)
- Gui-zhi Shi
- Department of Forensic Medicine, Medical College of Shantou University, 22 Xinling Road, Shantou 515031, Guangdong, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
46
|
Meşe G, Londin E, Mui R, Brink PR, White TW. Altered gating properties of functional Cx26 mutants associated with recessive non-syndromic hearing loss. Hum Genet 2004; 115:191-9. [PMID: 15241677 DOI: 10.1007/s00439-004-1142-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 04/21/2004] [Indexed: 11/29/2022]
Abstract
Connexins (Cx) form gap junctions that allow the exchange of small metabolites and ions. In the inner ear, Cx26 is the major gap junction protein and mutations in the Cx26-encoding gene, GJB2, are the most frequent cause of autosomal recessive non-syndromic hearing loss (DFNB1). We have functionally analyzed five Cx26 mutations associated with DFNB1, comprising the following single amino-acid substitutions: T8M, R143W, V153I, N206S and L214P. Coupling of cells expressing wild-type or mutant Cx26 was measured in the paired Xenopus oocyte assay. We found that the R143W, V153I and L214P mutations were unable to form functional channels. In contrast, the T8M and N206S mutants did electrically couple cells, though their voltage gating properties were different from wild-type Cx26 channels. The electrical coupling of oocytes expressing the T8M and N206S mutants suggest that these channels may retain high permeability to potassium ions. Therefore, deafness associated with Cx26 mutations may not only depend on reduced potassium re-circulation in the inner ear. Instead, abnormalities in the exchange of other metabolites through the cochlear gap junction network may also produce deafness.
Collapse
Affiliation(s)
- Gülistan Meşe
- Graduate Program in Genetics, State University of New York, BST 5-147, NY 11794-8661, Stony Brook, USA
| | | | | | | | | |
Collapse
|
47
|
Feldmann D, Denoyelle F, Chauvin P, Garabédian EN, Couderc R, Odent S, Joannard A, Schmerber S, Delobel B, Leman J, Journel H, Catros H, Le Maréchal C, Dollfus H, Eliot MM, Delaunoy JP, David A, Calais C, Drouin-Garraud V, Obstoy MF, Bouccara D, Sterkers O, Huy PTB, Goizet C, Duriez F, Fellmann F, Hélias J, Vigneron J, Montaut B, Lewin P, Petit C, Marlin S. Large deletion of theGJB6gene in deaf patients heterozygous for theGJB2gene mutation: Genotypic and phenotypic analysis. Am J Med Genet A 2004; 127A:263-7. [PMID: 15150777 DOI: 10.1002/ajmg.a.20588] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent investigations identified a large deletion of the GJB6 gene in trans to a mutation of GJB2 in deaf patients. We looked for GJB2 mutations and GJB6 deletions in 255 French patients presenting with a phenotype compatible with DFNB1. 32% of the patients had biallelic GJB2 mutations and 6% were a heterozygous for a GJB2 mutation and a GJB6 deletion. Biallelic GJB2 mutations and combined GJB2/GJB6 anomalies were more frequent in profoundly deaf children. Based on these results, we are now assessing GJB6 deletion status in cases of prelingual hearing loss.
Collapse
Affiliation(s)
- Delphine Feldmann
- Service de Biochimie et de Biologie Moléculaire, Hôpital d'Enfants Armand-Trousseau, INSERM U587, AP-HP, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Feldmann D, Denoyelle F, Loundon N, Weil D, Garabedian EN, Couderc R, Joannard A, Schmerber S, Delobel B, Leman J, Journel H, Catros H, Ferrec C, Drouin-Garraud V, Obstoy MF, Moati L, Petit C, Marlin S. Clinical evidence of the nonpathogenic nature of the M34T variant in the connexin 26 gene. Eur J Hum Genet 2003; 12:279-84. [PMID: 14694360 DOI: 10.1038/sj.ejhg.5201147] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutations in GJB2 are the most common cause of congenital nonsyndromic hearing loss. The controversial allele variant M34T has been hypothesized to cause autosomal dominant or recessive nonsyndromic hearing impairment and some in vitro data has been consistent with this hypothesis. In this report, we present the clinical and genotypic study of 11 families (seven familial forms of nonsyndromic sensorineural hearing loss (NSSNHL) and four sporadic cases) in which the M34T GJB2 variant has been identified. The M34T mutation did not segregate with the deafness in six of the seven familial forms of NSSNH. Eight persons with normal audiogram presented a heterozygous M34T variation and five normal hearing individuals were composite heterozygous for M34T and another GJB2 mutation. Four normal hearing individuals with a documented audiogram were M34T/35delG and one was M34T/(GJB6-D13S1830)del. Screening a French control population of 116 subjects we have found an M34T allele frequency of 1.72%. This percentage was not significatively different from the prevalence of the M34T allele in the deaf population, which was 2.12%. All these data suggest that the M34T variant is not clinically significant in human and is a frequent polymorphism in France.
Collapse
Affiliation(s)
- Delphine Feldmann
- Service de Biochimie et de Biologie Moléculaire, Hôpital d'Enfants Armand-Trousseau, AP-HP, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wu BL, Kenna M, Lip V, Irons M, Platt O. Use of a multiplex PCR/sequencing strategy to detect both connexin 30 (GJB6) 342 kb deletion and connexin 26 (GJB2) mutations in cases of childhood deafness. Am J Med Genet A 2003; 121A:102-8. [PMID: 12910486 DOI: 10.1002/ajmg.a.20210] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hearing loss is a common congenital disorder that is frequently associated with mutations in the Cx26 gene (GJB2). Three recent reports that found a large deletion in another DFNB1 gene, Cx30 (GJB6), suggest that this defect may cause nonsyndromic recessive hearing loss through either a homozygous deletion of Cx30, or digenic inheritance of a Cx30 deletion and a Cx26 mutation in trans. We designed a simple diagnostic strategy with multiplex PCR followed by direct sequencing to allow for the simultaneous detection of Cx26 mutations and Cx30 deletions, and evaluated its effectiveness as a clinical genetic test by examining 200 DNA samples. In the 108 samples from deaf subjects, two digenic mutations were identified in Cx26 and Cx30 (E47X/342 kb deletion and 167delT/342 kb deletion); 69 had only Cx26 mutations (29 biallelic, 40 singleton), including two novel frameshift mutations 511-512insAACG and 358-360delAG; and 37 had no detectable mutation in either Cx26 or Cx30. Our deletion mapping suggested that the proximal breakpoint of all reported Cx30 large deletions are between the nucleotide 444 and 627 at the Cx30 coding region within a maximal interval of 78 or 184 bp. This simultaneous examination of Cx26 and Cx30 is a practical and efficient diagnostic approach for patients with nonsyndromic congenital deafness.
Collapse
Affiliation(s)
- Bai-Lin Wu
- Department of Laboratory Medicine, Children's Hospital Boston, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
50
|
Pandya A, Arnos KS, Xia XJ, Welch KO, Blanton SH, Friedman TB, Garcia Sanchez G, Liu MD XZ, Morell R, Nance WE. Frequency and distribution of GJB2 (connexin 26) and GJB6 (connexin 30) mutations in a large North American repository of deaf probands. Genet Med 2003; 5:295-303. [PMID: 12865758 DOI: 10.1097/01.gim.0000078026.01140.68] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Profound hearing loss occurs with a frequency of 1 in 1000 live births, half of which is genetic in etiology. The past decade has witnessed rapid advances in determining the pathogenesis of both syndromic and nonsyndromic deafness. The most significant clinical finding to date has been the discovery that mutations of GJB2 at the DFNB1 locus are the major cause of profound prelingual deafness in many countries. 1 More recently, GJB2 mutations have been shown to cause deafness when present with a deletion of the GJB6 gene. We report on the prevalence of GJB2 and GJB6 mutations in a large North American Repository of DNA from deaf probands and document the profound effects of familial ethnicity and parental mating types on the frequency of these mutations in the population. METHODS Deaf probands were ascertained through the Annual Survey of Deaf and Hard of Hearing Children and Youth, conducted at the Research Institute of Gallaudet University. Educational, etiologic, and audiologic information was collected after obtaining informed consent. DNA studies were performed for the GJB2 and GJB6 loci by sequencing and PCR methods. RESULTS GJB2 mutations accounted for 22.2% of deafness in the overall sample but differed significantly among Asians, African-Americans and Hispanics and for probands from deaf by deaf and deaf by hearing matings, as well as probands from simplex and multiplex sibships of hearing parents. In our sample, the overall incidence of GJB2/GJB6 deafness was 2.57%. CONCLUSION GJB2 mutations account for a large proportion of deafness in the US, with certain mutations having a high ethnic predilection. Heterozygotes at the GJB2 locus should be screened for the GJB6 deletion as a cause of deafness. Molecular testing for GJB2 and GJB6 should be offered to all patients with nonsyndromic hearing loss.
Collapse
Affiliation(s)
- Arti Pandya
- Department of Human Genetics, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|