1
|
Taramasso L, Dentone C, Cama I, Fenoglio D, Altosole T, Parodi A, Campi C, Piana M, Mora S, Giacomini M, Labate L, Garbarino S, Bruzzone B, Filaci G, Bassetti M, Di Biagio A. Distinct features of immune activation and exhaustion markers in people with perinatally acquired HIV. AIDS 2024; 38:1907-1912. [PMID: 39212615 DOI: 10.1097/qad.0000000000004001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE The aim of this study was to characterize T-cell activation, exhaustion, maturation and Treg frequencies in individuals who acquire perinatal HIV (PHIV), in individuals who acquired HIV as adult (AHIV), and in healthy controls. DESIGN This cross-sectional study included people with HIV at least 14 and younger than 40 years, HIV-RNA less than 50 copies/ml on antiretroviral therapy for at least 6 months, and HC. METHODS We assessed the expression of PD-1, TIM-3, EOMES, CD38 + DR+, maturation status by CD4 + and CD8 + T cells and the frequency of CD4 + and CD8 + Treg cells. Principal component analysis (PCA) and k-means cluster analysis investigated which combination of immunological parameters better associated with each group. RESULTS Twenty-six PHIV and 18 AHIV with median ages of 26 (8.0) and 28 (6.8) years were consecutively enrolled. PHIV showed significant higher frequency of naive and lower frequency of terminal effector memory CD4 + and CD8 + T cells than AHIV. AHIV exhibited higher expression of exhaustion and activation markers. The statistical analysis returned two clusters with 94% of specificity and 88% of sensitivity identifying PHIV vs. AHIV. The nine healthy controls had a lower expression of exhaustion markers on both CD4 + and CD8 + T lymphocytes than PHIV and AHIV. CONCLUSION These data may exclude major alterations of lymphopoiesis in PHIV, with even lower state of immune-activation and exhaustion compared with AHIV. This suggests that recent lack of virological control, may affect immune activation and exhaustion of CD4 + and CD8 + T cells.
Collapse
Affiliation(s)
- Lucia Taramasso
- Infectious Diseases Clinic, IRCCS Polyclinic San Martino Hospital
| | - Chiara Dentone
- Infectious Diseases Clinic, IRCCS Polyclinic San Martino Hospital
| | - Isabella Cama
- MIDA, Dipartimento di Matematica, Università di Genova
| | - Daniela Fenoglio
- Department of Internal Medicine-Centre of Excellence for Biomedical Research (CEBR), University of Genoa
- Biotherapy Unit, IRCCS Polyclinic San Martino
| | - Tiziana Altosole
- Department of Internal Medicine-Centre of Excellence for Biomedical Research (CEBR), University of Genoa
| | - Alessia Parodi
- Department of Internal Medicine-Centre of Excellence for Biomedical Research (CEBR), University of Genoa
| | - Cristina Campi
- MIDA, Dipartimento di Matematica, Università di Genova
- LISCOMP, IRCCS Ospedale Policlinico San Martino
| | - Michele Piana
- MIDA, Dipartimento di Matematica, Università di Genova
- LISCOMP, IRCCS Ospedale Policlinico San Martino
| | - Sara Mora
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genova
| | - Mauro Giacomini
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genova
| | - Laura Labate
- Department of Health Science (DISSAL), University of Genova and Infectious Disease Clinic, Polyclinic San Martino Hospital
| | | | | | - Gilberto Filaci
- Department of Internal Medicine-Centre of Excellence for Biomedical Research (CEBR), University of Genoa
- Biotherapy Unit, IRCCS Polyclinic San Martino
| | - Matteo Bassetti
- Infectious Diseases Clinic, IRCCS Polyclinic San Martino Hospital
- Department of Health Science (DISSAL), University of Genova and Infectious Disease Clinic, Polyclinic San Martino Hospital
| | - Antonio Di Biagio
- Infectious Diseases Clinic, IRCCS Polyclinic San Martino Hospital
- Department of Health Science (DISSAL), University of Genova and Infectious Disease Clinic, Polyclinic San Martino Hospital
| |
Collapse
|
2
|
Grant-McAuley W, Morgenlander WR, Ruczinski I, Kammers K, Laeyendecker O, Hudelson SE, Thakar M, Piwowar-Manning E, Clarke W, Breaud A, Ayles H, Bock P, Moore A, Kosloff B, Shanaube K, Meehan SA, van Deventer A, Fidler S, Hayes R, Larman HB, Eshleman SH. Identification of antibody targets associated with lower HIV viral load and viremic control. PLoS One 2024; 19:e0305976. [PMID: 39288118 PMCID: PMC11407625 DOI: 10.1371/journal.pone.0305976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND High HIV viral loads (VL) are associated with increased morbidity, mortality, and on-going transmission. HIV controllers maintain low VLs in the absence of antiretroviral therapy (ART). We previously used a massively multiplexed antibody profiling assay (VirScan) to compare antibody profiles in HIV controllers and persons living with HIV (PWH) who were virally suppressed on ART. In this report, we used VirScan to evaluate whether antibody reactivity to specific HIV targets and broad reactivity across the HIV genome was associated with VL and controller status 1-2 years after infection. METHODS Samples were obtained from participants who acquired HIV infection in a community-randomized trial in Africa that evaluated an integrated strategy for HIV prevention (HPTN 071 PopART). Controller status was determined using VL and antiretroviral (ARV) drug data obtained at the seroconversion visit and 1 year later. Viremic controllers had VLs <2,000 copies/mL at both visits; non-controllers had VLs >2,000 copies/mL at both visits. Both groups had no ARV drugs detected at either visit. VirScan testing was performed at the second HIV-positive visit (1-2 years after HIV infection). RESULTS The study cohort included 13 viremic controllers and 64 non-controllers. We identified ten clusters of homologous peptides that had high levels of antibody reactivity (three in gag, three in env, two in integrase, one in protease, and one in vpu). Reactivity to 43 peptides (eight unique epitopes) in six of these clusters was associated with lower VL; reactivity to six of the eight epitopes was associated with HIV controller status. Higher aggregate antibody reactivity across the eight epitopes (more epitopes targeted, higher mean reactivity across all epitopes) and across the HIV genome was also associated with lower VL and controller status. CONCLUSIONS We identified HIV antibody targets associated with lower VL and HIV controller status 1-2 years after infection. Robust aggregate responses to these targets and broad antibody reactivity across the HIV genome were also associated with lower VL and controller status. These findings provide novel insights into the relationship between humoral immunity and viral containment that could help inform the design of antibody-based approaches for reducing HIV VL.
Collapse
Affiliation(s)
- Wendy Grant-McAuley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William R Morgenlander
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kai Kammers
- Quantitative Sciences Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Oliver Laeyendecker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sarah E Hudelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Manjusha Thakar
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Estelle Piwowar-Manning
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Autumn Breaud
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Helen Ayles
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter Bock
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Ayana Moore
- FHI 360, Durham, North Carolina, United States of America
| | - Barry Kosloff
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kwame Shanaube
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
| | - Sue-Ann Meehan
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Anneen van Deventer
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Richard Hayes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - H Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Susan H Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
3
|
Díaz-Basilio F, Vergara-Mendoza M, Romero-Rodríguez J, Hernández-Rizo S, Escobedo-Calvario A, Fuentes-Romero LL, Pérez-Patrigeon S, Murakami-Ogasawara A, Gomez-Palacio M, Reyes-Terán G, Jiang W, Vázquez-Pérez JA, Marín-Hernández Á, Romero-Rodríguez DP, Gutiérrez-Ruiz MC, Viveros-Rogel M, Espinosa E. The ecto-enzyme CD38 modulates CD4T cell immunometabolic responses and participates in HIV pathogenesis. J Leukoc Biol 2024; 116:440-455. [PMID: 38466822 DOI: 10.1093/jleuko/qiae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Despite abundant evidence correlating T cell CD38 expression and HIV infection pathogenesis, its role as a CD4T cell immunometabolic regulator remains unclear. We find that CD38's extracellular glycohydrolase activity restricts metabolic reprogramming after T cell receptor (TCR)-engaging stimulation in Jurkat T CD4 cells, together with functional responses, while reducing intracellular nicotinamide adenine dinucleotide and nicotinamide mononucleotide concentrations. Selective elimination of CD38's ectoenzyme function licenses them to decrease the oxygen consumption rate/extracellular acidification rate ratio upon TCR signaling and to increase cycling, proliferation, survival, and CD40L induction. Pharmacological inhibition of ecto-CD38 catalytic activity in TM cells from chronic HIV-infected patients rescued TCR-triggered responses, including differentiation and effector functions, while reverting abnormally increased basal glycolysis, cycling, and spontaneous proinflammatory cytokine production. Additionally, ecto-CD38 blockage normalized basal and TCR-induced mitochondrial morphofunctionality, while increasing respiratory capacity in cells from HIV+ patients and healthy individuals. Ectoenzyme CD38's immunometabolic restriction of TCR-involving stimulation is relevant to CD4T cell biology and to the deleterious effects of CD38 overexpression in HIV disease.
Collapse
Affiliation(s)
- Fernando Díaz-Basilio
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
- PECEM Graduate Program, Faculty of Medicine, National Autonomous University of Mexico, Circuito Escolar, Ciudad Universitaria, Coyoacán, 04510 Mexico City, Mexico
| | - Moisés Vergara-Mendoza
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Jessica Romero-Rodríguez
- Flow Cytometry Core Facility, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Sharik Hernández-Rizo
- Laboratory for Cellular Physiology and Translational Medicine, Department of Health Sciences, Autonomous Metropolitan University, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Alejandro Escobedo-Calvario
- Laboratory for Cellular Physiology and Translational Medicine, Department of Health Sciences, Autonomous Metropolitan University, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Luis-León Fuentes-Romero
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Santiago Pérez-Patrigeon
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Akio Murakami-Ogasawara
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - María Gomez-Palacio
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Ashley Ave. BSB- 214C, Charleston, SC 29425, United States
| | - Joel-Armando Vázquez-Pérez
- Laboratory for Emergent Diseases and COPD, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Álvaro Marín-Hernández
- Department of Biochemistry, National Institute of Cardiology Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Dámaris-Priscila Romero-Rodríguez
- Flow Cytometry Core Facility, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - María-Concepción Gutiérrez-Ruiz
- Laboratory for Cellular Physiology and Translational Medicine, Department of Health Sciences, Autonomous Metropolitan University, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Mónica Viveros-Rogel
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Enrique Espinosa
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| |
Collapse
|
4
|
Al-Talib M, Dimonte S, Humphreys IR. Mucosal T-cell responses to chronic viral infections: Implications for vaccine design. Cell Mol Immunol 2024; 21:982-998. [PMID: 38459243 PMCID: PMC11364786 DOI: 10.1038/s41423-024-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
Mucosal surfaces that line the respiratory, gastrointestinal and genitourinary tracts are the major interfaces between the immune system and the environment. Their unique immunological landscape is characterized by the necessity of balancing tolerance to commensal microorganisms and other innocuous exposures against protection from pathogenic threats such as viruses. Numerous pathogenic viruses, including herpesviruses and retroviruses, exploit this environment to establish chronic infection. Effector and regulatory T-cell populations, including effector and resident memory T cells, play instrumental roles in mediating the transition from acute to chronic infection, where a degree of viral replication is tolerated to minimize immunopathology. Persistent antigen exposure during chronic viral infection leads to the evolution and divergence of these responses. In this review, we discuss advances in the understanding of mucosal T-cell immunity during chronic viral infections and how features of T-cell responses develop in different chronic viral infections of the mucosa. We consider how insights into T-cell immunity at mucosal surfaces could inform vaccine strategies: not only to protect hosts from chronic viral infections but also to exploit viruses that can persist within mucosal surfaces as vaccine vectors.
Collapse
Affiliation(s)
- Mohammed Al-Talib
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, UK
| | - Sandra Dimonte
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Ian R Humphreys
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
5
|
Zhang M, Dai G, Smith DL, Zacco E, Shimoda M, Kumar N, Girling V, Gardner K, Hunt PW, Huang L, Lin J. Interferon-signaling pathways are upregulated in people with HIV with abnormal pulmonary diffusing capacity (DL CO ). AIDS 2024; 38:1523-1532. [PMID: 38819840 PMCID: PMC11239097 DOI: 10.1097/qad.0000000000003946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE People with HIV (PWH) are at greater risk of developing lung diseases even when they are antiretroviral therapy (ART)-adherent and virally suppressed. The most common pulmonary function abnormality in PWH is that of impaired diffusing capacity of the lungs for carbon monoxide (DL CO ), which is an independent risk factor for increased mortality in PWH. Earlier work has identified several plasma biomarkers of inflammation and immune activation to be associated with decreased DL CO . However, the underpinning molecular mechanisms of HIV-associated impaired DL CO are largely unknown. DESIGN Cross-sectional pilot study with PWH with normal DL CO (values greater than or equal to the lower limit of normal, DL CO ≥ LLN, N = 9) or abnormal DL CO (DL CO < LLN, N = 9). METHODS We compared the gene expression levels of over 900 inflammation and immune exhaustion genes in PBMCs from PWH with normal vs. abnormal DL CO using the NanoString technology. RESULTS We found that 26 genes were differentially expressed in the impaired DL CO group. These genes belong to 4 categories: 1. Nine genes in inflammation and immune activation pathways, 2. seven upregulated genes that are direct targets of the interferon signaling pathway, 3. seven B-cell specific genes that are downregulated, and 4. three miscellaneous genes. These results were corroborated using the bioinformatics tools DAVID (Database for Annotation, Visualization and Integrated Discovery) and GSEA (Gene Sets Enrichment Analysis). CONCLUSION The data provides preliminary evidence for the involvement of sustained interferon signaling as a molecular mechanism for impaired DL CO in PWH.
Collapse
Affiliation(s)
- Michelle Zhang
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine
| | - Guorui Dai
- Department of Biochemistry and Biophysics
| | | | - Emanuela Zacco
- Laboratory for Cell Analysis, Helen Diller Comprehensive Cancer Center
| | | | - Nitasha Kumar
- Core Immunology Lab, Division of Experimental Medicine
| | | | - Kendall Gardner
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine
| | | | - Laurence Huang
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics
| |
Collapse
|
6
|
Gupta A, Righi E, Konnova A, Sciammarella C, Spiteri G, Van Averbeke V, Berkell M, Hotterbeekx A, Sartor A, Mirandola M, Malhotra-Kumar S, Azzini AM, Pezzani D, Monaco MGL, Vanham G, Porru S, Tacconelli E, Kumar-Singh S. Interleukin-2-mediated CD4 T-cell activation correlates highly with effective serological and T-cell responses to SARS-CoV-2 vaccination in people living with HIV. J Med Virol 2024; 96:e29820. [PMID: 39056205 DOI: 10.1002/jmv.29820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
People living with HIV (PLWH) despite having an appreciable depletion of CD4+ T-cells show a good severe acute respiratory syndrome coronavirus 2 vaccination response. The underlying mechanism(s) are currently not understood. We studied serological and polyfunctional T-cell responses in PLWH receiving anti-retroviral therapy stratified on CD4+ counts as PLWH-high (CD4 ≥ 500 cells/mm3) and PLWH-low (<500 cells/mm3). Responses were assessed longitudinally before the first vaccination (T0), 1-month after the first dose (T1), 3-months (T2), and 6-months (T3) after the second dose. Expectedly, both PLWH-high and -low groups developed similar serological responses after T2, which were also non-significantly different from age and vaccination-matched HIV-negative controls at T3. The immunoglobulin G titers were also protective showing a good correlation with angiotensin-converting enzyme 2-neutralizations (R = 0.628, p = 0.005). While surface and intracellular activation analysis showed no significant difference at T3 between PLWH and controls in activated CD4+CD154+ and CD4+ memory T-cells, spike-specific CD4+ polyfunctional cytokine expression analysis showed that PLWH preferentially express interleukin (IL)-2 (p < 0.001) and controls, interferon-γ (p = 0.017). CD4+ T-cell counts negatively correlated with IL-2-expressing CD4+ T-cells including CD4+ memory T-cells (Spearman ρ: -0.85 and -0.80, respectively; p < 0.001). Our results suggest that the durable serological and CD4+ T-cell responses developing in vaccinated PLWH are associated with IL-2-mediated CD4+ T-cell activation that likely compensates for CD4+ T-cell depletion in PLWH.
Collapse
Affiliation(s)
- Akshita Gupta
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Elda Righi
- Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Angelina Konnova
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Concetta Sciammarella
- Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Gianluca Spiteri
- Occupational Medicine Unit, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Vincent Van Averbeke
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Matilda Berkell
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - An Hotterbeekx
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Assunta Sartor
- Microbiology Unit, Udine University Hospital, Udine, Italy
| | - Massimo Mirandola
- Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- School of Health Sciences, University of Brighton, Brighton, UK
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Anna Maria Azzini
- Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Diletta Pezzani
- Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria Grazia Lourdes Monaco
- Occupational Medicine Unit, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Guido Vanham
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Stefano Porru
- Occupational Medicine Unit, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Evelina Tacconelli
- Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Samir Kumar-Singh
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
8
|
Moyano A, Ndlovu B, Mbele M, Naidoo K, Khan N, Mann JK, Ndung'u T. Differing natural killer cell, T cell and antibody profiles in antiretroviral-naive HIV-1 viraemic controllers with and without protective HLA alleles. PLoS One 2023; 18:e0286507. [PMID: 37267224 DOI: 10.1371/journal.pone.0286507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Previous work suggests that HIV controllers with protective human leukocyte antigen class I alleles (VC+) possess a high breadth of Gag-specific CD8+ T cell responses, while controllers without protective alleles (VC-) have a different unknown mechanism of control. We aimed to gain further insight into potential mechanisms of control in VC+ and VC-. We studied 15 VC+, 12 VC- and 4 healthy uninfected individuals (UI). CD8+ T cell responses were measured by ELISpot. Flow cytometry was performed to analyse surface markers for activation, maturation, and exhaustion on natural killer (NK) cell and T cells, as well as cytokine secretion from stimulated NK cells. We measured plasma neutralization activity against a panel of 18 Env-pseudotyped viruses using the TZM-bl neutralization assay. We found no significant differences in the magnitude and breadth of CD8+ T cell responses between VC+ and VC-. However, NK cells from VC- had higher levels of activation markers (HLA-DR and CD38) (p = 0.03), and lower cytokine expression (MIP-1β and TNF-α) (p = 0.05 and p = 0.04, respectively) than NK cells from VC+. T cells from VC- had higher levels of activation (CD38 and HLA-DR co-expression) (p = 0.05), as well as a trend towards higher expression of the terminal differentiation marker CD57 (p = 0.09) when compared to VC+. There was no difference in overall neutralization breadth between VC+ and VC- groups, although there was a trend for higher neutralization potency in the VC- group (p = 0.09). Altogether, these results suggest that VC- have a more activated NK cell profile with lower cytokine expression, and a more terminally differentiated and activated T cell profile than VC+. VC- also showed a trend of more potent neutralizing antibody responses that may enhance viral clearance. Further studies are required to understand how these NK, T cell and antibody profiles may contribute to differing mechanisms of control in VC+ and VC-.
Collapse
Affiliation(s)
- Ana Moyano
- Africa Health Research Institute, KwaZulu-Natal, South Africa, Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bongiwe Ndlovu
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Msizi Mbele
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Kewreshini Naidoo
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Khan
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Jaclyn K Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung'u
- Africa Health Research Institute, KwaZulu-Natal, South Africa, Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
9
|
Liang M, Tang Q, Zhong J, Ai Y. Machine learning empowered multi-stress level electromechanical phenotyping for high-dimensional single cell analysis. Biosens Bioelectron 2023; 225:115086. [PMID: 36696849 DOI: 10.1016/j.bios.2023.115086] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/17/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Microfluidics provides a powerful platform for biological analysis by harnessing the ability to precisely manipulate fluids and microparticles with integrated microsensors. Here, we introduce an imaging and impedance cell analyzer (IM2Cell), which implements single cell level impedance analysis and hydrodynamic mechanical phenotyping simultaneously. For the first time, IM2Cell demonstrates the capability of multi-stress level mechanical phenotyping. Specifically, IM2Cell is capable of characterizing cell diameter, three deformability responses, and four electrical properties. It presents high-dimensional information to give insight into subcellular components such as cell membrane, cytoplasm, cytoskeleton, and nucleus. In this work, we first validate imaging and impedance-based cell analyses separately. Then, the two techniques are combined to obtain both imaging and impedance data analyzed by machine learning method, exhibiting an improved prediction accuracy from 83.1% to 95.4% between fixed and living MDA-MB-231 breast cancer cells. Next, IM2Cell demonstrates 91.2% classification accuracy in a mixture of unlabeled MCF-10A, MCF-7, and MDA-MB-231 cell lines. Finally, an application demonstrates the potential of IM2Cell for the deformability studies of peripheral blood mononuclear cells (PBMCs) subpopulations without cumbersome isolation or labeling steps.
Collapse
Affiliation(s)
- Minhui Liang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Qiang Tang
- Jiangsu Provincal Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore.
| |
Collapse
|
10
|
Teque F, Wegehaupt A, Roufs E, Killian MS. CD8+ Lymphocytes from Healthy Blood Donors Secrete Antiviral Levels of Interferon-Alpha. Viruses 2023; 15:v15040894. [PMID: 37112874 PMCID: PMC10144965 DOI: 10.3390/v15040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The adaptive immune response to viral infections features the antigen-driven expansion of CD8+ T cells. These cells are widely recognized for their cytolytic activity that is mediated through the secretion of cytokines such as perforin and granzymes. Less appreciated is their ability to secrete soluble factors that restrict virus replication without killing the infected cells. In this study we measured the ability of primary anti-CD3/28-stimulated CD8+ T cells from healthy blood donors to secrete interferon-alpha. Supernatants collected from CD8+ T cell cultures were screened for their ability to suppress HIV-1 replication in vitro and their interferon-alpha concentrations were measured by ELISA. Interferon-alpha concentrations in the CD8+ T cell culture supernatants ranged from undetectable to 28.6 pg/mL. The anti-HIV-1 activity of the cell culture supernatants was observed to be dependent on the presence of interferon-alpha. Appreciable increases in the expression levels of type 1 interferon transcripts were observed following T cell receptor stimulation, suggesting that the secretion of interferon-alpha by CD8+ T cells is an antigen-driven response. In 42-plex cytokine assays, the cultures containing interferon-alpha were also found to contain elevated levels of GM-CSF, IL-10, IL-13, and TNF-alpha. Together, these results demonstrate that the secretion of anti-viral levels of interferon-alpha is a common function of CD8+ T cells. Furthermore, this CD8+ T cell function likely plays broader roles in health and disease.
Collapse
|
11
|
Azamar-Alonso A, Mbuagbaw L, Smaill F, Bautista-Arredondo SA, Costa AP, Tarride JE. Virologic failure in people living with HIV in 1st line ART: A 10-year Mexican population-based study. Int J STD AIDS 2022; 33:363-373. [PMID: 35118929 PMCID: PMC8958557 DOI: 10.1177/09564624211067036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background In Mexico, the number of people living with HIV (PLWH) receiving antiretroviral therapy (ART) has increased in the last 20 years. The elimination of a CD4 threshold to initiate publicly funded ART was a major policy implemented in 2014. The study objective was to assess the determinants of Virologic Failure (VF) in Mexican PLWH on first-line ART between 2008 and 2017 and to evaluate the effects of changes following the 2014 policy. Methods A 10-year patient-level data analysis was conducted using the Mexican SALVAR database. The main outcome was the proportion of PLWH with VF. A multivariable logistic regression was conducted to identify the association between covariates and VF before and after the 2014 policy implementation. Results We found a lower proportion of people with VF in 2014–2017 compared with 2008–2013 (50% vs 33%, p<0.001). The multivariable analysis showed a reduction in the odds of virologic failure after 2014 (Odds ratio: 0.50 [95% CI: 0.48–0.51]). Place of treatment and level of deprivation were significant predictors of VF in during 2014–2017, but not before. Conclusion This study indicates that, by lowering threshold levels of CD4 required for treatment initiation in Mexico, a higher number of PLWH initiated treatment during 2014–2017, compared to 2008–2013 and the odds of VF were reduced.
Collapse
Affiliation(s)
- Amilcar Azamar-Alonso
- Department of Health Research Methods, Evidence, and Impact, 3710McMaster University, Hamilton, Ontario, Canada.,Gilead Sciences Inc., Foster City, CA, United States
| | - Lawrence Mbuagbaw
- Department of Health Research Methods, Evidence, and Impact, 3710McMaster University, Hamilton, Ontario, Canada.,Biostatistics Unit, Father Sean O'Sullivan Research Centre, Hamilton, ON, Canada
| | - Fiona Smaill
- ChB Department of Pathology and Molecular Medicine, Faculty of Health Sciences, 3710McMaster University, Hamilton, Ontario, Canada
| | | | - Andrew P Costa
- Department of Health Research Methods, Evidence, and Impact, 3710McMaster University, Hamilton, Ontario, Canada.,Centre for Health Economics and Policy Analysis, 3710McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, 3710McMaster University, Hamilton, Ontario, Canada
| | - Jean-Eric Tarride
- Department of Health Research Methods, Evidence, and Impact, 3710McMaster University, Hamilton, Ontario, Canada.,Centre for Health Economics and Policy Analysis, 3710McMaster University, Hamilton, Ontario, Canada.,The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,McMaster Chair in Health Technology Management Hamilton, Hamilton, ON, Canada
| |
Collapse
|
12
|
Rodríguez-Castañón JM, Mcnaughton A, Cárdenas-Ochoa A, Fuentes-Romero LL, Viveros-Rogel M, Vergara-Mendoza M, Tello-Mercado AC, Leal-Gutiérrez G, Romero-Carvajal JJ, Cázares-Lara J, Camiro-Zúñiga A, Jaramillo-Jante R, Antuna-Puente B, Galindo-Fraga A, Soto-Ramírez LE, Sierra-Madero JG, Perez-Patrigeon S. Exceptional T CD4 + Recovery Post-antiretroviral Is Linked to a Lower HIV Reservoir with a Specific Immune Differentiation Pattern. AIDS Res Hum Retroviruses 2022; 38:11-21. [PMID: 33779241 DOI: 10.1089/aid.2020.0270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We present a cohort of individuals who reached CD4+ T cell counts of greater than 1,000 cells/mm3 (Hypers) after starting antiretroviral treatment (ART) and compared them with those who reached between 350 and 999 CD4+ T cells/mm3 (Concordants). Demographic data, immune recovery kinetics, T CD4+ subset phenotypes, and integrated HIV DNA were analyzed. Data from individuals living with HIV on their first ART regimen and after 48 months of follow-up were obtained. Immune phenotype by Flow Cytometry analysis on whole blood was performed, cytokines were measured, and integrated HIV-1 DNA was measured by polymerase chain reaction. From a total of 424 individuals, 26 Hypers (6.1%), 314 Concordants (74.1%), and 84 (19.8%) discordants were identified. Hypers had a higher proportion of CD4+-naive (Nv) T cells (37.6 vs. 24.8, p < .05), and a low proportion of CD4+ effector memory T cells (27.9 vs. 39.4, p < .05), with similar results found in CD8+ T cells. Hypers demonstrated a higher percentage of CD4+CD45RA+CD31neg cells with a lower response to interleukin-2 stimulation and a lower integrated HIV-1 DNA/CD4 ratio (1.2 vs. 2.89, p < .05). In Hypers, T cell recovery occurs very early after initiation of ART. Following this initial recovery state, their CD4+ T cell level homeostasis seems to be driven by nonthymic-central-Nv cells. This exceptional recovery is associated with a lower HIV reservoir, which may be related to an increase in noninfected CD4+ T cells. These patients could then be eligible candidates for cure trials.
Collapse
Affiliation(s)
- José Miguel Rodríguez-Castañón
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición salvador Zubirán, Mexico City, Mexico
| | - Andrew Mcnaughton
- Division of Infectious Diseases, Queen's University, Kingston, Canada Kingston, Canada
| | - Ayleen Cárdenas-Ochoa
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición salvador Zubirán, Mexico City, Mexico
| | - Luis León Fuentes-Romero
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición salvador Zubirán, Mexico City, Mexico
| | - Mónica Viveros-Rogel
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición salvador Zubirán, Mexico City, Mexico
| | - Moisés Vergara-Mendoza
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición salvador Zubirán, Mexico City, Mexico
| | - Andrea C. Tello-Mercado
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición salvador Zubirán, Mexico City, Mexico
| | - Graciela Leal-Gutiérrez
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición salvador Zubirán, Mexico City, Mexico
| | - Juan José Romero-Carvajal
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición salvador Zubirán, Mexico City, Mexico
| | - Jonnathan Cázares-Lara
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición salvador Zubirán, Mexico City, Mexico
| | - Antonio Camiro-Zúñiga
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición salvador Zubirán, Mexico City, Mexico
| | - Rocío Jaramillo-Jante
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición salvador Zubirán, Mexico City, Mexico
| | | | - Arturo Galindo-Fraga
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición salvador Zubirán, Mexico City, Mexico
| | - Luis E. Soto-Ramírez
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición salvador Zubirán, Mexico City, Mexico
| | - Juan G. Sierra-Madero
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición salvador Zubirán, Mexico City, Mexico
| | - Santiago Perez-Patrigeon
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición salvador Zubirán, Mexico City, Mexico
- Division of Infectious Diseases, Queen's University, Kingston, Canada Kingston, Canada
| |
Collapse
|
13
|
Fischer W, Giorgi EE, Chakraborty S, Nguyen K, Bhattacharya T, Theiler J, Goloboff PA, Yoon H, Abfalterer W, Foley BT, Tegally H, San JE, de Oliveira T, Gnanakaran S, Korber B. HIV-1 and SARS-CoV-2: Patterns in the evolution of two pandemic pathogens. Cell Host Microbe 2021; 29:1093-1110. [PMID: 34242582 PMCID: PMC8173590 DOI: 10.1016/j.chom.2021.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Humanity is currently facing the challenge of two devastating pandemics caused by two very different RNA viruses: HIV-1, which has been with us for decades, and SARS-CoV-2, which has swept the world in the course of a single year. The same evolutionary strategies that drive HIV-1 evolution are at play in SARS-CoV-2. Single nucleotide mutations, multi-base insertions and deletions, recombination, and variation in surface glycans all generate the variability that, guided by natural selection, enables both HIV-1's extraordinary diversity and SARS-CoV-2's slower pace of mutation accumulation. Even though SARS-CoV-2 diversity is more limited, recently emergent SARS-CoV-2 variants carry Spike mutations that have important phenotypic consequences in terms of both antibody resistance and enhanced infectivity. We review and compare how these mutational patterns manifest in these two distinct viruses to provide the variability that fuels their evolution by natural selection.
Collapse
Affiliation(s)
- Will Fischer
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; New Mexico Consortium, Los Alamos, New Mexico, 87545, USA
| | - Elena E Giorgi
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; New Mexico Consortium, Los Alamos, New Mexico, 87545, USA
| | - Srirupa Chakraborty
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Kien Nguyen
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Tanmoy Bhattacharya
- T-2: Nuclear and Particle Physics, Astrophysics and Cosmology, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 USA
| | - James Theiler
- ISR-3: Space Data Science and Systems, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Pablo A Goloboff
- Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación Miguel Lillo, S. M. de Tucumán, Miguel Lillo 251 4000, Argentina; Research Associate, American Museum of Natural History, New York 10024, USA
| | - Hyejin Yoon
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Werner Abfalterer
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Brian T Foley
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - James Emmanuel San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sandrasegaram Gnanakaran
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Bette Korber
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; New Mexico Consortium, Los Alamos, New Mexico, 87545, USA.
| |
Collapse
|
14
|
Liang M, Yang D, Zhou Y, Li P, Zhong J, Ai Y. Single-Cell Stretching in Viscoelastic Fluids with Electronically Triggered Imaging for Cellular Mechanical Phenotyping. Anal Chem 2021; 93:4567-4575. [DOI: 10.1021/acs.analchem.0c05009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Minhui Liang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Dahou Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Yinning Zhou
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Peixian Li
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| |
Collapse
|
15
|
Zhang X, Lu X, Cheung AKL, Zhang Q, Liu Z, Li Z, Yuan L, Wang R, Liu Y, Tang B, Xia H, Wu H, Zhang T, Su B. Analysis of the Characteristics of TIGIT-Expressing CD3 -CD56 +NK Cells in Controlling Different Stages of HIV-1 Infection. Front Immunol 2021; 12:602492. [PMID: 33717085 PMCID: PMC7953050 DOI: 10.3389/fimmu.2021.602492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
TIGIT expression on natural killer (NK) cells is associated with dysfunction during chronic HIV infection, but the phenotype and biological functions of these cells in the context of acute HIV-1 infection remain poorly understood. Here, 19 acutely infected HIV-1 patients traced at first, third and twelfth month, and age-matched patients with chronic HIV-1 infection were enrolled to investigate the phenotype and functions of TIGIT expression on NK cells. We found that TIGIT-expressing NK cells did not increase in frequency in the first, third and twelfth month of infection until chronic HIV-1 infection lasted over 2 years. The number of TIGIT+NK cells in acute infection was positively associated with HIV-1 viral load (r = 0.53, P = 0.0009). CD96 was significantly upregulated on NK cells after acute infection for 1 month and in chronic infection over 2 years, while CD226 was downregulated in chronic infection over 2 years. Further, at different stages of infection, CD96−CD226+ cells diminished among total NK cells, TIGIT+NK and TIGIT−NK cells, while CD96+CD226− cells expanded. Reduced CD96−CD226+ cells and elevated CD96+CD226− cells among NK cells especially TIGIT−NK cells, had opposite associations with viral load in the first month of infection, as well as CD4 T-cell counts in including the twelfth month and more than 2 years of chronic infection. In both HIV-1-infected individuals and healthy donors, TIGIT was predominantly expressed in NKG2A−NKG2C+NK cells, with a significantly higher proportion than in NKG2A+NKG2C−NK cells. Moreover, the frequencies of TIGIT+NK cells were positively associated with the frequencies of NKG2A−NKG2C+NK cells in acute infection (r = 0.62, P < 0.0001), chronic infection (r = 0.37, P = 0.023) and healthy donors (r = 0.36, P = 0.020). Enhanced early activation and coexpression of CD38 and HLA-DR in TIGIT+NK cells were detected compared to TIGIT−NK cells, both of which were inversely associated with the decrease in CD4 T-cell counts in both acute and chronic HIV-1 infection. The ability of TIGIT+NK cells to produce TNF-α, IFN-γ and CD107a degranulation substance were consistently weaker than that of TIGIT−NK cells in both acute and chronic infection. Moreover, the functionalities of TIGIT+NK cells were lower than those of TIGIT−NK cells, except for TNF-α−CD107a+IFN-γ−NK cells. These findings highlight the phenotype and functional characteristics of TIGIT-expressing NK cells which have poor capabilities in inhibiting HIV-1 replication and maintaining CD4 T-cell counts.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Xiaofan Lu
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Allen Ka Loon Cheung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Qiuyue Zhang
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Zhiying Liu
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Zhen Li
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Lin Yuan
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Rui Wang
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Yan Liu
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Bin Tang
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Huan Xia
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hao Wu
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Tong Zhang
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Bin Su
- Department of Infectious Diseases and Medical Immunology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| |
Collapse
|
16
|
Hove-Skovsgaard M, Zhao Y, Tingstedt JL, Hartling HJ, Thudium RF, Benfield T, Afzal S, Nordestgaard B, Ullum H, Gerstoft J, Mocroft A, Nielsen SD. Impact of Age and HIV Status on Immune Activation, Senescence and Apoptosis. Front Immunol 2020; 11:583569. [PMID: 33117394 PMCID: PMC7561401 DOI: 10.3389/fimmu.2020.583569] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Residual immune dysfunctions, resembling those that occur during normal aging, may persist even in well-treated people with HIV (PWH), and accelerated aging has been proposed. We aimed to determine if HIV infection is an independent risk factor for T-cell immune dysfunctions including increased immune activation, senescence and apoptosis. Moreover, in PWH we aimed to identify the associations between age and immune activation, senescence and apoptosis. Materials and Methods We included 780 PWH with suppressed viral replication (<50 copies/mL) and absence of hepatitis B and hepatitis C co-infection and 65 uninfected controls from the Copenhagen Co-morbidity in HIV Infection (COCOMO) Study. Flow cytometry was used to determine T-cell activation (CD38+HLA-DR+), senescence (CD28-CD57+), and apoptosis (CD28-CD95+). T-cell subsets are reported as proportions of CD4+ and CD8+ T-cells. We defined an elevated proportion of a given T-cell subset as above the 75th percentile. Regression models were used to determine the association between HIV status and T-cell subset and in PWH to determine the association between age or HIV-specific risk factors and T-cell subsets. Furthermore, an interaction between HIV status and age on T-cell subsets was investigated with an interaction term in models including both PWH and controls. Models were adjusted for age, sex, BMI, and smoking status. Results In adjusted models a positive HIV status was associated with elevated proportions of CD8+ activated (p = 0.009), CD4+ senescent (p = 0.004), CD4+ apoptotic (p = 0.002), and CD8+ apoptotic (p = 0.003) T-cells. In PWH a 10-year increase in age was associated with higher proportions of CD4+ and CD8+ senescent (p = 0.001 and p < 0.001) and CD4+ and CD8+ apoptotic T-cells (p < 0.001 and p < 0.001). However, no interaction between HIV status and age was found. Furthermore, in PWH a CD4+/CD8+ ratio < 1 was associated with elevated proportions of T-cell activation, senescence, and apoptosis. Discussion We found evidence of residual T-cell immune dysfunction in well-treated PWH without HBV or HCV co-infection, and age was associated with T-cell senescence and apoptosis. Our data supports that HIV infection has similar effects as aging on T-cell subsets. However, since no interaction between HIV status and age was found on these parameters, we found no evidence to support accelerated immunological aging in PWH.
Collapse
Affiliation(s)
- Malene Hove-Skovsgaard
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Yanan Zhao
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Hans Jakob Hartling
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rebekka Faber Thudium
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Hvidovre Hospital, Copenhagen University Hospital, Amager and Hvidovre, Hvidovre, Denmark.,Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Shoaib Afzal
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The Copenhagen General Population Study, Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Børge Nordestgaard
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The Copenhagen General Population Study, Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Henrik Ullum
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gerstoft
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Amanda Mocroft
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute for Global Health, UCL, London, United Kingdom
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Dalzini A, Petrara MR, Ballin G, Zanchetta M, Giaquinto C, De Rossi A. Biological Aging and Immune Senescence in Children with Perinatally Acquired HIV. J Immunol Res 2020; 2020:8041616. [PMID: 32509884 PMCID: PMC7246406 DOI: 10.1155/2020/8041616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic HIV-infected children suffer from premature aging and aging-related diseases. Viral replication induces an ongoing inflammation process, with the release of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), the activation of the immune system, and the production of proinflammatory cytokines. Although combined highly active antiretroviral therapy (ART) has significantly modified the natural course of HIV infection, normalization of T and B cell phenotype is not completely achievable; thus, many HIV-infected children display several phenotypical alterations, including higher percentages of activated cells, that favor an accelerated telomere attrition, and higher percentages of exhausted and senescent cells. All these features ultimately lead to the clinical manifestations related to premature aging and comorbidities typically observed in older general population, including non-AIDS-related malignancies. Therefore, even under effective treatment, the premature aging process of HIV-infected children negatively impacts their quality and length of life. This review examines the available data on the impact of HIV and ART on immune and biological senescence of HIV-infected children.
Collapse
Affiliation(s)
- Annalisa Dalzini
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
| | - Maria Raffaella Petrara
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
| | - Giovanni Ballin
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
| | | | - Carlo Giaquinto
- Department of Mother and Child Health, University of Padova, Padova, Italy
| | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| |
Collapse
|
18
|
Song CB, Zhang LL, Wu X, Fu YJ, Jiang YJ, Shang H, Zhang ZN. CD4 +CD38 + central memory T cells contribute to HIV persistence in HIV-infected individuals on long-term ART. J Transl Med 2020; 18:95. [PMID: 32093678 PMCID: PMC7038621 DOI: 10.1186/s12967-020-02245-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Despite the effective antiretroviral treatment (ART) of HIV-infected individuals, HIV persists in a small pool. Central memory CD4+ T cells (Tcm) make a major contribution to HIV persistence. We found that unlike HLA-DR, CD38 is highly expressed on the Tcm of HIV-infected subjects receiving ART for > 5 years. It has been reported that the half-life of total and episomal HIV DNA in the CD4+CD38+ T cell subset, exhibits lower decay rates at 12 weeks of ART. Whether CD38 contributes to HIV latency in HIV-infected individuals receiving long-term ART is yet to be addressed. Methods Peripheral blood mononuclear cells (PBMCs) were isolated from the whole blood of HIV-infected subjects receiving suppressive ART. The immunophenotyping, proliferation and apoptosis of CD4+ T cell subpopulations were detected by flow cytometry, and the level of CD38 mRNA and total HIV DNA were measured using real-time PCR and digital droplet PCR, respectively. A negative binomial regression model was used to determine the correlation between CD4+CD38+ Tcm and total HIV DNA in CD4+ T cells. Results CD38 was highly expressed on CD4+ Tcm cells from HIV infected individuals on long-term ART. Comparing with HLA-DR−Tcm and CD4+HLA-DR+ T cells, CD4+CD38+ Tcm cells displayed lower levels of activation (CD25 and CD69) and higher levels of CD127 expression. The proportion of CD38+ Tcm, but not CD38− Tcm cells can predict the total HIV DNA in the CD4+ T cells and the CD38+ Tcm subset harbored higher total HIV DNA copy numbers than the CD38− Tcm subset. After transfected with CD38 si-RNA in CD4+ T cells, the proliferation of CD4+ T cells was inhibited. Conclusion The current date indicates that CD4+CD38+ Tcm cells contribute to HIV persistence in HIV-infected individuals on long-term ART. Our study provides a potential target to resolve HIV persistence.
Collapse
Affiliation(s)
- Cheng-Bo Song
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Le-Le Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Xian Wu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Ya-Jing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Yong-Jun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China.
| | - Zi-Ning Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China.
| |
Collapse
|
19
|
Aziz N, Jamieson BD, Quint JJ, Martinez-Maza O, Chow M, Detels R. Longitudinal Intra- and Inter-individual variation in T-cell subsets of HIV-infected and uninfected men participating in the LA Multi-Center AIDS Cohort Study. Medicine (Baltimore) 2019; 98:e17525. [PMID: 31593126 PMCID: PMC6799419 DOI: 10.1097/md.0000000000017525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 11/26/2022] Open
Abstract
To assess the intra-individual and inter-individuals biological variation and the effect of aging on lymphocyte T-cells subsets.We assessed lymphocyte phenotypes (CD3, CD4, and CD8 T-cells) in 89 HIV-1-infected and 88 uninfected white non-Hispanic men every 6 months, to examine the biological variation for those measurements, and the average change in lymphocyte phenotype over 34 years.The markers showed significant intra-individuality in HIV-infected and uninfected individuals with index of individuality of <1.4. No mean changes were seen over the 34 years, with the exception of percentage CD4T-cells in HIV-uninfected individuals.In the pre-HAART era, HIV-infected individuals experienced an increase in mean absolute CD3 T-cell numbers (11.21 cells/μL, P = 0.02) and absolute CD8 T-cell numbers (34.57 cell/μl, P < .001), and in the percentage of CD8 T-cells (1.45%, P < .001) per year and a significant decrease in mean absolute CD4 T-cell numbers (23.68 cells/μl, P < .001) and in the percentage of CD4 T-cells (1.49%, P < .001) per year.In the post-HAART era, no changes in mean levels were observed in absolute CD3 T-cell count (P = .15) or percentage (P = .99). Significant decreases were seen in mean count (8.56 cells/μl, P < .001) and percentage (0.59%, P < .001) of CD8 T-cells, and increases in mean absolute count (10.72 cells/μl, P < .001) and percentage (0.47%, P < .001) of CD4 T-cells.With the exception of CD4 (%), no average changes per year were seen in lymphocyte phenotype of HIV-uninfected men. The results of coefficients of variation of intra and inter-individuals of this study can be useful for HIV-1 infection monitoring and in addition the observation could be a useful guide for intra- and inter-individual coefficient variations, and establishing quality goal studies of different blood biomarkers in healthy and other diseases.
Collapse
Affiliation(s)
- Najib Aziz
- Department of Epidemiology, UCLA Fielding School of Public Health
| | | | - Joshua J. Quint
- Department of Epidemiology, UCLA Fielding School of Public Health
| | - Otoniel Martinez-Maza
- Department of Epidemiology, UCLA Fielding School of Public Health
- Departments of Obstetrics & Gynecology and Microbiology Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Marianne Chow
- Department of Epidemiology, UCLA Fielding School of Public Health
| | - Roger Detels
- Department of Epidemiology, UCLA Fielding School of Public Health
- Department of Medicine
| |
Collapse
|
20
|
Juno JA, Eriksson EM. γδ T-cell responses during HIV infection and antiretroviral therapy. Clin Transl Immunology 2019; 8:e01069. [PMID: 31321033 PMCID: PMC6636517 DOI: 10.1002/cti2.1069] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
HIV infection is associated with a rapid and sustained inversion of the Vδ1:Vδ2 T‐cell ratio in peripheral blood. Studies of antiretroviral therapy (ART)‐treated cohorts suggest that ART is insufficient to reconstitute either the frequency or function of the γδ T‐cell subset. Recent advances are now beginning to shed light on the relationship between microbial translocation, chronic inflammation, immune ageing and γδ T‐cell immunology. Here, we review the impact of acute, chronic untreated and treated HIV infection on circulating and mucosal γδ T‐cell subsets and highlight novel approaches to harness γδ T cells as components of anti‐HIV immunotherapy.
Collapse
Affiliation(s)
- Jennifer A Juno
- Department of Microbiology and Immunology The University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Emily M Eriksson
- Division of Population Health and Immunity Walter and Eliza Hall Institute of Medical Science Melbourne VIC Australia.,Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| |
Collapse
|
21
|
Simons ND, Eick GN, Ruiz-Lopez MJ, Hyeroba D, Omeja PA, Weny G, Zheng H, Shankar A, Frost SDW, Jones JH, Chapman CA, Switzer WM, Goldberg TL, Sterner KN, Ting N. Genome-Wide Patterns of Gene Expression in a Wild Primate Indicate Species-Specific Mechanisms Associated with Tolerance to Natural Simian Immunodeficiency Virus Infection. Genome Biol Evol 2019; 11:1630-1643. [PMID: 31106820 PMCID: PMC6561381 DOI: 10.1093/gbe/evz099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Over 40 species of nonhuman primates host simian immunodeficiency viruses (SIVs). In natural hosts, infection is generally assumed to be nonpathogenic due to a long coevolutionary history between host and virus, although pathogenicity is difficult to study in wild nonhuman primates. We used whole-blood RNA-seq and SIV prevalence from 29 wild Ugandan red colobus (Piliocolobus tephrosceles) to assess the effects of SIV infection on host gene expression in wild, naturally SIV-infected primates. We found no evidence for chronic immune activation in infected individuals, suggesting that SIV is not immunocompromising in this species, in contrast to human immunodeficiency virus in humans. Notably, an immunosuppressive gene, CD101, was upregulated in infected individuals. This gene has not been previously described in the context of nonpathogenic SIV infection. This expands the known variation associated with SIV infection in natural hosts and may suggest a novel mechanism for tolerance of SIV infection in the Ugandan red colobus.
Collapse
Affiliation(s)
| | - Geeta N Eick
- Department of Anthropology, University of Oregon
| | | | - David Hyeroba
- College of Veterinary Medicine, Animal Resources, and Bio-Security, Makerere University, Kampala, Uganda
| | - Patrick A Omeja
- Makerere University Biological Field Station, Fort Portal, Uganda
| | - Geoffrey Weny
- Makerere University Biological Field Station, Fort Portal, Uganda
| | - HaoQiang Zheng
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Anupama Shankar
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Simon D W Frost
- Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | - James H Jones
- Department of Earth System Science, Woods Institute for the Environment, Stanford University
| | - Colin A Chapman
- Makerere University Biological Field Station, Fort Portal, Uganda
- Department of Anthropology, McGill School of Environment, McGill University, Montreal, Quebec, Canada
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison
- Global Health Institute, University of Wisconsin-Madison
| | | | - Nelson Ting
- Department of Anthropology, University of Oregon
- Institute of Ecology and Evolution, University of Oregon
| |
Collapse
|
22
|
Dang LVP, Pham VH, Nguyen DM, Dinh TT, Nguyen TH, Le TH, Nguyen VL, Vu TP. Elevation of immunoglobulin levels is associated with treatment failure in HIV-infected children in Vietnam. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2019; 11:1-7. [PMID: 30643469 PMCID: PMC6311331 DOI: 10.2147/hiv.s181388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background HIV-infected children suffer from higher levels of treatment failure compared to adults. Immunoactivation, including humoral immunoactivation reflected by increased immunoglobulin levels, is believed to occur early during HIV infection. Therefore, we wanted investigate alteration in immunoglobulin levels in association with treatment response in HIV-infected children. Methods A nested case–control study was conducted using clinical data collected from 68 HIV-infected children enrolled at the National Hospital of Pediatrics, Vietnam. Results The results showed that immunoglobulin levels, CD4 T-cell counts, CD4 T-cell percentage, and HIV load were significantly higher in the treatment-failure group than the treatment-success group at treatment initiation. IgG and IgA levels were negatively correlated with CD4 T-cell counts (P=0.049 and P<0.01, respectively) and positively correlated with HIV load (P=0.04 and P=0.02, respectively). In addition, IgG and IgA levels were independently associated with treatment response, analyzed by Cox regression analysis (HR 1.19 [P=0.049] and HR 1.69 [P<0.01], respectively). Conclusion Elevation of IgA levels occurred early during HIV infection, and might have a prognostic role in treatment response.
Collapse
Affiliation(s)
- Linh Vu Phuong Dang
- Public Health Laboratory, Hanoi University of Public Health, Hanoi, Vietnam,
| | - Viet Hung Pham
- Department of Microbiology, Vietnam National Hospital of Pediatrics, Hanoi, Vietnam
| | - Duc Minh Nguyen
- Department of Geriatrics, National Hospital of Acupuncture, Hanoi, Vietnam
| | - Thanh Thi Dinh
- Public Health Laboratory, Hanoi University of Public Health, Hanoi, Vietnam,
| | - Thu Hoai Nguyen
- Department of Training and Direction Activity, National Geriatric Hospital, Hanoi, Vietnam
| | - Thanh Hai Le
- Department of Emergency, Vietnam National Hospital of Pediatrics, Hanoi, Vietnam
| | - Van Lam Nguyen
- Department of Infectious Disease, Vietnam National Hospital of Pediatrics, Hanoi, Vietnam
| | - Thi Phuong Vu
- Department of Biochemistry, Hanoi Medical University, Hanoi, Vietnam.,Department of Biochemistry, Dinh Tien Hoang Institute of Medicine, Hanoi, Vietnam
| |
Collapse
|
23
|
Rodríguez-Alba JC, Abrego-Peredo A, Gallardo-Hernández C, Pérez-Lara J, Santiago-Cruz JW, Jiang JW, Espinosa E. HIV Disease Progression: Overexpression of the Ectoenzyme CD38 as a Contributory Factor? Bioessays 2019; 41:e1800128. [PMID: 30537007 PMCID: PMC6545924 DOI: 10.1002/bies.201800128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/02/2018] [Indexed: 12/16/2022]
Abstract
Despite abundant evidence associating CD38 overexpression and CD4 T cell depletion in HIV infection, no causal relation has been investigated. To address this issue, a series of mechanisms are proposed, supported by evidence from different fields, by which CD38 overexpression can facilitate CD4 T cell depletion in HIV infection. According to this model, increased catalytic activity of CD38 may reduce CD4 T cells' cytoplasmic nicotin-amide adenine dinucleotide (NAD), leading to a chronic Warburg effect. This will reduce mitochondrial function. Simultaneously, CD38's catalytic products ADPR and cADPR may be transported to the cytoplasm, where they can activate calcium channels and increase cytoplasmic Ca2+ concentrations, further altering mitochondrial integrity. These mechanisms will decrease the viability and regenerative capacity of CD4 T cells. These hypotheses can be tested experimentally, and might reveal novel therapeutic targets. Also see the video abstract here https://youtu.be/k1LTyiTKPKs.
Collapse
Affiliation(s)
- J. C. Rodríguez-Alba
- Flow Cytometry Core Facility, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - A. Abrego-Peredo
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - C. Gallardo-Hernández
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - J. Pérez-Lara
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - J. W. Santiago-Cruz
- Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - J., W. Jiang
- Department of Microbiology and Immunology, and Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA, 29425
| | - E. Espinosa
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases (INER), Mexico City, Mexico
| |
Collapse
|
24
|
Hydroxypropyl-Beta-Cyclodextrin Reduces Inflammatory Signaling from Monocytes: Possible Implications for Suppression of HIV Chronic Immune Activation. mSphere 2018; 3:3/6/e00497-18. [PMID: 30404938 PMCID: PMC6222057 DOI: 10.1128/msphere.00497-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Monocytes from HIV-infected patients produce increased levels of inflammatory cytokines, which are associated with chronic immune activation and AIDS progression. Chronic immune activation is often not restored even in patients showing viral suppression under ART. Therefore, new therapeutic strategies to control inflammation and modulate immune activation are required. Hydroxypropyl-beta-cyclodextrin (HP-BCD) is a cholesterol-sequestering agent that has been reported to be safe for human use in numerous pharmaceutical applications and that has been shown to inactivate HIV in vitro and to control SIV infection in vivo Since cellular cholesterol content or metabolism has been related to altered cellular activation, we evaluated whether HP-BCD treatment could modulate monocyte response to inflammatory stimuli. Treatment of monocytes isolated from HIV-positive and HIV-negative donors with HP-BCD inhibited the expression of CD36 and TNF-α after LPS stimulation, independent of raft disruption. Accordingly, HP-BCD-treated cells showed significant reduction of TNF-α and IL-10 secretion, which was associated with lower mRNA expression. LPS-induced p38MAPK phosphorylation was dampened by HP-BCD treatment, indicating this pathway as a target for HP-BCD-mediated anti-inflammatory response. The expression of HLA-DR was also reduced in monocytes and dendritic cells treated with HP-BCD, which could hinder T cell activation by these cells. Our data suggest that, besides its well-known antiviral activity, HP-BCD could have an immunomodulatory effect, leading to decreased inflammatory responses mediated by antigen-presenting cells, which may impact HIV pathogenesis and AIDS progression.IMPORTANCE Chronic immune activation is a hallmark of HIV infection and is often not controlled even in patients under antiretroviral therapy. Indeed, chronic diseases with inflammatory pathogenesis are being reported as major causes of death for HIV-infected persons. Hydroxypropyl-beta cyclodextrin (HP-BCD) is a cholesterol-sequestering drug that inhibits HIV replication and infectivity in vitro and in vivo Recent studies have demonstrated the importance of cholesterol metabolism and content in different inflammatory conditions; therefore, we investigated the potential of HP-BCD as an immunomodulatory drug, regulating the activation of cells from HIV-infected patients. Treatment of monocytes with HP-BCD inhibited the expression and secretion of receptors and mediators that are usually enhanced in HIV patients. Furthermore, we investigated the molecular mechanisms associated with the immunomodulatory effect of HP-BCD. Our results indicate that, besides reducing viral replication, HP-BCD treatment may contribute to modulation of chronic immune activation associated with AIDS.
Collapse
|
25
|
Côrtes FH, de Paula HHS, Bello G, Ribeiro-Alves M, de Azevedo SSD, Caetano DG, Teixeira SLM, Hoagland B, Grinsztejn B, Veloso VG, Guimarães ML, Morgado MG. Plasmatic Levels of IL-18, IP-10, and Activated CD8 + T Cells Are Potential Biomarkers to Identify HIV-1 Elite Controllers With a True Functional Cure Profile. Front Immunol 2018; 9:1576. [PMID: 30050532 PMCID: PMC6050358 DOI: 10.3389/fimmu.2018.01576] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
Elite controllers (ECs) are rare individuals able to naturally control HIV-1 replication below the detection limit of viral load (VL) commercial assays. It is unclear, however, whether ECs might be considered a natural model of a functional cure because some studies have noted CD4+ T cell depletion and disease progression associated with abnormally high levels of immune activation and/or inflammation in this group. Here, we propose the use of immunological parameters to identify HIV-1 ECs that could represent the best model of a functional cure. We compared plasma levels of six inflammatory biomarkers (IP-10, IL-18, sCD163, sCD14, CRP, and IL-6) and percentages of activated CD8+ T cells (CD38+HLA-DR+) between 15 ECs [8 with persistent undetectable viremia (persistent elite controllers) and 7 with occasional viral blips (ebbing elite controllers)], 13 viremic controllers (VCs—plasma VL between 51 and 2,000 RNA copies/mL), and 18 HIV-1 infected patients in combined antiretroviral therapy, with suppressed viremia, and 18 HIV-uninfected controls (HIV-neg). The two groups of ECs presented inflammation and activation profiles similar to HIV-neg individuals, and there was no evidence of CD4+ T cell decline over time. VCs, by contrast, had higher levels of IL-18, IP-10, and CRP and a lower CD4/CD8 ratio than that of HIV-neg (P < 0.05). Plasma levels of IL-18 and IP-10 correlated positively with CD8+ T cell activation and negatively with both CD4/CD8 and CD4% in HIV-1 controllers. These results suggest that most ECs, defined using stringent criteria in relation to the cutoff level of viremia (≤50 copies/mL) and a minimum follow-up time of >5 years, show no evidence of persistent inflammation or immune activation. This study further suggests that plasmatic levels of IL-18/IP-10 combined with the frequency of CD8+CD38+HLA-DR+ T cells can be important biomarkers to identify models of a functional cure among HIV-1 ECs.
Collapse
Affiliation(s)
- Fernanda H Côrtes
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Hury H S de Paula
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST/Aids, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Suwellen S D de Azevedo
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Diogo G Caetano
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Sylvia L M Teixeira
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Brenda Hoagland
- Laboratório de Pesquisa Clínica em DST/Aids, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Laboratório de Pesquisa Clínica em DST/Aids, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Valdilea G Veloso
- Laboratório de Pesquisa Clínica em DST/Aids, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Monick L Guimarães
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Mariza G Morgado
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Freund NT, Wang H, Scharf L, Nogueira L, Horwitz JA, Bar-On Y, Golijanin J, Sievers SA, Sok D, Cai H, Cesar Lorenzi JC, Halper-Stromberg A, Toth I, Piechocka-Trocha A, Gristick HB, van Gils MJ, Sanders RW, Wang LX, Seaman MS, Burton DR, Gazumyan A, Walker BD, West AP, Bjorkman PJ, Nussenzweig MC. Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Sci Transl Med 2018; 9:9/373/eaal2144. [PMID: 28100831 DOI: 10.1126/scitranslmed.aal2144] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/14/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022]
Abstract
Some HIV-1-infected patients develop broad and potent HIV-1 neutralizing antibodies (bNAbs) that when passively transferred to mice or macaques can treat or prevent infection. However, bNAbs typically fail to neutralize coexisting autologous viruses due to antibody-mediated selection against sensitive viral strains. We describe an HIV-1 controller expressing HLA-B57*01 and HLA-B27*05 who maintained low viral loads for 30 years after infection and developed broad and potent serologic activity against HIV-1. Neutralization was attributed to three different bNAbs targeting nonoverlapping sites on the HIV-1 envelope trimer (Env). One of the three, BG18, an antibody directed against the glycan-V3 portion of Env, is the most potent member of this class reported to date and, as revealed by crystallography and electron microscopy, recognizes HIV-1 Env in a manner that is distinct from other bNAbs in this class. Single-genome sequencing of HIV-1 from serum samples obtained over a period of 9 years showed a diverse group of circulating viruses, 88.5% (31 of 35) of which remained sensitive to at least one of the temporally coincident autologous bNAbs and the individual's serum. Thus, bNAb-sensitive strains of HIV-1 coexist with potent neutralizing antibodies that target the virus and may contribute to control in this individual. When administered as a mix, the three bNAbs controlled viremia in HIV-1YU2-infected humanized mice. Our finding suggests that combinations of bNAbs may contribute to control of HIV-1 infection.
Collapse
Affiliation(s)
- Natalia T Freund
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Joshua A Horwitz
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Yotam Bar-On
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Stuart A Sievers
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Devin Sok
- Department of Immunology and Microbial Science, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and International AIDS Vaccine Initiative Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hui Cai
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA
| | | | | | - Ildiko Toth
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marit J van Gils
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and International AIDS Vaccine Initiative Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
27
|
Wood LF, Wood MP, Fisher BS, Jaspan HB, Sodora DL. T Cell Activation in South African HIV-Exposed Infants Correlates with Ochratoxin A Exposure. Front Immunol 2018; 8:1857. [PMID: 29312338 PMCID: PMC5743911 DOI: 10.3389/fimmu.2017.01857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/07/2017] [Indexed: 01/23/2023] Open
Abstract
The introduction of non-breastmilk foods to HIV-infected infants is associated with increased levels of immune activation, which can impact the rate of HIV disease progression. This is particularly relevant in countries where mother-to-child transmission of HIV still occurs at unacceptable levels. The goal of this study was to evaluate the levels of the toxic food contaminant ochratoxin A (OTA) in HIV-exposed South African infants that are either breastfed or consuming non-breast milk foods. OTA is a common mycotoxin, found in grains and soil, which is toxic at high doses but has immunomodulatory properties at lower doses. Samples from HIV-exposed and HIV-unexposed infants enrolled in prospective observational cohort studies were collected and analyzed at birth through 14 weeks of age. We observed that infants consuming non-breast milk foods had significantly higher plasma levels of OTA at 6 weeks of age compared to breastfed infants, increasing until 8 weeks of age. The blood levels of OTA detected were comparable to levels observed in OTA-endemic communities. OTA plasma levels correlated with HIV target cell activation (CCR5 and HLADR expression on CD4+ T cells) and plasma levels of the inflammatory cytokine CXCL10. These findings provide evidence that elevated OTA levels in South African infants are associated with the consumption of non-breastmilk foods and activation of the immune system. Reducing infant OTA exposure has the potential to reduce immune activation and provide health benefits, particularly in those infants who are HIV-exposed or HIV-infected.
Collapse
Affiliation(s)
- Lianna Frances Wood
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| | - Matthew P Wood
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Bridget S Fisher
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Heather B Jaspan
- Divisions of Paediatrics, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Infectious Disease, Seattle Children's Research Institute, Seattle, WA, United States
| | - Donald L Sodora
- Center for Infectious Disease Research, Seattle, WA, United States
| |
Collapse
|
28
|
Alvarez P, Mwamzuka M, Marshed F, Kravietz A, Ilmet T, Ahmed A, Borkowsky W, Khaitan A. Immune activation despite preserved CD4 T cells in perinatally HIV-infected children and adolescents. PLoS One 2017; 12:e0190332. [PMID: 29287090 PMCID: PMC5747457 DOI: 10.1371/journal.pone.0190332] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND HIV disease progresses more rapidly in children than adults with mortality rates exceeding 50% by 2 years of age without antiretroviral therapy (ART) in sub-Saharan Africa. Recent World Health Organization (WHO) guidelines recommend universal treatment for all living persons with HIV, yet there is limited supporting evidence in pediatric populations. The objective of this study was to determine whether CD4 cell counts reflect immunological markers associated with disease progression in ART naïve perinatally-infected HIV+ children and adolescents and their response to ART. METHODS PBMC and plasma samples were collected from 71 HIV negative and 132 HIV+ children (65 ART naïve and 67 on ART) between ages 1-19 years from Mombasa, Kenya. Untreated HIV+ subjects were sub-categorized by high or low CD4 T cell counts. Immune activation markers CD38, HLA-DR and Ki67 were analyzed by flow cytometry. Plasma soluble CD14 (sCD14) was quantified by ELISA. RESULTS HIV-infected children and adolescents with preserved CD4 cell counts had depleted CD4 percentages and CD4:CD8 ratios, and high immune activation levels. ART initiation rapidly and persistently reversed T cell activation, but failed to normalize CD4:CD8 ratios and plasma sCD14 levels. CONCLUSIONS Diminished CD4 percentages and CD4:CD8 ratios along with profound immune activation occur independent of CD4 cell count thresholds in ART naïve HIV+ children and adolescents. Immediate ART initiation, as recommended in the most recent WHO guidelines may protect them from pathologic sequelae associated with persistent inflammation.
Collapse
Affiliation(s)
- Patricia Alvarez
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology and Parasitology, Hospital Ramon y Cajal-IRYCIS and CIBERESP, Madrid, Spain
| | - Mussa Mwamzuka
- Bomu Hospital, Comprehensive Care Centre, Mombasa, Kenya
| | - Fatma Marshed
- Bomu Hospital, Comprehensive Care Centre, Mombasa, Kenya
| | - Adam Kravietz
- Department of Microbiology, New York University School of Medicine, New York, NY, United States of America
| | - Tiina Ilmet
- Department of Pediatrics, Division of Infectious Diseases and Immunology, New York University School of Medicine, New York, NY, United States of America
| | - Aabid Ahmed
- Bomu Hospital, Comprehensive Care Centre, Mombasa, Kenya
| | - William Borkowsky
- Department of Pediatrics, Division of Infectious Diseases and Immunology, New York University School of Medicine, New York, NY, United States of America
| | - Alka Khaitan
- Department of Pediatrics, Division of Infectious Diseases and Immunology, New York University School of Medicine, New York, NY, United States of America
| |
Collapse
|
29
|
Polyfunctional natural killer cells with a low activation profile in response to Toll-like receptor 3 activation in HIV-1-exposed seronegative subjects. Sci Rep 2017; 7:524. [PMID: 28373665 PMCID: PMC5428831 DOI: 10.1038/s41598-017-00637-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/07/2017] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells are the main mediator of the cytotoxic response in innate immunity and may be involved in resistance to HIV-1 infection in exposed seronegative (ESN) individuals. Toll-like receptor (TLR) signalling is crucial for NK cell activation. Here, we investigated the polyfunctional NK cell response to TLR3 activation in serodiscordant couples. ESN subjects showed increased IFN-γ and CD107a expression in both NK subsets, CD56bright and CD56dim cells, in response to stimulation with a TLR3 agonist, while expression was impaired in the HIV-1-infected partners. TLR3-induced expression of IFN-γ, TNF and CD107a by polyfunctional CD56bright NK cells was more pronounced in ESN individuals than that in healthy controls. Activated NK cells, as determined by CD38 expression, were increased only in the HIV-1-infected partners, with reduced IFN-γ and CD107a expression. Moreover, CD38+ NK cells of the HIV-1-infected partners were associated with increased expression of inhibitory molecules, such as NKG2A, PD-1 and Tim-3, while NK cells from ESN subjects showed decreased NKG2A expression. Altogether, these findings indicate that NK cells of ESN individuals were highly responsive to TLR3 activation and had a polyfunctional NK cell phenotype, while the impaired TLR3 response in HIV-1-infected partners was associated with an inhibitory/exhaustion NK cell phenotype.
Collapse
|
30
|
Eleje GU, Edokwe ES, Ikechebelu JI, Onubogu CU, Ugochukwu EF, Okam PC, Ibekwe AM. Mother-to-child transmission of human immunodeficiency virus (HIV) among HIV-infected pregnant women on highly active anti-retroviral therapy with premature rupture of membranes at term. J Matern Fetal Neonatal Med 2017; 31:184-190. [PMID: 28064549 DOI: 10.1080/14767058.2017.1279600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To determine mother-to-child transmission (MTCT) rate and associated risk factors of human immune-deficiency virus (HIV) among HIV-infected pregnant women with term premature rupture of membranes (PROM) in comparison with those without PROM at term. MATERIALS AND METHODS All optimally managed HIV-positive pregnant women of Nnamdi Azikiwe University Teaching Hospital, on highly active anti-retroviral therapy (HAART) who had PROM at term were enrolled. Maternal HIV-1 viral load was not assessed. Follow up was for a minimum of 18 months for evidence of HIV infection. RESULTS Of the 121 women with PROM at term, 46 (38.0%) were HIV sero-positive, 22/46 (47.8%) of which had their babies followed up till 18 months. The mean latency period was 10.5 ± 5.3 h in PROM group. Apart from duration of PROM (OR = 0.01; 95%CI = 0.00-0.13; p < 0.001), there were no differences in risk factors seen between cases and controls (p > 0.05). Of the 22 (47.8%) babies followed-up in the PROM group and 13 in non-PROM group, none tested positive to HIV, given an MTCT rate of 0%. CONCLUSIONS MTCT rate was 0% following term PROM and in women without PROM. Since maternal HIV-1 viral load was not assessed, we need to be critical while interpreting the findings.
Collapse
Affiliation(s)
- George Uchenna Eleje
- a Effective Care Research Unit, Department of Obstetrics and Gynecology , Nnamdi Azikiwe University , Nnewi , Nigeria.,b Department of Obstetrics and Gynecology , Nnamdi Azikiwe University Teaching Hospital , Nnewi , Nigeria
| | - Emeka Stephen Edokwe
- c Paediatrics Infectious Disease and Neonatology Unit , Nnamdi Azikiwe University Teaching Hospital , Nnewi , Nigeria.,d PMTCT Unit , Nnamdi Azikiwe University Teaching Hospital , Nnewi , Nigeria
| | - Joseph Ifeanyichukwu Ikechebelu
- a Effective Care Research Unit, Department of Obstetrics and Gynecology , Nnamdi Azikiwe University , Nnewi , Nigeria.,b Department of Obstetrics and Gynecology , Nnamdi Azikiwe University Teaching Hospital , Nnewi , Nigeria.,d PMTCT Unit , Nnamdi Azikiwe University Teaching Hospital , Nnewi , Nigeria
| | - Chinyere Ukamaka Onubogu
- c Paediatrics Infectious Disease and Neonatology Unit , Nnamdi Azikiwe University Teaching Hospital , Nnewi , Nigeria.,d PMTCT Unit , Nnamdi Azikiwe University Teaching Hospital , Nnewi , Nigeria
| | - Ebele Francesca Ugochukwu
- c Paediatrics Infectious Disease and Neonatology Unit , Nnamdi Azikiwe University Teaching Hospital , Nnewi , Nigeria.,d PMTCT Unit , Nnamdi Azikiwe University Teaching Hospital , Nnewi , Nigeria
| | | | - Adaobi Maryann Ibekwe
- e Antenatal Care Unit , Nnamdi Azikiwe University Teaching Hospital , Nnewi , Nigeria
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The purpose is to review recent insights into the impact of HIV-associated immune activation on AIDS and non-AIDS morbidity and mortality. RECENT FINDINGS Immune activation has long been recognized as an important consequence of untreated HIV infection and predictor of AIDS progression, which declines but fails to normalize during suppressive antiretroviral therapy, and continues to predict disease in this setting. Thus, a major research agenda is to develop novel therapies to reduce persistent immune activation in treated HIV infection. Yet, the optimal targets for interventions remain unclear. Both the specific root causes of immune activation and the many interconnected pathways of immune activation that are most likely to drive disease risk in HIV-infected individuals remain incompletely characterized, but recent studies have shed new light on these topics. SUMMARY In the context of this review, we will summarize recent evidence helping to elucidate the immunologic pathways that appear most strongly predictive of infectious and noninfectious morbidity. We will also highlight the likelihood that not all root drivers of immune activation - and the discrete immunologic pathways to which they give rise - are likely to produce the same disease manifestations and/or be equally attenuated by early antiretroviral therapy initiation.
Collapse
|
32
|
Macrophages in Progressive Human Immunodeficiency Virus/Simian Immunodeficiency Virus Infections. J Virol 2016; 90:7596-606. [PMID: 27307568 DOI: 10.1128/jvi.00672-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cells that are targeted by primate lentiviruses (HIV and simian immunodeficiency virus [SIV]) are of intense interest given the renewed effort to identify potential cures for HIV. These viruses have been reported to infect multiple cell lineages of hematopoietic origin, including all phenotypic and functional CD4 T cell subsets. The two most commonly reported cell types that become infected in vivo are memory CD4 T cells and tissue-resident macrophages. Though viral infection of CD4 T cells is routinely detected in both HIV-infected humans and SIV-infected Asian macaques, significant viral infection of macrophages is only routinely observed in animal models wherein CD4 T cells are almost entirely depleted. Here we review the roles of macrophages in lentiviral disease progression, the evidence that macrophages support viral replication in vivo, the animal models where macrophage-mediated replication of SIV is thought to occur, how the virus can interact with macrophages in vivo, pathologies thought to be attributed to viral replication within macrophages, how viral replication in macrophages might contribute to the asymptomatic phase of HIV/SIV infection, and whether macrophages represent a long-lived reservoir for the virus.
Collapse
|
33
|
Ganesh A, Lemongello D, Lee E, Peterson J, McLaughlin BE, Ferre AL, Gillespie GM, Fuchs D, Deeks SG, Hunt PW, Price RW, Spudich SS, Shacklett BL. Immune Activation and HIV-Specific CD8(+) T Cells in Cerebrospinal Fluid of HIV Controllers and Noncontrollers. AIDS Res Hum Retroviruses 2016; 32:791-800. [PMID: 27019338 DOI: 10.1089/aid.2015.0313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The central nervous system (CNS) is an important target of HIV, and cerebrospinal fluid (CSF) can provide a window into host-virus interactions within the CNS. The goal of this study was to determine whether HIV-specific CD8(+) T cells are present in CSF of HIV controllers (HC), who maintain low to undetectable plasma viremia without antiretroviral therapy (ART). CSF and blood were sampled from 11 HC, defined based on plasma viral load (VL) consistently below 2,000 copies/ml without ART. These included nine elite controllers (EC, plasma VL <40 copies/ml) and two viremic controllers (VC, VL 40-2,000 copies/ml). All controllers had CSF VL <40 copies/ml. Three comparison groups were also sampled: six HIV noncontrollers (NC, VL >10,000 copies/ml, no ART); seven individuals with viremia suppressed due to ART (Tx, VL <40 copies/ml); and nine HIV-negative controls. CD4(+) and CD8(+) T cells in CSF and blood were analyzed by flow cytometry to assess expression of CCR5, activation markers CD38 and HLA-DR, and memory/effector markers CD45RA and CCR7. HIV-specific CD8(+) T cells were quantified by major histocompatibility complex class I multimer staining. HIV-specific CD8(+) T cells were detected ex vivo at similar frequencies in CSF of HC and noncontrollers; the highest frequencies were in individuals with CD4 counts below 500 cells/μl. The majority of HIV-specific CD8(+) T cells in CSF were effector memory cells expressing CCR5. Detection of these cells in CSF suggests active surveillance of the CNS compartment by HIV-specific T cells, including in individuals with long-term control of HIV infection in the absence of therapy.
Collapse
Affiliation(s)
- Anupama Ganesh
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California
| | - Donna Lemongello
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California
| | - Evelyn Lee
- Department of Neurology, San Francisco General Hospital, University of California, San Francisco, San Francisco, California
| | - Julia Peterson
- Department of Neurology, San Francisco General Hospital, University of California, San Francisco, San Francisco, California
| | - Bridget E. McLaughlin
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California
| | - April L. Ferre
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California
| | - Geraldine M. Gillespie
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Dietmar Fuchs
- Division of Biological Chemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Steven G. Deeks
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California
| | - Peter W. Hunt
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California
| | - Richard W. Price
- Department of Neurology, San Francisco General Hospital, University of California, San Francisco, San Francisco, California
| | - Serena S. Spudich
- Department of Neurology, San Francisco General Hospital, University of California, San Francisco, San Francisco, California
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California
| |
Collapse
|
34
|
Jacobson JM, Bosinger SE, Kang M, Belaunzaran-Zamudio P, Matining RM, Wilson CC, Flexner C, Clagett B, Plants J, Read S, Purdue L, Myers L, Boone L, Tebas P, Kumar P, Clifford D, Douek D, Silvestri G, Landay AL, Lederman MM. The Effect of Chloroquine on Immune Activation and Interferon Signatures Associated with HIV-1. AIDS Res Hum Retroviruses 2016; 32:636-47. [PMID: 26935044 DOI: 10.1089/aid.2015.0336] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immune activation associated with HIV-1 infection contributes to morbidity and mortality. We studied whether chloroquine, through Toll-like receptor (TLR) antagonist properties, could reduce immune activation thought to be driven by TLR ligands, such as gut-derived bacterial elements and HIV-1 RNAs. AIDS Clinical Trials Group A5258 was a randomized, double-blind, placebo-controlled study in 33 HIV-1-infected participants off antiretroviral therapy (ART) and 37 participants on ART. Study participants in each cohort were randomized 1:1 to receive chloroquine 250 mg orally for the first 12 weeks then cross over to placebo for 12 weeks or placebo first and then chloroquine. Combining the periods of chloroquine use in both arms of the on-ART cohort yielded a modest reduction in the proportions of CD8 T cells co-expressing CD38 and DR (median decrease = 3.0%, p = .003). The effect on immune activation in the off-ART cohort was likely confounded by increased plasma HIV-1 RNA during chloroquine administration (median 0.29 log10 increase, p < .001). Transcriptional analyses in the off-ART cohort showed decreased expression of interferon-stimulated genes in 5 of 10 chloroquine-treated participants and modest decreases in CD38 and CCR5 RNAs in all chloroquine-treated participants. Chloroquine modestly reduced immune activation in ART-treated HIV-infected participants. Clinical Trials Registry Number: NCT00819390.
Collapse
Affiliation(s)
| | | | - Minhee Kang
- Harvard University School of Public Health, Boston, Massachusetts
| | | | - Roy M. Matining
- Harvard University School of Public Health, Boston, Massachusetts
| | | | - Charles Flexner
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Jill Plants
- Rush University School of Medicine, Chicago, Illinois
| | - Sarah Read
- Division of AIDS, NIAID, Bethesda, Maryland
| | | | | | - Linda Boone
- Social and Scientific Systems, Inc., Silver Springs, Maryland
| | - Pablo Tebas
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Princy Kumar
- Georgetown University Medical School, Washington, District of Columbia
| | - David Clifford
- Washington University School of Medicine, St. Louis, Missouri
| | - Daniel Douek
- Vaccine Research Center, NIAID, Bethesda, Maryland
| | | | | | | | | |
Collapse
|
35
|
Aziz N, Detels R, Chang LC, Butch AW. Macrophage Inflammatory Protein-3 Alpha (MIP-3α)/CCL20 in HIV-1-Infected Individuals. ACTA ACUST UNITED AC 2016; 7. [PMID: 27617163 DOI: 10.4172/2155-6113.1000587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Uncontrolled HIV infection progresses to the depletion of systemic and mucosal CD4 and AIDS. Early HIV infection may be associated with increases in the concentration of MIP-3α in the blood and gut fluids. MIP-3α/CCL20 is the only chemokine known to interact with CCR6 receptors which are expressed on immature dendritic cells and both effector and memory CD8+ and CD4+ T cells. The role and prognostic value of blood levels of MIP-3α in HIV-infected individuals has yet to be described. METHODS We determined the serum levels of MIP-3α, and IFN-γ, in 167 HIV-1-infected and 27 HIV-1-uninfected men participating in the Multicenter AIDS Cohort Study (MACS). The blood biomarkers were measured using enzyme-linked immunosorbent assays (ELISA) and the cell phenotypes using flow cytometry. RESULTS Median serum levels of MIP-3α in HIV-1-infected and uninfected men was significantly different (p<0.0001) and were 21.3 pg/mL and 6.4 pg/mL respectively. The HIV-1-infected men with CD4+ T cell count <200 cells/μL showed the highest median serum MIP-3α (23.1 pg/mL). Serum levels of MIP-3α in HIV-1 infected (n=167) were negatively correlated with absolute number of CD4+ T cell (p=0.01) and were positively correlated with CD38 molecules on CD8+ T cells (p=0.0002) and with serum levels of IFN-γ (0.006). CONCLUSION Serum levels of MIP-3α concomitantly increase with plasma levels of IFN-γ, CD38 expression on CD8+ T cells, and decreased of absolute CD4+ T cells in HIV-1-infected men. A higher blood level of MIP-3α may be representation of locally high level of MIP-3α and more recruitment of immature dendritic cell at site of infection. Involvement of CCR6/CCL20 axis and epithelial cells at the recto-colonel level may enhance sexual transmission of HIV-1 in MSM and may be useful as a prognostic marker in HIV-1-infection and AIDS.
Collapse
Affiliation(s)
- Najib Aziz
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Roger Detels
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - L Cindy Chang
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Anthony W Butch
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
36
|
López-Abente J, Correa-Rocha R, Pion M. Functional Mechanisms of Treg in the Context of HIV Infection and the Janus Face of Immune Suppression. Front Immunol 2016; 7:192. [PMID: 27242797 PMCID: PMC4871867 DOI: 10.3389/fimmu.2016.00192] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/02/2016] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in infections, by modulating host immune responses and avoiding the overreactive immunity that in the case of human immunodeficiency virus (HIV) infection leads to a marked erosion and deregulation of the entire immune system. Therefore, the suppressive function of Treg in HIV-infected patients is critical because of their implication on preventing the immune hyperactivation, even though it could also have a detrimental effect by suppressing HIV-specific immune responses. In recent years, several studies have shown that HIV-1 can directly infect Treg, disturbing their phenotype and suppressive capacity via different mechanisms. These effects include Foxp3 and CD25 downregulation, and the impairment of suppressive capacity. This review describes the functional mechanisms of Treg to modulate immune activation during HIV infection, and how such control is no longer fine-tune orchestrated once Treg itself get infected. We will review the current knowledge about the HIV effects on the Treg cytokine expression, on pathways implying the participation of different ectoenzymes (i.e., CD39/CD73 axis), transcription factors (ICER), and lastly on cyclic adenosine monophosphate (cAMP), one of the keystones in Treg-suppressive function. To define which are the HIV effects upon these regulatory mechanisms is crucial not only for the comprehension of immune deregulation in HIV-infected patients but also for the correct understanding of the role of Tregs in HIV infection.
Collapse
Affiliation(s)
- Jacobo López-Abente
- Laboratory of Immunoregulation, "Gregorio Marañón" Health Research Institute (IISGM) , Madrid , Spain
| | - Rafael Correa-Rocha
- Laboratory of Immunoregulation, "Gregorio Marañón" Health Research Institute (IISGM) , Madrid , Spain
| | - Marjorie Pion
- Laboratory of Immunoregulation, "Gregorio Marañón" Health Research Institute (IISGM) , Madrid , Spain
| |
Collapse
|
37
|
Amanor-Boadu S, Hipolito MS, Rai N, McLean CK, Flanagan K, Hamilton FT, Oji V, Lambert SF, Le HN, Kapetanovic S, Nwulia EA. Poor CD4 count is a predictor of untreated depression in human immunodeficiency virus-positive African-Americans. World J Psychiatry 2016; 6:128-35. [PMID: 27014603 PMCID: PMC4804261 DOI: 10.5498/wjp.v6.i1.128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/05/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023] Open
Abstract
AIM To determine if efforts to improve antiretroviral therapy (ART) adherence minimizes the negative impact of depression on human immunodeficiency virus (HIV) outcomes. METHODS A cross-sectional study of a clinic-based cohort of 158 HIV seropositive (HIV+) African Americans screened for major depressive disorder (MDD) in 2012. CD4 T lymphocyte (CD4+) counts were obtained from these individuals. Self-report on adherence to ART was determined from questionnaire administered during clinic visits. The primary outcome measure was conditional odds of having a poorer CD4+ count (< 350 cells/mm(3)). Association between CD4+ count and antidepressant-treated or untreated MDD subjects was examined controlling for self-reported adherence and other potential confounders. RESULTS Out of 147 individuals with available CD4+ T lymphocyte data, 31% hadCD4+ count < 350 cells/mm(3) and 28% reported poor ART adherence. As expected the group with > 350 cells/mm(3) CD4+ T lymphocyte endorsed significantly greater ART adherence compared to the group with < 350 cells/mm(3) CD4+ T lymphocyte count (P < 0.004). Prevalence of MDD was 39.5% and 66% of individuals with MDD took antidepressants. Poor CD4+ T lymphocyte count was associated with poor ART adherence and MDD. Adjusting for ART adherence, age, sex and education, which were potential confounders, the association between MDD and poor CD4+ T lymphocyte remained significant only in the untreated MDD group. CONCLUSION Therefore, CD4+ count could be a clinical marker of untreated depression in HIV+. Also, mental health care may be relevant to primary care of HIV+ patients.
Collapse
|
38
|
Pandrea I, Xu C, Stock JL, Frank DN, Ma D, Policicchio BB, He T, Kristoff J, Cornell E, Haret-Richter GS, Trichel A, Ribeiro RM, Tracy R, Wilson C, Landay AL, Apetrei C. Antibiotic and Antiinflammatory Therapy Transiently Reduces Inflammation and Hypercoagulation in Acutely SIV-Infected Pigtailed Macaques. PLoS Pathog 2016; 12:e1005384. [PMID: 26764484 PMCID: PMC4713071 DOI: 10.1371/journal.ppat.1005384] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 12/16/2015] [Indexed: 01/08/2023] Open
Abstract
Increased chronic immune activation and inflammation are hallmarks of HIV/SIV infection and are highly correlated with progression to AIDS and development of non-AIDS comorbidities, such as hypercoagulability and cardiovascular disease. Intestinal dysfunction resulting in microbial translocation has been proposed as a lead cause of systemic immune activation and hypercoagulability in HIV/SIV infection. Our goal was to assess the biological and clinical impact of a therapeutic strategy designed to reduce microbial translocation through reduction of the microbial content of the intestine (Rifaximin-RFX) and of gut inflammation (Sulfasalazine-SFZ). RFX is an intraluminal antibiotic that was successfully used in patients with hepatic encephalopathy. SFZ is an antiinflammatory drug successfully used in patients with mild to moderate inflammatory bowel disease. Both these clinical conditions are associated with increased microbial translocation, similar to HIV-infected patients. Treatment was administered for 90 days to five acutely SIV-infected pigtailed macaques (PTMs) starting at the time of infection; seven untreated SIVsab-infected PTMs were used as controls. RFX+SFZ were also administered for 90 days to three chronically SIVsab-infected PTMs. RFX+SFZ administration during acute SIVsab infection of PTMs resulted in: significantly lower microbial translocation, lower systemic immune activation, lower viral replication, better preservation of mucosal CD4+ T cells and significantly lower levels of hypercoagulation biomarkers. This effect was clear during the first 40 days of treatment and was lost during the last stages of treatment. Administration of RFX+SFZ to chronically SIVsab–infected PTMs had no discernible effect on infection. Our data thus indicate that early RFX+SFZ administration transiently improves the natural history of acute and postacute SIV infection, but has no effect during chronic infection. We report that administration of the intraluminal antibiotic Rifaximin and the gut-focused anti-inflammatory drug Sulfasalazine to acutely SIV-infected pigtailed macaques is associated with a transient disruption of the vicious circle of inflammation-microbial translocation-immune activation which is pathognomonic to pathogenic HIV/SIV infection and drives HIV disease progression and non-AIDS comorbidities in HIV-infected patients. This therapeutic approach resulted in transient lower microbial translocation, lower systemic immune activation, lower viral replication, better preservation of mucosal CD4+ T cells and lower levels of hypercoagulation biomarkers throughout acute SIV infection. Our results thus support the use of therapeutic approaches to reduce microbial translocation, improve the clinical outcome of HIV-infected patients receiving antiretroviral therapy and prevent non-AIDS comorbidities. Our results also reinforce the importance of early therapeutic management of HIV infection.
Collapse
Affiliation(s)
- Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Penssylvania, United States of America
- * E-mail:
| | - Cuiling Xu
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer L. Stock
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daniel N. Frank
- Department of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Dongzhu Ma
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Penssylvania, United States of America
| | - Benjamin B. Policicchio
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tianyu He
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jan Kristoff
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Elaine Cornell
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - George S. Haret-Richter
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anita Trichel
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Laboratory Animal Resources, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Russell Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Cara Wilson
- Department of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Alan L. Landay
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Penssylvania, United States of America
| |
Collapse
|
39
|
Abstract
More than 75 million people worldwide have been infected with human immunodeficiency virus (HIV), and there are now approximately 37 million individuals living with the infection. Untreated HIV replication causes progressive CD4(+) T cell loss and a wide range of immunological abnormalities, leading to an increased risk of infectious and oncological complications. HIV infection also contributes to cardiovascular disease, bone disease, renal and hepatic dysfunction and several other common morbidities. Antiretroviral drugs are highly effective at inhibiting HIV replication, and for individuals who can access and adhere to these drugs, combination antiretroviral therapy leads to durable (and probably lifelong) suppression of viral replication. Viral suppression enables immune recovery and the near elimination of the risk for developing acquired immune deficiency syndrome (AIDS). Despite effective treatment, HIV-infected individuals have a higher than expected risk of heart, bone, liver, kidney and neurological disease. When used optimally by an infected (or by an uninfected) person, antiretroviral drugs can virtually eliminate the risk of HIV transmission. Despite major advances in prevention sciences, HIV transmission remains common in many vulnerable populations, including men who have sex with men, injection drug users and sex workers. Owing to a lack of widespread HIV testing and the costs and toxicities associated with antiretroviral drugs, the majority of the infected population is not on effective antiretroviral therapy. To reverse the pandemic, improved prevention, treatment and implementation approaches are necessary.
Collapse
Affiliation(s)
- Steven G Deeks
- University of California, San Francisco, Department of Medicine, 995 Potrero Avenue, San Francisco, California 94110, USA
| | - Julie Overbaugh
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Andrew Phillips
- Department of Infection and Population Health, University College London, London, UK
| | - Susan Buchbinder
- University of California, San Francisco, Department of Medicine, 995 Potrero Avenue, San Francisco, California 94110, USA.,San Francisco Department of Health, San Francisco, California, USA
| |
Collapse
|
40
|
Multidimensional Clusters of CD4+ T Cell Dysfunction Are Primarily Associated with the CD4/CD8 Ratio in Chronic HIV Infection. PLoS One 2015; 10:e0137635. [PMID: 26402620 PMCID: PMC4581870 DOI: 10.1371/journal.pone.0137635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023] Open
Abstract
HIV infection provokes a myriad of pathological effects on the immune system where many markers of CD4+ T cell dysfunction have been identified. However, most studies to date have focused on single/double measurements of immune dysfunction, while the identification of pathological CD4+ T cell clusters that is highly associated to a specific biomarker for HIV disease remain less studied. Here, multi-parametric flow cytometry was used to investigate immune activation, exhaustion, and senescence of diverse maturation phenotypes of CD4+ T cells. The traditional method of manual data analysis was compared to a multidimensional clustering tool, FLOw Clustering with K (FLOCK) in two cohorts of 47 untreated HIV-infected individuals and 21 age and sex matched healthy controls. In order to reduce the subjectivity of FLOCK, we developed an "artificial reference", using 2% of all CD4+ gated T cells from each of the HIV-infected individuals. Principle component analyses demonstrated that using an artificial reference lead to a better separation of the HIV-infected individuals from the healthy controls as compared to using a single HIV-infected subject as a reference or analyzing data manually. Multiple correlation analyses between laboratory parameters and pathological CD4+ clusters revealed that the CD4/CD8 ratio was the preeminent surrogate marker of CD4+ T cells dysfunction using all three methods. Increased frequencies of an early-differentiated CD4+ T cell cluster with high CD38, HLA-DR and PD-1 expression were best correlated (Rho = -0.80, P value = 1.96×10-11) with HIV disease progression as measured by the CD4/CD8 ratio. The novel approach described here can be used to identify cell clusters that distinguish healthy from HIV infected subjects and is biologically relevant for HIV disease progression. These results further emphasize that a simple measurement of the CD4/CD8 ratio is a useful biomarker for assessment of combined CD4+ T cell dysfunction in chronic HIV disease.
Collapse
|
41
|
Dentone C, Fenoglio D, Schenone E, Cenderello G, Prinapori R, Signori A, Parodi A, Kalli F, Battaglia F, Feasi M, Bruzzone B, Viscoli C, Filaci G, Di Biagio A. Increased CD38 expression on T lymphocytes as a marker of HIV dissemination into the central nervous system. HIV CLINICAL TRIALS 2015; 16:190-6. [PMID: 26365593 DOI: 10.1179/1945577115y.0000000005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Cross-sectional analysis on 20 HIV-1 patients with neurological symptoms admitted to two infectious disease units. Cut-off of HIV-RNA (VL) was 20 copies/ml for plasma and cerebral spinal fluid (CSF). Flow cytometry was used to analyze the phenotype of circulating and CSF T lymphocytes. CD38 mean fluorescence intensity (MFI) was higher on circulating CD4+T lymphocytes from patients with VL>20 copies/ml in plasma (P=0.001) or CSF (P=0.001). The frequency of circulating CD8+CD38+T cells and CD38 MFI on these cells were higher in patients with VL>20 copies/ml than in those with undetectable plasma VL (P=0.030 and P=0.023). The frequency of CSF CD4+CD38+T, as well as their CD38 and CD95 MFI, were increased in patients with detectable than non-detectable plasma VL (P=0.01, P=0.03, and P=0.05). The % CD38+CD8+T in CSF correlated with time of virological suppression (ρ=-0.462, P=0.040) and the CNS penetration-effectiveness (CPE) score (ρ=-0.467, P=0.038). In conclusion, (a) the expression of CD38+ on both CD4+, CD8+T lymphocytes from peripheral blood and CSF discriminated between viremic and non-viremic patients and (b) T cell activation/apoptosis markers inversely correlated with CPE to remark the importance for therapy to restore immunological functions.
Collapse
|
42
|
Methamphetamine Use in HIV-infected Individuals Affects T-cell Function and Viral Outcome during Suppressive Antiretroviral Therapy. Sci Rep 2015; 5:13179. [PMID: 26299251 PMCID: PMC4547398 DOI: 10.1038/srep13179] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/14/2015] [Indexed: 01/10/2023] Open
Abstract
We investigated the associations between methamphetamine (meth) use, immune function, and the dynamics of HIV and cytomegalovirus [CMV] in the blood and genital tract of HIV-infected ART-suppressed subjects. Self-reported meth use was associated with increased CD4(+) and CD8(+) T-cell proliferation (Ki67(+), p < 0.005), CD4(+) T-cell activation (CD45RA(-)CD38(+), p = 0.005) and exhaustion (PD-1(+), p = 0.0004) in blood, compared to non-meth users. Meth use was also associated with a trend towards higher blood HIV DNA levels (p = 0.09) and more frequent shedding of CMV in seminal plasma (p = 0.002). To explore possible mechanisms, we compared ex vivo spontaneous and antigen-specific proliferation in PBMC collected from subjects with and without positive meth detection in urine (Utox+ vs. Utox-). Despite higher levels of spontaneous proliferation, lymphocytes from Utox+ meth users had a significantly lower proliferative capacity after stimulation with a number of pathogens (CMV, candida, mycobacterium, toxoplasma, HIV, p < 0.04 in all cases), compared to Utox- participants. Our findings suggest that meth users have greater proliferation and exhaustion of the immune system. Meth use is also associated with a loss of control of CMV replication, which could be related to loss of immune response to pathogens. Future studies should consider meth use as a potential modulator of T-cell responses.
Collapse
|
43
|
McIntosh RC, Hurwitz BE, Antoni M, Gonzalez A, Seay J, Schneiderman N. The ABCs of Trait Anger, Psychological Distress, and Disease Severity in HIV. Ann Behav Med 2015; 49:420-33. [PMID: 25385204 PMCID: PMC4623323 DOI: 10.1007/s12160-014-9667-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Trait anger consists of affective, behavioral, and cognitive (ABC) dimensions and may increase vulnerability for interpersonal conflict, diminished social support, and greater psychological distress. The concurrent influence of anger and psychosocial dysfunction on Human Immunodeficiency Virus (HIV) disease severity is unknown. PURPOSE The purpose of this study was to examine plausible psychosocial avenues (e.g., coping, social support, psychological distress), whereby trait anger may indirectly influence HIV disease status. METHODS Three hundred seventy-seven HIV seropositive adults, aged 18-55 years (58% AIDS-defined), completed a battery of psychosocial surveys and provided a fasting blood sample for HIV-1 viral load and T lymphocyte count assay. RESULTS A second-order factor model confirmed higher levels of the multidimensional anger trait, which was directly associated with elevated psychological distress and avoidant coping (p<.001) and indirectly associated with greater HIV disease severity (p<.01) (comparative fit index (CFI)=0.90, root-mean-square error of approximation (RMSEA)=0.06, standardized root-mean-square residual (SRMR)=0.06). CONCLUSION The model supports a role for the ABC components of anger, which may negatively influence immune function through various psychosocial mechanisms; however, longitudinal study is needed to elucidate these effects.
Collapse
Affiliation(s)
- Roger C McIntosh
- Department of Psychology, University of Miami, Coral Gables, FL, 33124, USA,
| | | | | | | | | | | |
Collapse
|
44
|
Chachage M, Geldmacher C. Immune system modulation by helminth infections: potential impact on HIV transmission and disease progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 828:131-49. [PMID: 25253030 DOI: 10.1007/978-1-4939-1489-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- Mkunde Chachage
- Department of Cellular Immunology, National Institute for Medical Research-Mbeya Medical Research Centre (NIMR-MMRC), Hospital Hill road, Mbeya, Tanzania,
| | | |
Collapse
|
45
|
Hornberger J, Green J, Wintfeld N, Cavassini M, Rockstroh J, Giuliani G, De Carli C, Lazzarin A. Cost-Effectiveness of Enfuvirtide for Treatment-Experienced Patients with HIV in Italy. HIV CLINICAL TRIALS 2015; 6:92-102. [PMID: 15983893 DOI: 10.1310/rejm-tafw-0a7t-97ua] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Enfuvirtide (ENF) plus an optimized background (OB) antiretroviral regimen delays virological failure (VF), reduces HIV-1 viral load, and increases CD4 count compared with OB only in pretreated patients. PURPOSE To forecast long-term outcomes, costs, and cost-effectiveness of ENF+OB vs. OB in the Italian health care system. METHOD A Markov model was developed and clinical trial results on viral suppression and CD4 count were linked with data from HAART-era studies of the risk of AIDS-defining events (ADEs) and death. Resource data were obtained from Italian sources on direct medical costs. Cost-effectiveness was computed as the incremental cost per quality-adjusted life year (QALY) saved. RESULTS Patients receiving ENF+OB were projected to experience a mean time to virological failure of 1.0 years vs. 0.5 years for OB and mean time to immunological failure of 3.1 years vs. 1.3 years for OB. Life expectancy and QALYs were greater for ENF+OB than OB by 1.8 and 1.5 years, respectively. Total lifetime medical cost was euro 126,487 for ENF+OB and euro 84,416 for OB, a difference of euro 42,071 due to the cost of ENF itself (euro 18,400) and the medical costs associated with additional life expectancy (euro 23,671). The incremental cost-effectiveness of ENF+OB was euro 23,721 per life year (euro 28,669 per QALY). CONCLUSION ENF+OB is predicted to increase life expectancy at a cost per life year that is comparable to many well-accepted therapies in Europe.
Collapse
Affiliation(s)
- John Hornberger
- The SPHERE Institute / Acumen, LLC, 1415 Rollins Road, Suite 110, Burlingame, CA 94010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
McMahon DK, DiNubile MJ, Meibohm AR, Marino DR, Robertson MN. Efficacy, Safety, and Tolerability of Long-Term Combination Antiretroviral Therapy in Asymptomatic Treatment-Naïve Adults with Early HIV Infection. HIV CLINICAL TRIALS 2015; 8:269-81. [DOI: 10.1310/hct0805-269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
47
|
Xu H, Wang X, Veazey RS. Simian Immunodeficiency Virus Infection and Mucosal Immunity. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Sahu GK. Potential implication of residual viremia in patients on effective antiretroviral therapy. AIDS Res Hum Retroviruses 2015; 31:25-35. [PMID: 25428885 DOI: 10.1089/aid.2014.0194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The current antiretroviral therapy (ART) has suppressed viremia to below the limit of detection of clinical viral load assays; however, it cannot eliminate viremia completely in the body even after prolonged treatment. Plasma HIV-1 loads persist at extremely low levels below the clinical detection limit. This low-level viremia (termed "residual viremia") cannot be abolished in most patients, even after the addition of a new class of drug, i.e., viral integrase inhibitor, to the combined antiretroviral regimens. Neither the cellular source nor the clinical significance of this residual viremia in patients on ART remains fully clear at present. Since residual plasma viruses generally do not evolve with time in the presence of effective ART, one prediction is that these viruses are persistently released at low levels from one or more stable but yet unknown HIV-1 reservoirs in the body during therapy. This review attempts to emphasize the source of residual viremia as another important reservoir (namely, "active reservoir") distinct from the well-known latent HIV-1 reservoir in the body, and why its elimination should be a priority in the effort for HIV-1 eradication.
Collapse
Affiliation(s)
- Gautam K. Sahu
- HIV Biology and Persistence Laboratory, Department of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| |
Collapse
|
49
|
Braun DL, Kouyos R, Oberle C, Grube C, Joos B, Fellay J, McLaren PJ, Kuster H, Günthard HF. A novel Acute Retroviral Syndrome Severity Score predicts the key surrogate markers for HIV-1 disease progression. PLoS One 2014; 9:e114111. [PMID: 25490090 PMCID: PMC4260784 DOI: 10.1371/journal.pone.0114111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/03/2014] [Indexed: 01/11/2023] Open
Abstract
Objective: Best long-term practice in primary HIV-1 infection (PHI) remains unknown for the individual. A risk-based scoring system associated with surrogate markers of HIV-1 disease progression could be helpful to stratify patients with PHI at highest risk for HIV-1 disease progression. Methods: We prospectively enrolled 290 individuals with well-documented PHI in the Zurich Primary HIV-1 Infection Study, an open-label, non-randomized, observational, single-center study. Patients could choose to undergo early antiretroviral treatment (eART) and stop it after one year of undetectable viremia, to go on with treatment indefinitely, or to defer treatment. For each patient we calculated an a priori defined “Acute Retroviral Syndrome Severity Score” (ARSSS), consisting of clinical and basic laboratory variables, ranging from zero to ten points. We used linear regression models to assess the association between ARSSS and log baseline viral load (VL), baseline CD4+ cell count, and log viral setpoint (sVL) (i.e. VL measured ≥90 days after infection or treatment interruption). Results Mean ARSSS was 2.89. CD4+ cell count at baseline was negatively correlated with ARSSS (p = 0.03, n = 289), whereas HIV-RNA levels at baseline showed a strong positive correlation with ARSSS (p<0.001, n = 290). In the regression models, a 1-point increase in the score corresponded to a 0.10 log increase in baseline VL and a CD4+cell count decline of 12/µl, respectively. In patients with PHI and not undergoing eART, higher ARSSS were significantly associated with higher sVL (p = 0.029, n = 64). In contrast, in patients undergoing eART with subsequent structured treatment interruption, no correlation was found between sVL and ARSSS (p = 0.28, n = 40). Conclusion The ARSSS is a simple clinical score that correlates with the best-validated surrogate markers of HIV-1 disease progression. In regions where ART is not universally available and eART is not standard this score may help identifying patients who will profit the most from early antiretroviral therapy.
Collapse
Affiliation(s)
- Dominique L. Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- * E-mail: (DLB); (HFG)
| | - Roger Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Corinna Oberle
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christina Grube
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Beda Joos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Paul J. McLaren
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Herbert Kuster
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- * E-mail: (DLB); (HFG)
| |
Collapse
|
50
|
Cannizzo ES, Bellistrì GM, Casabianca A, Tincati C, Iannotti N, Barco A, Orlandi C, Monforte AD, Marchetti G. Immunophenotype and Function of CD38-Expressing CD4+ and CD8+ T Cells in HIV-Infected Patients Undergoing Suppressive Combination Antiretroviral Therapy. J Infect Dis 2014; 211:1511-3. [DOI: 10.1093/infdis/jiu634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/30/2014] [Indexed: 01/06/2023] Open
|