1
|
Riveros ME, Leibold NK, Retamal MA, Ezquer F. Role of histaminergic regulation of astrocytes in alcohol use disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111009. [PMID: 38653364 DOI: 10.1016/j.pnpbp.2024.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Alcohol use disorder (AUD) is a severe, yet not fully understood, mental health problem. It is associated with liver, pancreatic, and gastrointestinal diseases, thereby highly increasing the morbidity and mortality of these individuals. Currently, there is no effective and safe pharmacological therapy for AUD. Therefore, there is an urgent need to increase our knowledge about its neurophysiological etiology to develop new treatments specifically targeted at this health condition. Recent findings have shown an upregulation in the histaminergic system both in alcohol dependent individuals and in animals with high alcohol preference. The use of H3 histaminergic receptor antagonists has given promising therapeutic results in animal models of AUD. Interestingly, astrocytes, which are ubiquitously present in the brain, express the three main histamine receptors (H1, H2 and H3), and in the last few years, several studies have shown that astrocytes could play an important role in the development and maintenance of AUD. Accordingly, alterations in the density of astrocytes in brain areas such as the prefrontal cortex, ventral striatum, and hippocampus that are critical for AUD-related characteristics have been observed. These characteristics include addiction, impulsivity, motor function, and aggression. In this work, we review the current state of knowledge on the relationship between the histaminergic system and astrocytes in AUD and propose that histamine could increase alcohol tolerance by protecting astrocytes from ethanol-induced oxidative stress. This increased tolerance could lead to high levels of alcohol intake and therefore could be a key factor in the development of alcohol dependence.
Collapse
Affiliation(s)
- María Eugenia Riveros
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
| | - Nicole K Leibold
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Programa de Comunicación Celular en Cáncer, Instituto de Ciencia e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencia e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago. Chile; Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile
| |
Collapse
|
2
|
Steinmeier J, Dringen R. Exposure of Cultured Astrocytes to Menadione Triggers Rapid Radical Formation, Glutathione Oxidation and Mrp1-Mediated Export of Glutathione Disulfide. Neurochem Res 2019; 44:1167-1181. [PMID: 30806880 DOI: 10.1007/s11064-019-02760-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
Menadione (2-methyl-1,4-naphthoquinone) is a synthetic derivative of vitamin K that allows rapid redox cycling in cells and thereby generates reactive oxygen species (ROS). To test for the consequences of a treatment of brain astrocytes with menadione, we incubated primary astrocyte cultures with this compound. Incubation with menadione in concentrations of up to 30 µM did not affect cell viability. In contrast, exposure of astrocytes to 100 µM menadione caused a time-dependent impairment of cellular metabolism and cell functions as demonstrated by impaired glycolytic lactate production and strong increases in the activity of extracellular lactate dehydrogenase and in the number of propidium iodide-positive cells within 4 h of incubation. In addition, already 5 min after exposure of astrocytes to menadione a concentration-dependent increase in the number of ROS-positive cells as well as a concentration-dependent and transient accumulation of cellular glutathione disulfide (GSSG) were observed. The rapid intracellular GSSG accumulation was followed by an export of GSSG that was prevented in the presence of MK571, an inhibitor of the multidrug resistance protein 1 (Mrp1). Menadione-induced glutathione (GSH) oxidation and ROS formation were found accelerated after glucose-deprivation, while the presence of dicoumarol, an inhibitor of the menadione-reducing enzyme NQO1, did not affect the menadione-dependent GSSG accumulation. Our study demonstrates that menadione rapidly depletes cultured astrocytes of GSH via ROS-induced oxidation to GSSG that is subsequently exported via Mrp1.
Collapse
Affiliation(s)
- Johann Steinmeier
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany. .,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany.
| |
Collapse
|
3
|
Yurt KK, Kivrak EG, Altun G, Mohamed H, Ali F, Gasmalla HE, Kaplan S. A brief update on physical and optical disector applications and sectioning-staining methods in neuroscience. J Chem Neuroanat 2018; 93:16-29. [DOI: 10.1016/j.jchemneu.2018.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/25/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023]
|
4
|
Karadayian AG, Malanga G, Czerniczyniec A, Lombardi P, Bustamante J, Lores-Arnaiz S. Free radical production and antioxidant status in brain cortex non-synaptic mitochondria and synaptosomes at alcohol hangover onset. Free Radic Biol Med 2017; 108:692-703. [PMID: 28450149 DOI: 10.1016/j.freeradbiomed.2017.04.344] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/21/2017] [Accepted: 04/23/2017] [Indexed: 10/19/2022]
Abstract
Alcohol hangover (AH) is the pathophysiological state after a binge-like drinking. We have previously demonstrated that AH induced bioenergetics impairments in a total fresh mitochondrial fraction in brain cortex and cerebellum. The aim of this work was to determine free radical production and antioxidant systems in non-synaptic mitochondria and synaptosomes in control and hangover animals. Superoxide production was not modified in non-synaptic mitochondria while a 17.5% increase was observed in synaptosomes. A similar response was observed for cardiolipin content as no changes were evidenced in non-synaptic mitochondria while a 55% decrease in cardiolipin content was found in synaptosomes. Hydrogen peroxide production was 3-fold increased in non-synaptic mitochondria and 4-fold increased in synaptosomes. In the presence of deprenyl, synaptosomal H2O2 production was 67% decreased in the AH condition. Hydrogen peroxide generation was not affected by deprenyl addition in non-synaptic mitochondria from AH mice. MAO activity was 57% increased in non-synaptic mitochondria and 3-fold increased in synaptosomes. Catalase activity was 40% and 50% decreased in non-synaptic mitochondria and synaptosomes, respectively. Superoxide dismutase was 60% decreased in non-synaptic mitochondria and 80% increased in synaptosomal fractions. On the other hand, GSH (glutathione) content was 43% and 17% decreased in synaptosomes and cytosol. GSH-related enzymes were mostly affected in synaptosomes fractions by AH condition. Acetylcholinesterase activity in synaptosomes was 11% increased due to AH. The present work reveals that AH provokes an imbalance in the cellular redox homeostasis mainly affecting mitochondria present in synaptic terminals.
Collapse
Affiliation(s)
- Analía G Karadayian
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Gabriela Malanga
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Analía Czerniczyniec
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Paulina Lombardi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Juanita Bustamante
- Universidad Abierta Interamericana, Centro de Altos Estudios en Ciencias de la Salud, Buenos Aires, Argentina
| | - Silvia Lores-Arnaiz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Durazzo TC, Mattsson N, Weiner MW. Smoking and increased Alzheimer's disease risk: a review of potential mechanisms. Alzheimers Dement 2014; 10:S122-45. [PMID: 24924665 PMCID: PMC4098701 DOI: 10.1016/j.jalz.2014.04.009] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cigarette smoking has been linked with both increased and decreased risk for Alzheimer's disease (AD). This is relevant for the US military because the prevalence of smoking in the military is approximately 11% higher than in civilians. METHODS A systematic review of published studies on the association between smoking and increased risk for AD and preclinical and human literature on the relationships between smoking, nicotine exposure, and AD-related neuropathology was conducted. Original data from comparisons of smoking and never-smoking cognitively normal elders on in vivo amyloid imaging are also presented. RESULTS Overall, literature indicates that former/active smoking is related to a significantly increased risk for AD. Cigarette smoke/smoking is associated with AD neuropathology in preclinical models and humans. Smoking-related cerebral oxidative stress is a potential mechanism promoting AD pathology and increased risk for AD. CONCLUSIONS A reduction in the incidence of smoking will likely reduce the future prevalence of AD.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Niklas Mattsson
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Michael W Weiner
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Pignataro L, Varodayan FP, Tannenholz LE, Protiva P, Harrison NL. Brief alcohol exposure alters transcription in astrocytes via the heat shock pathway. Brain Behav 2013; 3:114-33. [PMID: 23533150 PMCID: PMC3607153 DOI: 10.1002/brb3.125] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 12/23/2012] [Accepted: 01/07/2013] [Indexed: 12/17/2022] Open
Abstract
Astrocytes are critical for maintaining homeostasis in the central nervous system (CNS), and also participate in the genomic response of the brain to drugs of abuse, including alcohol. In this study, we investigated ethanol regulation of gene expression in astrocytes. A microarray screen revealed that a brief exposure of cortical astrocytes to ethanol increased the expression of a large number of genes. Among the alcohol-responsive genes (ARGs) are glial-specific immune response genes, as well as genes involved in the regulation of transcription, cell proliferation, and differentiation, and genes of the cytoskeleton and extracellular matrix. Genes involved in metabolism were also upregulated by alcohol exposure, including genes associated with oxidoreductase activity, insulin-like growth factor signaling, acetyl-CoA, and lipid metabolism. Previous microarray studies performed on ethanol-treated hepatocyte cultures and mouse liver tissue revealed the induction of almost identical classes of genes to those identified in our microarray experiments, suggesting that alcohol induces similar signaling mechanisms in the brain and liver. We found that acute ethanol exposure activated heat shock factor 1 (HSF1) in astrocytes, as demonstrated by the translocation of this transcription factor to the nucleus and the induction of a family of known HSF1-dependent genes, the heat shock proteins (Hsps). Transfection of a constitutively transcriptionally active Hsf1 construct into astrocytes induced many of the ARGs identified in our microarray study supporting the hypothesis that HSF1 transcriptional activity, as part of the heat shock cascade, may mediate the ethanol induction of these genes. These data indicate that acute ethanol exposure alters gene expression in astrocytes, in part via the activation of HSF1 and the heat shock cascade.
Collapse
Affiliation(s)
- Leonardo Pignataro
- Department of Anesthesiology The College of Physicians and Surgeons, Columbia University 630 West 168th St., New York, NY, 10032
| | | | | | | | | |
Collapse
|
7
|
Oxidative stress is the primary event: Effects of ethanol consumption in brain. Indian J Clin Biochem 2012; 22:99-104. [PMID: 23105661 DOI: 10.1007/bf02912890] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Damaging effects of reactive oxygen species on living systems are well documented. They include oxidative attack on vital cell constituents. Chronic ethanol administration is able to induce an oxidative stress in the central nervous system. In the present study, 16-18 week-old male albino rats of Wistar strain were exposed to different concentration of ethanol for 4 weeks. This exposure showed profound effect on body weight. Ascorbic acid level; and activities of alkaline phosphatase and aspartate transaminase in the brain are dependent on the concentration of ethanol exposure. Chronic ethanol ingestion elicits statistically significant increase in thiobarbituric acid reactive substances level and decrease in gluatathione level in the brain. It reduces superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities in a dose dependent manner. However, histological examination could not reveal any pathophysiological changes. Therefore, we conclude that biochemical alterations and oxidative stress related parameters respond early in alcoholism than the histopathological changes in brain.
Collapse
|
8
|
Effect of oxidative stress on UDP-glucuronosyltransferases in rat astrocytes. Toxicol Lett 2012; 213:316-24. [DOI: 10.1016/j.toxlet.2012.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 01/03/2023]
|
9
|
Coller JK, Hutchinson MR. Implications of central immune signaling caused by drugs of abuse: mechanisms, mediators and new therapeutic approaches for prediction and treatment of drug dependence. Pharmacol Ther 2012; 134:219-45. [PMID: 22316499 DOI: 10.1016/j.pharmthera.2012.01.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 01/12/2023]
Abstract
In the past two decades a trickle of manuscripts examining the non-neuronal central nervous system immune consequences of the drugs of abuse has now swollen to a significant body of work. Initially, these studies reported associative evidence of central nervous system proinflammation resulting from exposure to the drugs of abuse demonstrating key implications for neurotoxicity and disease progression associated with, for example, HIV infection. However, more recently this drug-induced activation of central immune signaling is now understood to contribute substantially to the pharmacodynamic actions of the drugs of abuse, by enhancing the engagement of classical mesolimbic dopamine reward pathways and withdrawal centers. This review will highlight the key in vivo animal, human, biological and molecular evidence of these central immune signaling actions of opioids, alcohol, cocaine, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA). Excitingly, this new appreciation of central immune signaling activity of drugs of abuse provides novel therapeutic interventions and opportunities to identify 'at risk' individuals through the use of immunogenetics. Discussion will also cover the evidence of modulation of this signaling by existing clinical and pre-clinical drug candidates, and novel pharmacological targets. Finally, following examination of the breadth of central immune signaling actions of the drugs of abuse highlighted here, the current known common immune signaling components will be outlined and their impact on established addiction neurocircuitry discussed, thereby synthesizing a common neuroimmune hypothesis of addiction.
Collapse
Affiliation(s)
- Janet K Coller
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
10
|
Santofimia-Castaño P, Salido GM, Gonzalez A. Ethanol reduces kainate-evoked glutamate secretion in rat hippocampal astrocytes. Brain Res 2011; 1402:1-8. [PMID: 21679931 DOI: 10.1016/j.brainres.2011.05.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 05/25/2011] [Accepted: 05/25/2011] [Indexed: 12/12/2022]
Abstract
In this study we have used rat hippocampal astrocytes in culture to investigate the effect of ethanol on kainate-induced glutamate secretion. Our results show that kainate (10 μM to 500 μM) stimulated glutamate release from astrocytes. Preincubation of astrocytes in the presence of ethanol induced a concentration-dependent (1mM-50mM) inhibition of glutamate release caused by stimulation of cells with 100 μM kainate. Inhibition of alcohol-dehydrogenase, by preincubation of astrocytes in the presence of 4-methylpyrazole (1mM), abolished ethanol-induced inhibition of glutamate release in response to kainate. On the other hand, preincubation of astrocytes in the presence of the antioxidant cinnamtannin B-1 (10 μM) also blocked ethanol inhibitory action on glutamate release in response to kainate. Ethanol (50mM) reduced Ca(2+) mobilization in response to kainate, whereas cinnamtannin B-1 reversed the inhibitory action of ethanol on Ca(2+) mobilization by kainate. Our results are consistent with an inhibitory action of ethanol on glutamate secretion from hippocampal astrocytes. The inhibitory effects of ethanol are probably due to its oxidative metabolization, involves reactive oxygen species production, and a lower Ca(2+) mobilization by kainate. Taking into account the pivotal role that astrocytes play within the central nervous system, especially in relation to neurons, the negative effects of ethanol on the release of glutamate might affect neuron-glia communication in the hippocampus, which might lead to functional defects in the brain.
Collapse
|
11
|
Comparison of ethanol and acetaldehyde toxicity in rat astrocytes in primary culture. Arh Hig Rada Toksikol 2010; 60:297-305. [PMID: 19789159 DOI: 10.2478/10004-1254-60-2009-1927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study compared the effects of toxicity of ethanol and its first metabolite acetaldehyde in rat astrocytes through cell viability and cell proliferation. The cells were treated with different concentrations of ethanol in the presence or absence of a catalase inhibitor 2-amino-1,2,4 triazole (AMT) or with different concentrations of acetaldehyde. Cell viability was assessed using the trypan blue test. Cell proliferation was assessed after 24 hours and after seven days of exposure to either ethanol or acetaldehyde.We showed that both ethanol and acetaldehyde decreased cell viability in a dose-dependent manner. In proliferation studies, after seven days of exposure to either ethanol or acetaldehyde, we observed a significant dose-dependent decrease in cell number. The protein content study showed biphasic dose-response curves, after 24 hours and seven days of exposure to either ethanol or acetaldehyde. Co-incubation in the presence of AMT significantly reduced the inhibitory effect of ethanol on cell proliferation.We concluded that long-term exposure of astrocytes to ethanol is more toxic than acute exposure. Acetaldehyde is a much more potent toxin than ethanol, and at least a part of ethanol toxicity is due to ethanol's first metabolite acetaldehyde.
Collapse
|
12
|
Del Castillo-Vaquero A, Salido GM, González A. Increased calcium influx in the presence of ethanol in mouse pancreatic acinar cells. Int J Exp Pathol 2009; 91:114-24. [PMID: 20002836 DOI: 10.1111/j.1365-2613.2009.00691.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The effects of alcohol on Ca(2+) signalling remains poorly understood. Here we have investigated the effects of acute ethanol exposure on Ca(2+) influx in mouse pancreatic acinar cells. Cells were loaded with fura-2 and the changes in fluorescence were monitored by spectrofluorimetry and imaging analysis. Stimulation of cells with 20 pM cholecystokinin evoked an oscillatory pattern in [Ca(2+)](c), both in the presence and in the absence of extracellular Ca(2+). Stimulation of cells with cholecystokinin in the presence of 50 mM ethanol led to a transformation of physiological oscillations into a single transient increase in [Ca(2+)](c). This effect was observed when Ca(2+) was present in the extracellular medium, and did not appear in its absence. Addition of 1 mM CaCl(2) to the extracellular medium, following release of Ca(2+) from intracellular stores by stimulation of cells with 1 nM cholecystokinin or 1 microM thapsigargin in the absence of extracellular Ca(2+), was followed by an increase in [Ca(2+)](c). Ca(2+) influx was increased in the presence of 50 mM ethanol. The anti-oxidant cinnamtannin B-1 (10 microM) or inhibition of alcohol dehydrogenase by 4-MP (1 mM), significantly reduced Ca(2+) influx evoked by cholecystokinin in the presence of ethanol. In summary, intoxicating concentrations of ethanol may lead to over stimulation of pancreatic acinar cells by cholecystokinin. This might be partially explained by the generation of reactive oxygen species and an increased Ca(2+) entry in the presence of ethanol. Potentially ethanol might lead to Ca(2+) overload, which is a common pathological precursor that is implicated in pancreatitis.
Collapse
|
13
|
Fernández-Sánchez M, del Castillo-Vaquero A, Salido GM, González A. Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells. BMC Cell Biol 2009; 10:77. [PMID: 19878551 PMCID: PMC2777139 DOI: 10.1186/1471-2121-10-77] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 10/30/2009] [Indexed: 11/13/2022] Open
Abstract
Background A significant percentage of patients with pancreatitis often presents a history of excessive alcohol consumption. Nevertheless, the patho-physiological effect of ethanol on pancreatitis remains poorly understood. In the present study, we have investigated the early effects of acute ethanol exposure on CCK-8-evoked Ca2+ signals in mouse pancreatic acinar cells. Changes in [Ca2+]i and ROS production were analyzed employing fluorescence techniques after loading cells with fura-2 or CM-H2DCFDA, respectively. Results Ethanol, in the concentration range from 1 to 50 mM, evoked an oscillatory pattern in [Ca2+]i. In addition, ethanol evoked reactive oxygen species generation (ROS) production. Stimulation of cells with 1 nM or 20 pM CCK-8, respectively led to a transient change and oscillations in [Ca2+]i. In the presence of ethanol a transformation of 20 pM CCK-8-evoked physiological oscillations into a single transient increase in [Ca2+]i in the majority of cells was observed. Whereas, in response to 1 nM CCK-8, the total Ca2+ mobilization was significantly increased by ethanol pre-treatment. Preincubation of cells with 1 mM 4-MP, an inhibitor of alcohol dehydrogenase, or 10 μM of the antioxidant cinnamtannin B-1, reverted the effect of ethanol on total Ca2+ mobilization evoked by 1 nM CCK-8. Cinnamtannin B-1 blocked ethanol-evoked ROS production. Conclusion ethanol may lead, either directly or through ROS generation, to an over stimulation of pancreatic acinar cells in response to CCK-8, resulting in a higher Ca2+ mobilization compared to normal conditions. The actions of ethanol on CCK-8-stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis.
Collapse
Affiliation(s)
- Marcela Fernández-Sánchez
- Department of Physiology, Cell Physiology Research Group, University of Extremadura, Cáceres, Spain.
| | | | | | | |
Collapse
|
14
|
Kádár A, Wittmann G, Liposits Z, Fekete C. Improved method for combination of immunocytochemistry and Nissl staining. J Neurosci Methods 2009; 184:115-8. [PMID: 19615409 DOI: 10.1016/j.jneumeth.2009.07.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/06/2009] [Accepted: 07/07/2009] [Indexed: 12/13/2022]
Abstract
Nissl staining is a widely used method to study morphology and pathology of neural tissue. After standard immunocytochemistry, the Nissl staining labels only the nucleus of neurons and the characteristic staining of the neuronal perikarya is absent or very weak. We hypothesized that the RNA degradation during the immunocytochemical treatment results in the loss of cytoplasmic staining with Nissl-dyes. To test this hypothesis, we used RNAse-free conditions for all steps of immunostaining. To further prevent the RNA-degradation by RNAse contaminations, the RNAse inhibitor heparin was added to all antibody-containing solutions. The efficiency of Nissl staining after standard and RNAse-free double-labeling immunocytochemistry was compared using antibodies against c-Fos and neuropeptide Y (NPY) on tissues of rats refed after 3 days of fasting. After standard immunocytochemistry, the Nissl-staining labeled the nuclei of neurons and only very faintly the cytoplasm of these cells. The RNAse-free treatment did not alter the distribution of immunoreaction signal, but preserved the staining of neuronal perikarya by the Nissl-dyes. In conclusion, the RNAse-free conditions during immunocytochemistry allow the labeling of neuronal perikarya by Nissl-dyes. The described method facilitates the mapping of immunocytochemical signals and makes possible the light microscopic examination of the innervation of neurons identified by their nuclear protein content.
Collapse
Affiliation(s)
- Andrea Kádár
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | |
Collapse
|
15
|
González A, Salido GM. Ethanol alters the physiology of neuron-glia communication. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:167-98. [PMID: 19897078 DOI: 10.1016/s0074-7742(09)88007-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the central nervous system (CNS), both neurones and astrocytes play crucial roles. On a cellular level, brain activity involves continuous interactions within complex cellular circuits established between neural cells and glia. Although it was initially considered that neurones were the major cell type in cerebral function, nowadays astrocytes are considered to contribute to cerebral function too. Astrocytes support normal neuronal activity, including synaptic function, by regulating the extracellular environment with respect to ions and neurotransmitters. There is a plethora of noxious agents which can lead to the development of alterations in organs and functional systems, and that will end in a chronic prognosis. Among the potentially harmful external agents we can find ethanol consumption, whose consequences have been recognized as a major public health concern. Deregulation of cell cycle has devastating effects on the integrity of cells, and has been closely associated with the development of pathologies which can lead to dysfunction and cell death. An alteration of normal neuronal-glial physiology could represent the basis of neurodegenerative processes. In this review we will pay attention on to the recent findings in astrocyte function and their role toward neurons under ethanol consumption.
Collapse
Affiliation(s)
- Antonio González
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10071, Cáceres, Spain
| | | |
Collapse
|
16
|
González A, Pariente JA, Salido GM. Ethanol impairs calcium homeostasis following CCK-8 stimulation in mouse pancreatic acinar cells. Alcohol 2008; 42:565-73. [PMID: 18774672 DOI: 10.1016/j.alcohol.2008.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 12/15/2022]
Abstract
Alcohol consumption has long been associated with cell damage, and it is thought that it is involved in approximately 40% of cases of acute pancreatitis. In the present study, we have investigated the early effects of acute ethanol exposure on cholecystokinin octapeptide (CCK-8)-evoked calcium (Ca2+) signals in mouse pancreatic acinar cells. Cells were loaded with fura-2 and the changes in fluorescence were monitorized using a spectrofluorimeter. Our results show that stimulation of cells with 1 nM CCK-8 led to a transient increase in [Ca2+]c, which consisted of an initial increase followed by a decrease of [Ca2+]c toward a value close to the prestimulation level. In the presence of 50mM ethanol, CCK-8 lead to a greater Ca2+ mobilization compared to that obtained with CCK-8 alone. The peak of CCK-8-evoked Ca2+ response, the "steady-state level" reached 5 min after stimulation, the rate of decay of [Ca2+]c toward basal values and the total Ca2+ mobilization were significantly affected by ethanol pretreatment. Thapsigargin (Tps) induced an increase in [Ca2+]c due to its release from intracellular stores. After stimulation of cells with CCK-8 or Tps in the presence of 50mM ethanol, a greater [Ca2+]c peak response, a slower rate of decay of [Ca2+]c, and higher values of [Ca2+]c were observed. The effects of ethanol might result from a delayed or reduced Ca2+ extrusion from the cytosol toward the extracellular space by plasma membrane Ca2+ adenosine triphosphatase (ATPase), or into the cytosolic stores by the sarcoendoplasmic reticulum Ca2+-ATPase. Participation of mitochondria in Ca2+ handling is also demonstrated. The actions of ethanol on CCK-8 stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis.
Collapse
Affiliation(s)
- Antonio González
- Department of Physiology, Cell Physiology Research Group, Faculty of Veterinary Sciences, University of Extremadura, Avenida Universidad s/n, PO Box 643, Cáceres, Spain.
| | | | | |
Collapse
|
17
|
Jaatinen P, Rintala J. Mechanisms of ethanol-induced degeneration in the developing, mature, and aging cerebellum. THE CEREBELLUM 2008; 7:332-47. [DOI: 10.1007/s12311-008-0034-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 11/30/2022]
|
18
|
Ishihara L, Brayne C. A systematic review of nutritional risk factors of Parkinson's disease. Nutr Res Rev 2007; 18:259-82. [DOI: 10.1079/nrr2005108] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A wide variety of nutritional exposures have been proposed as possible risk factors for Parkinson's disease (PD) with plausible biological hypotheses. Many studies have explored these hypotheses, but as yet no comprehensive systematic review of the literature has been available. MEDLINE, EMBASE, and WEB OF SCIENCE databases were searched for existing systematic reviews or meta-analyses of nutrition and PD, and one meta-analysis of coffee drinking and one meta-analysis of antioxidants were identified. The databases were searched for primary research articles, and articles without robust methodology were excluded by specified criteria. Seven cohort studies and thirty-three case–control (CC) studies are included in the present systematic review. The majority of studies did not find significant associations between nutritional factors and PD. Coffee drinking and alcohol intake were the only exposures with a relatively large number of studies, and meta-analyses of each supported inverse associations with PD. Factors that were reported by at least one CC study to have significantly increased consumption among cases compared with controls were: vegetables, lutein, xanthophylls, xanthins, carbohydrates, monosaccharides, junk food, refined sugar, lactose, animal fat, total fat, nuts and seeds, tea, Fe, and total energy. Factors consumed significantly less often among cases were: fish, egg, potatoes, bread, alcohol, coffee, tea, niacin, pantothenic acid, folate and pyridoxine. In three cohort studies, two reported borderline decreased relative risks and one a significant increased risk with vitamin C intake. One cohort reported an inverse association between caffeine intake and PD. Three cohorts reported significant positive association in men between dairy products and PD.
Collapse
|
19
|
González A, Pariente JA, Salido GM. Ethanol stimulates ROS generation by mitochondria through Ca2+ mobilization and increases GFAP content in rat hippocampal astrocytes. Brain Res 2007; 1178:28-37. [PMID: 17888892 DOI: 10.1016/j.brainres.2007.08.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 06/29/2007] [Accepted: 08/12/2007] [Indexed: 01/04/2023]
Abstract
We have employed rat hippocampal astrocytes in culture to investigate the effect of ethanol on reactive oxygen species (ROS) production as well as its effect on [Ca2+]c and GFAP expression. Cells were loaded with the fluorescent probes fura-2 and H2DCFDA for the determination of changes in [Ca2+]c and ROS production respectively, employing spectrofluorimetry. GFAP content was determined by immunocytochemistry and confocal scanning microscopy. Our results show ROS production in response to 50 mM ethanol, that was reduced in Ca2+-free medium (containing 0.5 mM EGTA) and in the presence of the intracellular Ca2+ chelator BAPTA (10 microM). The effect of ethanol on ROS production was significantly reduced in the presence of the alcohol dehydrogenase inhibitor 4-methylpyrazole (1 mM), and the antioxidants resveratrol (100 microM) or catalase (300 U/ml). Preincubation of astrocytes in the presence of 10 microM antimycin plus 10 microM oligomycin to inhibit mitochondria completely blocked ethanol-evoked ROS production. In addition, ethanol led to a sustained increase in [Ca2+]c that reached a constant level over the prestimulation values. Finally, incubation of astrocytes in the presence of ethanol increased the content of GFAP that was significantly reduced in the absence of extracellular Ca2+ and by resveratrol and catalase pretreatment. The data obtained in the present study suggest that astrocytes are able to metabolize ethanol, which induces two effects on intracellular homeostasis: an immediate response (Ca2+ release and ROS generation) and later changes involving GFAP expression. Both effects may underline various signaling pathways which are important for cell proliferation, differentiation and function.
Collapse
Affiliation(s)
- Antonio González
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Cáceres, Spain.
| | | | | |
Collapse
|
20
|
Flatscher-Bader T, van der Brug M, Hwang JW, Gochee PA, Matsumoto I, Niwa SI, Wilce PA. Alcohol-responsive genes in the frontal cortex and nucleus accumbens of human alcoholics. J Neurochem 2005; 93:359-70. [PMID: 15816859 DOI: 10.1111/j.1471-4159.2004.03021.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular processes underlying alcohol dependence are not fully understood. Many characteristic behaviours result from neuroadaptations in the mesocorticolimbic system. In addition, alcoholism is associated with a distinct neuropathology. To elucidate the molecular basis of these features, we compared the RNA expression profile of the nucleus accumbens and prefrontal cortex of human brain from matched individual alcoholic and control cases using cDNA microarrays. Approximately 6% of genes with a marked alcohol response were common to the two brain regions. Alcohol-responsive genes were grouped into 11 functional categories. Predominant alcohol-responsive genes in the prefrontal cortex were those encoding DNA-binding proteins including transcription factors and repair proteins. There was also a down-regulation of genes encoding mitochondrial proteins, which could result in disrupted mitochondrial function and energy production leading to oxidative stress. Other alcohol-responsive genes in the prefrontal cortex were associated with neuroprotection/apoptosis. In contrast, in the nucleus accumbens, alcohol-responsive genes were associated with vesicle formation and regulation of cell architecture, which suggests a neuroadaptation to chronic alcohol exposure at the level of synaptic structure and function. Our data are in keeping with the previously reported alcoholism-related pathology characteristic of the prefrontal cortex, but suggest a persistent decrease in neurotransmission and changes in plasticity in the nucleus accumbens of the alcoholic.
Collapse
Affiliation(s)
- Traute Flatscher-Bader
- Department of Biochemistry and Molecular Biology, School of Molecular and Microbial Sciences, The University of Queensland, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
21
|
Signorini-Allibe N, Gonthier B, Lamarche F, Eysseric H, Barret L. CHRONIC CONSUMPTION OF ETHANOL LEADS TO SUBSTANTIAL CELL DAMAGE IN CULTURED RAT ASTROCYTES IN CONDITIONS PROMOTING ACETALDEHYDE ACCUMULATION. Alcohol Alcohol 2005; 40:163-71. [PMID: 15767272 DOI: 10.1093/alcalc/agh097] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS This study aimed at comparing the cerebral cytotoxicity of ethanol and its main metabolite acetaldehyde after acute or chronic exposures of rat astrocytes in primary culture. METHODS Cytotoxicity was evaluated on the cell reduction of viability (MTT reduction test) and on the characterization of DNA damage by single cell gel electrophoresis (or comet assay). RESULTS Changes in astrocyte survival and in DNA integrity only occurred when the astrocytes were chronically exposed to ethanol (20 mM; 3, 6 or 9 days). On the other hand, viability and DNA integrity were deeply affected by acute exposure to acetaldehyde. Both effects were dependent on the concentration of acetaldehyde. The cytotoxic effect of acetaldehyde was also indirectly evaluated after modifications of the normal ethanol metabolism by the use of different inducers or inhibitors. In presence of ethanol, the concomitant induction of catalase (i.e. by glucose oxidase) and inhibition of aldehyde dehydrogenase (i.e. by methylene blue) led to acetaldehyde accumulation within cells. It was followed by both a reduction in viability and a substantial increase in DNA strand breaks. CONCLUSIONS These data were thus consistent with a possible predominant role of acetaldehyde during brain ethanol metabolism. On the other hand, the effects observed after AMT could also suggest a possible direct ethanol effect and a role for free radical attacks. These data were thus consistent with a possible predominant role of acetaldehyde during brain ethanol metabolism. On the other hand, the effects observed after AMT could also suggest a possible direct ethanol effect and a role for free radical attacks.
Collapse
Affiliation(s)
- N Signorini-Allibe
- Laboratoire ORSOX (Oligoélements et Résistance au Stress Oxydant induit par les Xénobiotiques) UMR UJF/CEA-LCR CEA 8M, Université Joseph Fourier, La Tronche Cedex, France
| | | | | | | | | |
Collapse
|