1
|
Tian CB, Qin ML, Qian YL, Qin SS, Shi ZQ, Zhao YL, Luo XD. Liver injury protection of Artemisia stechmanniana besser through PI3K/AKT pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118590. [PMID: 39029542 DOI: 10.1016/j.jep.2024.118590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia stechmanniana Besser, one of the most prevalent botanical medicines in Chinese, has been traditionally used for hepatitis treatment. However, the bioactive components and pharmacological mechanism on alcohol-induced liver injury remains unclear. AIM OF THE STUDY To investigate the effect of A. stechmanniana on alcohol-induced liver damage, and further explore its mechanism. MATERIALS AND METHODS Phytochemical isolation and structural identification were used to determine the chemical constituents of A. stechmanniana. Then, the alcohol-induced liver damage animal and cell model were established to evaluate its hepato-protective potential. Network pharmacology, molecular docking and bioinformatics were integrated to explore the mechanism and then the prediction was further supported by experiments. Moreover, both compounds were subjected to ADMET prediction through relevant databases. RESULTS 28 compounds were isolated from the most bioactive fraction, ethyl acetate extract A. stechmanniana, in which five compounds (abietic acid, oplopanone, oplodiol, hydroxydavanone, linoleic acid) could attenuate mice livers damage caused by alcohol intragastration, reduce the degree of oxidative stress, and serum AST and ALT, respectively. Furthermore, abietic acid and hydroxydavanone exhibited best protective effect against alcohol-stimulated L-O2 cells injury among five bioactive compounds. Network pharmacology and bioinformatics analysis suggested that abietic acid and hydroxydavanone exhibiting drug likeliness characteristics, were the principal active compounds acting on liver injury treatment, primarily impacting to cell proliferation, oxidative stress and inflammation-related PI3K-AKT signaling pathways. Both of them displayed strong binding energies with five target proteins (HRAS, HSP90AA1, AKT1, CDK2, NF-κB p65) via molecular docking. Western blotting results further supported the predication with up-regulation of protein expressions of CDK2, and down-regulation of HRAS, HSP90AA1, AKT1, NF-κB p65 by abietic acid and hydroxydavanone. CONCLUSION Alcohol-induced liver injury protection by A. stechmanniana was verified in vivo and in vitro expanded its traditional use, and its two major bioactive compounds, abietic acid and hydroxydavanone exerted hepatoprotective effect through the regulation of PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Cai-Bo Tian
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Ma-Long Qin
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Yan-Ling Qian
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Shi-Shi Qin
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Zhuo-Qi Shi
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China.
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
2
|
Zhang H, Cui X, Liu W, Xiang Z, Ye JF. Regulation of intestinal microflora and metabolites of Penthorum chinense Pursh on alcoholic liver disease. Front Pharmacol 2024; 14:1331956. [PMID: 38328577 PMCID: PMC10847573 DOI: 10.3389/fphar.2023.1331956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction: Alcoholic liver disease (ALD) was the second leading cause of liver injury. Penthorum chinense Pursh (GHC) is an important Miao ethnic drug of traditional Chinese medicine for the treatment of liver disease, but the pathogenesis is not clear. Aim of the study: To analysis the intestinal microflora and metabolic pathway of GHC on ALD mice. Methods: An HPLC-QTOF-MS method was used to identified the components from GHC extract, firstly. 60 mice were divided into six groups including blank group, model group, positive group and GHC groups (0.29, 0.87 and 2.61 g/kg). ALD mice was treated with GHC for 12 days. ALT, AST, TC and TG in serum were determined, liver index and pathological analysis were achieved. 16S rRNA gene sequencing was used to detect the intestinal microbial diversity. Finally, UPLC-QTOF-MS was used to analysis the metabolic pathways. Results: 38 ingredients were identified in GHC extract. Compared with the model group, liver index of the positive group and GHC (2.61 g/kg) group was significantly reduced. Compared with the model group, contents of ALT, AST, TC and TG of GHC groups reduced in a dose-dependent manner. Intestinal microbial diversity analysis indicated that Chao1, Observed species, Pielou_e, and Shannon indexes in GHC group (2.61 g/kg) were lower than those in model group. Principal coordinate analysis indicated that the intestinal microbial composition between blank group and model group, the model group and GHC (2.61 g/kg) group changed significantly. Compared with the model group, proportion of Firmicutes decreased, and the proportion of Bacteroidetes increased significantly in GHC group, which were 50.84% and 40.15%. The more prominent bacteria in the GHC group were odoribacteraceae, turicibacter, deferribacteraceae, and the intestinal beneficial symbiotic bacteria mucispirillum. Metabolic analysis indicated that, compared with blank group, 90 metabolites in model group changed significantly, and 68 metabolites were significantly callback in GHC group. Discussion: GHC has a therapeutic effect on ALD by regulating intestinal flora imbalance and metabolic pathways including Glycine, serine and threonine metabolism, Glutathione metabolism, Arginine and proline metabolism, Alanine, aspartate and glutamate metabolism, Butanoate metabolism and primary bile acid biosynthesis.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Cui
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Zheng Xiang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Ji-Feng Ye
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Pérez-Hernández O, González-Reimers E, García-Rodríguez A, Fernández-Rodríguez C, Abreu-González P, González-Pérez JM, Sánchez-Pérez MJ, Ferraz-Amaro I, Martín-González C. Value of inflammatory response and oxidative damage in the diagnosis of infections in severe alcoholic hepatitis. Eur J Intern Med 2024; 119:64-70. [PMID: 37586986 DOI: 10.1016/j.ejim.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
Severe alcoholic hepatitis is the most lethal complication in alcohol dependent patients. The concurrence of infections in these patients is very frequent. Both produce a systemic inflammatory response syndrome (SIRS), secondary to intense release of inflammatory cytokines, which can complicate the diagnosis. In our study, Interleukin (IL)-6 and IL-10 levels are higher in patients with SIRS (p<0.001 and p = 0.033, respectively). IL-4, IL-6, Interferon-gamma (IFNγ), Tumor necrosis factor alpha (TNFα) and IL-17 levels correlate with liver function, as estimated by MELD-Na (p = 0.018, p = 0.008, p = 0.009, p = 0.016 and p = 0.006, respectively). Malondialdehyde (MDA), a product of lipid peroxidation and marker of cell damage, also correlates with liver function (p = 0.002), but not with SIRS or infections. Only elevated IL-6 correlates independently with the presence of infections (RR=1.023 IC 95% 1.000-1.047), so it may be useful for the correct diagnosis in these patients. Values greater than 30 pg/mL have a sensitivity: 86.7% and specificity: 94.7% for the diagnosis of infections.
Collapse
Affiliation(s)
- Onán Pérez-Hernández
- Servicio de Medicina Interna, Complejo Hospitalario Universitario de Canarias, San Cristóbal de La Laguna, Canary Islands, Spain
| | - Emilio González-Reimers
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Laguna, San Cristóbal de La Laguna, Canary Islands, Spain
| | - Alen García-Rodríguez
- Servicio de Medicina Interna, Complejo Hospitalario Universitario de Canarias, San Cristóbal de La Laguna, Canary Islands, Spain
| | - Camino Fernández-Rodríguez
- Servicio de Medicina Interna, Complejo Hospitalario Universitario de Canarias, San Cristóbal de La Laguna, Canary Islands, Spain
| | - Pedro Abreu-González
- Departamento de Ciencias Médicas Básicas, Unidad de Fisiología, Universidad de la Laguna, San Cristóbal de La Laguna, Canary Islands, Spain
| | - José María González-Pérez
- Servicio de Medicina Interna, Complejo Hospitalario Universitario de Canarias, San Cristóbal de La Laguna, Canary Islands, Spain
| | - María José Sánchez-Pérez
- Servicio de Medicina Interna, Complejo Hospitalario Universitario de Canarias, San Cristóbal de La Laguna, Canary Islands, Spain
| | - Iván Ferraz-Amaro
- Servicio de Reumatología, Complejo Hospitalario Universitario de Canarias, San Cristóbal de La Laguna, Canary Islands, Spain
| | - Candelaria Martín-González
- Servicio de Medicina Interna, Complejo Hospitalario Universitario de Canarias, San Cristóbal de La Laguna, Canary Islands, Spain; Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Laguna, San Cristóbal de La Laguna, Canary Islands, Spain.
| |
Collapse
|
4
|
Shree Harini K, Ezhilarasan D, Mani U. Molecular insights on intracellular Wnt/β-catenin signaling in alcoholic liver disease. Cell Biochem Funct 2024; 42:e3916. [PMID: 38269515 DOI: 10.1002/cbf.3916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
Alcoholic liver disease (ALD) is one of the most common health problems worldwide, especially in developing countries caused by chronic consumption of alcohol on a daily basis. The ALD spectrum is initiated with the early stages of alcoholic fatty liver (steatosis), progressing to alcoholic steatohepatitis, followed by the later stages of fibrosis and in some cases, cirrhosis and hepatocellular carcinoma (HCC). The Wnt/β-catenin signaling required for healthy liver development, function, and regeneration is found to be aberrated in ALD, attributed to its progression. This review is to elucidate the association of Wnt/β-catenin signaling with various stages of ALD progression. Alcohol causes downregulation of Wnt/β-catenin signaling components and thereby suppressing the pathway. Reports have been published that aberrated Wnt/β-catenin signaling, especially the absence of β-catenin, results in decreased alcohol metabolism, causing steatosis followed by steatohepatitis via lipid accumulation, lipid peroxidation, liver injury, increased oxidative stress and apoptosis of hepatocytes, contributing to the advancement of ALD. Contrastingly, the progression of later stages of ALD like fibrosis and HCC depends on the increased activation of Wnt/β-catenin signaling and its components. Existing studies reveal the varied expression of Wnt/β-catenin signaling in ALD. However, the dual role of the Wnt/β-catenin pathway in earlier and later stages of ALD is not clear. Therefore, studies on the Wnt/β-catenin pathway and its components in various manifestations of ALD might provide insight in targeting the Wnt/β-catenin pathway in ALD treatment.
Collapse
Affiliation(s)
- Karthik Shree Harini
- Department of Pharmacology, Hepatology & Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology & Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Uthirappan Mani
- Animal House Division, CSIR-Central Leather Research Institute, Chennai, India
| |
Collapse
|
5
|
Niemelä O, Bloigu A, Bloigu R, Nivukoski U, Kultti J, Pohjasniemi H. Patterns of IgA Autoantibody Generation, Inflammatory Responses and Extracellular Matrix Metabolism in Patients with Alcohol Use Disorder. Int J Mol Sci 2023; 24:13124. [PMID: 37685930 PMCID: PMC10487441 DOI: 10.3390/ijms241713124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Recent data have emphasized the role of inflammation and intestinal immunoglobulin A (IgA) responses in the pathogenesis of alcoholic liver disease (ALD). In order to further explore such associations, we compared IgA titers against antigens targeted to ethanol metabolites and tissue transglutaminase with pro- and anti-inflammatory mediators of inflammation, markers of liver status, transferrin protein desialylation and extracellular matrix metabolism in alcohol-dependent patients with or without liver disease and in healthy controls. Serum IgAs against protein adducts with acetaldehyde (HbAch-IgA), the first metabolite of ethanol, and tissue transglutaminase (tTG-IgA), desialylated transferrin (CDT), pro- and anti-inflammatory cytokines, markers of liver status (GT, ALP) and extracellular matrix metabolism (PIIINP, PINP, hyaluronic acid, ICTP and CTx) were measured in alcohol-dependent patients with (n = 83) or without (n = 105) liver disease and 88 healthy controls representing either moderate drinkers or abstainers. In ALD patients, both tTG-IgA and HbAch-IgA titers were significantly higher than those in the alcoholics without liver disease (p < 0.0005 for tTG-IgA, p = 0.006 for Hb-Ach-IgA) or in healthy controls (p < 0.0005 for both comparisons). The HbAch-IgA levels in the alcoholics without liver disease also exceeded those found in healthy controls (p = 0.0008). In ROC analyses, anti-tTG-antibodies showed an excellent discriminative value in differentiating between ALD patients and healthy controls (AUC = 0.95, p < 0.0005). Significant correlations emerged between tTG-IgAs and HbAch-IgAs (rs = 0.462, p < 0.0005), CDT (rs = 0.413, p < 0.0001), GT (rs = 0.487, p < 0.0001), alkaline phosphatase (rs = 0.466, p < 0.0001), serum markers of fibrogenesis: PIIINP (rs = 0.634, p < 0.0001), hyaluronic acid (rs = 0.575, p < 0.0001), ICTP (rs = 0.482, p < 0.0001), pro-inflammatory cytokines IL-6 (rs = 0.581, p < 0.0001), IL-8 (rs = 0.535, p < 0.0001) and TNF-α (rs = 0.591, p < 0.0001), whereas significant inverse correlations were observed with serum TGF-β (rs = -0.366, p < 0.0001) and CTx, a marker of collagen degradation (rs = -0.495, p < 0.0001). The data indicate that the induction of IgA immune responses toward ethanol metabolites and tissue transglutaminaseis a characteristic feature of patients with AUD and coincides with the activation of inflammation, extracellular matrix remodeling and the generation of aberrantly glycosylated proteins. These processes appear to work in concert in the sequence of events leading from heavy drinking to ALD.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Aini Bloigu
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland;
| | - Risto Bloigu
- Infrastructure of Population Studies, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland;
| | - Ulla Nivukoski
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Johanna Kultti
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Heidi Pohjasniemi
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
6
|
Abstract
The medical disorders of alcoholism rank among the leading public health problems worldwide and the need for predictive and prognostic risk markers for assessing alcohol use disorders (AUD) has been widely acknowledged. Early-phase detection of problem drinking and associated tissue toxicity are important prerequisites for timely initiations of appropriate treatments and improving patient's committing to the objective of reducing drinking. Recent advances in clinical chemistry have provided novel approaches for a specific detection of heavy drinking through assays of unique ethanol metabolites, phosphatidylethanol (PEth) or ethyl glucuronide (EtG). Carbohydrate-deficient transferrin (CDT) measurements can be used to indicate severe alcohol problems. Hazardous drinking frequently manifests as heavy episodic drinking or in combinations with other unfavorable lifestyle factors, such as smoking, physical inactivity, poor diet or adiposity, which aggravate the metabolic consequences of alcohol intake in a supra-additive manner. Such interactions are also reflected in multiple disease outcomes and distinct abnormalities in biomarkers of liver function, inflammation and oxidative stress. Use of predictive biomarkers either alone or as part of specifically designed biological algorithms helps to predict both hepatic and extrahepatic morbidity in individuals with such risk factors. Novel approaches for assessing progression of fibrosis, a major determinant of prognosis in AUD, have also been made available. Predictive algorithms based on the combined use of biomarkers and clinical observations may prove to have a major impact on clinical decisions to detect AUD in early pre-symptomatic stages, stratify patients according to their substantially different disease risks and predict individual responses to treatment.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and Tampere University, Seinäjoki, Finland.
| |
Collapse
|
7
|
Daucosterol Alleviates Alcohol-Induced Hepatic Injury and Inflammation through P38/NF-κB/NLRP3 Inflammasome Pathway. Nutrients 2023; 15:nu15010223. [PMID: 36615880 PMCID: PMC9823995 DOI: 10.3390/nu15010223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Alcoholic liver disease (ALD) is caused by chronic excessive alcohol consumption, which leads to inflammation, oxidative stress, lipid accumulation, liver fibrosis/cirrhosis, and even liver cancer. However, there are currently no effective drugs for ALD. Herein, we report that a natural phytosterol Daucosterol (DAU) can effectively protect against liver injury caused by alcohol, which plays anti-inflammatory and antioxidative roles in many chronic inflammatory diseases. Our results demonstrate that DAU ameliorates liver inflammation induced by alcohol through p38/nuclear factor kappa B (NF-κB)/NOD-like receptor protein-3 (NLRP3) inflammasome pathway. Briefly, DAU decreases NF-κB nuclear translocation and inhibits NLRP3 activation by decreasing p38 phosphorylation. At the same time, DAU also protects against hepatic oxidative stress and lipid accumulation. In conclusion, our research provides a new clue about the protective effects of naturally active substances on ALD.
Collapse
|
8
|
Blood Cell Responses Following Heavy Alcohol Consumption Coincide with Changes in Acute Phase Reactants of Inflammation, Indices of Hemolysis and Immune Responses to Ethanol Metabolites. Int J Mol Sci 2022; 23:ijms232112738. [PMID: 36361528 PMCID: PMC9656529 DOI: 10.3390/ijms232112738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Aberrations in blood cells are common among heavy alcohol drinkers. In order to shed further light on such responses, we compared blood cell status with markers of hemolysis, mediators of inflammation and immune responses to ethanol metabolites in alcohol-dependent patients at the time of admission for detoxification and after abstinence. Blood cell counts, indices of hemolysis (LDH, haptoglobin, bilirubin), calprotectin (a marker of neutrophil activation), suPAR, CD163, pro- and anti-inflammatory cytokines and autoantibodies against protein adducts with acetaldehyde, the first metabolite of ethanol, were measured from alcohol-dependent patients (73 men, 26 women, mean age 43.8 ± 10.4 years) at baseline and after 8 ± 1 days of abstinence. The assessments also included information on the quantities of alcohol drinking and assays for biomarkers of alcohol consumption (CDT), liver function (AST, ALT, ALP, GGT) and acute phase reactants of inflammation. At baseline, the patients showed elevated values of CDT and biomarkers of liver status, which decreased significantly during abstinence. A significant decrease also occurred in LDH, bilirubin, CD163 and IgA and IgM antibodies against acetaldehyde adducts, whereas a significant increase was noted in blood leukocytes, platelets, MCV and suPAR levels. The changes in blood leukocytes correlated with those in serum calprotectin (p < 0.001), haptoglobin (p < 0.001), IL-6 (p < 0.02) and suPAR (p < 0.02). The changes in MCV correlated with those in LDH (p < 0.02), MCH (p < 0.01), bilirubin (p < 0.001) and anti-adduct IgG (p < 0.01). The data indicates that ethanol-induced changes in blood leukocytes are related with acute phase reactants of inflammation and release of neutrophil calprotectin. The studies also highlight the role of hemolysis and immune responses to ethanol metabolites underlying erythrocyte abnormalities in alcohol abusers.
Collapse
|
9
|
Nivukoski U, Bloigu A, Bloigu R, Kultti J, Tuomi H, Niemelä O. Comparison of serum calprotectin, a marker of neutrophil activation, and other mediators of inflammation in response to alcohol consumption. Alcohol 2021; 95:45-50. [PMID: 34228990 DOI: 10.1016/j.alcohol.2021.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022]
Abstract
AIMS Previous studies have indicated that heavy alcohol intake stimulates inflammation and impairs the body's ability to regulate inflammation. The aim of this study was to compare changes in neutrophil calprotectin and a wide spectrum of other inflammatory mediators in response to heavy alcohol drinking. METHODS Serum calprotectin (a marker of neutrophil activation), suPAR, CD163, and pro- (IL-6, IL-8, TNF-α) and anti-inflammatory (IL-10, TGF-β) cytokines were measured from 61 alcohol-dependent subjects (46 men, 15 women, mean age 43.6 ± 11.0 years) at the time of admission for detoxification and after 8 ± 2 days of abstinence. These biomarkers were also measured from age- and sex-matched healthy controls representing abstainers or light drinkers. The clinical assessments included detailed clinical interviews on the amounts and patterns of alcohol consumption and assays for biomarkers of alcohol consumption (GGT, CDT, MCV, GGT-CDT) and liver function (AST, ALT). RESULTS The subjects with alcohol use disorder showed significantly higher concentrations of serum calprotectin (p < 0.0005), suPAR (p < 0.01), CD163 (p < 0.01), IL-6 (p < 0.0005), IL-8 (p < 0.0005), TNF-α (p < 0.001), and IL-10 (p < 0.0005) than healthy controls. These inflammatory mediators, except for CD163, remained elevated after the 8 ± 2-day period of supervised abstinence, which resulted in significant decreases in the biomarkers of alcohol consumption and indices of liver status. The AUC (0.855) for serum calprotectin in differentiating between the heavy drinkers and healthy controls was equal or equivalent with those of the conventional biomarkers of alcohol consumption (GGT:0.835 or CDT:0.803). CONCLUSIONS The data indicate that neutrophil calprotectin is released in response to heavy alcohol intake in a sensitive manner and may be associated with perpetuation of inflammation in patients with alcohol use disorder. Serum calprotectin may also prove to be a useful biomarker for inflammatory activity in alcohol-consuming patients.
Collapse
Affiliation(s)
- Ulla Nivukoski
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Aini Bloigu
- Center for Life Course Health Research, University of Oulu, 90014, Finland
| | - Risto Bloigu
- Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, 90014, Finland
| | - Johanna Kultti
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Heidi Tuomi
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| |
Collapse
|
10
|
Rungratanawanich W, Qu Y, Wang X, Essa MM, Song BJ. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp Mol Med 2021; 53:168-188. [PMID: 33568752 PMCID: PMC8080618 DOI: 10.1038/s12276-021-00561-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023] Open
Abstract
Advanced glycation end products (AGEs) are potentially harmful and heterogeneous molecules derived from nonenzymatic glycation. The pathological implications of AGEs are ascribed to their ability to promote oxidative stress, inflammation, and apoptosis. Recent studies in basic and translational research have revealed the contributing roles of AGEs in the development and progression of various aging-related pathological conditions, such as diabetes, cardiovascular complications, gut microbiome-associated illnesses, liver or neurodegenerative diseases, and cancer. Excessive chronic and/or acute binge consumption of alcohol (ethanol), a widely consumed addictive substance, is known to cause more than 200 diseases, including alcohol use disorder (addiction), alcoholic liver disease, and brain damage. However, despite the considerable amount of research in this area, the underlying molecular mechanisms by which alcohol abuse causes cellular toxicity and organ damage remain to be further characterized. In this review, we first briefly describe the properties of AGEs: their formation, accumulation, and receptor interactions. We then focus on the causative functions of AGEs that impact various aging-related diseases. We also highlight the biological connection of AGE-alcohol-adduct formations to alcohol-mediated tissue injury. Finally, we describe the potential translational research opportunities for treatment of various AGE- and/or alcohol-related adduct-associated disorders according to the mechanistic insights presented.
Collapse
Affiliation(s)
- Wiramon Rungratanawanich
- grid.420085.b0000 0004 0481 4802Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Ying Qu
- grid.420085.b0000 0004 0481 4802Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Xin Wang
- Neuroapoptosis Drug Discovery Laboratory, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115 USA
| | - Musthafa Mohamed Essa
- grid.412846.d0000 0001 0726 9430Department of Food Science and Nutrition, Aging and Dementia Research Group, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat, Oman ,grid.412846.d0000 0001 0726 9430Aging and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - Byoung-Joon Song
- grid.420085.b0000 0004 0481 4802Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892 USA
| |
Collapse
|
11
|
Association between the incidence of hypertension and alcohol consumption pattern and the alcohol flushing response: A 12-year follow-up study. Alcohol 2020; 89:43-48. [PMID: 32702501 DOI: 10.1016/j.alcohol.2020.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alcohol consumption is associated with hypertension, and this association depends on the alcohol consumption pattern and alcohol flushing response. In this 12-year follow-up study, we investigated the relationship between the alcohol consumption pattern and incidence of hypertension in the Korean population. METHODS We analyzed 1,366 Korean participants in the Ansung-Ansan cohort study without hypertension at baseline. The subjects were classified into four alcohol consumption patterns: never-drinking, light alcohol consumption, moderate alcohol consumption, and heavy alcohol consumption, and as flushers or non-flushers in response to alcohol. RESULTS In flushers, moderate and heavy alcohol consumption patterns increased the risk of incident hypertension compared with never-drinkers [moderate: HR 1.811 (95% CI 1.084-3.028); heavy: HR 2.494 (95% CI 1.185-5.247)], but non-flushers were not associated with increased risk of incident hypertension according to the alcohol consumption pattern. In addition, a heavy alcohol consumption pattern increased the risk of hypertension among flushers compared with non-flushers [HR 2.232 (95% CI 1.054-4.728)]. CONCLUSION In this 12-year follow-up study, we observed that moderate and heavy alcohol consumption was associated with an increased risk of hypertension in flushers. Especially, a heavy alcohol consumption pattern in flushers markedly increased the risk of hypertension.
Collapse
|
12
|
Dietary Synbiotic Supplementation Protects Barrier Integrity of Hepatocytes and Liver Sinusoidal Endothelium in a Mouse Model of Chronic-Binge Ethanol Exposure. Nutrients 2020; 12:nu12020373. [PMID: 32023885 PMCID: PMC7071303 DOI: 10.3390/nu12020373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Alcohol overconsumption disrupts the gut microbiota and intestinal barrier, which decreases the production of beneficial microbial metabolic byproducts and allows for translocation of pathogenic bacterial-derived byproducts into the portal-hepatic circulation. As ethanol is known to damage liver sinusoidal endothelial cells (LSEC), here we evaluated dietary supplementation with a previously studied synbiotic on gut microbial composition, and hepatocyte and LSEC integrity in mice exposed to ethanol. We tested a chronic-binge ethanol feeding mouse model in which C57BL/6 female mice were fed ethanol (5% vol/vol) for 10 days and provided a single ethanol gavage (5 g/kg body weight) on day 11, 6 h before euthanasia. An ethanol-treatment group also received oral supplementation daily with a synbiotic; and an ethanol-control group received saline. Control mice were pair-fed and isocalorically substituted maltose dextran for ethanol over the entire exposure period; they received a saline gavage daily. Ethanol exposure decreased gut microbial abundance and diversity. This was linked with diminished expression of adherens junction proteins in hepatocytes and dysregulated expression of receptors for advanced glycation end-products; and this coincided with reduced expression of endothelial barrier proteins. Synbiotic supplementation mitigated these effects. These results demonstrate synbiotic supplementation, as a means to modulate ethanol-induced gut dysbiosis, is effective in attenuating injury to hepatocyte and liver endothelial barrier integrity, highlighting a link between the gut microbiome and early stages of acute liver injury in ethanol-exposed mice.
Collapse
|
13
|
Sun J, Fu J, Li L, Chen C, Wang H, Hou Y, Xu Y, Pi J. Nrf2 in alcoholic liver disease. Toxicol Appl Pharmacol 2018; 357:62-69. [PMID: 30165058 DOI: 10.1016/j.taap.2018.08.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 12/19/2022]
Abstract
Alcoholic liver disease (ALD) is a leading cause of morbidity and mortality of liver disorders and a major health issue globally. ALD refers to a spectrum of liver pathologies ranging from steatosis, steatohepatitis, fibrosis, cirrhosis and even hepatocellular carcinoma. Various mechanisms, including oxidative stress, protein and DNA modification, inflammation and impaired lipid metabolism, have been implicated in the pathogenesis of ALD. Further, reactive oxygen species (ROS) in particular, have been identified as a key component in the initiation and progression of ALD. Nuclear factor erythroid 2 like 2 (Nrf2) is a master regulator of the intracellular adaptive antioxidant response to oxidative stress, and aids in the detoxification of a variety of toxicants. Given its cytoprotective role, Nrf2 has been extensively studied as a therapeutic target for ALD. Paradoxically, however, emerging evidence have revealed that Nrf2 may be implicated in the progression of ALD. In this review, we summarize the role of Nrf2 in the development of ALD and discuss the underlying mechanisms. Clearly, more comprehensive studies with proper animal and cell models and in human are needed to verify the potential therapeutic role of Nrf2 in ALD.
Collapse
Affiliation(s)
- Jing Sun
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Lu Li
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Chengjie Chen
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Huihui Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
14
|
Niemelä O. Biomarker-Based Approaches for Assessing Alcohol Use Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:166. [PMID: 26828506 PMCID: PMC4772186 DOI: 10.3390/ijerph13020166] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/14/2016] [Accepted: 01/20/2016] [Indexed: 12/11/2022]
Abstract
Although alcohol use disorders rank among the leading public health problems worldwide, hazardous drinking practices and associated morbidity continue to remain underdiagnosed. It is postulated here that a more systematic use of biomarkers improves the detection of the specific role of alcohol abuse behind poor health. Interventions should be initiated by obtaining information on the actual amounts of recent alcohol consumption through questionnaires and measurements of ethanol and its specific metabolites, such as ethyl glucuronide. Carbohydrate-deficient transferrin is a valuable tool for assessing chronic heavy drinking. Activities of common liver enzymes can be used for screening ethanol-induced liver dysfunction and to provide information on the risk of co-morbidities including insulin resistance, metabolic syndrome and vascular diseases. Conventional biomarkers supplemented with indices of immune activation and fibrogenesis can help to assess the severity and prognosis of ethanol-induced tissue damage. Many ethanol-sensitive biomarkers respond to the status of oxidative stress, and their levels are modulated by factors of life style, including weight gain, physical exercise or coffee consumption in an age- and gender-dependent manner. Therefore, further attention should be paid to defining safe limits of ethanol intake in various demographic categories and establishing common reference intervals for biomarkers of alcohol use disorders.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and University of Tampere, Seinäjoki 60220, Finland.
| |
Collapse
|
15
|
McKillop IH, Schrum LW, Thompson KJ. Role of alcohol in the development and progression of hepatocellular carcinoma. Hepat Oncol 2016; 3:29-43. [PMID: 30191025 PMCID: PMC6095421 DOI: 10.2217/hep.15.40] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant cause of cancer-related morbidity and mortality. Chronic, heavy ethanol consumption is a major risk for developing the worsening liver pathologies that culminate in hepatic cirrhosis, the leading risk factor for developing HCC. A significant body of work reports the biochemical and pathological consequences of ethanol consumption and metabolism during hepatocarcinogeneis. The systemic effects of ethanol means organ system interactions are equally important in understanding the initiation and progression of HCC within the alcoholic liver. This review aims to summarize the effects of ethanol-ethanol metabolism during the pathogenesis of alcoholic liver disease, the progression toward HCC and the importance of ethanol as a comorbid factor for HCC development.
Collapse
Affiliation(s)
- Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203 USA
| | - Laura W Schrum
- Department of Medicine, Carolinas Medical Center, Charlotte, NC 28203 USA
| | - Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203 USA
| |
Collapse
|
16
|
Ceni E, Mello T, Galli A. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism. World J Gastroenterol 2014; 20:17756-17772. [PMID: 25548474 PMCID: PMC4273126 DOI: 10.3748/wjg.v20.i47.17756] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/22/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption is a predominant etiological factor in the pathogenesis of chronic liver diseases, resulting in fatty liver, alcoholic hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma (HCC). Although the pathogenesis of alcoholic liver disease (ALD) involves complex and still unclear biological processes, the oxidative metabolites of ethanol such as acetaldehyde and reactive oxygen species (ROS) play a preeminent role in the clinical and pathological spectrum of ALD. Ethanol oxidative metabolism influences intracellular signaling pathways and deranges the transcriptional control of several genes, leading to fat accumulation, fibrogenesis and activation of innate and adaptive immunity. Acetaldehyde is known to be toxic to the liver and alters lipid homeostasis, decreasing peroxisome proliferator-activated receptors and increasing sterol regulatory element binding protein activity via an AMP-activated protein kinase (AMPK)-dependent mechanism. AMPK activation by ROS modulates autophagy, which has an important role in removing lipid droplets. Acetaldehyde and aldehydes generated from lipid peroxidation induce collagen synthesis by their ability to form protein adducts that activate transforming-growth-factor-β-dependent and independent profibrogenic pathways in activated hepatic stellate cells (HSCs). Furthermore, activation of innate and adaptive immunity in response to ethanol metabolism plays a key role in the development and progression of ALD. Acetaldehyde alters the intestinal barrier and promote lipopolysaccharide (LPS) translocation by disrupting tight and adherent junctions in human colonic mucosa. Acetaldehyde and LPS induce Kupffer cells to release ROS and proinflammatory cytokines and chemokines that contribute to neutrophils infiltration. In addition, alcohol consumption inhibits natural killer cells that are cytotoxic to HSCs and thus have an important antifibrotic function in the liver. Ethanol metabolism may also interfere with cell-mediated adaptive immunity by impairing proteasome function in macrophages and dendritic cells, and consequently alters allogenic antigen presentation. Finally, acetaldehyde and ROS have a role in alcohol-related carcinogenesis because they can form DNA adducts that are prone to mutagenesis, and they interfere with methylation, synthesis and repair of DNA, thereby increasing HCC susceptibility.
Collapse
|
17
|
Hayashi N, George J, Takeuchi M, Fukumura A, Toshikuni N, Arisawa T, Tsutsumi M. Acetaldehyde-derived advanced glycation end-products promote alcoholic liver disease. PLoS One 2013; 8:e70034. [PMID: 23922897 PMCID: PMC3724722 DOI: 10.1371/journal.pone.0070034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/14/2013] [Indexed: 01/04/2023] Open
Abstract
Background Chronic ingestion of ethanol increases acetaldehyde and leads to the production of acetaldehyde-derived advanced glycation end-products (AA-AGE). We evaluated the toxicity of AA-AGE on hepatocytes and studied the role of AA-AGE in the pathogenesis of alcoholic liver disease (ALD). Methods Rat hepatocyte cultures were treated with N-ethyllysine (NEL) or AA-AGE and the cell viability was evaluated using MTT assay. Male Wistar rats were fed with liquid diet containing 5% ethanol for 8 weeks following normal diet for another 12 weeks. A group of animals was sacrificed at 4th, 6th, and 8th week and the remaining animals at 12th, 14th, 16th, 18th, and 20th week. The liver sections were stained for AA-AGE and 4-hydroxy-2-nonenal (4-HNE). Liver biopsy obtained from ALD patients was also stained for AA-AGE and 4-HNE. Results Hepatocyte viability was significantly reduced in cultures treated with AA-AGE compared to NEL treated or control cultures. Severe fatty degeneration was observed during chronic administration of ethanol increasing from 4–8 weeks. The staining of AA-AGE and 4-HNE was correlated with the degree of ALD in both rat and human. In rats, hepatic fatty degeneration was completely disappeared and the staining for both AA-AGE and 4-HNE returned to normal at 12th week of abstinence. Staining for AA-AGE and 4-HNE was completely absent in normal human liver. Conclusions The data demonstrated that AA-AGE is toxic to hepatocytes, but not NEL. Chronic ethanol ingestion produces AA-AGE and reactive oxygen species that contribute to the pathogenesis of ALD. Abstinence of alcohol results in complete disappearance of both AA-AGE and 4-HNE along with fatty degeneration suggesting that AA-AGE plays a significant role in the pathogenesis of ALD.
Collapse
Affiliation(s)
- Nobuhiko Hayashi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Joseph George
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- * E-mail: (JG); (MT)
| | - Masayoshi Takeuchi
- Department of Advanced Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Atsushi Fukumura
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Nobuyuki Toshikuni
- Department of Gastroenterology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Tomiyasu Arisawa
- Department of Gastroenterology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- * E-mail: (JG); (MT)
| |
Collapse
|
18
|
|
19
|
Shi X, Yao D, Chen C. Identification of N-acetyltaurine as a novel metabolite of ethanol through metabolomics-guided biochemical analysis. J Biol Chem 2012; 287:6336-49. [PMID: 22228769 DOI: 10.1074/jbc.m111.312199] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The influence of ethanol on the small molecule metabolome and the role of CYP2E1 in ethanol-induced hepatotoxicity were investigated using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics platform and Cyp2e1-null mouse model. Histological and biochemical examinations of ethanol-exposed mice indicated that the Cyp2e1-null mice were more resistant to ethanol-induced hepatic steatosis and transaminase leakage than the wild-type mice, suggesting CYP2E1 contributes to ethanol-induced toxicity. Metabolomic analysis of urinary metabolites revealed time- and dose-dependent changes in the chemical composition of urine. Along with ethyl glucuronide and ethyl sulfate, N-acetyltaurine (NAT) was identified as a urinary metabolite that is highly responsive to ethanol exposure and is correlated with the presence of CYP2E1. Subsequent stable isotope labeling analysis using deuterated ethanol determined that NAT is a novel metabolite of ethanol. Among three possible substrates of NAT biosynthesis (taurine, acetyl-CoA, and acetate), the level of taurine was significantly reduced, whereas the levels of acetyl-CoA and acetate were dramatically increased after ethanol exposure. In vitro incubation assays suggested that acetate is the main precursor of NAT, which was further confirmed by the stable isotope labeling analysis using deuterated acetate. The incubations of tissues and cellular fractions with taurine and acetate indicated that the kidney has the highest NAT synthase activity among the tested organs, whereas the cytosol is the main site of NAT biosynthesis inside the cell. Overall, the combination of biochemical and metabolomic analysis revealed NAT is a novel metabolite of ethanol and a potential biomarker of hyperacetatemia.
Collapse
Affiliation(s)
- Xiaolei Shi
- Department of Food Science and Nutrition, University of Minnesota, St Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
20
|
Dong C, Yoon YH, Chen CM, Yi HY. Heavy alcohol use and premature death from hepatocellular carcinoma in the United States, 1999-2006. J Stud Alcohol Drugs 2011; 72:892-902. [PMID: 22051203 PMCID: PMC3211960 DOI: 10.15288/jsad.2011.72.892] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/23/2011] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE The incidence rate of hepatocellular carcinoma has been rising in the United States during the last 2 decades. Heavy alcohol use has been widely recognized as one of the major etiological factors of hepatocellular carcinoma. This study sought to assess the extent to which heavy alcohol use contributed to premature death from hepatocellular carcinoma on a population scale in the United States. METHOD We analyzed the Multiple Cause of Death public-use data sets. Using codes from the International Classification of Diseases, 10th Revision, hepatocellular carcinoma death was defined based on the underlying cause of death, and heavy alcohol use was indicated by the presence of any alcohol-induced medical conditions among the contributing causes of death. During 1999-2006 in the United States, 51,400 hepatocellular carcinoma deaths were identified from 17,727,245 natural deaths of persons age 25 or older. We conducted Poisson regression, life table, and multiple linear regression analyses to compare prevalence ratios, cumulative probabilities, and mean ages of death, respectively, from hepatocellular carcinoma by heavy alcohol use status across sex and race/ethnicity. RESULTS Heavy alcohol use decedents had higher prevalence ratios of dying from hepatocellular carcinoma than from non-chronic liver diseases compared with those decedents without heavy alcohol use. Heavy alcohol use was associated with decreased mean ages and increased cumulative probabilities of death among hepatocellular carcinoma decedents across racial/ethnic groups in both sexes. This association was stronger among women than men and stronger among non-Hispanic Whites than non-Hispanic Blacks. CONCLUSIONS This study provides mortality-based empirical evidence to further establish heavy alcohol consumption as one of the key risk factors contributing to premature deaths from hepatocellular carcinoma in the United States, and its effect appears more prominent among women and non-Hispanic Whites.
Collapse
Affiliation(s)
- Chuanhui Dong
- Alcohol Epidemiologic Data System, CSR Incorporated, 2107 Wilson Boulevard, Suite 1000, Arlington, Virginia 22201-3085
| | - Young-Hee Yoon
- Alcohol Epidemiologic Data System, CSR Incorporated, 2107 Wilson Boulevard, Suite 1000, Arlington, Virginia 22201-3085
| | | | | |
Collapse
|
21
|
Bootorabi F, Jänis J, Hytönen VP, Valjakka J, Kuuslahti M, Vullo D, Niemelä O, Supuran CT, Parkkila S. Acetaldehyde-derived modifications on cytosolic human carbonic anhydrases. J Enzyme Inhib Med Chem 2011; 26:862-70. [DOI: 10.3109/14756366.2011.588227] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fatemeh Bootorabi
- Institute of Biomedical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | - Vesa P. Hytönen
- Institute of Biomedical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Jarkko Valjakka
- Institute of Biomedical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Marianne Kuuslahti
- Institute of Biomedical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Daniela Vullo
- Laboratorio di Chimica Bioinorganica, Università degli studi di Firenze, Sesto Fiorentino (Firenze), Italy
| | - Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and University of Tampere, Seinäjoki, Finland
| | - Claudiu T. Supuran
- Laboratorio di Chimica Bioinorganica, Università degli studi di Firenze, Sesto Fiorentino (Firenze), Italy
| | - Seppo Parkkila
- Institute of Biomedical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland
- Centre for Laboratory Medicine, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
22
|
Acetaldehyde-Mediated Neurotoxicity: Relevance to Fetal Alcohol Spectrum Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011. [PMCID: PMC3166768 DOI: 10.1155/2011/213286] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ethanol-induced neuro-developmental abnormalities are associated with impaired insulin and IGF signaling, and increased oxidative stress in CNS neurons. We examined the roles of ethanol and its principal toxic metabolite, acetaldehyde, as mediators of impaired insulin/IGF signaling and oxidative injury in immature cerebellar neurons. Cultures were exposed to 3.5 mM acetaldehyde or 50 mM ethanol ± 4-methylpyrazole (4-MP), an inhibitor of ethanol metabolism, and viability, mitochondrial function, oxidative stress, DNA damage, and insulin responsiveness were measured 48 hours later. Acetaldehyde or ethanol increased neuronal death and levels of 8-OHdG and 4-HNE, and reduced mitochondrial function. Ethanol inhibited insulin responsiveness, whereas acetaldehyde did not. 4-MP abated ethanol-induced oxidative stress and mitochondrial dysfunction, but failed to restore insulin responsiveness. Furthermore, alcohol and aldehyde metabolizing enzyme genes were inhibited by prenatal ethanol exposure; this effect was mediated by acetaldehyde and not ethanol + 4MP. These findings suggest that brain insulin resistance in prenatal alcohol exposure is caused by direct effects of ethanol, whereas oxidative stress induced neuronal injury is likely mediated by ethanol and its toxic metabolites. Moreover, the adverse effects of prenatal ethanol exposure on brain development may be exacerbated by down-regulation of genes needed for metabolism and detoxification of alcohol in the brain.
Collapse
|
23
|
Setshedi M, Wands JR, Monte SMDL. Acetaldehyde adducts in alcoholic liver disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:178-85. [PMID: 20716942 DOI: 10.4161/oxim.3.3.12288] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic alcohol abuse causes liver disease that progresses from simple steatosis through stages of steatohepatitis, fibrosis, cirrhosis, and eventually hepatic failure. In addition, chronic alcoholic liver disease (ALD), with or without cirrhosis, increases risk for hepatocellular carcinoma (HCC). Acetaldehyde, a major toxic metabolite, is one of the principal culprits mediating fibrogenic and mutagenic effects of alcohol in the liver. Mechanistically, acetaldehyde promotes adduct formation, leading to functional impairments of key proteins, including enzymes, as well as DNA damage, which promotes mutagenesis. Why certain individuals who heavily abuse alcohol, develop HCC (7.2-15%) versus cirrhosis (15-20%) is not known, but genetics and co-existing viral infection are considered pathogenic factors. Moreover, adverse effects of acetaldehyde on the cardiovascular system and hematologic systems leading to ischemia, heart failure, and coagulation disorders, can exacerbate hepatic injury and increase risk for liver failure. Herein, we review the role of acetaldehyde adducts in the pathogenesis of chronic ALD and HCC.
Collapse
Affiliation(s)
- Mashiko Setshedi
- Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | | | | |
Collapse
|
24
|
Niemelä O, Alatalo P. Biomarkers of alcohol consumption and related liver disease. Scandinavian Journal of Clinical and Laboratory Investigation 2010; 70:305-12. [PMID: 20470213 DOI: 10.3109/00365513.2010.486442] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract Alcohol abuse is a major cause of abnormal liver function throughout the world. While measurements of liver enzyme activities (GGT, ALT, AST) are important screening tools for detecting liver disease, due to lack of ethanol-specificity and inconsistencies regarding the definitions of significant alcohol consumption, several other blood tests are usually needed to exclude competing and co-existing causes of abnormal liver function. Information on the specific role of ethanol consumption behind hepatotoxicity may be obtained through measurements of blood ethanol and its specific metabolites (ethyl glucuronide, phosphatidylethanol, protein-acetaldehyde condensates and associated autoimmune responses). Recent studies have indicated that being overweight is another increasingly common cause of abnormal liver enzyme levels and adiposity may also increase the impact of ethanol consumption on liver pathology. Interestingly, increased liver enzyme activities in circulation may reflect not only hepatic function but can also serve as indicators of general health and the status of oxidative stress in vivo. ALT and GGT activities predict insulin resistance, metabolic syndrome, mortality from coronary heart diseases and even mortality from all causes. If the upper reference limits for liver enzyme activities were defined based on the data obtained from normal weight abstainers, the clinical value of liver enzyme measurements as screening tools and in patient follow-up could be significantly improved.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and University of Tampere, Seinäjoki, Finland.
| | | |
Collapse
|
25
|
Guo R, Ren J. Alcohol and acetaldehyde in public health: from marvel to menace. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:1285-301. [PMID: 20617031 PMCID: PMC2872347 DOI: 10.3390/ijerph7041285] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/23/2010] [Accepted: 03/12/2010] [Indexed: 01/12/2023]
Abstract
Alcohol abuse is a serious medical and social problem. Although light to moderate alcohol consumption is beneficial to cardiovascular health, heavy drinking often results in organ damage and social problems. In addition, genetic susceptibility to the effect of alcohol on cancer and coronary heart disease differs across the population. A number of mechanisms including direct the toxicity of ethanol, its metabolites [e.g., acetaldehyde and fatty acid ethyl esters (FAEEs)] and oxidative stress may mediate alcoholic complications. Acetaldehyde, the primary metabolic product of ethanol, is an important candidate toxin in developing alcoholic diseases. Meanwhile, free radicals produced during ethanol metabolism and FAEEs are also important triggers for alcoholic damages.
Collapse
Affiliation(s)
- Rui Guo
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, College of Health Sciences, WY 82071, USA.
| | | |
Collapse
|
26
|
Brandon-Warner E, Sugg JA, Schrum LW, McKillop IH. Silibinin inhibits ethanol metabolism and ethanol-dependent cell proliferation in an in vitro model of hepatocellular carcinoma. Cancer Lett 2009; 291:120-9. [PMID: 19900758 DOI: 10.1016/j.canlet.2009.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 10/05/2009] [Accepted: 10/08/2009] [Indexed: 02/07/2023]
Abstract
Chronic ethanol consumption is a known risk factor for developing hepatocellular carcinoma (HCC). The use of plant-derived antioxidants is gaining increasing clinical prominence as a potential therapy to ameliorate the effects of ethanol on hepatic disease development and progression. This study demonstrates silibinin, a biologically active flavanoid derived from milk thistle, inhibits cytochrome p4502E1 induction, ethanol metabolism and reactive oxygen species generation in HCC cells in vitro. These silibinin-mediated effects also inhibit ethanol-dependent increases in HCC cell proliferation in culture.
Collapse
|
27
|
Argüelles S, Machado A, Ayala A. Adduct formation of 4-hydroxynonenal and malondialdehyde with elongation factor-2 in vitro and in vivo. Free Radic Biol Med 2009; 47:324-30. [PMID: 19447174 DOI: 10.1016/j.freeradbiomed.2009.05.010] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 04/17/2009] [Accepted: 05/11/2009] [Indexed: 11/21/2022]
Abstract
Protein synthesis is universally affected by aging in all organisms. There is no clear consensus about the mechanism underlying the decline of translation with aging. Previous reports from our laboratory have shown that the elongation step is especially affected with aging as a consequence of alterations in elongation factor-2 (eEF-2), the monomeric protein that catalyzes the movement of the ribosome along the mRNA during protein synthesis. eEF-2 seems to be specifically affected by lipid peroxidant compounds, which concomitantly produce several reactive, toxic aldehydes, such as MDA and HNE. These aldehydes are able to form adducts with proteins that lead to their inactivation. In this paper we studied the formation of adducts between MDA or HNE and eEF-2. The study was performed both in vitro, using liver homogenates treated with cumene hydroperoxide, and in vivo using young control rats, treated with the same oxidant, and 12-and 24-month-old rats. In all cases we found a decrease in the levels of eEF-2, an increase in the amount of lipid peroxidation, and a concomitant formation of adducts between eEF-2 and MDA or HNE. The results suggest that one possible mechanism responsible for the decline of protein synthesis during aging could be the alteration in eEF-2 levels, secondary to lipid peroxidation and adduct formation with these aldehydes.
Collapse
Affiliation(s)
- Sandro Argüelles
- Departamento de Bioquímica, Bromatología y Toxicología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | |
Collapse
|
28
|
Kaartinen K, Niemelä O, Syrjänen J, Alatalo P, Pörsti I, Harmoinen A, Pasternack A, Huhtala H, Mustonen J. IgA immune responses against acetaldehyde adducts and biomarkers of alcohol consumption in patients with IgA glomerulonephritis. Alcohol Clin Exp Res 2009; 33:1231-7. [PMID: 19389190 DOI: 10.1111/j.1530-0277.2009.00947.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The pathogenesis of IgA glomerulonephritis (IgAGN) involves intense deposition of IgAs within the glomerulus. Although previous studies have shown that heavy drinking frequently leads to the generation of IgA antibodies against neo-antigens induced by ethanol metabolites and tissue deposition of IgAs, the associations between alcohol consumption, IgA immune responses, and kidney disease have not been examined. METHODS A total of 158 IgAGN patients (96 men, 62 women) were classified as abstainers (n = 38), moderate drinkers (n = 114), and heavy drinkers (n = 6) based on self-reported alcohol consumption. The reference population included 143 individuals (99 men, 44 women) who were either apparently healthy abstainers (n = 31), moderate drinkers (n = 43), or heavy drinkers devoid of liver disease (n = 69). The assessments included various biomarkers of alcohol consumption: carbohydrate-deficient transferrin (CDT), glutamyl transferase, gamma-CDT (combination of GGR and CDT), mean corpuscular volume (MCV), tests for liver and kidney function, serum immunoglobulin A (IgA), and specific IgA antibodies against acetaldehyde-protein adducts. RESULTS In male IgAGN patients, drinking status was significantly associated with MCV, p < 0.001; CDT, p < 0.01; and gamma -CDT, p < 0.05. In the reference population, all biomarkers and anti-adduct IgA levels were found to vary according to drinking status. In IgAGN patients, anti-adduct IgA levels were elevated in 63% of the cases but the titers did not associate with self-reported ethanol intake. CONCLUSIONS These data indicate high levels of IgA antibodies against acetaldehyde-derived antigens in IgAGN patients, which may hamper the use of the immune responses as markers of alcohol consumption among such patients. Future studies on the pathogenic and prognostic significance of anti-adduct immune responses in IgAGN patients are warranted.
Collapse
Affiliation(s)
- Kati Kaartinen
- Department of Laboratory Medicine and Medical Research Unit, Medical School, University of Tampere, Tampere, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mena S, Ortega A, Estrela JM. Oxidative stress in environmental-induced carcinogenesis. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 674:36-44. [DOI: 10.1016/j.mrgentox.2008.09.017] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 09/23/2008] [Indexed: 12/17/2022]
|
30
|
Bootorabi F, Jänis J, Valjakka J, Isoniemi S, Vainiotalo P, Vullo D, Supuran CT, Waheed A, Sly WS, Niemelä O, Parkkila S. Modification of carbonic anhydrase II with acetaldehyde, the first metabolite of ethanol, leads to decreased enzyme activity. BMC BIOCHEMISTRY 2008; 9:32. [PMID: 19036170 PMCID: PMC2605449 DOI: 10.1186/1471-2091-9-32] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 11/27/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acetaldehyde, the first metabolite of ethanol, can generate covalent modifications of proteins and cellular constituents. However, functional consequences of such modification remain poorly defined. In the present study, we examined acetaldehyde reaction with human carbonic anhydrase (CA) isozyme II, which has several features that make it a suitable target protein: It is widely expressed, its enzymatic activity can be monitored, its structural and catalytic properties are known, and it contains 24 lysine residues, which are accessible sites for aldehyde reaction. RESULTS Acetaldehyde treatment in the absence and presence of a reducing agent (NaBH3(CN)) caused shifts in the pI values of CA II. SDS-PAGE indicated a shift toward a slightly higher molecular mass. High-resolution mass spectra of CA II, measured with and without NaBH3(CN), indicated the presence of an unmodified protein, as expected. Mass spectra of CA II treated with acetaldehyde revealed a modified protein form (+26 Da), consistent with a "Schiff base" formation between acetaldehyde and one of the primary NH2 groups (e.g., in lysine side chain) in the protein structure. This reaction was highly specific, given the relative abundance of over 90% of the modified protein. In reducing conditions, each CA II molecule had reacted with 9-19 (14 on average) acetaldehyde molecules (+28 Da), consistent with further reduction of the "Schiff bases" to substituted amines (N-ethyllysine residues). The acetaldehyde-modified protein showed decreased CA enzymatic activity. CONCLUSION The acetaldehyde-derived modifications in CA II molecule may have physiological consequences in alcoholic patients.
Collapse
Affiliation(s)
- Fatemeh Bootorabi
- Institute of Medical Technology, Tampere University Hospital, 33520 Tampere, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Waszkiewicz N, Szajda SD, Jankowska A, Zwierz P, Czernikiewicz A, Szulc A, Zwierz K. The Effect of Acute Ethanol Intoxication on Salivary Proteins of Innate and Adaptive Immunity. Alcohol Clin Exp Res 2008; 32:652-6. [DOI: 10.1111/j.1530-0277.2007.00613.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Warnakulasuriya S, Parkkila S, Nagao T, Preedy VR, Pasanen M, Koivisto H, Niemelä O. Demonstration of ethanol-induced protein adducts in oral leukoplakia (pre-cancer) and cancer. J Oral Pathol Med 2008; 37:157-65. [PMID: 18251940 DOI: 10.1111/j.1600-0714.2007.00605.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Excessive alcohol consumption is a common cause for upper gastrointestinal tract cancers. However, the primary mechanisms of alcohol-induced carcinogenesis have remained poorly defined. METHOD We examined the generation and subcellular distribution of protein adducts with acetaldehyde (AA), the first metabolite of ethanol, and end products of lipid peroxidation, malondialdehyde (MDA) and 4-hydroxynonenal (HNE), from oral biopsy specimens obtained from 36 subjects (11 British, 25 Japanese) reporting alcohol misuse. All patients had been diagnosed with oral pre-cancer (leukoplakia, n = 7) or squamous cell carcinoma (SCC; n = 29). Automated immunostaining for AA, MDA and HNE adducts was performed using monospecific antibodies. RESULTS Positive staining for AA, MDA and HNE adducts was observed in the dysplastic or malignant epithelial cells, HNE being relatively the most abundant adduct species. The subgroup of Japanese patients had higher levels of AA and MDA, although not HNE, than the British sample. When the material was divided to those with SCC or leukoplakia, MDA adducts but not the other antigens were more prominent in the former group. Significant correlations were found between the different adducts (AA vs. MDA, r = 0.68, P < 0.001; AA vs. HNE, r = 0.47, P < 0.01 and MDA vs. HNE, r = 0.59, P < 0.001). In addition, cytochrome P450 2E1 staining was found in these samples, correlating with both AA and MDA adducts. CONCLUSION The data indicates that AA- and lipid peroxidation-derived adducts are formed in oral tissues of alcohol misusers with oral leukoplakia and cancer. The findings also support a pathogenic role of AA and excessive oxidative stress in carcinogenesis.
Collapse
Affiliation(s)
- Saman Warnakulasuriya
- Department of Oral Medicine, King's College London Dental Institute at Guy's, King's & St Thomas' Hospitals, WHO Collaborating Centre for Oral Cancer and Precancer, London, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Koivisto H, Hietala J, Anttila P, Niemelä O. Co-occurrence of IgA antibodies against ethanol metabolites and tissue transglutaminase in alcohol consumers: correlation with proinflammatory cytokines and markers of fibrogenesis. Dig Dis Sci 2008; 53:500-5. [PMID: 17597408 DOI: 10.1007/s10620-007-9874-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 05/09/2007] [Indexed: 01/26/2023]
Abstract
IgA antibodies to tissue transglutaminase have been suggested to be specific indicators of celiac disease. However, no studies have addressed the relationships between such antibodies and alcohol abuse, which is also a common cause of IgA-isotype immune responses and tissue injury in the gastrointestinal tract and liver. Here, measurements of specific IgAs against tissue transglutaminase and proteins modified by acetaldehyde, the first metabolite of ethanol, showed significantly higher levels of both antibodies in alcoholic liver disease patients than in healthy controls or heavy drinkers without liver disease. These antibodies also significantly co-occurred in heavy drinkers without liver disease, moderate drinkers, and abstainers, and correlated with biomarkers of alcohol consumption, proinflammatory cytokines and markers of fibrogenesis. The data suggests a link between such immune responses, perturbations in cytokine profiles and fibrogenesis, which should be implicated in studies on the pathogenesis and diagnosis of ethanol-induced tissue injury and celiac disease.
Collapse
Affiliation(s)
- Heidi Koivisto
- Medical Research Unit and Department of Laboratory Medicine, Seinäjoki Central Hospital, Seinajoki 60220, Finland
| | | | | | | |
Collapse
|
34
|
Abstract
The development of alcoholic liver disease (ALD) can be attributed to many factors that cause damage to the liver and alter its functions. Data collected over the last 30 years strongly suggests that an immune component may be involved in the onset of this disease. This is best evidenced by the detection of circulating autoantibodies, infiltration of immune cells in the liver, and the detection of hepatic aldehyde modified proteins in patients with ALD. Experimentally, there are numerous immune responses that occur when proteins are modified with the metabolites of ethanol. These products are formed in response to the high oxidative state of the liver during ethanol metabolism, causing the release of many inflammatory processes and potential of necrosis or apoptosis of liver cells. Should cellular proteins become modified with these reactive alcohol metabolites and be recognized by the immune system, then immune responses may be initiated. Therefore, it was the purpose of this article to shed some insight into how the immune system is involved in the development and/or progression of ALD.
Collapse
Affiliation(s)
- Michael J Duryee
- Omaha VA Medical Center, Research Service 151, Rm 325, 4101 Woolworth Avenue, Omaha, NE 68105, USA.
| | | | | |
Collapse
|
35
|
Kharbanda KK, Mailliard ME, Baldwin CR, Sorrell MF, Tuma DJ. Accumulation of proteins bearing atypical isoaspartyl residues in livers of alcohol-fed rats is prevented by betaine administration: effects on protein-L-isoaspartyl methyltransferase activity. J Hepatol 2007; 46:1119-25. [PMID: 17336420 DOI: 10.1016/j.jhep.2007.01.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 12/27/2006] [Accepted: 01/15/2007] [Indexed: 01/30/2023]
Abstract
BACKGROUND/AIMS Protein-L-isoaspartyl methyltransferase (PIMT) is a methyltransferase that plays a crucial role in the repair of damaged proteins. In this study, we investigated whether ethanol exposure causes an accumulation of modified proteins bearing atypical isoaspartyl residues that may be related to impaired PIMT activity. We further sought to determine whether betaine administration could prevent the accumulation of these types of damaged proteins. METHODS Livers of male Wistar rats, fed the Lieber DeCarli control, ethanol or 1% betaine-supplemented diets for 4 weeks, were processed for PIMT-related analyses. RESULTS We observed a significant increase in the accumulation of modified proteins bearing isoaspartyl residues, i.e. the substrates for PIMT, in homogenate samples and various subcellular fractions of livers from ethanol-fed rats. Betaine supplementation prevented this accumulation of damaged proteins. In contrast, ethanol exposure induced no changes in the PIMT enzyme activity levels as compared to controls. The accumulation of damaged proteins negatively correlated with hepatic S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH) ratios. CONCLUSIONS Ethanol consumption results in the accumulation of modified proteins bearing atypical isoaspartyl residues via impaired in vivo PIMT activity. Betaine administration prevents the ethanol-induced accumulation of isoaspartyl-containing proteins by restoring the PIMT-catalyzed protein repair reaction through normalizing the hepatocellular SAM:SAH ratios.
Collapse
Affiliation(s)
- Kusum K Kharbanda
- VA Alcohol Research Center, Department of Veterans Affairs Medical Center, Omaha, NE 68105, USA.
| | | | | | | | | |
Collapse
|
36
|
Niemelä O. Biomarkers in alcoholism. Clin Chim Acta 2006; 377:39-49. [PMID: 17045579 DOI: 10.1016/j.cca.2006.08.035] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/28/2006] [Accepted: 08/30/2006] [Indexed: 12/18/2022]
Abstract
Alcoholism ranks as one of the main current threats to the health and safety of people in most Western countries. Therefore, a high priority should be given to aims at reducing its prevalence through more effective diagnosis and early intervention. The need for objective methods for revealing alcohol abuse in its early phase has also been widely acknowledged. It is postulated here that the diagnosis of alcohol use disorders could be markedly improved by a more systematic use of specific questionnaires and laboratory tests, including blood ethanol, serum gamma-glutamyltransferase (GGT), carbohydrate-deficient transferrin (CDT), and mean corpuscular volume of erythrocytes (MCV). Recent research has provided new insights into the relationships between ethanol intake, biomarkers, and factors affecting their diagnostic validation, including gender, age, and the effects of moderate drinking and obesity. It appears that the concept of reference intervals for several ethanol-sensitive parameters in laboratory medicine needs to be revisited. CDT is currently the most specific marker of alcohol abuse, and when combined with GGT using a mathematically formulated equation a high sensitivity is reached without loss of assay specificity. Possible new biomarkers include minor ethanol metabolites (protein-acetaldehyde condensates and associated autoimmune responses, ethylglucuronide, and phosphatidylethanolamine), 5-hydroxytryptophol, and genetic markers although so far their routine applications have been limited.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and University of Tampere, FIN-60220 Seinäjoki, Finland.
| |
Collapse
|