1
|
Deng Y, Smith PN, Li RW. Diabetes mellitus is a potential risk factor for aseptic loosening around hip and knee arthroplasty. BMC Musculoskelet Disord 2023; 24:266. [PMID: 37020220 PMCID: PMC10074698 DOI: 10.1186/s12891-023-06376-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Aseptic loosening is a leading cause of revision following total hip and knee arthroplasty which is caused by chronic inflammation around the prosthesis. Diabetes mellitus causes systemic inflammatory changes which could increase the risk of aseptic loosening. This study investigated the association between diabetes mellitus and aseptic loosening around hip and knee arthroplasty. METHODS A case-control study was conducted at a single arthroplasty centre over the seven-year period of January 2015 to December 2021. Cases were defined as any adult patient undergoing revision hip or knee arthroplasty for aseptic loosening. Controls were randomly selected patients undergoing primary total hip or knee arthroplasty during the same period at a 1:4 ratio. Risk factors were compared between the two groups. RESULTS A total of 440 patients were included in our study - 88 in the aseptic loosening group and 352 patients in the control group. The odds of having diabetes mellitus in the aseptic loosening group was 2.78 (95%CI 1.31-5.92, P = 0.01). Other risk factors were not significantly different between the two groups. CONCLUSIONS The incidence of diabetes mellitus is significantly greater in patients undergoing revision arthroplasty for aseptic loosening. Further research is required to explore whether this association is indeed causative.
Collapse
Affiliation(s)
- Yi Deng
- Department of Orthopaedic Surgery, Canberra Hospital, Canberra, Australia.
- Trauma and Orthopaedic Research Unit, Australian National University School of Medicine and Psychology, Canberra, ACT, 2601, Australia.
| | - Paul N Smith
- Department of Orthopaedic Surgery, Canberra Hospital, Canberra, Australia
- Trauma and Orthopaedic Research Unit, Australian National University School of Medicine and Psychology, Canberra, ACT, 2601, Australia
| | - Rachel W Li
- Trauma and Orthopaedic Research Unit, Australian National University School of Medicine and Psychology, Canberra, ACT, 2601, Australia
- John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
| |
Collapse
|
2
|
Yin Z, Gong G, Wang X, Liu W, Wang B, Yin J. The dual role of autophagy in periprosthetic osteolysis. Front Cell Dev Biol 2023; 11:1123753. [PMID: 37035243 PMCID: PMC10080036 DOI: 10.3389/fcell.2023.1123753] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
Periprosthetic osteolysis (PPO) induced by wear particles is an important cause of aseptic loosening after artificial joint replacement, among which the imbalance of osteogenesis and osteoclastic processes occupies a central position. The cells involved in PPO mainly include osteoclasts (macrophages), osteoblasts, osteocytes, and fibroblasts. RANKL/RANK/OGP axis is a typical way for osteolysis. Autophagy, a mode of regulatory cell death and maintenance of cellular homeostasis, has a dual role in PPO. Although autophagy is activated in various periprosthetic cells and regulates the release of inflammatory cytokines, osteoclast activation, and osteoblast differentiation, its beneficial or detrimental role remains controversy. In particular, differences in the temporal control and intensity of autophagy may have different effects. This article focuses on the role of autophagy in PPO, and expects the regulation of autophagy to become a powerful target for clinical treatment of PPO.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, The First People’s Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiang Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Bin Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
- *Correspondence: Jian Yin, ; Bin Wang,
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
- *Correspondence: Jian Yin, ; Bin Wang,
| |
Collapse
|
3
|
Christiansen RJ, Münch HJ, Bonefeld CM, Thyssen JP, Sloth JJ, Geisler C, Søballe K, Jellesen MS, Jakobsen SS. Cytokine Profile in Patients with Aseptic Loosening of Total Hip Replacements and Its Relation to Metal Release and Metal Allergy. J Clin Med 2019; 8:jcm8081259. [PMID: 31434199 PMCID: PMC6723430 DOI: 10.3390/jcm8081259] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Metal release from total hip replacements (THRs) is associated with aseptic loosening (AL). It has been proposed that the underlying immunological response is caused by a delayed type IV hypersensitivity-like reaction to metals, i.e., metal allergy. The purpose of this study was to investigate the immunological response in patients with AL in relation to metal release and the prevalence of metal allergy. THR patients undergoing revision surgery due to AL or mechanical implant failures were included in the study along with a control group consisting of primary THR patients. Comprehensive cytokine analyses were performed on serum and periimplant tissue samples along with metal analysis using inductive coupled plasma mass spectrometry (ICP-MS). Patient patch testing was done with a series of metals related to orthopedic implant. A distinct cytokine profile was found in the periimplant tissue of patients with AL. Significantly increased levels of the proinflammatory cytokines IL-1β, IL-2, IL-8, IFN-γ and TNF-α, but also the anti-inflammatory IL-10 were detected. A general increase of metal concentrations in the periimplant tissue was observed in both revision groups, while Cr was significantly increased in patient serum with AL. No difference in the prevalence of metal sensitivity was established by patch testing. Increased levels of IL-1β, IL-8, and TNF-α point to an innate immune response. However, the presence of IL-2 and IFN-γ indicates additional involvement of T cell-mediated response in patients with AL, although this could not be detected by patch testing.
Collapse
Affiliation(s)
- Rune J Christiansen
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Henrik J Münch
- Institute of Clinical Medicine-Orthopedic Surgery, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Charlotte M Bonefeld
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jacob P Thyssen
- Institute of Clinical Medicine, Copenhagen University, Gentofte Hospital, DK-2900 Hellerup, Denmark
| | - Jens J Sloth
- National Food Institute, Research Group on Nanobio Science, Technical University of Denmark, DK-2860 Søborg, Denmark
| | - Carsten Geisler
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kjeld Søballe
- Institute of Clinical Medicine-Orthopedic Surgery, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Morten S Jellesen
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Stig S Jakobsen
- Institute of Clinical Medicine-Orthopedic Surgery, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
4
|
Li Z, Zhu X, Xu R, Wang Y, Hu R, Xu W. Deacylcynaropicrin Inhibits RANKL-Induced Osteoclastogenesis by Inhibiting NF-κB and MAPK and Promoting M2 Polarization of Macrophages. Front Pharmacol 2019; 10:599. [PMID: 31231214 PMCID: PMC6567936 DOI: 10.3389/fphar.2019.00599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation can promote the maturity of osteoclasts and bone resorption in many bone disease such as osteoporosis and arthritis. Here, we aimed to investigate the inhibitory effects of deacylcynaropicrin (DAC) on osteoclastogenesis and bone resorption induced by RANKL. Bone-marrow-derived macrophages were used for assessing the influence of DAC on polarization of macrophages and osteoclastogenesis in vitro. Inducible nitric oxide synthase (iNOS) and CD206, as well as osteoclastogenesis markers, nuclear factor of activated T-cells 1 (NFATc1), and c-Fos, were qualitatively analyzed by immunofluorescence, flow cytometry, reverse transcription polymerase chain reaction, and Western blotting. The results showed that DAC significantly inhibited osteoclastogenesis by suppressing the expression levels of c-Fos and NFATc1 through nuclear factor-κB, c-Jun N-terminal kinase (JNK), and Akt pathway. Moreover, immunohistochemistry and enzyme-linked immunosorbent assays showed that DAC reduced the release of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in vivo. Finally, DAC also promoted macrophage polarization from M1 to M2 types. In conclusion, these results demonstrated that DAC suppressed RANKL-induced inflammation and osteoclastogenesis and therefore it can be used as a potential treatment for osteoporosis, arthritis, osteolysis, and aseptic loosening of artificial prostheses.
Collapse
Affiliation(s)
- Zhikun Li
- Department of Orthopaedics, TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Xiaodong Zhu
- Department of Orthopaedics, TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Ruijun Xu
- Department of Orthopaedics, TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yi Wang
- Department of Orthopaedics, TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Ruixi Hu
- Department of Orthopaedics, TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Wei Xu
- Department of Orthopaedics, TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
5
|
Wei G, Liang T, Wei C, Nong X, Lu Q, Zhao J. Arctigenin inhibits RANKL‐induced osteoclastogenesis and hydroxyapatite resorption in vitro and prevents titanium particle–induced bone loss in vivo. J Cell Biochem 2018; 120:5367-5376. [PMID: 30317692 DOI: 10.1002/jcb.27815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Gejin Wei
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
- Department of Orthopedics, Hospital of PLA Guangxi China
| | - Tihong Liang
- Department of Orthopedics Affiliated Hospital of Guizhou Medical University Guiyang China
| | - Chengming Wei
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| | - Xiaolian Nong
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| | - Qiteng Lu
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| | - Jinmin Zhao
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| |
Collapse
|
6
|
Abstract
Osteosynthesis materials or artificial joint replacement make part of clinical routine. In case of complaints mostly mechanical causes or infections are found. Metals like nickel, chromium and cobalt or bone cement components like acrylates and gentamicine may however potentially cause intolerance reactions to implants. Correspondingly, eczema, delayed wound/bone healing, recurrent effusion, pain or implant loosening have been described as manifestation of implant allergy. In contrast to the high incidence of cutaneous metal allergy, allergies associated with implants are rare. Diagnosis of metal implant allergy is based on excluding differential diagnoses – in particular infection – and on a combined approach of allergological diagnostics by patch test and histopathology of periimplant tissue. Risk factors for allergic sensitization to implants or triggering periimplant allergic reactions in the case of preexisting cutaneous metal allergy are unknown. Despite the risk of developing complications being unclear, titanium-based osteosynthesis materials are recommended for metal-allergic patients and the use of metal-metal couplings in arthroplasty is rather not recommended for such patients. If a regular, potentially applicable CoCr-polyethylene articulation is preferred, the patient has to be well informed and has to give his written consent.
Collapse
|
7
|
Chen F, Chen R, Liu H, Sun R, Huang J, Huang Z, Jian G. BMP-7 ameliorates cobalt alloy particle-induced inflammation by suppressing Th17 responses. APMIS 2017; 125:880-887. [PMID: 28736908 DOI: 10.1111/apm.12730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/07/2017] [Indexed: 02/05/2023]
Abstract
Metal wear debris has been shown to activate an aseptic osteolytic process that causes failure in total joint arthroplasty (TJA). This osteolysis is characterized by a proinflammatory, self-propagating immune response involving primarily macrophages, dendritic cells, and activated osteoclasts, as well as T cells and B cells. The human bone morphogenic protein (BMP)-7, on the other hand, was shown to promote osteoblast survival, and reversed the downregulation of anabolic Smad proteins and Runx2 following cobalt injury. Therefore, we investigated the effect and mechanism of BMP-7 on the proinflammatory immune responses in osteoarthritis patients with previous TJA. Cobalt-treated monocytes/macrophages presented significantly elevated levels of interleukin 6 (IL-6) and tumor necrosis factor (TNF), both of which were suppressed by the addition of exogenous BMP-7. In patients with TJA, the serum BMP-7 level was inversely associated with the level of IL-6 and TNF secreted by monocytes/macrophages. Cobalt-treated monocytes/macrophages effectively supported Th17 inflammation, by an IL-6-dependent but not TNF-dependent mechanism. BMP-7, however, significantly suppressed cobalt-induced Th17 inflammation. In patients with TJA, the risk of osteolysis development was positively associated with the frequency of Th17 cells and negatively associated with the level of BMP-7. Together, these results demonstrated that BMP-7 could serve as a therapeutic agent in treating patients with metal wear debris-induced inflammation.
Collapse
Affiliation(s)
- Fengrong Chen
- Department of Orthopedics, Chenggong Hospital, Xiamen University, Xiamen, China
| | - Ruisong Chen
- Department of Orthopedics, Chenggong Hospital, Xiamen University, Xiamen, China
| | - Haoyuan Liu
- Department of Orthopedics, Chenggong Hospital, Xiamen University, Xiamen, China
| | - Rupeng Sun
- Department of Orthopedics, Chenggong Hospital, Xiamen University, Xiamen, China
| | - Jianming Huang
- Department of Orthopedics, Chenggong Hospital, Xiamen University, Xiamen, China
| | - Zheyuan Huang
- Department of Orthopedics, Chenggong Hospital, Xiamen University, Xiamen, China
| | - Guojian Jian
- Department of Orthopedics, Chenggong Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Caicedo MS, Solver E, Coleman L, Jacobs JJ, Hallab NJ. Females with Unexplained Joint Pain Following Total Joint Arthroplasty Exhibit a Higher Rate and Severity of Hypersensitivity to Implant Metals Compared with Males: Implications of Sex-Based Bioreactivity Differences. J Bone Joint Surg Am 2017; 99:621-628. [PMID: 28419029 DOI: 10.2106/jbjs.16.00720] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Recent studies indicate that females demonstrate an increased risk of experiencing adverse local tissue reactions, aseptic loosening, and revision after primary metal-on-metal hip resurfacing arthroplasty compared with males; the underlying biological mechanisms responsible for sex discrepancies in implant failure remain unclear. In addition to anatomical and biomechanical sex differences, there may be inherent immunological disparities that predispose females to more aggressive adaptive immune reactivity to implant debris, i.e., metal sensitivity. METHODS In this retrospective study, we analyzed sex-associated rates and levels of metal sensitization in 1,038 male and 1,575 female subjects with idiopathic joint pain following total joint arthroplasty (TJA) who were referred for in vitro metal-sensitivity testing. RESULTS Females demonstrated a significantly higher rate and severity of metal sensitization compared with males. The median lymphocyte stimulation index (SI) among males was 2.8 (mean, 5.4; 95% confidence interval [CI], 4.9 to 6.0) compared with 3.5 (mean, 8.2; 95% CI, 7.4 to 9.0) among females (p < 0.05). Forty-nine percent of females had an SI of ≥4 (reactive) compared with 38% of males, and the implant-related level of pain was also significantly (p < 0.0001) higher among females (mean, 6.8; 95% CI, 6.6 to 6.9) compared with males (mean, 6.1; 95% CI, 6.0 to 6.3). CONCLUSIONS In a select group of patients who had joint pain following TJA and no evidence of infection and who were referred for metal-sensitivity testing, females exhibited a higher level of pain and demonstrated a higher rate and severity (as measured by lymphocyte SI) of metal sensitization compared with males. LEVEL OF EVIDENCE Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Marco S Caicedo
- 1Orthopedic Analysis, Chicago, Illinois 2Departments of Orthopedic Surgery (J.J.J. and N.J.H.) and Immunology (N.J.H.), Rush University Medical Center, Chicago, Illinois
| | | | | | | | | |
Collapse
|
9
|
Pajarinen J, Lin TH, Nabeshima A, Jämsen E, Lu L, Nathan K, Yao Z, Goodman SB. Mesenchymal stem cells in the aseptic loosening of total joint replacements. J Biomed Mater Res A 2017; 105:1195-1207. [PMID: 27977880 DOI: 10.1002/jbm.a.35978] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023]
Abstract
Peri-prosthetic osteolysis remains as the main long-term complication of total joint replacement surgery. Research over four decades has established implant wear as the main culprit for chronic inflammation in the peri-implant tissues and macrophages as the key cells mediating the host reaction to implant-derived wear particles. Wear debris activated macrophages secrete inflammatory mediators that stimulate bone resorbing osteoclasts; thus bone loss in the peri-implant tissues is increased. However, the balance of bone turnover is not only dictated by osteoclast-mediated bone resorption but also by the formation of new bone by osteoblasts; under physiological conditions these two processes are tightly coupled. Increasing interest has been placed on the effects of wear debris on the cells of the bone-forming lineage. These cells are derived primarily from multipotent mesenchymal stem cells (MSCs) residing in bone marrow and the walls of the microvasculature. Accumulating evidence indicates that wear debris significantly impairs MSC-to-osteoblast differentiation and subsequent bone formation. In this review, we summarize the current understanding of the effects of biomaterial implant wear debris on MSCs. Emerging treatment options to improve initial implant integration and treat developing osteolytic lesions by utilizing or targeting MSCs are also discussed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1195-1207, 2017.
Collapse
Affiliation(s)
- Jukka Pajarinen
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Tzu-Hua Lin
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Akira Nabeshima
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Eemeli Jämsen
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California.,Department of Medicine, Clinicum, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| | - Laura Lu
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Karthik Nathan
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Zhenyu Yao
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Stuart B Goodman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
10
|
11R-VIVIT Peptide Inhibits Calvaria Osteolysis Induced by Experimental Design. J Craniofac Surg 2017; 28:570-573. [PMID: 28114216 DOI: 10.1097/scs.0000000000002975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Wear particles released from prosthetic implants can cause periprosthetic osteolysis, a major cause of implant loosening. The aim of this study was to investigate the effects of the 11R-VIVIT peptide on osteolysis induced by titanium (Ti) particles in vivo. Twenty-four C57BL/J6 mice were divided into 3 groups: sham operation, Ti group, and Ti/VIVIT group. A calvarial osteolysis model was established by implanting Ti particles into mouse calvaria of the Ti and Ti/VIVIT groups. After 2 weeks, 11R-VIVIT peptide (10 mg/kg/day) was intraperitoneally injected into the mice of the Ti/VIVIT group for 14 days. The other 2 groups received saline injection. The calvarial specimens were removed and stained with van Geison staining. The calvarial sagittal suture area was measured to observe bone resorption. The calvarial new bone area was measured to observe bone formation. Compared with the sham group, the area of calvarial new bone and calvarial sagittal suture were higher in the Ti group (P < 0.01). Compared with the Ti group, the area of calvarial new bone was higher and the area of calvarial sagittal suture was lower in the Ti/VIVIT group (P < 0.01). In conclusion, the 11R-VIVIT peptide inhibited bone resorption and enhanced bone formation. This may have contributed to lower wear particle-induced osteolysis. This method could eventually be used to prevent prosthesis loosening after joint replacement and to prolong the life of the prosthesis.
Collapse
|
11
|
Carossino AM, Carulli C, Ciuffi S, Carossino R, Zappoli Thyrion GD, Zonefrati R, Innocenti M, Brandi ML. Hypersensitivity reactions to metal implants: laboratory options. BMC Musculoskelet Disord 2016; 17:486. [PMID: 27881114 PMCID: PMC5120482 DOI: 10.1186/s12891-016-1342-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 11/14/2016] [Indexed: 11/30/2022] Open
Abstract
Background All implant compounds undergo an electrochemical process when in contact with biological fluids, as well as mechanical corrosion due to abrasive wear, with production of metal debris that may inhibit repair processes. None of the commonly-used methods can diagnose implant allergies when used singly, therefore a panel of tests should be performed on allergic patients as pre-operative screening, or when a postoperative metal sensitisation is suspected. Methods We analysed patients with painful prostheses and subjects prone to allergies using the Patch Test in comparison with the Lymphocyte Transformation Test. Cytokine production was evaluated to identify prognostic markers for early diagnosis of aseptic loosening. Metal debris endocytosis and cytoskeletal rearrangement was visualised by confocal microscopy. Results Our results demonstrate that the Lymphocyte Transformation Test can identify patients who have a predisposition to develop allergic reactions and can confirm the diagnosis of hypersensitivity in patients with painful prostheses. The prevalence of a Th2-cytokine pattern may be used to identify predisposition to the development of allergic diseases, while the selective presence of osteoclastogenic cytokines may be used as predictor of a negative outcome in patients with painful prosthesis. The hypothesis of the prognostic value of these cytokines as early markers of aseptic loosening is attractive, but its confirmation would require extensive testing. Conclusions The Lymphocyte Transformation Test is the most suitable method for testing systemic allergies. We suggest that the combined use of the Patch Test and the Lymphocyte Transformation Test, associated with cytokine detection in selected patients, could provide a useful tool for preventive evaluation of immune reactivity in patients undergoing primary joint replacement surgery, and for clinical monitoring of the possible onset of a metal sensitization in patients with implanted devices.
Collapse
Affiliation(s)
- Anna Maria Carossino
- Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Christian Carulli
- Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Simone Ciuffi
- Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Roberto Carossino
- Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | | | - Roberto Zonefrati
- Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Massimo Innocenti
- Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
12
|
A review of UHMWPE wear-induced osteolysis: the role for early detection of the immune response. Bone Res 2016; 4:16014. [PMID: 27468360 PMCID: PMC4941197 DOI: 10.1038/boneres.2016.14] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 05/08/2016] [Accepted: 05/13/2016] [Indexed: 12/15/2022] Open
Abstract
In a world where increasing joint arthroplasties are being performed on increasingly younger patients, osteolysis as the leading cause of failure after total joint arthroplasty (TJA) has gained considerable attention. Ultra-high molecular weight polyethylene wear-induced osteolysis is the process by which prosthetic debris mechanically released from the surface of prosthetic joints induces an immune response that favors bone catabolism, resulting in loosening of prostheses with eventual failure or fracture. The immune response initiated is innate in that it is nonspecific and self-propagating, with monocytic cells and osteoclasts being the main effectors. To date, detecting disease early enough to implement effective intervention without unwanted systemic side effects has been a major barrier. These barriers can be overcome using newer in vivo imaging techniques and modules linked with fluorescence and/or chemotherapies. We discuss the pathogenesis of osteolysis, and provide discussion of the challenges with imaging and therapeutics. We describe a positron emission tomography imaging cinnamoyl-Phe-(D)-Leu-Phe-(D)-Leu-Phe-Lys module, specific to macrophages, which holds promise in early detection of disease and localization of treatment. Further research and increased collaboration among therapeutic and three-dimensional imaging researchers are essential in realizing a solution to clinical osteolysis in TJA.
Collapse
|
13
|
Wang S, Liu F, Zeng Z, Yang H, Jiang H. The Protective Effect of Bafilomycin A1 Against Cobalt Nanoparticle-Induced Cytotoxicity and Aseptic Inflammation in Macrophages In Vitro. Biol Trace Elem Res 2016; 169:94-105. [PMID: 26054709 DOI: 10.1007/s12011-015-0381-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/21/2015] [Indexed: 01/08/2023]
Abstract
Co ions released due to corrosion of Co nanoparticles (CoNPs) in the lysosomes of macrophages may be a factor in the particle-induced cytotoxicity and aseptic inflammation accompanying metal-on-metal (MOM) hip prosthesis failure. Here, we show that CoNPs are easily dissolved under a low pH, simulating the acidic lysosomal environment. We then used bafilomycin A1 to change the pH inside the lysosome to inhibit intracellular corrosion of CoNPs and then investigated its protective effects against CoNP-induced cytotoxicity and aseptic inflammation on murine macrophage RAW264.7 cells. XTT {2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide} assays revealed that bafilomycin A1 can significantly decrease CoNP-induced cytotoxicity in RAW264.7 cells. Enzyme-linked immunosorbent assays showed that bafilomycin A1 can significantly decrease the subtoxic concentration of CoNP-induced levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6), but has no effect on anti-inflammatory cytokines (transforming growth factor-β and interleukin-10) in RAW264.7 cells. We studied the protective mechanism of bafilomycin A1 against CoNP-induced effects in RAW264.7 cells by measuring glutathione/oxidized glutathione (GSH/GSSG), superoxide dismutase, catalase, and glutathione peroxidase levels and employed scanning electron microscopy, transmission electron microscopy, and energy dispersive spectrometer assays to observe the ultrastructural cellular changes. The changes associated with apoptosis were assessed by examining the pAKT and cleaved caspase-3 levels using Western blotting. These data strongly suggested that bafilomycin A1 can potentially suppress CoNP-induced cytotoxicity and aseptic inflammation by inhibiting intracellular corrosion of CoNPs and that the reduction in Co ions released from CoNPs may play an important role in downregulating oxidative stress in RAW264.7 cells.
Collapse
Affiliation(s)
- Songhua Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Fan Liu
- Department of Orthopedics, The Affiliated Hospital of Nantong University, 20 West Temple Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| | - Zhaoxun Zeng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Haitao Jiang
- Department of Orthopedics, The First People's Hospital of Taizhou City, Taizhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
14
|
Shao H, Shen J, Wang M, Cui J, Wang Y, Zhu S, Zhang W, Yang H, Xu Y, Geng D. Icariin protects against titanium particle-induced osteolysis and inflammatory response in a mouse calvarial model. Biomaterials 2015; 60:92-9. [PMID: 25985156 DOI: 10.1016/j.biomaterials.2015.04.048] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/19/2015] [Accepted: 04/30/2015] [Indexed: 01/17/2023]
Abstract
Periprosthetic osteolysis and subsequent aseptic loosening are common in implant failure, a complication with revision surgery being the only established treatment. Wear particle-induced inflammation and extensive osteoclastogenesis play critical roles in periprosthetic osteolysis. A recent approach in limiting osteolysis is therefore focused on inhibiting osteoclastic bone resorption. This study aimed to investigate the potential impact of icariin, the major ingredient of Epimedium, on titanium particle-induced osteolysis in a mouse calvarial model. Eighty-four male C57BL/J6 mice were divided randomly into four groups. Mice in the sham group underwent sham surgery only, whereas animals in the vehicle, low- and high-concentration icariin groups received titanium particles. Mice in the low- and high-concentration icariin groups were gavage-fed with icariin at 0.1 or 0.3 mg/g/day, respectively, until sacrifice. Mice in the sham and vehicle groups received phosphate-buffered saline daily. After 2 weeks, mouse calvariae were collected for micro-computed tomography, histomorphometry and molecular analysis. Icariin significantly reduced particle-induced bone resorption compared with the vehicle group. Icariin also prevented an increase in receptor activator of nuclear factor kappa B ligand/osteoprotegerin ratio and subsequently suppressed osteoclast formation in titanium particle-charged calvariae. In addition, immunohistochemical analysis and enzyme-linked immunosorbent assay showed icariin significantly reduced expression and secretion of tumor necrosis factor-α, interleukin-1β and interleukin-6 in the calvariae of titanium-stimulated mice. Collectively, these results suggest that icariin represents a potential treatment for titanium particle-induced osteolysis and could be developed as a new therapeutic candidate for the prevention and treatment of aseptic loosening.
Collapse
Affiliation(s)
- Hongguo Shao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, PR China
| | - Ji Shen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, PR China; Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, PR China
| | - Mingjun Wang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, PR China
| | - Jingfu Cui
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, PR China
| | - Yijun Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, PR China
| | - Shijun Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, PR China
| | - Wen Zhang
- Orthopedic Institute, Soochow University, PR China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, PR China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, PR China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, PR China.
| |
Collapse
|
15
|
Patients with intolerance reactions to total knee replacement: combined assessment of allergy diagnostics, periprosthetic histology, and peri-implant cytokine expression pattern. BIOMED RESEARCH INTERNATIONAL 2015; 2015:910156. [PMID: 25866822 PMCID: PMC4383474 DOI: 10.1155/2015/910156] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/08/2014] [Indexed: 12/21/2022]
Abstract
We performed a combined approach to identify suspected allergy to knee arthroplasty (TKR): patch test (PT), lymphocyte transformation test (LTT), histopathology (overall grading; T- and B-lymphocytes, macrophages, and neutrophils), and semiquantitative Real-time-PCR-based periprosthetic inflammatory mediator analysis (IFNγ, TNFα, IL1-β, IL-2, IL-6, IL-8, IL-10, IL17, and TGFβ). We analyzed 25 TKR patients with yet unexplained complications like pain, effusion, and reduced range of motion. They consisted of 20 patients with proven metal sensitization (11 with PT reactions; 9 with only LTT reactivity). Control specimens were from 5 complicated TKR patients without metal sensitization, 12 OA patients before arthroplasty, and 8 PT patients without arthroplasty. Lymphocytic infiltrates were seen and fibrotic (Type IV membrane) tissue response was most frequent in the metal sensitive patients, for example, in 81% of the PT positive patients. The latter also had marked periprosthetic IFNγ expression. 8/9 patients with revision surgery using Ti-coated/oxinium based implants reported symptom relief. Our findings demonstrate that combining allergy diagnostics with histopathology and periprosthetic cytokine assessment could allow us to design better diagnostic strategies.
Collapse
|
16
|
The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling. Biomaterials 2014; 35:6299-310. [DOI: 10.1016/j.biomaterials.2014.04.044] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/14/2014] [Indexed: 11/23/2022]
|
17
|
Obando-Pereda GA, Fischer L, Stach-Machado DR. Titanium and zirconia particle-induced pro-inflammatory gene expression in cultured macrophages and osteolysis, inflammatory hyperalgesia and edema in vivo. Life Sci 2013; 97:96-106. [PMID: 24252315 DOI: 10.1016/j.lfs.2013.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 12/18/2022]
Abstract
AIMS The biological reaction to wear debris is critical to the osteolysis underlying aseptic loosening of joint prosthetic implants. In an attempt to reduce aseptic loosening, ceramics have been introduced. This study was designed to evaluate, compare and correlate the expression of Toll-like receptors (TLRs), their intracellular adaptors and proinflammatory cytokines in cultured macrophages challenged with titanium or zirconia particles, as well as particle-induced osteolysis in calvaria and hyperalgesia and edema in hind paw. MAIN METHODS TLRs and their adaptors were evaluated at the mRNA level by RT-PCR, and cytokine expression was evaluated at the mRNA and protein levels. Osteolysis and hyperalgesia and edema were evaluated in vivo, in calvaria and hind paw, respectively. KEY FINDINGS Cultured macrophages challenged with zirconia or titanium particles expressed increased mRNA for TLRs 2, 3, 4 and 9, and their adaptors MyD88, TRIF and NF-κB and cytokines TNF-α, IL-1β and IL-6, which were also increased at protein level. Quantitative differences are evident and, in general, zirconia particle-induced pro-inflammatory gene expression was lower than that induced by titanium particles. In in vivo experiments, exposition to titanium or zirconia particles induced osteolysis in calvaria and hyperalgesia and edema in hind paw; however those induced by zirconia particles were significantly lower. There is a strong and positive correlation between the expressions of mRNA for TLR4, NF-κB, TNF-α, IL-1β and IL-6. SIGNIFICANCE Collectively, our data suggest that zirconia ceramic particles are less bioactive than titanium particles.
Collapse
Affiliation(s)
- G A Obando-Pereda
- Laboratory of Applied Immunology, Department of Anatomy, Cell Biology, Physiology and Biophysics, Institute of Biology, IB/UNICAMP, Campinas, Sao Paulo, Brazil
| | - L Fischer
- Laboratory of Pain Physiology, Department of Physiology, Federal University of Parana, Curitiba, Parana, Brazil.
| | - D R Stach-Machado
- Laboratory of Applied Immunology, Department of Anatomy, Cell Biology, Physiology and Biophysics, Institute of Biology, IB/UNICAMP, Campinas, Sao Paulo, Brazil
| |
Collapse
|
18
|
Nich C, Takakubo Y, Pajarinen J, Ainola M, Salem A, Sillat T, Rao AJ, Raska M, Tamaki Y, Takagi M, Konttinen YT, Goodman SB, Gallo J. Macrophages-Key cells in the response to wear debris from joint replacements. J Biomed Mater Res A 2013; 101:3033-45. [PMID: 23568608 PMCID: PMC3775910 DOI: 10.1002/jbm.a.34599] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/16/2012] [Accepted: 01/12/2013] [Indexed: 12/14/2022]
Abstract
The generation of wear debris is an inevitable result of normal usage of joint replacements. Wear debris particles stimulate local and systemic biological reactions resulting in chronic inflammation, periprosthetic bone destruction, and eventually, implant loosening, and revision surgery. The latter may be indicated in up to 15% patients in the decade following the arthroplasty using conventional polyethylene. Macrophages play multiple roles in both inflammation and in maintaining tissue homeostasis. As sentinels of the innate immune system, they are central to the initiation of this inflammatory cascade, characterized by the release of proinflammatory and pro-osteoclastic factors. Similar to the response to pathogens, wear particles elicit a macrophage response, based on the unique properties of the cells belonging to this lineage, including sensing, chemotaxis, phagocytosis, and adaptive stimulation. The biological processes involved are complex, redundant, both local and systemic, and highly adaptive. Cells of the monocyte/macrophage lineage are implicated in this phenomenon, ultimately resulting in differentiation and activation of bone resorbing osteoclasts. Simultaneously, other distinct macrophage populations inhibit inflammation and protect the bone-implant interface from osteolysis. Here, the current knowledge about the physiology of monocyte/macrophage lineage cells is reviewed. In addition, the pattern and consequences of their interaction with wear debris and the recent developments in this field are presented.
Collapse
Affiliation(s)
- Christophe Nich
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California; Laboratoire de Biomécanique et Biomatériaux Ostéo-Articulaires-UMR CNRS 7052, Faculté de Médecine-Université Paris 7, Paris, France; Department of Orthopaedic Surgery, European Teaching Hospital, Assistance Publique-Hôpitaux de Paris-Université Paris 5, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gallo J, Goodman SB, Konttinen YT, Wimmer MA, Holinka M. Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms. Acta Biomater 2013; 9:8046-58. [PMID: 23669623 DOI: 10.1016/j.actbio.2013.05.005] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/12/2013] [Accepted: 05/02/2013] [Indexed: 01/31/2023]
Abstract
Aseptic loosening and other wear-related complications are some of the most frequent late reasons for revision of total knee arthroplasty (TKA). Periprosthetic osteolysis (PPOL) pre-dates aseptic loosening in many cases, indicating the clinical significance of this pathogenic mechanism. A variety of implant-, surgery- and host-related factors have been delineated to explain the development of PPOL. These factors influence the development of PPOL because of changes in mechanical stresses within the vicinity of the prosthetic device, excessive wear of the polyethylene liner, and joint fluid pressure and flow acting on the peri-implant bone. The process of aseptic loosening is initially governed by factors such as implant/limb alignment, device fixation quality and muscle coordination/strength. Later, large numbers of wear particles detached from TKA trigger and perpetuate particle disease, as highlighted by progressive growth of inflammatory/granulomatous tissue around the joint cavity. An increased accumulation of osteoclasts at the bone-implant interface, impairment of osteoblast function, mechanical stresses and increased production of joint fluid contribute to bone resorption and subsequent loosening of the implant. In addition, hypersensitivity and adverse reactions to metal debris may contribute to aseptic TKA failure, but should be determined more precisely. Patient activity level appears to be the most important factor when the long-term development of PPOL is considered. Surgical technique, implant design and material factors are the most important preventative factors, because they influence both the generation of wear debris and excessive mechanical stresses. New generations of bearing surfaces and designs for TKA should carefully address these important issues in extensive preclinical studies. Currently, there is little evidence that PPOL can be prevented by pharmacological intervention.
Collapse
Affiliation(s)
- J Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, University Hospital, Palacky University Olomouc, I.P. Pavlova Str. 6, CZ-775 20 Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
20
|
Day JS, Baxter RM, Ramsey ML, Morrey BF, Connor PM, Kurtz SM, Steinbeck MJ. Characterization of wear debris in total elbow arthroplasty. J Shoulder Elbow Surg 2013; 22:924-31. [PMID: 23582703 DOI: 10.1016/j.jse.2013.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/04/2013] [Indexed: 02/01/2023]
Abstract
BACKGROUND The purpose of this study was to evaluate wear debris in periprosthetic tissues at the time of revision total elbow arthroplasty. Polyethylene, metallic, and bone cement debris were characterized, and the tissue response was quantified. MATERIALS AND METHODS Capsular and medullary tissue samples were collected during revision surgery. Polyethylene debris was characterized by scanning electron microscopy after tissue digestion. The concentrations of metal and cement debris were quantified by inductively coupled plasma mass spectrometry. Tissue response was graded with a semiquantitative histologic method. RESULTS Polyethylene particle size varied from the submicron range to over 100 μm. The mean diameter ranged from 0.6 μm to about 1 μm. Particles in the synovial tissues were larger and less abundant than those in tissues from the medullary canal. Cement, titanium alloy, and low levels of cobalt-chrome debris were also present, with cement predominating over metal debris. Histiocyte response was associated with small polyethylene particles (0.5-2 μm), and giant cells were associated with large polyethylene particles (>2 μm). Histiocyte scores positively correlated with the polyethylene particle number and the presence of metal. DISCUSSION We have shown that periprosthetic tissues of total elbow patients who have undergone revision for loosening and osteolysis contain polyethylene, cement, and metal debris. Although the polyethylene particles were of a size and shape that have been previously shown to result in activation of phagocytic cells, osteolysis after total elbow arthroplasty is a multimodal process. Because of the presence of multiple wear particle sources, a cause-and-effect relationship between polyethylene debris and osteolysis cannot be established with certainty.
Collapse
Affiliation(s)
- Judd S Day
- Implant Research Center, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Schröck K, Schneider H, Lutz J, Hacker MC, Mändl S, Kamprad M, Schulz-Siegmund M. Cytocompatibility of nitrogen plasma ion immersed medical cobalt-chromium alloys. J Biomed Mater Res A 2013; 102:1744-54. [DOI: 10.1002/jbm.a.34842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/30/2013] [Accepted: 06/05/2013] [Indexed: 01/11/2023]
Affiliation(s)
- Kathleen Schröck
- Translational Centre for Regenerative Medicine (TRM), Universität Leipzig; 04103 Leipzig Germany
- Pharmaceutical Technology, Institute of Pharmacy; Universität Leipzig; 04317 Leipzig Germany
| | - Heike Schneider
- Translational Centre for Regenerative Medicine (TRM), Universität Leipzig; 04103 Leipzig Germany
| | - Johanna Lutz
- Translational Centre for Regenerative Medicine (TRM), Universität Leipzig; 04103 Leipzig Germany
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM); 04318 Leipzig Germany
| | - Michael C. Hacker
- Pharmaceutical Technology, Institute of Pharmacy; Universität Leipzig; 04317 Leipzig Germany
| | - Stephan Mändl
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM); 04318 Leipzig Germany
| | - Manja Kamprad
- Institute of Clinical Immunology and Transfusion Medicine, University Hospital Leipzig; 04103 Leipzig Germany
| | | |
Collapse
|
22
|
|
23
|
Yamanaka Y, Clohisy JC, Ito H, Matsuno T, Abu-Amer Y. Blockade of JNK and NFAT pathways attenuates orthopedic particle-stimulated osteoclastogenesis of human osteoclast precursors and murine calvarial osteolysis. J Orthop Res 2013; 31:67-72. [PMID: 22847537 PMCID: PMC3493691 DOI: 10.1002/jor.22200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/09/2012] [Indexed: 02/04/2023]
Abstract
Particles released from orthopedic implants attract immune host defense cells to the bone-implant interface and contribute to development of inflammation. The inflammatory microenvironment supports recruitment and differentiation of osteoclasts, the primary culprit of osteolysis. Therefore, understanding the complex signals that contribute to osteoclastogenesis and osteolysis is a sensible approach to design strategies to inhibit bone loss. The signaling cascades that coordinate osteoclastogenesis have been widely investigated. These include MAP kinases, Akt/PI3K pathway, NF-κB signal transduction pathway, and NFAT pathway. We have recently reported that polymethylmethacrylate (PMMA) particles activate the NFAT pathway in murine osteoclast precursors and that NFAT inhibitors dose-dependently block PMMA-induced osteoclastogenesis. In the current study, we examined the role of JNK and NFATc1 in mice in response to PMMA particles using murine calvaria model. We show that locally administered MAPK/JNK inhibitor SP600125 and calcineurin/NFAT inhibitor cyclosporine-A effectively blocked PMMA-induced osteolysis in murine calvaria. To buttress the clinical relevance of JNK/NFATc1-based regulation of PMMA-induced osteoclastogenesis, we evaluated the effect of PMMA using human macrophages. We demonstrate that SP600125 and cyclosporine-A abolished particle-induced osteoclastogenesis in human osteoclast progenitors retrieved from patients undergoing total hip replacement. Thus JNK and NFATc1 appear to act as significant mediators of orthopedic particle-induced osteolysis in humans.
Collapse
Affiliation(s)
- Yasuhiro Yamanaka
- Department of Orthopedics, Asahikawa Medical University, Asahikawa, JAPAN
| | - John C.F. Clohisy
- Department of Orthopedics, Washington University School of Medicine, St. Louis, Missouri
| | - Hiroshi Ito
- Department of Orthopedics, Asahikawa Medical University, Asahikawa, JAPAN
| | - Takeo Matsuno
- Department of Orthopedics, Asahikawa Medical University, Asahikawa, JAPAN
| | - Yousef Abu-Amer
- Department of Orthopedics, Washington University School of Medicine, St. Louis, Missouri,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
24
|
Perez Alamino R, Casellini C, Baňos A, Schneeberger EE, Gagliardi SA, Maldonado Cocco JA, Citera G. Prevalence of periprosthetic osteolysis after total hip replacement in patients with rheumatic diseases. Open Access Rheumatol 2012; 4:57-62. [PMID: 27790012 PMCID: PMC5045099 DOI: 10.2147/oarrr.s31736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Periprosthetic osteolysis (PO) is a frequent complication in patients with joint implants. There are no data regarding the prevalence of PO in patients with rheumatoid arthritis (RA), juvenile chronic arthritis (JCA), ankylosing spondylitis (AS), and osteoarthritis (OA).
Collapse
Affiliation(s)
- Rodolfo Perez Alamino
- Section of Rheumatology, Instituto de Rehabilitación Psicofísica, Buenos Aires, Argentina
| | - Carolina Casellini
- Section of Rheumatology, Instituto de Rehabilitación Psicofísica, Buenos Aires, Argentina
| | - Andrea Baňos
- Section of Rheumatology, Instituto de Rehabilitación Psicofísica, Buenos Aires, Argentina
| | | | | | | | - Gustavo Citera
- Section of Rheumatology, Instituto de Rehabilitación Psicofísica, Buenos Aires, Argentina
| |
Collapse
|
25
|
The John Charnley Award: an accurate and sensitive method to separate, display, and characterize wear debris: part 1: polyethylene particles. Clin Orthop Relat Res 2012; 470:329-38. [PMID: 21997780 PMCID: PMC3254734 DOI: 10.1007/s11999-011-2057-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Numerous studies indicate highly crosslinked polyethylenes reduce the wear debris volume generated by hip arthroplasty acetabular liners. This, in turns, requires new methods to isolate and characterize them. QUESTIONS/PURPOSES We describe a method for extracting polyethylene wear particles from bovine serum typically used in wear tests and for characterizing their size, distribution, and morphology. METHODS Serum proteins were completely digested using an optimized enzymatic digestion method that prevented the loss of the smallest particles and minimized their clumping. Density-gradient ultracentrifugation was designed to remove contaminants and recover the particles without filtration, depositing them directly onto a silicon wafer. This provided uniform distribution of the particles and high contrast against the background, facilitating accurate, automated, morphometric image analysis. The accuracy and precision of the new protocol were assessed by recovering and characterizing particles from wear tests of three types of polyethylene acetabular cups (no crosslinking and 5 Mrads and 7.5 Mrads of gamma irradiation crosslinking). RESULTS The new method demonstrated important differences in the particle size distributions and morphologic parameters among the three types of polyethylene that could not be detected using prior isolation methods. CONCLUSION The new protocol overcomes a number of limitations, such as loss of nanometer-sized particles and artifactual clumping, among others. CLINICAL RELEVANCE The analysis of polyethylene wear particles produced in joint simulator wear tests of prosthetic joints is a key tool to identify the wear mechanisms that produce the particles and predict and evaluate their effects on periprosthetic tissues.
Collapse
|
26
|
Mishra PK, Wu W, Rozo C, Hallab NJ, Benevenia J, Gause WC. Micrometer-sized titanium particles can induce potent Th2-type responses through TLR4-independent pathways. THE JOURNAL OF IMMUNOLOGY 2011; 187:6491-8. [PMID: 22095717 DOI: 10.4049/jimmunol.1101392] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wear debris in joint replacements has been suggested as a cause of associated tissue-damaging inflammation. In this study, we examined whether solid titanium microparticles (mTi) of sufficient size to accumulate as wear debris could stimulate innate or adaptive immunity in vivo. mTi, administered in conjunction with OVA, promoted total and Ag-specific elevations in serum IgE and IgG1. Analysis of transferred transgenic OVA-specific naive T cells further showed that mTi acted as an adjuvant to drive Ag-specific Th2 cell differentiation in vivo. Assessment of the innate response indicated that mTi induced rapid recruitment and differentiation of alternatively activated macrophages in vivo, through IL-4- and TLR4-independent pathways. These studies suggest that solid microparticles alone can act as adjuvants to induce potent innate and adaptive Th2-type immune responses and further suggest that wear debris in joint replacements may have Th2-type inflammatory properties.
Collapse
Affiliation(s)
- Pankaj K Mishra
- Department of Medicine, Center for Immunity and Inflammation, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101, USA
| | | | | | | | | | | |
Collapse
|
27
|
Cobelli N, Scharf B, Crisi GM, Hardin J, Santambrogio L. Mediators of the inflammatory response to joint replacement devices. Nat Rev Rheumatol 2011; 7:600-8. [PMID: 21894210 DOI: 10.1038/nrrheum.2011.128] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Joint replacement surgery is one of the success stories of modern medicine, restoring mobility, diminishing pain and improving the overall quality of life for millions of people. Unfortunately, wear of these prostheses over time generates debris, which activates an innate immune response that can ultimately lead to periprosthetic resorption of bone (osteolysis) and failure of the implant. Over the past decade, the biological interactions between the particulate debris from various implant materials and the immune system have begun to be better understood. The wear debris induces a multifaceted immune response encompassing the generation of reactive oxygen species and damage-associated molecular patterns, Toll-like receptor signaling and NALP3 inflammasome activation. Acting alone or in concert, these events generate chronic inflammation, periprosthetic bone loss and decreased osteointegration that ultimately leads to implant failure.
Collapse
Affiliation(s)
- Neil Cobelli
- Department of Orthopedic Surgery, Montefiore Medical Center, 1250 Waters Place, New York, NY 10461, USA
| | | | | | | | | |
Collapse
|
28
|
Baxter RM, Freeman TA, Kurtz SM, Steinbeck MJ. Do tissues from THA revision of highly crosslinked UHMWPE liners contain wear debris and associated inflammation? Clin Orthop Relat Res 2011; 469:2308-17. [PMID: 21136220 PMCID: PMC3126969 DOI: 10.1007/s11999-010-1713-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Polyethylene wear debris is a major contributor to inflammation and the development of implant loosening, a leading cause of THA revisions. To reduce wear debris, highly crosslinked ultrahigh-molecular-weight polyethylene (UHMWPE) was introduced to improve wear properties of bearing surfaces. As highly crosslinked UHMWPE revision tissues are only now becoming available, it is possible to examine the presence and association of wear debris with inflammation in early implant loosening. QUESTIONS/PURPOSES We asked: (1) Does the presence of UHMWPE wear debris in THA revision tissues correlate with innate and/or adaptive immune cell numbers? (2) Does the immune cell response differ between conventional and highly crosslinked UHMWPE cohorts? METHODS We collected tissue samples from revision surgery of nine conventional and nine highly crosslinked UHMWPE liners. Polarized light microscopy was used to determine 0.5- to 2-μm UHMWPE particle number/mm2, and immunohistochemistry was performed to determine macrophage, T cell, and neutrophil number/mm2. RESULTS For the conventional cohort, correlations were observed between wear debris and the magnitude of individual patient macrophage (ρ=0.70) and T cell responses (ρ=0.71) and between numbers of macrophages and T cells (ρ=0.77) in periprosthetic tissues. In comparison, the highly crosslinked UHMWPE cohort showed a correlation between wear debris and the magnitude of macrophage responses (ρ=0.57) and between macrophage and T cell numbers (ρ=0.68). Although macrophages and T cells were present in both cohorts, the highly crosslinked UHMWPE cohort had lower numbers, which may be associated with shorter implantation times. CONCLUSIONS The presence of wear debris and inflammation in highly crosslinked UHMWPE revision tissues may contribute to early implant loosening.
Collapse
Affiliation(s)
- Ryan M. Baxter
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 323 Bossone, 3120 Market Street, Philadelphia, PA 19104 USA
| | - Theresa A. Freeman
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA USA
| | | | - Marla J. Steinbeck
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 323 Bossone, 3120 Market Street, Philadelphia, PA 19104 USA
| |
Collapse
|
29
|
Baxter RM, Ianuzzi A, Freeman TA, Kurtz SM, Steinbeck MJ. Distinct immunohistomorphologic changes in periprosthetic hip tissues from historical and highly crosslinked UHMWPE implant retrievals. J Biomed Mater Res A 2010; 95:68-78. [PMID: 20740602 DOI: 10.1002/jbm.a.32813] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Assessment of immune response to implant wear debris in periprosthetic tissue following total hip arthroplasty suggests that multiple factors are involved in the loss implant function. The current study investigated wear debris and the associated immunohistomorphologic changes in tissues from nine patients with historical (gamma air-sterilized) and nine highly crosslinked UHMWPE implant components. Paraffin embedded tissue sections were evaluated for the presence of histiocytes, giant cells, fibrocartilage/bone, and necrosis. To determine the incidence, degree and co-localization of immunohistomorphologic changes and wear, overlapping full-field tissue arrays were collected in brightfield and polarized light. The historical cohort tissues predominantly showed histiocytes associated with significant accumulations of small wear (0.5-2 microm), and giant cells associated with large wear (> or =2 microm). Frequently, focal regions of necrosis were observed in association with wear debris. For the highly crosslinked cohort, inflammation and associated wear debris were limited, but in tissues from patients revised after implantation times of >2 years a response was observed. Whereas significant amounts of fibrocartilage/bone were observed in patients at earlier implantation times. In both cohorts, tissue responses were more extensive in the retroacetabular or proximal femoral regions. The current findings suggest that wear debris-induced inflammation may be a major contributor to the loss of implant function for both the historical and highly crosslinked cohorts, but it is not the primary cause of early implant loosening. This study highlights the importance of using a more quantitative and standardized assessment of immunohistomorphologic responses in periprosthetic tissues, and emphasizes differences in specific anatomical regions of individual patient tissues.
Collapse
Affiliation(s)
- Ryan M Baxter
- Department of Biomedical Engineering, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
30
|
Summer B, Paul C, Mazoochian F, Rau C, Thomsen M, Banke I, Gollwitzer H, Dietrich KA, Mayer-Wagner S, Ruzicka T, Thomas P. Nickel (Ni) allergic patients with complications to Ni containing joint replacement show preferential IL-17 type reactivity to Ni. Contact Dermatitis 2010; 63:15-22. [DOI: 10.1111/j.1600-0536.2010.01744.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
|
32
|
Cadosch D, Sutanto M, Chan E, Mhawi A, Gautschi OP, von Katterfeld B, Simmen HP, Filgueira L. Titanium uptake, induction of RANK-L expression, and enhanced proliferation of human T-lymphocytes. J Orthop Res 2010; 28:341-7. [PMID: 19810098 DOI: 10.1002/jor.21013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is increasing evidence that titanium ions are released from orthopedic implants by biocorrosion. The aim of this study was to investigate titanium uptake by human T-lymphocytes and its effects on phenotype and proliferation. Freshly isolated human nonadherent peripheral blood mononuclear cells (NA-PBMC), were exposed to TiCl4 [Ti(IV)]. Bioavailability and distribution of Ti(IV) in T-lymphocytes was determined by energy-filtered electron microscopy (EFTEM). The effects of Ti(IV) challenge on nonactivated and PHA-activated cells were assessed by flow cytometric analysis of surface markers, RANK-L production, and proliferation assays. EFTEM colocalized Ti(IV) with phosphorus in the nucleus, ribosomes, cytoplasmic membranes, and the surface membrane of T-lymphocytes. Ti(IV) increased significantly the expression of CD69, CCR4, and RANK-L in a concentration-dependent manner. Titanium enters T-lymphocytes through a currently unknown mechanism and binds to phosphorus-rich cell structures. Titanium influences phenotype and function of T-lymphocytes, resulting in activation of a CD69+ and CCR4+ T-lymphocyte population and secretion of RANK-L. These results strongly suggest the involvement of titanium ions challenged T-lymphocytes in the complex pathophysiological mechanisms of aseptic loosening of orthopedic implants.
Collapse
Affiliation(s)
- Dieter Cadosch
- School of Anatomy and Human Biology, University of Western Australia, 35 Stirling Highway, Crawley, Australia 6009.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kurtz SM, Steinbeck M, Ianuzzi A, van Ooij A, Punt IM, Isaza J, Ross ERS. Retrieval analysis of motion preserving spinal devices and periprosthetic tissues. SAS JOURNAL 2009; 3:161-77. [PMID: 25802641 PMCID: PMC4365601 DOI: 10.1016/j.esas.2009.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article reviews certain practical aspects of retrieval analysis for motion preserving spinal implants and periprosthetic tissues as an essential component of the overall revision strategy for these implants. At our institution, we established an international repository for motion-preserving spine implants in 2004. Our repository is currently open to all spine surgeons, and is intended to be inclusive of all cervical and lumbar implant designs such as artificial discs and posterior dynamic stabilization devices. Although a wide range of alternative materials is being investigated for nonfusion spine implants, many of the examples in this review are drawn from our existing repository of metal-on-polyethylene, metal-on-metal lumbar total disc replacements (TDRs), and polyurethane-based dynamic motion preservation devices. These devices are already approved or nearing approval for use in the United States, and hence are the most clinically relevant at the present time. This article summarizes the current literature on the retrieval analysis of these implants and concludes with recommendations for the development of new test methods that are based on the current state of knowledge of in vivo wear and damage mechanisms. Furthermore, the relevance and need to evaluate the surrounding tissue to obtain a complete understanding of the biological reaction to implant component corrosion and wear is reviewed.
Collapse
Affiliation(s)
- Steven M Kurtz
- Implant Research Center, School of Biomedical Engineering, Science, and Health Systems and Department of Materials Engineering, Drexel University, Philadelphia, PA ; Exponent, Inc., 3401 Market St., Suite 300, Philadelphia, PA
| | - Marla Steinbeck
- Implant Research Center, School of Biomedical Engineering, Science, and Health Systems and Department of Materials Engineering, Drexel University, Philadelphia, PA
| | - Allyson Ianuzzi
- Implant Research Center, School of Biomedical Engineering, Science, and Health Systems and Department of Materials Engineering, Drexel University, Philadelphia, PA ; Exponent, Inc., 3401 Market St., Suite 300, Philadelphia, PA
| | - André van Ooij
- Departments of Orthopaedic Surgery, Maastricht University Medical Center, AZ Maastricht, 6202 AZ Maastricht, the Netherlands
| | - Ilona M Punt
- Departments of Orthopaedic Surgery, Maastricht University Medical Center, AZ Maastricht, 6202 AZ Maastricht, the Netherlands
| | - Jorge Isaza
- Our Lady of the Lake Medical Center, Baton Rouge, LA
| | | |
Collapse
|
34
|
Cadosch D, Chan E, Gautschi OP, Filgueira L. Metal is not inert: Role of metal ions released by biocorrosion in aseptic loosening-Current concepts. J Biomed Mater Res A 2009; 91:1252-62. [DOI: 10.1002/jbm.a.32625] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Thomas P, Braathen LR, Dörig M, Auböck J, Nestle F, Werfel T, Willert HG. Increased metal allergy in patients with failed metal-on-metal hip arthroplasty and peri-implant T-lymphocytic inflammation. Allergy 2009; 64:1157-65. [PMID: 19220218 DOI: 10.1111/j.1398-9995.2009.01966.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND In 16 patients with revised metal-on-metal arthroplasty and peri-implant lymphocytic inflammation, we verified the role of metal hypersensitivity by patch testing (PT) and lymphocyte transformation test (LTT). METHODS In the 16 patients with lymphocyte dominated periprosthetic inflammation, allergy history was obtained by a questionnaire, specific serum IgE to aeroallergens was measured to assess atopy, PT to standard and metal series was performed and metal sensitivity was further assessed by LTT using blood mononuclear cells. RESULTS Revision surgery was performed because of pain (8/16), osteolysis (4/16), dislocation (3/16) and loosening of the stem (1/16). Histological examination showed perivascular infiltrates of T lymphocytes, high endothelial venules, fibrin exudation and accumulation of macrophages with drop-like inclusions. Five patients had a history of cutaneous metal allergy and atopy was found in 25% of the patients. In 13/16 patients (81%), systemic metal sensitivity was found based on PT and/or LTT. Patch test reactions were seen in 11/16 patients (69%; partly multiple reactions/patient): 7/16 to Cobalt (Co), 7/16 to Chromium (Cr), 4/16 to Nickel (Ni), and one each to Molybdenum (Mo) and Manganese (Mn). Ten of 16 patients (62%) showed enhanced LTT reactivity to metals: 7/16 to Ni, 7/16 to Co, 5/16 to Cr, 5/16 to Mo and 4/16 to Mn. CONCLUSIONS The lymphocyte dominated peri-implant inflammation may well reflect an allergic hyper-reactivity in these patients, given the high rate of concomitantly found metal allergy. Despite the overall incidence of metal implant allergy being low, allergic reactions should be included as differential diagnosis in failed metal-on-metal arthroplasty.
Collapse
Affiliation(s)
- P Thomas
- Department of Dermatology and Allergology, Ludwig-Maximilians-University Munich, Frauenlobstr. 9-11, Munich 80337, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Caicedo MS, Desai R, McAllister K, Reddy A, Jacobs JJ, Hallab NJ. Soluble and particulate Co-Cr-Mo alloy implant metals activate the inflammasome danger signaling pathway in human macrophages: a novel mechanism for implant debris reactivity. J Orthop Res 2009; 27:847-54. [PMID: 19105226 DOI: 10.1002/jor.20826] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immune reactivity to soluble and particulate implant debris remains the primary cause of aseptic inflammation and implant loosening. However, the intracellular mechanisms that trigger immune cells to sense and respond to exogenous nonbiological agents such as metal particles or metal ions released from orthopedic implants remain unknown. Recent studies in immunology have outlined the importance of the intracellular inflammasome complex of proteins in sensing danger/stress signals triggered by nonbiological agents in the cytosol of macrophages. We hypothesized that metal implant debris can activate the inflammasome pathway in macrophages that causes caspase-1-induced cleavage of intracellular pro-IL-1beta into its mature form, resulting in IL-1beta secretion and induction of a broader proinflammatory response. We tested this hypothesis by examining whether soluble cobalt, chromium, molybdenum, and nickel ions and Co-Cr-Mo alloy particles induce inflammasome- mediated macrophage reactivity. Our results demonstrate that these agents stimulate IL-1beta secretion in human macrophages that is inflammasome mediated (i.e., NADPH-, caspase-1-, Nalp3-, and ASC-dependent). Thus, metal ion- and particle-induced activation of the inflammasome in human macrophages provides evidence of a novel pathway of implant debris-induced inflammation, where contact with implant debris is sensed and transduced by macrophages into a proinflammatory response.
Collapse
Affiliation(s)
- Marco S Caicedo
- Department of Immunology, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
37
|
Eben R, Walk R, Summer B, Maier S, Thomsen M, Thomas P. Implantatallergieregister – ein erster Erfahrungsbericht. DER ORTHOPADE 2009; 38:557-62. [DOI: 10.1007/s00132-009-1414-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Anandarajah AP. Role of RANKL in bone diseases. Trends Endocrinol Metab 2009; 20:88-94. [PMID: 19185505 DOI: 10.1016/j.tem.2008.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 10/15/2008] [Accepted: 10/17/2008] [Indexed: 11/16/2022]
Abstract
Bone remodeling is a tightly regulated process of osteoclast-mediated bone resorption, balanced by osteoblast-mediated bone formation. Disruption of this balance can lead to increased bone turnover, resulting in excessive bone loss or extra bone formation and consequent skeletal disease. The receptor activator of nuclear factor kappaB ligand (RANKL) (along with its receptor), the receptor activator of nuclear factor kappaB and its natural decoy receptor, osteoprotegerin, are the final effector proteins of osteoclastic bone resorption. Here, I provide an overview of recent studies that highlight the key role of RANKL in the pathophysiology of several bone diseases and discuss the novel therapeutic approaches afforded by the modulation of RANKL.
Collapse
Affiliation(s)
- Allen P Anandarajah
- Division of Allergy, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
39
|
Caicedo MS, Pennekamp PH, McAllister K, Jacobs JJ, Hallab NJ. Soluble ions more than particulate cobalt-alloy implant debris induce monocyte costimulatory molecule expression and release of proinflammatory cytokines critical to metal-induced lymphocyte reactivity. J Biomed Mater Res A 2009; 93:1312-21. [DOI: 10.1002/jbm.a.32627] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
[Orthopedic surgical implants and allergies. Joint statement by the Implant Allergy Working Group (AK 20) of the DGOOC (German Association of Orthopedics and Orthopedic Surgery), DKG (German Contact Dermatitis Research Group) and DGAKI (German Society for Allergology and Clinical Immunology)]. Hautarzt 2008; 59:220-9. [PMID: 18210000 DOI: 10.1007/s00105-007-1453-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Materials used in osteosynthesis or artificial joint replacement are usually well tolerated. Complaints after such operations are mostly related to infection or mechanical problems but may also be caused by allergic reactions. The latter encompass skin changes, e.g., eczema, delayed wound/bone healing, recurrent effusion, pain, or implant loosening. In contrast to the high incidence of cutaneous metal contact allergy, allergies associated with implants are a rare condition. However, epidemiological data on the incidence of implant-related allergic reactions are still missing. Typical elicitors are nickel, chromium, cobalt, and constituents of bone cement (acrylates und additives such as gentamicin or benzoyl peroxide). After exclusion of the most common differential diagnoses, allergy diagnostic procedures are primarily based on patch tests including a metal and bone cement component series. Additional analysis of periimplant tissue is recommended. However, further studies are necessary to show the significance of the histologic findings and the role of the lymphocyte transformation test (LTT). Which combinations of factors will induce allergic sensitization to implants or trigger periimplant allergic reactions in the case of preexisting cutaneous metal allergy is still unknown. Titanium-based osteosynthesis materials are recommended for metal allergic patients. In elective hip replacements, a ceramic/polyethylene (PE) articulation should be used, and in knee replacements "alternative materials". If a regular, potentially applicable CoCr/PE articulation is preferred, the patient must be well informed and must give his/her written consent.
Collapse
|
41
|
Koulouvaris P, Ly K, Ivashkiv LB, Bostrom MP, Nestor BJ, Sculco TP, Purdue PE. Expression profiling reveals alternative macrophage activation and impaired osteogenesis in periprosthetic osteolysis. J Orthop Res 2008; 26:106-16. [PMID: 17729302 DOI: 10.1002/jor.20486] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Interactions between periprosthetic cells and prosthetic wear debris have been recognized as an important event in the development of osteolysis and aseptic loosening. Although the ability of wear debris to activate pro-inflammatory macrophage signaling has been documented, the full repertoire of macrophage responses to wear particles has not been established. Here, we examined the involvement of alternative macrophage activation and defective osteogenic signaling in osteolysis. Using real-time RT-PCR analysis of periprosthetic soft tissue from osteolysis patients, we detected elevated levels of expression of alternative macrophage activation markers (CHIT1, CCL18), chemokines (IL8, MIP1 alpha) and markers of osteoclast precursor cell differentiation and multinucleation (Cathepsin K, TRAP, DC-STAMP) relative to osteoarthritis controls. The presence of cathepsin K positive multinuclear cells was confirmed by immunohistochemistry. Reduced expression levels of the osteogenic signaling components BMP4 and FGF18 were detected. Expression levels of TNF-alpha, IL-6, and RANKL were unchanged, while the anti-osteoclastogenic cytokine OPG was reduced in osteolysis patients, resulting in elevated RANKL:OPG ratios. In vitro studies confirmed the role of particulate debris in alternative macrophage activation and inhibition of osteogenic signaling. Taken together, these results suggest involvement in osteolysis of alternative macrophage activation, accompanied by elevated levels of various chemokines. Increased recruitment and maturation of osteoclast precursors is also observed, as is reduced osteogenesis. These findings provide new insights into the molecular pathogenesis of osteolysis, and identify new potential candidate markers for disease progression and therapeutic targeting.
Collapse
Affiliation(s)
- Panagiotis Koulouvaris
- Osteolysis Research Laboratory, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Abu-Amer Y, Darwech I, Clohisy JC. Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther 2007; 9 Suppl 1:S6. [PMID: 17634145 PMCID: PMC1924521 DOI: 10.1186/ar2170] [Citation(s) in RCA: 317] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Total joint replacement, although considered an excellent surgical procedure, can be complicated by osteolysis induced by implant particles and subsequent aseptic loosening of the implant. The pathogenesis of implant-associated osteolysis includes inflammatory and osteolytic processes. The sustained chronic inflammatory response initiated by particulate debris at the implant-bone interface is manifested by recruitment of a wide array of cell types. These cells include macrophages, fibroblasts, giant cells, neutrophils, lymphocytes, and--most importantly--osteoclasts, which are the principal bone resorbing cells. The 'cellular response' entails secretion of osteoclastogenic and inflammatory cytokines that favor exacerbated osteoclast activity and enhanced osteolysis. An appreciation of the complex network that leads to these cellular and inflammatory responses will form a foundation on which to develop therapeutic interventions to combat inflammatory periprosthetic bone loss.
Collapse
Affiliation(s)
- Yousef Abu-Amer
- Department of Orthopaedic Surgery and Department of Cell Biology & Physiology, Washington University School of Medicine, Barnes Hospital Plaza, Saint Louis, Missouri 63110, USA.
| | | | | |
Collapse
|