1
|
Fahrer J, Wittmann S, Wolf AC, Kostka T. Heme Oxygenase-1 and Its Role in Colorectal Cancer. Antioxidants (Basel) 2023; 12:1989. [PMID: 38001842 PMCID: PMC10669411 DOI: 10.3390/antiox12111989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an enzyme located at the endoplasmic reticulum, which is responsible for the degradation of cellular heme into ferrous iron, carbon monoxide and biliverdin-IXa. In addition to this main function, the enzyme is involved in many other homeostatic, toxic and cancer-related mechanisms. In this review, we first summarize the importance of HO-1 in physiology and pathophysiology with a focus on the digestive system. We then detail its structure and function, followed by a section on the regulatory mechanisms that control HO-1 expression and activity. Moreover, HO-2 as important further HO isoform is discussed, highlighting the similarities and differences with regard to HO-1. Subsequently, we describe the direct and indirect cytoprotective functions of HO-1 and its breakdown products carbon monoxide and biliverdin-IXa, but also highlight possible pro-inflammatory effects. Finally, we address the role of HO-1 in cancer with a particular focus on colorectal cancer. Here, relevant pathways and mechanisms are presented, through which HO-1 impacts tumor induction and tumor progression. These include oxidative stress and DNA damage, ferroptosis, cell cycle progression and apoptosis as well as migration, proliferation, and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany; (S.W.); (A.-C.W.)
| | | | | | - Tina Kostka
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany; (S.W.); (A.-C.W.)
| |
Collapse
|
2
|
Role of Heme Oxygenase in Gastrointestinal Epithelial Cells. Antioxidants (Basel) 2022; 11:antiox11071323. [PMID: 35883814 PMCID: PMC9311893 DOI: 10.3390/antiox11071323] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
The gastrointestinal tract is a unique organ containing both vascular and luminal routes lined by epithelial cells forming the mucosa, which play an important role in the entry of nutrients and act as a selective barrier, excluding potentially harmful agents. Mucosal surfaces establish a selective barrier between hostile external environments and the internal milieu. Heme is a major nutritional source of iron and is a pro-oxidant that causes oxidative stress. Heme oxygenases (HOs) catalyze the rate-limiting step in heme degradation, resulting in the formation of iron, carbon monoxide, and biliverdin, which are subsequently converted to bilirubin by biliverdin reductase. In gastrointestinal pathogenesis, HO-1, an inducible isoform of HO, is markedly induced in epithelial cells and plays an important role in protecting mucosal cells. Recent studies have focused on the biological effects of the products of this enzymatic reaction, which have antioxidant, anti-inflammatory, and cytoprotective functions. In this review, the essential roles of HO in the gastrointestinal tract are summarized, focusing on nutrient absorption, protection against cellular stresses, and the maintenance and regulation of tight junction proteins, emphasizing the potential therapeutic implications. The biochemical basis of the potential therapeutic implications of glutamine for HO-1 induction in gastrointestinal injury is also discussed.
Collapse
|
3
|
Expression of IL-1β, HMGB1, HO-1, and LDH in malignant and non-malignant pleural effusions. Respir Physiol Neurobiol 2020; 272:103330. [DOI: 10.1016/j.resp.2019.103330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
|
4
|
Zhuang S, Yu R, Zhong J, Liu P, Liu Z. Rhein from Rheum rhabarbarum Inhibits Hydrogen-Peroxide-Induced Oxidative Stress in Intestinal Epithelial Cells Partly through PI3K/Akt-Mediated Nrf2/HO-1 Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2519-2529. [PMID: 30779558 DOI: 10.1021/acs.jafc.9b00037] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rheum rhabarbarum has been widely used as a herbal medicine and food in China. The objective of this study was to investigate the cytoprotective action and underlying mechanisms of rhein, one active ingredient isolated from R. rhabarbarum, on H2O2-challenged rat small intestine epithelial cells (IEC-6 cells). H2O2-challenged IEC-6 cells were incubated in the pretreatment with or without rhein or LY294002, a PI3K/Akt inhibitor. The cell viability, apoptosis, intracellular reactive oxygen species (ROS), and antioxidants were measured. The expressions of heme oxygenase 1 (HO-1), nuclear factor erythroid 2-related factor (Nrf2), Akt, and p-Akt were evaluated by western blotting. Meanwhile, LY294002 was also used to investigate the role of PI3K/Akt in the rhein-induced cytoprotective role. The results showed that pretreatment of rhein could reverse the inhibition of cell viability and suppress the apoptosis, caspase-3 activity, and intracellular ROS induced by H2O2. Rhein also supported SOD activity catalase activity, glutathione S-transferase activity, and glutathione content. Furthermore, rhein induced the protein expression of HO-1 together with its upstream mediator Nrf2 and activated the phosphorylation of Akt in IEC-6 cells. LY294002 inhibited increased cell viability, upregulated the lowered apoptotic rate, and enhanced the weakened ROS levels. Although the inhibition of PI3K/Akt did not inhibit the Nrf2 nuclear level under 4 μM rhein, LY294002 inhibited the Nrf2 nuclear level under 2 μM rhein and blocked HO-1 expression. These data demonstrated that rhein protected IEC-6 cells against oxidative damage partly via PI3K/Akt and Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Shen Zhuang
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Ruyang Yu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Jia Zhong
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Ping Liu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Zhongjie Liu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| |
Collapse
|
5
|
Cx43 Inhibition Attenuates Sepsis-Induced Intestinal Injury via Downregulating ROS Transfer and the Activation of the JNK1/Sirt1/FoxO3a Signaling Pathway. Mediators Inflamm 2019; 2019:7854389. [PMID: 30948926 PMCID: PMC6425293 DOI: 10.1155/2019/7854389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
Intestinal injury has long been considered to play a crucial role in the pathophysiology of sepsis and has even been characterized as the “motor” of it. Thus, we explored the effects of connexin43 (Cx43) on sepsis-induced intestinal injury in order to provide potential therapeutic strategies. Rat cecal ligation and puncture (CLP) models in vivo and cell models (IEC-6 cells) pretreated with LPS in vitro were used in the current study. Firstly, different methods, such as Cx43 inhibitors (18-α-GA and oleamide) or siRNA targeting Cx43 and N-acetyl cysteine (NAC) (a kind of ROS scavenger), were used to observe the effects of Cx43 channels mediating ROS transfer on intestinal injury. Secondly, the influence of ROS content on the activity of the JNK1/Sirt1/FoxO3a signaling pathway was explored through the application of NAC, sp600125 (a JNK1 inhibitor), and nicotinamide (a Sirt1 inhibitor). Finally, luciferase assays and ChIP were used to determine the direct regulation of FoxO3a on proapoptotic proteins, Bim and Puma. The results showed that sepsis-induced intestinal injury presented a dynamic change, coincident with the alternation of Cx43 expression. The inhibition of Cx43 attenuated CLP-induced intestinal injury in vivo and LPS-induced IEC-6 injury in vitro. The changes of Cx43 channel function regulated ROS transfer between the neighboring cells, which mediated the activation of the JNK1/Sirt1/FoxO3a signaling pathway. FoxO3a directly affected its downstream target genes, Bim and Puma, which are responsible for cell or tissue apoptosis. In summary, our results suggest that Cx43 inhibition suppresses ROS transfer and inactivates the JNK1/Sirt1/FoxO3a signaling pathway to protect against sepsis-induced intestinal injury.
Collapse
|
6
|
Kabil SL. Beneficial effects of cilostazol on liver injury induced by common bile duct ligation in rats: Role of SIRT1 signaling pathway. Clin Exp Pharmacol Physiol 2018; 45:1341-1350. [DOI: 10.1111/1440-1681.13004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Soad L. Kabil
- Department of Pharmacology; Faculty of Medicine; Zagazig University; Zagazig Egypt
| |
Collapse
|
7
|
Pan W, Miao L, Lin Y, Huang X, Ge X, Moosa SL, Liu B, Ren M, Zhou Q, Liang H, Zhang W, Pan L. Regulation mechanism of oxidative stress induced by high glucose through PI3K/Akt/Nrf2 pathway in juvenile blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2017; 70:66-75. [PMID: 28882793 DOI: 10.1016/j.fsi.2017.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/23/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
This study was conducted to investigate the effects of oral administration of a high concentration of glucose on the respiratory burst, antioxidant status, and hepatic gene expression of heme oxygenase-1 (ho1) and PI3K/Akt/Nrf2-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala). Blunt snout bream juveniles with an initial body weight of 19.94 ± 0.58 g were orally fed with a high concentration of glucose (3 g/kg body weight). The results indicated that plasma glucose exhibited a biphasic response. Acute and persistent hyperglycemia due to the oral glucose administration significantly reduced (P < 0.05) the white blood cell count, red blood cell count, and hemoglobin content and caused oxidative stress (significantly increased alanine aminotransferase, aspartate transaminase, alkaline phosphatase, and glucose levels) and early apoptosis of hepatocytes in the fish. Hepatic superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities increased rapidly (P < 0.05) as protection from oxidative stress and were downregulated (P < 0.05) because of persistent hyperglycemia. Blood respiratory burst was significantly reduced (P < 0.05) because of hyperglycemia and showed a trend that was opposite to that of plasma glucose. Slight upregulation of nrf2 mRNA and antioxidants acts as a compensative protection mechanism, and the downregulated PI3K/Akt pathway blocked this function of Nrf2. In conclusion, the PI3K/Akt pathway and Nrf2 mediated the antioxidative mechanism independently in the blunt snout bream juveniles subjected to the oral administration of a high glucose concentration.
Collapse
Affiliation(s)
- Wenjing Pan
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Linghong Miao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Yan Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Xin Huang
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China.
| | - Silli Laban Moosa
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Mingchun Ren
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Wuxiao Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Liangkun Pan
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| |
Collapse
|
8
|
Diabetes-Related Induction of the Heme Oxygenase System and Enhanced Colocalization of Heme Oxygenase 1 and 2 with Neuronal Nitric Oxide Synthase in Myenteric Neurons of Different Intestinal Segments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1890512. [PMID: 29081883 PMCID: PMC5610792 DOI: 10.1155/2017/1890512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/02/2017] [Accepted: 08/17/2017] [Indexed: 12/17/2022]
Abstract
Increase in hyperglycaemia-induced oxidative stress and decreased effectiveness of endogenous defense mechanisms plays an essential role in the initiation of diabetes-related neuropathy. We demonstrated that nitrergic myenteric neurons display different susceptibilities to diabetic damage in different gut segments. Therefore, we aim to reveal the gut segment-specific differences in the expression of heme oxygenase (HO) isoforms and the colocalization of these antioxidants with neuronal nitric oxide synthase (nNOS) in myenteric neurons. After ten weeks, samples from the duodenum, ileum, and colon of control and streptozotocin-induced diabetic rats were processed for double-labelling fluorescent immunohistochemistry and ELISA. The number of both HO-immunoreactive and nNOS/HO-immunoreactive myenteric neurons was the lowest in the ileal and the highest in the colonic ganglia of controls; it increased the most extensively in the ileum and was also elevated in the colon of diabetics. Although the total number of nitrergic neurons decreased in all segments, the proportion of nNOS-immunoreactive neurons colocalizing with HOs was enhanced robustly in the ileum and colon of diabetics. We presume that those nitrergic neurons which do not colocalize with HOs are the most seriously affected by diabetic damage. Therefore, the regional induction of the HO system is strongly correlated with diabetes-related region-specific nitrergic neuropathy.
Collapse
|
9
|
Microbial Translocation Associated with an Acute-Phase Response and Elevations in MMP-1, HO-1, and Proinflammatory Cytokines in Strongyloides stercoralis Infection. Infect Immun 2016; 85:IAI.00772-16. [PMID: 27821584 DOI: 10.1128/iai.00772-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022] Open
Abstract
Microbial translocation, characterized by elevated levels of lipopolysaccharide (LPS) and related markers, is a common occurrence in HIV and some parasitic infections. This is usually associated with extensive inflammation and immune activation. To examine the occurrence of microbial translocation and the associated inflammatory response in asymptomatic Strongyloides stercoralis infection, we measured the plasma levels of LPS and other microbial translocation markers, acute-phase proteins, inflammatory markers, and proinflammatory cytokines in individuals with (infected [INF]) or without (uninfected [UN]) S. stercoralis infections. Finally, we also measured the levels of all of these markers in INF individuals following treatment of S. stercoralis infection. We show that INF individuals exhibit significantly higher plasma levels of microbial translocation markers (LPS, soluble CD14 [sCD14], intestinal fatty acid-binding protein [iFABP], and endotoxin core IgG antibody [EndoCAb]), acute-phase proteins (α-2 macroglobulin [α-2M], C-reactive protein [CRP], haptoglobin, and serum amyloid protein A [SAA]), inflammatory markers (matrix metalloproteinase 1 [MMP-1] and heme oxygenase 1 [HO-1]), and proinflammatory cytokines (interleukin-6 [IL-6], IL-8, monocyte chemoattractant protein 1 [MCP-1], and IL-1β) than do UN individuals. INF individuals exhibit significantly decreased levels of tissue inhibitor of metalloproteinases 4 (TIMP-4). Following treatment of S. stercoralis infection, the elevated levels of microbial translocation markers, acute-phase proteins, and inflammatory markers were all diminished. Our data thus show that S. stercoralis infection is characterized by microbial translocation and accompanying increases in levels of acute-phase proteins and markers of inflammation and provide data to suggest that microbial translocation is a feature of asymptomatic S. stercoralis infection and is associated with an inflammatory response.
Collapse
|
10
|
Zhang H, Shi Z, Ma XP, Liu HR, Hu L, Wu HG. Effect of moxibustion on expressions of HO-1 and MCP-3 protein in colon of rats with Crohn’s disease. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2016. [DOI: 10.1007/s11726-016-0953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Fehér P, Ujhelyi Z, Váradi J, Fenyvesi F, Róka E, Juhász B, Varga B, Bombicz M, Priksz D, Bácskay I, Vecsernyés M. Efficacy of Pre- and Post-Treatment by Topical Formulations Containing Dissolved and Suspended Silybum marianum against UVB-Induced Oxidative Stress in Guinea Pig and on HaCaT Keratinocytes. Molecules 2016; 21:molecules21101269. [PMID: 27669200 PMCID: PMC6273683 DOI: 10.3390/molecules21101269] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/14/2016] [Accepted: 09/17/2016] [Indexed: 12/15/2022] Open
Abstract
Plants with high amounts of antioxidants may be a promising therapy for preventing and curing UV-induced oxidative skin damage. The objective of this study was to verify the efficacy of topical formulations containing dissolved and suspended Silybum marianum extract against UVB-induced oxidative stress in guinea pig and HaCaT keratinocytes. Herbal extract was dissolved in Transcutol HP (TC) and sucrose-esters were incorporated as penetration enhancers in creams. Biocompatibility of compositions was tested on HeLa cells and HaCaT keratinocytes as in vitro models. Transepidermal water loss (TEWL) tests were performed to prove the safety of formulations in vivo. Drug release of different compositions was assessed by Franz diffusion methods. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and lipid peroxidation (MDA) activities were evaluated before and after UVB irradiation in a guinea pig model and HaCaT cells. Heme oxygenase-1 (HO-1) enzyme activity was measured in the epidermis of guinea pigs treated by different creams before and after UVB irradiation. Treatment with compositions containing silymarin powder (SM) dissolved in TC and sucrose stearate SP 50 or SP 70 resulted in increased activities of all reactive oxygen species (ROS) eliminating enzymes in the case of pre- and post-treatment as well. Reduction in the levels of lipid peroxidation end products was also detected after treatment with these two compositions. Post-treatment was more effective as the increase of the activity of antioxidants was higher. Lower HO-1 enzyme levels were measured in the case of pre- and post-treatment groups compared to control groups. Therefore, this study demonstrates the effectiveness of topical formulations containing silymarin in inhibiting UVB irradiation induced oxidative stress of the skin.
Collapse
Affiliation(s)
- Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Eszter Róka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Balázs Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Mariann Bombicz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Dániel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| |
Collapse
|
12
|
Cavaillon JM, Annane D. Invited review: Compartmentalization of the inflammatory response in sepsis and SIRS. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120030301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sepsis and systemic inflammatory response syndrome (SIRS) are associated with an exacerbated production of both pro- and anti-inflammatory mediators that are mainly produced within tissues. Although a systemic process, the pathophysiological events differ from organ to organ, and from organ to peripheral blood, leading to the concept of compartmentalization. The nature of the insult ( e.g. burn, hemorrhage, trauma, peritonitis), the cellular composition of each compartment ( e.g . nature of phagocytes, nature of endothelial cells), and its micro-environment ( e.g. local presence of granulocyte-macrophage colony stimulating factor [GM-CSF] in the lungs, low levels of arginine in the liver, release of endotoxin from the gut), and leukocyte recruitment, have a great influence on local inflammation and on tissue injury. High levels of pro-inflammatory mediators ( e.g. interleukin-1 [IL-1], tumor necrosis factor [TNF], gamma interferon [IFN-γ], high mobility group protein-1 [HMGB1], macrophage migration inhibitory factor [MIF]) produced locally and released into the blood stream initiate remote organ injury as a consequence of an organ cross-talk. The inflammatory response within the tissues is greatly influenced by the local delivery of neuromediators by the cholinergic and sympathetic neurons. Acetylcholine and epinephrine contribute with IL-10 and other mediators to the anti-inflammatory compensatory response initiated to dampen the inflammatory process. Unfortunately, this regulatory response leads to an altered immune status of leukocytes that can increase the susceptibility to further infection. Again, the nature of the insult, the nature of the leukocytes, the presence of circulating microbial components, and the nature of the triggering agent employed to trigger cells, greatly influence the immune status of the leukocytes that may differ from one compartment to another. While anti-inflammatory mediators predominate within the blood stream to avoid igniting new inflammatory foci, their presence within tissues may not always be sufficient to prevent the initiation of a deleterious inflammatory response in the different compartments.
Collapse
Affiliation(s)
| | - Djillali Annane
- Service de Réanimation, Hôpital Raymond Poincaré, Assistance Publique - Hôpitaux de Paris, Faculté de Médecine Paris Ile de France Ouest, Université de Versailles Saint-Quentin-en-Yvelines, Garches, France
| |
Collapse
|
13
|
Fernando PMDJ, Piao MJ, Kang KA, Ryu YS, Hewage SRKM, Chae SW, Hyun JW. Rosmarinic Acid Attenuates Cell Damage against UVB Radiation-Induced Oxidative Stress via Enhancing Antioxidant Effects in Human HaCaT Cells. Biomol Ther (Seoul) 2016; 24:75-84. [PMID: 26759705 PMCID: PMC4703356 DOI: 10.4062/biomolther.2015.069] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/10/2015] [Accepted: 08/20/2015] [Indexed: 12/31/2022] Open
Abstract
This study was designed to investigate the cytoprotective effect of rosmarinic acid (RA) on ultraviolet B (UVB)-induced oxidative stress in HaCaT keratinocytes. RA exerted a significant cytoprotective effect by scavenging intracellular ROS induced by UVB. RA also attenuated UVB-induced oxidative macromolecular damage, including protein carbonyl content, DNA strand breaks, and the level of 8-isoprostane. Furthermore, RA increased the expression and activity of superoxide dismutase, catalase, heme oxygenase-1, and their transcription factor Nrf2, which are decreased by UVB radiation. Collectively, these data indicate that RA can provide substantial cytoprotection against the adverse effects of UVB radiation by modulating cellular antioxidant systems, and has potential to be developed as a medical agent for ROS-induced skin diseases.
Collapse
Affiliation(s)
| | - Mei Jing Piao
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Yea Seong Ryu
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | - Sung Wook Chae
- Aging Research Center, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
14
|
Kim S, Oh MH, Kim BS, Kim WI, Cho HS, Park BY, Park C, Shin GW, Kwon J. Upregulation of heme oxygenase-1 by ginsenoside Ro attenuates lipopolysaccharide-induced inflammation in macrophage cells. J Ginseng Res 2015; 39:365-70. [PMID: 26869829 PMCID: PMC4593785 DOI: 10.1016/j.jgr.2015.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The beneficial effects of ginsenoside species have been well demonstrated in a number of studies. However, the function of ginsenoside Ro (GRo), an oleanane-type saponin, has not been sufficiently investigated. Thus, the aim of the present study was to investigate the anti-inflammatory effects of GRo in vitro using the Raw 264.7 mouse macrophage cell line treated with lipopolysaccharide (LPS), and to clarify the possible mechanism of GRo involving heme oxygenase-1 (HO-1), which itself plays a critical role in self-defense in the presence of inflammatory stress. METHODS Raw 264.7 cells were pretreated with GRo (up to 200μM) for 1 h before treatment with 1 μg/mL LPS, and both cell viability and inflammatory markers involving HO-1 were evaluated. RESULTS GRo significantly increased cell viability in a dose dependent manner following treatment with LPS, and decreased levels of reactive oxygen species and nitric oxide. GRo decreased inflammatory cytokines such as nitric oxide synthase and cyclooxygenase-2 induced by LPS. Moreover, GRo increased the expression of HO-1 in a dose dependent manner. Cotreatment of GRo with tin protoporphyrin IX, a selective inhibitor of HO-1, not only inhibited upregulation of HO-1 induced by GRo, but also reversed the anti-inflammatory effect of GRo in LPS treated Raw 264.7 cells. CONCLUSION GRo induces anti-inflammatory effects following treatment with LPS via upregulation of HO-1.
Collapse
Affiliation(s)
- Sokho Kim
- Department of Laboratory Animal Medicine, Chonbuk National University, Jetonju, Korea
| | - Myung-Hoon Oh
- Department of Laboratory Animal Medicine, Chonbuk National University, Jetonju, Korea
| | - Bum-Seok Kim
- Bio-safety Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - Won-Il Kim
- Bio-safety Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - Ho-Seong Cho
- Bio-safety Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - Byoung-Yong Park
- Bio-safety Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - Chul Park
- Bio-safety Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - Gee-Wook Shin
- Bio-safety Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - Jungkee Kwon
- Department of Laboratory Animal Medicine, Chonbuk National University, Jetonju, Korea
- Bio-safety Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
15
|
Babu D, Motterlini R, Lefebvre RA. CO and CO-releasing molecules (CO-RMs) in acute gastrointestinal inflammation. Br J Pharmacol 2014; 172:1557-73. [PMID: 24641722 DOI: 10.1111/bph.12632] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 12/13/2022] Open
Abstract
Carbon monoxide (CO) is enzymatically generated in mammalian cells alongside the liberation of iron and the production of biliverdin and bilirubin. This occurs during the degradation of haem by haem oxygenase (HO) enzymes, a class of ubiquitous proteins consisting of constitutive and inducible isoforms. The constitutive HO2 is present in the gastrointestinal tract in neurons and interstitial cells of Cajal and CO released from these cells might contribute to intestinal inhibitory neurotransmission and/or to the control of intestinal smooth muscle cell membrane potential. On the other hand, increased expression of the inducible HO1 is now recognized as a beneficial response to oxidative stress and inflammation. Among the products of haem metabolism, CO appears to contribute primarily to the antioxidant and anti-inflammatory effects of the HO1 pathway explaining the studies conducted to exploit CO as a possible therapeutic agent. This article reviews the effects and, as far as known today, the mechanism(s) of action of CO administered either as CO gas or via CO-releasing molecules in acute gastrointestinal inflammation. We provide here a comprehensive overview on the effect of CO in experimental in vivo models of post-operative ileus, intestinal injury during sepsis and necrotizing enterocolitis. In addition, we will analyse the in vitro data obtained so far on the effect of CO on intestinal epithelial cell lines exposed to cytokines, considering the important role of the intestinal mucosa in the pathology of gastrointestinal inflammation.
Collapse
Affiliation(s)
- D Babu
- Heymans Institute of Pharmacology, Ghent University, Gent, Belgium
| | | | | |
Collapse
|
16
|
Chen HG, Xie KL, Han HZ, Wang WN, Liu DQ, Wang GL, Yu YH. Heme oxygenase-1 mediates the anti-inflammatory effect of molecular hydrogen in LPS-stimulated RAW 264.7 macrophages. Int J Surg 2013; 11:1060-6. [DOI: 10.1016/j.ijsu.2013.10.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/17/2013] [Accepted: 10/12/2013] [Indexed: 10/26/2022]
|
17
|
Khasag N, Sakiyama S, Toba H, Yoshida M, Nakagawa Y, Takizawa H, Kawakami Y, Kenzaki K, Ali AHK, Kondo K, Tangoku A. Monitoring of exhaled carbon monoxide and carbon dioxide during lung cancer operation. Eur J Cardiothorac Surg 2013; 45:531-6. [PMID: 23913245 DOI: 10.1093/ejcts/ezt395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Carbon monoxide (CO) is expelled mainly via the lungs, so that exhaled carbon monoxide (Ex-CO) concentration reflects endogenous production. Recent reports have shown that Ex-CO levels are increased in critically ill patients and after anaesthesia and surgery. However, there has been no investigation of the changes in Ex-CO level during a lung operation. We continuously monitored Ex-CO and exhaled carbon dioxide (Ex-CO2) concentrations during surgery for lung cancer. METHODS Eighteen lung cancer patients who underwent elective lung cancer lobectomy were enrolled in this study. All patients were endotracheally intubated and ventilated under general anaesthesia. Ex-CO and Ex-CO2 concentrations were separately monitored and recorded continuously using two sets of Carbolyzer® breath analysers (Taiyo Inc., Osaka, Japan). RESULTS Ex-CO concentration increased rapidly in response to changes in body position from supine to decubitus and was significantly decreased when patients were once again lying back (supine 2). Upon restarting bilateral ventilation, Ex-CO concentration in the operated lung was significantly higher than that in the breathing lung. In the lateral decubitus position, Ex-CO2 concentration showed the same pattern of increase as seen for Ex-CO. In the operated lung, the Ex-CO2 concentrations changed significantly at clamping, declamping and supine 2. In the re-ventilated, operated lung, the Ex-CO2 concentration was significantly lower than in the breathing lung. In the breathing lung, the Ex-CO2 concentration did not exhibit any significant changes over the course of the operation. CONCLUSIONS When breathing was restarted, the Ex-CO level of the target lung was significantly higher than that of the breathing lung. The Ex-CO concentration was also affected by the surgical body position and this change was marked and transient.
Collapse
Affiliation(s)
- Narmisheekh Khasag
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health Bioscience, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schulz S, Wong RJ, Jang KY, Kalish F, Chisholm KM, Zhao H, Vreman HJ, Sylvester KG, Stevenson DK. Heme oxygenase-1 deficiency promotes the development of necrotizing enterocolitis-like intestinal injury in a newborn mouse model. Am J Physiol Gastrointest Liver Physiol 2013; 304:G991-G1001. [PMID: 23578787 PMCID: PMC3680684 DOI: 10.1152/ajpgi.00363.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 04/09/2013] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is typified by mucosal destruction, which subsequently can lead to intestinal necrosis. Prematurity, enteral feeding, and bacterial colonization are the main risk factors and, combined with other stressors, can cause increased intestinal permeability, injury, and an exaggerated inflammatory response. Heme oxygenase-1 (HO-1) mediates intestinal protection due to anti-inflammatory, antioxidative, and antiapoptotic effects of its products carbon monoxide, biliverdin, and bilirubin. This study investigates a possible role of HO-1 in the pathogenesis of NEC using a newborn mouse model. We induced NEC-like intestinal injury in 7-day-old HO-1 heterozygous (HO-1 Het, Hmox1(+/-)) and wild-type (Wt, Hmox1(+/+)) mice by gavage feeding and hypoxic exposures. Control (Con) pups of both genotypes were dam-fed. Intestines of HO-1 Het Con pups appeared predisposed to injury, with higher histological damage scores, more TUNEL-positive cells, and a significant reduction in muscularis externa thickness compared with Wt Con pups. The increase in HO activity after HO-1 induction by the substrate heme or by hypoxic stress was significantly impaired in HO-1 Het pups. After induction of intestinal injury, HO-1 Het pups displayed significantly higher NEC incidence (78 vs. 43%), mortality (83 vs. 54%), and median scores (2.5 vs. 1.5) than Wt NEC pups. PCR array analyses revealed increased expressions of IL-1β, P-selectin, matrix metallopeptidase 2, collagen type XVIII-α1, serpine 1, and others in NEC-induced HO-1 Het ileal and jejunal tissues. We conclude that a partial HO-1 deficiency promotes experimental NEC-like intestinal injury, possibly mediated by exaggerated inflammation and disruption in tissue repair.
Collapse
Affiliation(s)
- Stephanie Schulz
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bortscher S, Chang J, Vilz TO, Schäfer N, Sommer N, Wehner S, Kalff JC, Overhaus M. Hemin induction of HO-1 protects against LPS-induced septic ileus. J Surg Res 2012; 178:866-73. [PMID: 22921918 DOI: 10.1016/j.jss.2012.07.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 07/20/2012] [Accepted: 07/25/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Heme oxygenase (HO-1) protects against inflammation. In this study, we investigated the protective function of hemin-induced HO-1 against lipopolysaccharide (LPS)-induced ileus. METHODS Rats received LPS intraperitoneally 24 h after intraperitoneal hemin pretreatment or placebo. We also injected zinc protoporphyrin (ZnPP, 3rd group), an inhibitor of HO-1, intraperitoneally 2 h before LPS administration. To assess intestinal muscle function, we examined muscularis strip contractility in an organ bath and measured gastrointestinal transit in vivo. We investigated inflammation within the muscularis using polymerase chain reaction (interleukin [IL]-6, inducible nitric oxide synthase (iNOS), HO-1 and IL-10) 6 and 24 h after LPS. RESULTS Hemin significantly improved in vitro intestinal muscularis contractility (P < 0.001). In addition, hemin prevented LPS-induced dysmotility in vivo (gastrointestinal transit, geometric center: 8.39 ± 0.33 versus 5.68 ± 0.44; P < 0.001). In Zinc protoporphyrin (ZnPP)-treated animals, both parameters were significantly decreased compared with the hemin group. Messenger RNA expression demonstrated a significant reduction in IL-6 (6 h, hemin: 127.6 ± 36.7 versus LPS: 14,431 ± 5407; 24 h: 1.58 ± 0.39 versus 11.15 ± 2.59; P < 0.01) and iNOS (6 h: 2516 ± 985 versus 50,771 ± 13,321; 24 h: 55.11 ± 10.55 versus 257.1 ± 43.18; P < 0.001) in hemin-treated animals. Anti-inflammatory HO-1 messenger RNA levels (6 h, hemin: 116.3 ± 18.55 versus LPS: 26.02 ± 3.64; 24 h: 18.46 ± 2.69 versus 2.80 ± 0.32; P < 0.001) were increased. There was no significant difference in IL-10 levels at 6 and 24 h. ZnPP reversed the anti-inflammatory hemin effects. CONCLUSIONS Hemin induction of HO-1 diminishes LPS-induced sepsis. Heme oxygenase-1 has a central role in preventing sepsis-induced ileus. This benefit is reversed by HO-1 inhibition with ZnPP.
Collapse
Affiliation(s)
- Stephan Bortscher
- Department of General, Visceral, Thoracic, and Vascular Surgery, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Develi-Is S, Bekpinar S, Kalaz EB, Evran B, Unlucerci Y, Gulluoglu M, Uysal M. The protection by heme oxygenase-1 induction against thioacetamide-induced liver toxicity is associated with changes in arginine and asymmetric dimethylarginine. Cell Biochem Funct 2012; 31:122-8. [PMID: 22886620 DOI: 10.1002/cbf.2866] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 12/13/2022]
Abstract
This study was designed to investigate the role of HO-1 induction in prevention of thioacetamide (TAA)-induced oxidative stress, inflammation and liver damage. The changes in hepatic dimethylarginine dimethylaminohydrolase (DDAH) activity as well as plasma arginine and asymmetric dimethylarginine (ADMA) levels were also measured to evaluate nitric oxide (NO) bioavailability. Rats were divided into four groups as control, hemin, TAA and hemin + TAA groups. Hemin (50 mg kg(-1) , i.p.) was injected to rats 18 h before TAA treatment to induce HO-1 enzyme expression. Rats were given TAA (300 mg kg(-1) , i.p.) and killed 24 h after treatment. Although TAA treatment produced severe hepatic injury, upregulation of HO-1 ameliorated TAA-induced liver damage up to some extent as evidence by decreased serum alanine transaminase, aspartate transaminase and arginase activities and histopathological findings. Induction of HO-1 stimulated antioxidant system and decreased lipid peroxidation in TAA-treated rats. Myeloperoxidase activity and inducible NO synthase protein expression were decreased, whereas DDAH activity was increased by hemin injection in TAA-treated rats. Induction of HO-1 was associated with increased arginine levels and decreased ADMA levels, being the main determinants of NO production, in plasma of TAA-treated rats. In conclusion, our results indicate that HO-1 induction alleviated increased oxidative stress and inflammatory reactions together with deterioration in NO production in TAA-induced liver damage in rats.
Collapse
Affiliation(s)
- Seval Develi-Is
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
21
|
Leber A, Zenclussen ML, Teles A, Brachwitz N, Casalis P, El-Mousleh T, Jensen F, Woidacki K, Zenclussen AC. Pregnancy: tolerance and suppression of immune responses. Methods Mol Biol 2011; 677:397-417. [PMID: 20941623 DOI: 10.1007/978-1-60761-869-0_25] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Presence of foreign tissue in a host's body would immediately lead to a strong immune response directed to destroy the alloantigens present in fetus and placenta. However, during pregnancy, the semiallogeneic fetus is allowed to grow within the maternal uterus due to multiple mechanisms of immune tolerance, which are discussed in this chapter.
Collapse
Affiliation(s)
- Anne Leber
- Department for Neurosurgery, Charite, Medical University of Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Guo Y, Duan W, Li Z, Huang J, Yin Y, Zhang K, Wang Q, Zhang Z, Li C. Decreased GLT-1 and increased SOD1 and HO-1 expression in astrocytes contribute to lumbar spinal cord vulnerability of SOD1-G93A transgenic mice. FEBS Lett 2010; 584:1615-22. [PMID: 20303959 DOI: 10.1016/j.febslet.2010.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/04/2010] [Accepted: 03/15/2010] [Indexed: 01/30/2023]
Abstract
The SOD1-G93A transgenic mouse is a widely used ALS model, but the death of lower motor neurons is the hallmark. Here, we show that the SOD1-G93A transgene and HO-1 are preferentially over-expressed in the lumbar spinal cord, particularly in the activated astrocytes of the transgenic mice. We also show down-regulation of GLT-1 in spite of the proliferating astrocytes. However, GLT-1, SOD1-G93A transgene and HO-1 expression were not obviously changed in the motor cortex. Our data link spinal cord vulnerability to relatively decreased expression of GLT-1, and high expression of the transgene and HO-1 in astrocytes in SOD1-G93A transgenic mice.
Collapse
Affiliation(s)
- Yansu Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Role of Nrf2-mediated heme oxygenase-1 upregulation in adaptive survival response to nitrosative stress. Arch Pharm Res 2009; 32:1163-76. [PMID: 19727608 DOI: 10.1007/s12272-009-1807-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 03/16/2009] [Accepted: 06/25/2009] [Indexed: 12/21/2022]
Abstract
Nitrosative stress caused by reactive nitrogen species such as nitric oxide and peroxynitrite overproduced during inflammation leads to cell death and has been implicated in the pathogenesis of many human ailments. However, relatively mild nitrosative stress may fortify cellular defense capacities, rendering cells tolerant or adaptive to ongoing and subsequent cytotoxic challenges, a phenomenon known as 'preconditioning' or 'hormesis'. One of the key components of cellular stress response is heme oxygenase-1 (HO-1), the rate limiting enzyme in the process of degrading potentially toxic free heme into biliverdin, free iron and carbon monoxide. HO-1 is upregulated by a wide array of stimuli and has antioxidant, anti-inflammatory and other cytoprotective functions. This review is intended to provide readers with a welldocumented account of the research done in the area of cellular adaptive survival response against nitrosative stress with special focus on the role of HO-1 upregulation, especially through activation of the transcription factor, Nrf2.
Collapse
|
24
|
Measurement of Carbon Monoxide: From Bench to Bedside. Intensive Care Med 2009. [DOI: 10.1007/978-0-387-92278-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Daly KA, Mailer SL, Digby MR, Lefévre C, Thomson P, Deane E, Nicholas KR, Williamson P. Molecular analysis of tammar (Macropus eugenii) mammary epithelial cells stimulated with lipopolysaccharide and lipoteichoic acid. Vet Immunol Immunopathol 2008; 129:36-48. [PMID: 19157568 DOI: 10.1016/j.vetimm.2008.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/25/2008] [Accepted: 12/01/2008] [Indexed: 01/22/2023]
Abstract
The immunological function of the metatherian mammary gland plays a crucial part in neonatal survival of the marsupial young. Marsupial pouch young do not develop adult like immune responses until just prior to leaving the pouch. The immune components of the maternal milk secretions are important during this vulnerable early post-partum period. In addition, infection of the mammary gland has not been recognized in metatherians, despite the ready availability of pathogens in the pouch. Regardless of which, little is known about the immunobiology of the mammary gland and the immune responses of mammary epithelial cells in metatherians. In this study, a molecular approach was utilized to examine the response of tammar (Macropus eugenii) mammary epithelial cells to Escherichia coli derived lipopolysaccharide (LPS) and Staphylococcus aureus derived lipoteichoic acid (LTA). Using custom-made cDNA microarrays, candidate genes were identified in the transciptome, which were involved in antigen presentation, inflammation, cell growth and proliferation, cellular damage and apoptosis. Quantification of mRNA expression of several of these candidate genes, along with seven other genes (TLR4, CD14, TNF-alpha, cathelicidin, PRDX1, IL-5 and ABCG2) associated with innate immunity in LPS and LTA challenged mammary epithelial cells and leukocytes, was assessed for up to 24 h. Differences in genes associated with cellular damage and pro-inflammatory cytokine production were seen between stimulated mammary epithelial cells and leukocytes. LTA challenge tended to result in lower level induction of pro-inflammatory cytokines, increased PRDX1 mRNA levels, suggesting increased oxidative stress, and increased CD14 expression, but in a non-TLR4-dependent manner. The use of functional genomic tools in the tammar identified differences in the response of tammar mammary epithelial cells (MEC) and leukocytes to challenge with LPS and LTA, and validates the utility of the approach. The results of this study are consistent with a model in which tammar mammary epithelial cells have the capacity to elicit a complex and robust immune response to pathogens.
Collapse
Affiliation(s)
- Kerry A Daly
- Faculty of Veterinary Science, B19, University of Sydney, Camperdown, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bracken S, Byrne G, Kelly J, Jackson J, Feighery C. Altered gene expression in highly purified enterocytes from patients with active coeliac disease. BMC Genomics 2008; 9:377. [PMID: 18691394 PMCID: PMC2533024 DOI: 10.1186/1471-2164-9-377] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 08/08/2008] [Indexed: 02/07/2023] Open
Abstract
Background Coeliac disease is a multifactorial inflammatory disorder of the intestine caused by ingestion of gluten in genetically susceptible individuals. Genes within the HLA-DQ locus are considered to contribute some 40% of the genetic influence on this disease. However, information on other disease causing genes is sparse. Since enterocytes are considered to play a central role in coeliac pathology, the aim of this study was to examine gene expression in a highly purified isolate of these cells taken from patients with active disease. Epithelial cells were isolated from duodenal biopsies taken from five coeliac patients with active disease and five non-coeliac control subjects. Contaminating T cells were removed by magnetic sorting. The gene expression profile of the cells was examined using microarray analysis. Validation of significantly altered genes was performed by real-time RT-PCR and immunohistochemistry. Results Enterocyte suspensions of high purity (98–99%) were isolated from intestinal biopsies. Of the 3,800 genes investigated, 102 genes were found to have significantly altered expression between coeliac disease patients and controls (p < 0.05). Analysis of these altered genes revealed a number of biological processes that are potentially modified in active coeliac disease. These processes include events likely to contibute to coeliac pathology, such as altered cell proliferation, differentiation, survival, structure and transport. Conclusion This study provides a profile of the molecular changes that occur in the intestinal epithelium of coeliac patients with active disease. Novel candidate genes were revealed which highlight the contribution of the epithelial cell to the pathogenesis of coeliac disease.
Collapse
Affiliation(s)
- Suzanne Bracken
- Department of Immunology, St, James's Hospital, Dublin and Trinity College Dublin, Dublin Molecular Medicine Centre, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
27
|
Inoue K, Takahashi T, Uehara K, Shimuzu H, Ido K, Morimatsu H, Omori E, Katayama H, Akagi R, Morita K. Protective role of heme oxygenase 1 in the intestinal tissue injury in hemorrhagic shock in rats. Shock 2008; 29:252-61. [PMID: 17693937 DOI: 10.1097/shk.0b013e3180cab913] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heme oxygenase (HO) 1 is inducible by a variety of oxidative stress and is thought to play an important role in the protection of tissues from oxidative injuries. Because hemorrhagic shock (HS) is an oxidative stress that results in tissue injury, we examined in this study the role of HO-1 induction in intestinal tissue injuries in a rat model of HS. The levels of HO-1 were significantly increased after HS both at transcriptional and protein levels in mucosal epithelial cells in the duodenum, jejunum, and colon, whereas their expression in the ileum was hardly detectable and not increased at all by the treatment. In contrast, HS-induced mucosal inflammation and apoptotic cell death in the duodenum, jejunum, and colon were far less than those observed in ileum as judged by the levels of expression of TNF-alpha, iNOS, activated caspase 3, and Bcl-2. Of note, inhibition of HO activity by tin-mesoporphyrin resulted in an aggravation of HS-induced tissue inflammation and apoptotic cell death. These findings indicate that HO-1 expression in the intestine is regulated in a highly site-specific manner after HS, and that HO-1 induction plays a fundamental role in protecting mucosal cells of the intestine from oxidative damages induced by HS.
Collapse
Affiliation(s)
- Kazuyoshi Inoue
- Department of Anesthesiology and Resuscitology, Okayama University Medical School, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bergamo P, Maurano F, D’Arienzo R, David C, Rossi M. Association between activation of phase 2 enzymes and down-regulation of dendritic cell maturation by c9,t11-conjugated linoleic acid. Immunol Lett 2008; 117:181-90. [DOI: 10.1016/j.imlet.2008.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/21/2008] [Accepted: 02/01/2008] [Indexed: 11/27/2022]
|
29
|
Pang Q, Ji Y, Li Y, Bermúdez-Humarán LG, Hu G, Zeng Y. Intragastric administration with recombinant Lactococcus lactis producing heme oxygenase-1 prevents lipopolysaccharide-induced endotoxemia in rats. FEMS Microbiol Lett 2008; 283:62-8. [PMID: 18422629 DOI: 10.1111/j.1574-6968.2008.01141.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gut injury is a pivotal initiating event in the dysfunctional inflammatory response that causes postinjury multiple organ failure. Heme oxygenase-1 (HO-1) is an important enzyme that provides cellular protection against oxidative stress in different in vitro and in vivo systems. In this study, we evaluated the protective effects of intragastrically administered live Lactococcus lactis secreting bioactive HO-1 to treat intestinal mucosal injury induced by lipopolysaccharide in rats. Intragastric administration with this recombinant L. lactis strain led to active delivery of HO-1 at the mucosa and significantly decreased morbidity and mortality of lipopolysaccharide -induced endotoxemia as confirmed by blinded macroscopic and microscopic inflammatory scores (Chiu's grade), myeloperoxidase activity, mortality, and tumor necrosis factor-alpha and IL-10 cytokine stimulation. This protective effect could be abolished by an HO-1 inhibitor, the zinc protoporphyrin-IX. Our results suggest that a food-grade bacterium genetically modified to deliver bioactive HO-1 in situ exerts a protective effect against intestinal mucosal injury in rats with endotoxemia via modulation of the immune system. This novel approach may be beneficial for the maintenance of the intestinal barrier and anti-inflammatory response of the lower intestine.
Collapse
Affiliation(s)
- Qingfeng Pang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
30
|
Protective effects of pretreatment with Radix Paeoniae Rubra on acute lung injury induced by intestinal ischemia/reperfusion in rats. Chin J Traumatol 2008; 11:37-41. [PMID: 18230290 DOI: 10.1016/s1008-1275(08)60008-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To investigate the effect of pretreatment with Radix Paeoniae Rubra (RPR) on acute lung injury induced by intestinal ischemia/reperfusion in rats and its protective mechanism. METHODS Thirty-two Wistar rats were randomly divided into four groups: Sham-operation group, ischemia/reperfusion group (I/R group), RPR-pretreatment group and hemin group. The model of intestinal ischemia/reperfusion was established by clamping the superior mesenteric artery for 1 hour followed by 2-hour reperfusion. The effect of RPR on the expression of heme oxygenase-1 (HO-1) in lung tissues was detected by immunohistochemistry and morphometry computer image analysis. Arterial blood gas analysis, lung permeability index, malondialdehyde (MDA) and superoxide dismutase (SOD) contents in lungs were measured. The histological changes of lung tissue were observed under light microscope. RESULTS The expression of HO-1 in RPR-pretreatment group and hemin group was obviously higher than that in sham-operation group and I/R group (P < 0.01). The level of MDA and lung permeability index in RPR-pretreatment and hemin group were significantly lower than those in I/R group (P < 0.01 or P < 0.05), while the activity of SOD in RPR-pretreatment and hemin group was obviously higher than that in I/R group (P < 0.01). Under light microscope, the pathologic changes induced by I/R were significantly attenuated by RPR. CONCLUSION Intestinal ischemia/reperfusion may result in acute lung injury and pretreatment with RPR injection can attenuate the injury. The protective effect of RPR on the acute lung injury is related to its property of inducing HO-1 expression and inhibiting lipid peroxidation.
Collapse
|
31
|
Takahashi T, Shimizu H, Inoue K, Morimatsu H, Umeda K, Omori E, Akagi R, Morita K. [Protective role of HO-1 in oxidative tissue injuries]. Nihon Yakurigaku Zasshi 2007; 130:252-6. [PMID: 17938507 DOI: 10.1254/fpj.130.252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Wen T, Wu ZM, Liu Y, Tan YF, Ren F, Wu H. Upregulation of heme oxygenase-1 with hemin prevents D-galactosamine and lipopolysaccharide-induced acute hepatic injury in rats. Toxicology 2007; 237:184-193. [PMID: 17587481 DOI: 10.1016/j.tox.2007.05.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Revised: 05/09/2007] [Accepted: 05/12/2007] [Indexed: 02/09/2023]
Abstract
Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme catabolism, has been shown to be induced during oxidative injury, and its induction acts as an important cellular defense mechanism against such injuries. In this study, we examined the functional roles of HO-1 induction in a rat model of d-galactosamine (GalN) and lipopolysaccharide (LPS)-induced liver injury. We found that GalN/LPS treatment of rats produced severe hepatic injury, whereas upregulation of HO-1 by hemin pretreatment prevented rats from liver damage, as evidenced by decreased serum ALT, AST levels and ameliorated histological signs in the liver. Induction of HO-1 resulted in a significant decrease in hepatic malondialdehyde (MDA) contents, tumor necrosis factor-alpha (TNF-alpha) levels, iNOS/NO production, as well as the levels of caspase-3. In contrast, inhibition of HO activity by zinc protoporphyrin-9 (ZnPP, a specific inhibitor of HO) completely reversed HO-1-induced hepatoprotective effect. These data therefore suggested that HO-1 induction provided critical protection against GalN/LPS-induced liver injury, and the protection seemed to be mediated through the anti-oxidant, anti-inflammatory and anti-apoptotic functions.
Collapse
Affiliation(s)
- Tao Wen
- Institute of Liver Diseases, Beijing You-an Hospital Affiliated with Capital University of Medical Sciences, Beijing 100069, PR China.
| | - Zhi-Ming Wu
- Institute of Liver Diseases, Beijing You-an Hospital Affiliated with Capital University of Medical Sciences, Beijing 100069, PR China
| | - Yan Liu
- Department of Infectious Diseases, Beijing You-an Hospital Affiliated with Capital University of Medical Sciences, Beijing 100069, PR China
| | - Yu-Fen Tan
- Department of Infectious Diseases, Beijing You-an Hospital Affiliated with Capital University of Medical Sciences, Beijing 100069, PR China
| | - Feng Ren
- Institute of Liver Diseases, Beijing You-an Hospital Affiliated with Capital University of Medical Sciences, Beijing 100069, PR China
| | - Hao Wu
- Department of Infectious Diseases, Beijing You-an Hospital Affiliated with Capital University of Medical Sciences, Beijing 100069, PR China
| |
Collapse
|
33
|
Li JJ, Zheng Y, Sun K, Chang XY, Chen WG, Zhao J. Expression of inducible heme oxygenase-1 in the patiant's mucous membrane of esophagus of reflux esophagitis. Shijie Huaren Xiaohua Zazhi 2007; 15:1310-1313. [DOI: 10.11569/wcjd.v15.i11.1310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of heme oxygenase-1 (HO-1) in human esophageal mucosa with reflux esophagitis (RE), and to find out the role of gas messenger molecule carbon monoxide (CO) in the pathogenesis of RE.
METHODS: The distributions of HO-1 protein in the esophageal tissues of 77 RE cases and 20 normal controls were detected by immunohistochemistry (SP method).
RESULTS: HO-1 was expressed mainly in the esophageal mucosal epithelium. The expression of HO-1 in RE patients was significantly higher than that in the normal controls (0.2334 ± 0.0511 vs 0.1776 ± 0.0164, P < 0.01).
CONCLUSION: Abnormal expression of HO-1 exists in RE, suggesting that CO may play an important role in the pathogenesis of gastrointestinal motility disorders such as RE.
Collapse
|
34
|
Theiss AL, Obertone TS, Merlin D, Sitaraman SV. Interleukin-6 transcriptionally regulates prohibitin expression in intestinal epithelial cells. J Biol Chem 2007; 282:12804-12. [PMID: 17324931 DOI: 10.1074/jbc.m609031200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prohibitin (PHB) is a highly conserved protein that has multiple functions in the cell. We recently demonstrated that PHB plays an important role in combating oxidative stress and its expression is down-regulated in human and animal models of inflammatory bowel disease. Little is known regarding the regulation of PHB expression in intestine or other tissues. In this study we examined the regulation of PHB expression in intestinal epithelial cells using the model cell line Caco2-BBE. We successfully cloned the 1192-bp human PHB promoter region and identified the transcription start site 1594 bp upstream from the translation start site due to an intervening intron. We show that the acute phase cytokine interleukin-6 (IL-6) increases PHB protein and mRNA abundance and induces PHB promoter activation. The IL-6 response element site in the PHB promoter is required for maximal basal promoter activity and responsiveness to IL-6. IL-6 also increases binding of nuclear proteins to the IL-6 response element in the PHB promoter that are supershifted by a STAT3 antibody. Both basal promoter activity and IL-6 responsiveness are attenuated by signal transducer and activator of transcription 3 short interference RNA, suggesting that signal transducer and activator of transcription 3 mediates PHB activity by IL-6. Confirming these in vitro results, IL-6(-/-) mice exhibit reduced PHB expression in the colon compared with wild-type mice. These results suggest that IL-6 modulates PHB expression in cultured intestinal epithelial cells and in the intestine in vivo.
Collapse
Affiliation(s)
- Arianne L Theiss
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
35
|
Tamion F, Richard V, Renet S, Thuillez C. Protective effects of heme-oxygenase expression against endotoxic shock: inhibition of tumor necrosis factor-alpha and augmentation of interleukin-10. ACTA ACUST UNITED AC 2006; 61:1078-84. [PMID: 17099512 DOI: 10.1097/01.ta.0000239359.41464.ef] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Heme-oxygenase (HO)-1 acts as an inducible defense against oxidative stress and could play an important role in inflammation models, providing protection against oxidative stress and systemic inflammatory response. The objective of this study was to improve the role of HO-1 on systemic inflammatory response in an endotoxic shock model. METHODS Five groups of animals were used: control group; lipopolysaccharide (LPS) group, animals received LPS 5 mg/kg; hemin + LPS group, animals received pretreatment with hemin, used to induce HO-1 expression; Zn-PP group, animals received Zn-PP, a specific inhibitor of HO-1 activity and hemin group. At the end of the experiment, tissue and blood samples were isolated for the measurement of HO-1 mRNA expression, biochemical measurements, and cytokine measurements. RESULTS HO-1 messenger RNA expression and protein were induced to a larger extent in LPS group in distal organs. Hemin pretreatment induced a significant decrease oxidative stress and tumor necrosis factor-alpha plasma levels with a significant increase of interleukin-10 plasma levels. Pulmonary injury was markedly limited after hemin. Onset of lethality in LPS group occurred at H6, and was delayed until H10 with hemin. Inhibition of HO-1 activity by Zn-PP administration abolished the beneficial effect of hemin-pretreatment. CONCLUSIONS Early HO-1 expression may modulate systemic inflammatory response and limit end-organ injury in endotoxic shock model.
Collapse
Affiliation(s)
- Fabienne Tamion
- Institut National de la Santé et de la Recherche Médicale, Rouen University Hospital, Rouen, France.
| | | | | | | |
Collapse
|
36
|
Abstract
Heme oxygenase (HO), the rate limiting enzyme in the breakdown of heme into carbon monoxide (CO), iron and bilirubin, has recently received overwhelming research attention. To date three mammalian HO isozymes have been identified, and the only inducible form is HO-1 while HO-2 and HO-3 are constitutively expressed. Advances in unveiling signal transduction network indicate that a battery of redox-sensitive transcription factors, such as activator protein-1 (AP-1), nuclear factor-kappa B (NF-kappaB) and nuclear factor E2-related factor-2 (Nrf2), and their upstream kinases including mitogen-activated protein kinases play an important regulatory role in HO-1 gene induction. The products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression contributes to protection against liver damage induced by several chemical compounds such as acetaminophen, carbon tetrachloride and heavy metals, suggesting HO-1 induction as an important cellular endeavor for hepatoprotection. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect against chemically-induced liver injury as well as hepatocarcinogenesis.
Collapse
Affiliation(s)
- Ebenezer Olatunde Farombi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | | |
Collapse
|
37
|
Li MH, Cha YN, Surh YJ. Peroxynitrite induces HO-1 expression via PI3K/Akt-dependent activation of NF-E2-related factor 2 in PC12 cells. Free Radic Biol Med 2006; 41:1079-91. [PMID: 16962933 DOI: 10.1016/j.freeradbiomed.2006.06.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 06/11/2006] [Accepted: 06/14/2006] [Indexed: 02/07/2023]
Abstract
Peroxynitrite is a strong oxidant produced by rapid interaction between superoxide anion and nitric oxide radicals and induces oxidative stress and cell death. Treatment of PC12 cells with 3-morpholinosydnonimine (SIN-1), a generator of peroxynitrite, induced the expression of heme oxygenase-1 (HO-1), an antioxidant cytoprotective enzyme. Inhibition of the HO activity by zinc protoporphyrin IX or knockdown of HO-1 gene expression with siRNA exacerbated the SIN-1-induced apoptosis. After SIN-1 treatment, there was a time-related increase in nuclear localization and subsequent binding of NF-E2-related factor 2 (Nrf2) to the antioxidant-responsive element (ARE). Transfection of PC12 cells with dominant-negative Nrf2 abolished the SIN-1-induced increase in Nrf2-ARE binding and subsequent upregulation of HO-1 expression, leading to enhanced cell death. Upon exposure of PC12 cells to SIN-1, the phosphatidylinositol 3-kinase (PI3K) activity was increased in a time-dependent manner. Pretreatment of cells with LY294002, a pharmacologic inhibitor of PI3K or transfection with the kinase-dead mutant Akt abrogated the SIN-1-induced Nrf2 activation and HO-1 expression. Taken together, these results suggest that peroxynitrite activates Nrf2 via PI3K/Akt signaling and enhances Nrf2-ARE binding, which leads to upregulation of HO-1 expression. The SIN-1-induced HO-1 upregulation may confer the adaptive survival response against nitrosative stress.
Collapse
Affiliation(s)
- Mei-Hua Li
- National Research Laboratory, College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-ku, Seoul 151-742, South Korea
| | | | | |
Collapse
|
38
|
Wen T, Guan L, Zhang YL, Zhao JY. Dynamic changes of heme oxygenase-1 and carbon monoxide production in acute liver injury induced by carbon tetrachloride in rats. Toxicology 2006; 228:51-7. [PMID: 16978757 DOI: 10.1016/j.tox.2006.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/14/2006] [Accepted: 08/14/2006] [Indexed: 12/27/2022]
Abstract
Heme oxygenase-1, a stress-responsive enzyme that catabolizes hemes into carbon monoxide, biliverdin, and iron, has been shown to play a pivotal role in many physiological and pathological situations. Here we investigated changes in HO-1 enzyme activity and protein expression, and its end product carbon monoxide concentrations in the liver of rats after CCl(4) treatment. We found that CCl(4) administration not only induced severe liver damage in rats, as demonstrated by dramatic elevation of ALT, AST levels and severe histopathological changes, but also resulted in a prominent up-regulation of HO-1 enzyme activity. Western blot and immunohistochemical analysis confirmed that expression of HO-1 protein was also increased significantly in a time-dependent manner following CCl(4) treatment, and localized mainly in liver cells around the central vein. In addition, CO concentrations in the liver of CCl(4)-treated rats were elevated remarkably in the same time-dependent way as HO-1 induction in contrast to the control rats. These data indicated that HO-1/CO pathway was greatly up regulated in the liver of rats after CCl(4) treatment, which might play an important protective role in the pathophysiological mechanism underlying CCl(4)-induced hepatotoxicity. It therefore suggested that more relevant studies should be carried out in the future to clarify the detailed mechanisms.
Collapse
Affiliation(s)
- Tao Wen
- Research Center of Occupational Medicine, The Third Hospital of Peking University, Beijing, PR China
| | | | | | | |
Collapse
|
39
|
Zager RA, Johnson ACM, Lund S, Hanson S. Acute renal failure: determinants and characteristics of the injury-induced hyperinflammatory response. Am J Physiol Renal Physiol 2006; 291:F546-56. [PMID: 16638912 DOI: 10.1152/ajprenal.00072.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute renal failure (ARF) markedly sensitizes mice to endotoxin (LPS), as evidenced by exaggerated renal cytokine/chemokine production. This study sought to further characterize this state by testing the following: 1) does anti-inflammatory heme oxygenase-1 (HO-1) upregulation in selected ARF models prevent this response? 2) Is the ARF hyperresponsive state specifically triggered by LPS? 3) Does excess iNOS activity/protein nitrosylation participate in this phenomenon? and 4) are upregulated Toll receptors involved? Mice with either 1) rhabdomyolysis-induced ARF (massive HO-1 overexpression), 2) cisplatin nephrotoxicity, 3) or HO-1 inhibition (Sn protoporphyrin) were challenged with either LPS (a TLR4 ligand), lipoteichoic acid (LTA; a TLR2 ligand), or vehicle. Two hours later, renal and plasma TNF-alpha/mRNA, MCP-1/mRNA, renal nitrotyrosine/iNOS mRNA, and plasma cytokines were assessed. Renal TLR4 was gauged by mRNA and Western blot analysis. Both ARF models markedly hyperresponded to both LPS and LTA, culminating in exaggerated TNF-alpha, MCP-1, and iNOS/nitrotryosine increments. This was despite the fact that HO-1 exerted anti-inflammatory effects. TLR4 levels were either normal (cisplatin), or markedly depressed ( approximately 50%; rhabdomyolysis) in the ARF kidneys, despite the LPS hyperresponsive state. 1) The ARF kidney can hyperrespond to chemically dissimilar Toll ligands; 2) HO-1 does not prevent this response; 3) excess NO/protein nitrosylation can result; and 4) this hyperresponsiveness can be expressed with either normal or reduced renal TLR4 expression. This suggests that diverse signaling pathways may be involved.
Collapse
Affiliation(s)
- Richard A Zager
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | |
Collapse
|
40
|
Li MH, Cha YN, Surh YJ. Carbon monoxide protects PC12 cells from peroxynitrite-induced apoptotic death by preventing the depolarization of mitochondrial transmembrane potential. Biochem Biophys Res Commun 2006; 342:984-90. [PMID: 16598857 DOI: 10.1016/j.bbrc.2006.02.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heme oxygenase-1 (HO-1), the rate-limiting enzyme in catalyzing heme degradation into biliverdin, free iron, and carbon monoxide (CO), serves as a protective enzyme against oxidative and nitrosative stresses. In the present study, we investigated the cytoprotective effects of HO-1 upregulation and its product CO against the peroxynitrite-induced PC12 cell death. PC12 cells treated with 3-morphoinosydonimine (SIN-1), a generator of peroxynitrite (ONOO-), underwent apoptotic cell death as evidenced by dissipation of mitochondrial transmembrane potential (DeltaPsim), release of mitochondrial cytochrome c into cytoplasm, cleavage of poly(ADP-ribose)polymerase and fragmentation of internucleosomal DNA. Pretreatment of PC12 cells with a low non-toxic concentration of SIN-1 (0.5 mM) induced HO-1 expression and abrogated the cell death caused by subsequent challenge with high dose SIN-1 (2.5 mM). Furthermore, pretreatment of PC12 cells with SnCl2, a potent inducer of HO-1 expression, increased endogenous production of CO (HO activity) and rescued the PC12 cells from peroxynitrite-induced apoptosis. The cytoprotective effect of SnCl2 was abolished when the HO activity was inhibited by zinc protoporphyrin IX (ZnPP IX). PC12 cells treated directly with the CO-releasing molecule, tricarbonyldichlororuthenium (II) dimer ([Ru(CO)3Cl2]2) became tolerant to the depolarization of DeltaPsim and apoptosis induced by high dose peroxynitrite. Taken together, these data demonstrate that the adaptive protection against peroxynitrite-induced apoptotic death in PC12 cells is mediated by CO formed as a consequence of HO-1 induction.
Collapse
Affiliation(s)
- Mei-Hua Li
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
41
|
Overhaus M, Moore BA, Barbato JE, Behrendt FF, Doering JG, Bauer AJ. Biliverdin protects against polymicrobial sepsis by modulating inflammatory mediators. Am J Physiol Gastrointest Liver Physiol 2006; 290:G695-703. [PMID: 16537973 DOI: 10.1152/ajpgi.00152.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Highly inducible heme oxygenase (HO)-1 is protective against acute and chronic inflammation. HO-1 generates carbon monoxide (CO), ferrous iron, and biliverdin. The aim of this study was to investigate the protective effects of biliverdin against sepsis-induced inflammation and intestinal dysmotility. Cecal ligation and puncture (CLP) was performed on Sprague-Dawley rats under isoflurane anesthesia with and without intraperitoneal biliverdin injections, which were done before, at the time of CLP, and after CLP. In vivo gastrointestinal transit was carried out with fluorescein-labeled dextran. Jejunal circular muscle contractility was quantified in vitro using organ bath-generated bethanechol dose-response curves. Neutrophilic infiltration into the muscularis externa was quantified. The jejunal muscularis was studied for cytokine mRNA expressions [interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, inducible nitric oxide synthase, cyclooxygenase-2, biliverdin, IL-10, and HO-1] using real-time RT-PCR. Biliverdin treatment prevented the sepsis-induced suppression of gastrointestinal muscle contractility in vivo and in vitro and significantly decreased neutrophilic infiltration into the jejunal muscularis. Inflammatory mRNA expressions for small bowel IL-6 and MCP-1 were significantly reduced after biliverdin treatment in CLP-induced septic animals compared with untreated septic animals. The anti-inflammatory mediator expression of small bowel IL-10 was significantly augmented after CLP at 3 h compared with untreated septic animals. These findings demonstrate that biliverdin attenuates sepsis-induced morbidity to the intestine by selectively modulating the inflammatory cascade and its subsequent sequelae on intestinal muscularis function.
Collapse
Affiliation(s)
- Marcus Overhaus
- Department of Medicine/Gastroenterology, University of Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
42
|
Takahashi T, Shimizu H, Akagi R, Morita K, Sassa S. Heme oxygenase-1: a new drug target in oxidative tissue injuries in critically ill conditions. Drug Dev Res 2006. [DOI: 10.1002/ddr.20073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Scott JR, Gray DK, Bihari A, Badhwar A, Zhang X, Shan P, Lee PJ, Chakrabarti S, Harris KA, Potter RF. Heme oxygenase modulates small intestine leukocyte adhesion following hindlimb ischemia/reperfusion by regulating the expression of intercellular adhesion molecule-1. Crit Care Med 2005; 33:2563-70. [PMID: 16276181 DOI: 10.1097/01.ccm.0000186765.61268.fc] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Heme oxygenase is the rate-limiting enzyme in the degradation of heme into carbon monoxide, iron, and bilirubin. Recent evidence suggests that the induction of heme oxygenase-1 is associated with potent anti-inflammatory properties. The objectives of this study were to determine the temporal, regional, and cellular distribution of heme oxygenase-1 within the small intestine and its role in modulating remote intestinal leukocyte recruitment following trauma induced by hindlimb ischemia/reperfusion. DESIGN Randomized, controlled, prospective animal study. SETTING Hospital surgical research laboratory. SUBJECTS Male C57BL/6 mice. INTERVENTIONS Mice underwent 1 hr of bilateral hindlimb ischemia, followed by 3, 6, 12, or 24 hrs of reperfusion. MEASUREMENTS AND MAIN RESULTS Heme oxygenase-1 messenger RNA, heme oxygenase-1 protein, and heme oxygenase activity were measured using reverse transcription polymerase chain reaction, Western blot, immunohistochemistry, and spectrophotometric assay, respectively. The jejunum was also exteriorized to quantify the flux of rolling and adherent leukocytes and R-Phycoerythrin conjugated intercellular adhesion molecule-1 monoclonal antibody fluorescence intensity in submucosal postcapillary venules with the use of intravital microscopy. Ischemia/reperfusion led to a significant increase in heme oxygenase-1 messenger RNA in the jejunum and ileum 3 hrs following limb reperfusion, with a subsequent increase in heme oxygenase-1 protein and heme oxygenase activity at 6 hrs. Ischemia/reperfusion also led to a significant 1.4-fold increase in leukocyte rolling, whereas inhibition of heme oxygenase via injection of tin protoporphyrin IX (20 micromol/kg intraperitoneally) resulted in a three-fold increase in leukocyte adhesion, compared with ischemia/reperfusion alone. This increase in adhesion was significantly reduced to baseline in mice treated with intercellular adhesion molecule-1 monoclonal antibody before heme oxygenase inhibition (40 microg/mouse), whereas inhibition of heme oxygenase activity following ischemia/reperfusion also led to a significant increase in R-Phycoerythrin intercellular adhesion molecule-1 monoclonal antibody fluorescence intensity. CONCLUSIONS Our data suggest that remote trauma induced by hindlimb ischemia/reperfusion leads to an increase in heme oxygenase activity within the small intestine, which modulates intercellular adhesion molecule-1 dependent intestinal leukocyte adhesion.
Collapse
Affiliation(s)
- Jeffrey R Scott
- Medical Biophysics, University of Western Ontario, London, ON, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rushworth SA, Chen XL, Mackman N, Ogborne RM, O'Connell MA. Lipopolysaccharide-Induced Heme Oxygenase-1 Expression in Human Monocytic Cells Is Mediated via Nrf2 and Protein Kinase C. THE JOURNAL OF IMMUNOLOGY 2005; 175:4408-15. [PMID: 16177082 DOI: 10.4049/jimmunol.175.7.4408] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monocytes play a key role in mobilization of the immune response during sepsis. In response to LPS, monocytes produce both proinflammatory mediators and regulatory proteins that counteract the inflammation and oxidative stress. In murine macrophages, LPS stimulates expression of heme oxygenase 1 (HO-1), a cytoprotective enzyme that catalyzes the degradation of heme. The HO-1 5'-untranslated region, similarly to other cytoprotective genes, contains antioxidant-response elements (AREs) that can bind the transcription factor NF-E2-related factor 2 (Nrf2). At present, the role of Nrf2 in LPS-induced HO-1 expression in monocytic cells has not been investigated. In this study, LPS induced HO-1 mRNA and protein expression in human monocytes and THP-1 cells. Nrf2 translocated from the cytosol to the nucleus in response to LPS and bound to the ARE site in the human HO-1 promoter. In addition, a dominant negative Nrf2 mutant inhibited LPS-induced HO-1 mRNA expression but not TNF-alpha mRNA expression in THP-1 cells. Ro-31-8220, a pan-protein kinase C (PKC) inhibitor, and Go6976, a classical PKC inhibitor, blunted LPS-induced HO-1 mRNA expression in monocytes and THP-1 cells. Both PKC inhibitors also blocked LPS-induced Nrf2 binding to the ARE. These results indicate that LPS-induced HO-1 expression in human monocytic cells requires Nrf2 and PKC.
Collapse
Affiliation(s)
- Stuart A Rushworth
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Morimatsu H, Takahashi T, Maeshima K, Inoue K, Kawakami T, Shimizu H, Takeuchi M, Yokoyama M, Katayama H, Morita K. Increased heme catabolism in critically ill patients: correlation among exhaled carbon monoxide, arterial carboxyhemoglobin, and serum bilirubin IXalpha concentrations. Am J Physiol Lung Cell Mol Physiol 2005; 290:L114-9. [PMID: 16100291 DOI: 10.1152/ajplung.00031.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been reported that exhaled carbon monoxide (CO) concentrations and arterial carboxyhemoglobin (CO-Hb) concentration in blood may be increased in critically ill patients. However, there was no study that examined correlation among amount of CO in exhaled air, CO-Hb concentrations in erythrocytes, and bilirubin IXalpha (BR) in serum, i.e., the three major indexes of heme catabolism, within the same subject. Here, we examined CO concentrations in exhaled air, CO-Hb concentrations in arterial blood, and BR levels in serum in 29 critically ill patients. Measurements of exhaled CO, arterial CO-Hb, and serum total BR have been done in the intensive care unit. As control, exhaled CO concentration was also measured in eight healthy volunteers. A median exhaled CO concentration was significantly higher in critically ill patients compared with control. There was significant correlation between CO and CO-Hb and CO and total BR level. We also found CO concentrations correlated with indirect BR but not direct BR. Multivariate linear regression analysis for amount of exhaled CO concentrations also showed significant correlation with CO-Hb and total BR, despite the fact that respiratory variables of study subjects were markedly heterogeneous. We found no correlation among exhaled CO, patients' severity, and degree of inflammation, but we found a strong trend of a higher exhaled CO concentration in survivors than in nonsurvivors. These findings suggest there is an increased heme breakdown in critically ill patients and that exhaled CO concentration, arterial CO-Hb, and serum total BR concentrations may be useful markers in critically ill conditions.
Collapse
Affiliation(s)
- Hiroshi Morimatsu
- Department of Anesthesiology and Resuscitology, Okayama University Medical School, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Maeshima K, Takahashi T, Uehara K, Shimizu H, Omori E, Yokoyama M, Tani T, Akagi R, Morita K. Prevention of hemorrhagic shock-induced lung injury by heme arginate treatment in rats. Biochem Pharmacol 2005; 69:1667-80. [PMID: 15896346 DOI: 10.1016/j.bcp.2005.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 03/09/2005] [Indexed: 11/21/2022]
Abstract
Hemorrhagic shock followed by resuscitation (HSR) induces oxidative stress, which leads to acute lung injury. Heme oxygenase (HO)-1 (EC 1.14.99.3), the rate-limiting enzyme in heme catabolism, is inducible by oxidative stress and is thought to play an important role in the protection from oxidative tissue injuries. In this study, we examined expression of HO-1 as well as tissue injuries in the lung, liver, and kidney after HSR in rats. We also pretreated animals with heme arginate (HA), a strong inducer of HO-1, and examined its effect on the HSR-induced lung injury. HO-1 expression significantly increased in the liver and kidney following HSR, while its expression in the lung was very low and unchanged after HSR. In contrast to HO-1 expression, tissue injury and tumor necrosis factor-alpha (TNF-alpha) gene expression was more prominent in the lung compared with those in the liver and kidney. HA pretreatment markedly induced HO-1 in pulmonary epithelial cells, and ameliorated the lung injury induced by HSR as judged by the improvement of histological changes, while it decreased TNF-alpha and inducible nitric oxide synthase gene expression, lung wet weight to dry weight ratio, and myeloperoxidase activity. In contrast, inhibition of HO-1 by tin-mesoporphyrin administration abolished the beneficial effect of HA pretreatment. These findings suggest that tissues with higher HO-1 may be better protected than those with lower HO-1 from oxidative tissue injury induced by HSR. Our findings also indicate that HA pretreatment can significantly suppress the HSR-induced lung injury by virtue of its ability to induce HO-1.
Collapse
Affiliation(s)
- Kyoichiro Maeshima
- Department of Anesthesiology and Resuscitology, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Uehara K, Takahashi T, Fujii H, Shimizu H, Omori E, Matsumi M, Yokoyama M, Morita K, Akagi R, Sassa S. The lower intestinal tract-specific induction of heme oxygenase-1 by glutamine protects against endotoxemic intestinal injury. Crit Care Med 2005; 33:381-90. [PMID: 15699843 DOI: 10.1097/01.ccm.0000153407.14237.7f] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of the present study was to investigate whether glutamine pretreatment improves intestinal injury in rats with endotoxemia by its heme oxygenase-1 induction in the lower intestinal tract. DESIGN Randomized, blinded, controlled animal study. SETTING University-based animal research facility. SUBJECTS Sprague-Dawley male rats, weighing 220-250 g (n = 201). INTERVENTIONS Rats were treated with glutamine (0.75 g/kg) dissolved in lactated Ringer's solution via the tail vein. Endotoxemia was induced in rats by intraperitoneal injection of lipopolysaccharide (10 mg/kg or 20 mg/kg for survival study). Lipopolysaccharide-treated animals were pretreated with glutamine or lactated Ringer's solution 9 hrs before lipopolysaccharide treatment. Some of the glutamine-pretreated animals further received tin mesoporphyrin (1 micromol/kg), a specific inhibitor of heme oxygenase activity, 1 hr before lipopolysaccharide treatment. MEASUREMENTS AND MAIN RESULTS Glutamine treatment markedly induced heme oxygenase-1 messenger RNA and protein in the mucosal epithelial cells as well as in the lamina propria cells in the ileum and the colon, whereas its expression in the duodenum and the jejunum was not influenced by the treatment. Glutamine treatment before lipopolysaccharide administration significantly ameliorated lipopolysaccharide-induced mucosal injury, inflammation, and apoptotic cell death in the ileum and the colon, as judged by significant decreases in tumor necrosis factor-alpha gene expression, histologic damage scores, and expression of activated caspase-3 and by an increase in gene expression of Bcl-2. In addition, glutamine treatment markedly decreased lipopolysaccharide-induced mortality. In contrast, treatment with tin mesoporphyrin abolished the beneficial effect of glutamine pretreatment. CONCLUSIONS Glutamine pretreatment significantly ameliorated intestinal tissue injury of rats following lipopolysaccharide treatment. The same treatment also improved the survival of animals from endotoxemia. The protective effect of glutamine is mediated by its lower intestine-specific induction of heme oxygenase-1, since its inhibition by tin mesoporphyrin completely abolished the beneficial effect of glutamine.
Collapse
Affiliation(s)
- Kenji Uehara
- Department of Anesthesiology and Resuscitology, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama City 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mühl H, Paulukat J, Höfler S, Hellmuth M, Franzen R, Pfeilschifter J. The HIV protease inhibitor ritonavir synergizes with butyrate for induction of apoptotic cell death and mediates expression of heme oxygenase-1 in DLD-1 colon carcinoma cells. Br J Pharmacol 2004; 143:890-8. [PMID: 15504750 PMCID: PMC1575947 DOI: 10.1038/sj.bjp.0706023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The protease inhibitor ritonavir is an integral part of current antiretroviral therapy targeting human immunodeficiency virus. Recent studies demonstrate that ritonavir induces apoptotic cell death with high efficiency in lymphoblastoid cell lines. Moreover, ritonavir can suppress activation of the transcription factor nuclear factor-kappaB and is an inhibitor of interleukin-1beta and tumor necrosis factor-alpha production in peripheral blood mononuclear cells. Thus, ritonavir appears to have anti-inflammatory properties. In the present study, we investigated in DLD-1 colon carcinoma cell effects of ritonavir on apoptotic cell death and expression of heme oxygenase-1 (HO-1), an anti-inflammatory enzyme that may be critically involved in the modulation of colonic inflammation. Compared to unstimulated control, ritonavir resulted in a moderate increase in the rate of apoptotic cell death as observed after 20 h of incubation. Notably, ritonavir potently synergized with the short-chain fatty acid butyrate for induction of caspase-3-dependent apoptosis in DLD-1 cells. Ritonavir enhanced mRNA and protein expression of HO-1 in DLD-1 cells. Ritonavir-induced HO-1 protein was suppressed by SB203580 or SB202190 and preceded by immediate upregulation of cellular c-Fos and c-Jun protein levels. This process was associated with induction of activator protein-1 as detected by electrophoretic mobility shift analysis. The present data suggest that ritonavir has the potential to curb colon carcinogenesis by reducing cell growth via mechanisms that include apoptosis and by simultaneously modulating colonic inflammation via induction of anti-inflammatory HO-1.
Collapse
Affiliation(s)
- Heiko Mühl
- Pharmazentrum frankfurt (ZAFES), University Hospital, Johann Wolfgang Goethe-Universität Frankfurt am Main, Theodor-Stern Kai 7, Haus 75A, Frankfurt am Main D-60590, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Eletr D, Reich A, Stubbe HD, Booke M, Daudel F, Erren M, Westphal M. Arteriovenous carboxyhemoglobin difference is not correlated to TNF-alpha, IL-6, PCT, CRP and leukocytes in critically ill patients. Clin Chim Acta 2004; 349:75-80. [PMID: 15469858 DOI: 10.1016/j.cccn.2004.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 06/07/2004] [Accepted: 06/07/2004] [Indexed: 11/15/2022]
Abstract
BACKGROUND It is still unclear as to whether the paradoxical arteriovenous carboxyhemoglobin (COHb) difference found in critical illness may represent a novel marker of the acute inflammatory response. We determined whether the arterial and central venous COHb concentration or their difference may be correlated to classical pro-inflammatory markers. METHODS Arterial and matched central venous blood gases were obtained from non-smoking intensive care patients undergoing gastrointestinal surgery, and were correlated with plasma concentrations of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), procalcitonin (PCT), C-reactive protein (CRP) and leukocytes. RESULTS No correlation was found between arteriovenous COHb difference and the investigated pro-inflammatory mediators. While arterial and central venous COHb concentrations were positively correlated to plasma concentrations of TNF-alpha (P< or =0.01), IL-6 (P<0.05) and PCT (P< or =0.01), they were neither interrelated with PCT nor with leukocytes. CONCLUSIONS Arteriovenous COHb difference does not appear to be a marker of the acute inflammatory response. Future studies are needed to investigate whether arterial and central venous COHb concentrations by themselves may serve as indicators of systemic inflammation.
Collapse
Affiliation(s)
- Dina Eletr
- Department of Anesthesiology and Intensive Care, University of Muenster, Muenster, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Maeshima K, Takahashi T, Nakahira K, Shimizu H, Fujii H, Katayama H, Yokoyama M, Morita K, Akagi R, Sassa S. A protective role of interleukin 11 on hepatic injury in acute endotoxemia. Shock 2004; 21:134-8. [PMID: 14752286 DOI: 10.1097/01.shk.0000103386.98235.f6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The liver is one of the major target organs affected in sepsis, and its failure always results in critical consequences. It has been reported that recombinant human interleukin 11 (rhIL-11), a pleiotropic cytokine, may be useful in the treatment of sepsis. However, the effect of IL-11 specifically on the hepatic failure in sepsis has not been evaluated. In the present study, we examined the effect of rhIL-11 on the hepatic injury in a rat endotoxemia model. Acute endotoxemia was induced in male Sprague-Dawley rats by intraperitoneal injection (i.p.) of bacterial lipopolysaccharide (LPS, 20 mg/kg). Immediately after injection of LPS, rats were treated with rhIL-11 (150 microg/kg, i.p.) or the vehicle. LPS treatment induced severe hepatic injury as revealed by marked increases in serum alanine transaminase (ALT) and aspartate transaminase (AST) activities, extensive hepatocyte necrosis, tumor necrosis factor-alpha (TNF-alpha) mRNA, inducible nitric oxide synthase (iNOS) mRNA, and DNA-binding activity of nuclear factor-kappaB (NF-kappaB). In contrast, rhIL-11 treatment significantly ameliorated the LPS-induced hepatic injury, as judged by marked improvement in all these indices. In addition, rhIL-11 treatment markedly decreased LPS-induced mortality. These results indicate that rhIL-11 plays a significant protective role in LPS-induced hepatic injury in acute endotoxemia.
Collapse
Affiliation(s)
- Kyoichiro Maeshima
- Department of Anesthesiology and Resuscitology, Okayama University Medical School, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|