1
|
Becker ER, Wetmore GC, Goodman MD, Rodriquez D, Branson RD. Review of Ventilation in Traumatic Brain Injury. Respir Care 2025. [PMID: 40028858 DOI: 10.1089/respcare.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Acute brain injury is a prominent admitting diagnosis of critically ill patients, often requiring endotracheal intubation to protect the airway and resulting in respiratory failure and the need for mechanical ventilation. Following brain injury, a primary focus is avoidance of secondary insults including both hypercarbia and hypoxemia. Hyperoxemia may also result in unanticipated neurologic consequences. Brain-lung crosstalk refers to complex relationships that drive iatrogenic injury in both organs, mediated by inflammation, immunosuppression, and autonomic dysfunction. In an effort to further reduce secondary brain injury, care must be taken from time of intubation to extubation to preserve cerebral blood flow and adequate oxygen delivery. This review describes timing and methodology for intubation of a patient with brain injury, the controversies and current recommendations related to mechanical ventilation settings, and the difficulty of decision-making with extubation and tracheostomy.
Collapse
Affiliation(s)
- Ellen R Becker
- Drs. Becker, Wetmore, Goodman, Mr. Rodriquez, and Mr. Branson are affiliated with Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Gregory C Wetmore
- Drs. Becker, Wetmore, Goodman, Mr. Rodriquez, and Mr. Branson are affiliated with Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael D Goodman
- Drs. Becker, Wetmore, Goodman, Mr. Rodriquez, and Mr. Branson are affiliated with Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Dario Rodriquez
- Drs. Becker, Wetmore, Goodman, Mr. Rodriquez, and Mr. Branson are affiliated with Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Richard D Branson
- Drs. Becker, Wetmore, Goodman, Mr. Rodriquez, and Mr. Branson are affiliated with Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Goossen RL, Schultz MJ, van Meenen DMP, Horn J, Rocco PR, Robba C. Optimizing protective ventilation in adults with acute brain injury-challenging misconceptions and prioritizing neuromonitoring. Expert Rev Respir Med 2024; 18:929-933. [PMID: 39627018 DOI: 10.1080/17476348.2024.2438088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/11/2024]
Affiliation(s)
- Robin L Goossen
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Anaesthesia, General Intensive Care and Pain Management, Division of Cardiothoracic and Vascular Anaesthesia & Critical Care Medicine, Medical University of Vienna, Vienna, Austria
| | - David M P van Meenen
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Janneke Horn
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Patricia R Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chiara Robba
- Department of Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Surgical Science and Integrated Diagnostics, University of Genova, Genova, Italy
| |
Collapse
|
3
|
Mascia L, Fanelli V, Mistretta A, Filippini M, Zanin M, Berardino M, Mazzeo AT, Caricato A, Antonelli M, Della Corte F, Grossi F, Munari M, Caravello M, Alessandri F, Cavalli I, Mezzapesa M, Silvestri L, Casartelli Liviero M, Zanatta P, Pelosi P, Citerio G, Filippini C, Rucci P, Rasulo FA, Tonetti T. Lung-Protective Mechanical Ventilation in Patients with Severe Acute Brain Injury: A Multicenter Randomized Clinical Trial (PROLABI). Am J Respir Crit Care Med 2024; 210:1123-1131. [PMID: 39288368 DOI: 10.1164/rccm.202402-0375oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024] Open
Abstract
Rationale: Lung-protective strategies using low Vt and moderate positive end-expiratory pressure (PEEP) are considered best practice in critical care, but interventional trials have never been conducted in patients with acute brain injuries because of concerns about carbon dioxide control and the effect of PEEP on cerebral hemodynamics. Objectives: To test the hypothesis that ventilation with lower VT and higher PEEP compared to conventional ventilation would improve clinical outcomes in patients with acute brain injury. Methods: In this multicenter, open-label, controlled clinical trial, 190 adult patients with acute brain injury were assigned to receive either a lung-protective or a conventional ventilatory strategy. The primary outcome was a composite endpoint of death, ventilator dependency, and acute respiratory distress syndrome (ARDS) at Day 28. Neurological outcome was assessed at ICU discharge by the Oxford Handicap Scale and at 6 months by the Glasgow Outcome Scale. Measurements and Main Results: The two study arms had similar characteristics at baseline. In the lung-protective and conventional strategy groups, using an intention-to-treat approach, the composite outcome at 28 days was 61.5% and 45.3% (relative risk [RR], 1.35; 95% confidence interval [CI], 1.03-1.79; P = 0.025). Mortality was 28.9% and 15.1% (RR, 1.91; 95% CI, 1.06-3.42; P = 0.02), ventilator dependency was 42.3% and 27.9% (RR, 1.52; 95% CI, 1.01-2.28; P = 0.039), and incidence of ARDS was 30.8% and 22.1% (RR, 1.39; 95% CI, 0.85-2.27; P = 0.179), respectively. The trial was stopped after enrolling 190 subjects because of termination of funding. Conclusions: In patients with acute brain injury without ARDS, a lung-protective ventilatory strategy, as compared with a conventional strategy, did not reduce mortality, percentage of patients weaned from mechanical ventilation, or incidence of ARDS and was not beneficial in terms of neurological outcomes. Because of the early termination, these preliminary results require confirmation in larger trials. Clinical trial registered with www.clinicaltrials.gov (NCT01690819).
Collapse
Affiliation(s)
- Luciana Mascia
- Department of Experimental Medicine (DIMES), Campus Ecotekne, University of Salento, Lecce, Italy
| | - Vito Fanelli
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Anaesthesia, Critical Care, and Emergency, Città della Salute e della Scienza di Torino University Hospital - Molinette Hospital, Turin, Italy
| | - Alice Mistretta
- Department of Anesthesia and Intensive Care Unit, Città della Salute e della Scienza di Torino University Hospital - Orthopedic and Trauma Center, Turin, Italy
| | - Matteo Filippini
- Department of Anesthesiology, Intensive Care, and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Mattia Zanin
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Maurizio Berardino
- Department of Anesthesia and Intensive Care Unit, Città della Salute e della Scienza di Torino University Hospital - Orthopedic and Trauma Center, Turin, Italy
| | - Anna Teresa Mazzeo
- Department of Adult and Pediatric Pathology, University of Messina, Messina, Italy
| | | | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Institute of Anesthesiology and Critical Care, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Della Corte
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Anesthesiology and Intensive Care Medicine, Maggiore della Carità University Hospital, Novara, Italy
| | - Francesca Grossi
- Anesthesiology and Intensive Care Medicine, Maggiore della Carità University Hospital, Novara, Italy
| | - Marina Munari
- Institute of Anesthesia and Intensive Care, University Hospital of Padua, Padua, Italy
| | | | - Francesco Alessandri
- Department of General Surgery and Organ Transplantation Unit, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Irene Cavalli
- Department of Medical and Surgical Sciences (DIMEC) and
| | - Mario Mezzapesa
- Department of General Surgery and Organ Transplantation Unit, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Lucia Silvestri
- Department of General Surgery and Organ Transplantation Unit, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | | | - Paolo Zanatta
- Department of Anesthesia and Intensive Care, Integrated University Hospital of Verona, Verona, Italy
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department Neuroscience, Neurointensive Care, ASST-Monza, Monza, Italy; and
| | | | - Paola Rucci
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Frank A Rasulo
- Department of Anesthesiology, Intensive Care, and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | - Tommaso Tonetti
- Department of Medical and Surgical Sciences (DIMEC) and
- Anesthesiology and General Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
4
|
Dantan E, Foucher Y, Simon-Pimmel J, Léger M, Campfort M, Lasocki S, Lakhal K, Bouras M, Roquilly A, Cinotti R. Long-term survival of traumatic brain injury and intra-cerebral haemorrhage patients: A multicentric observational cohort. J Crit Care 2024; 83:154843. [PMID: 38875914 DOI: 10.1016/j.jcrc.2024.154843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
PURPOSE Mortality is often assessed during ICU stay and early after, but rarely at later stage. We aimed to compare the long-term mortality between TBI and ICH patients. MATERIALS AND METHODS From an observational cohort, we studied 580 TBI patients and 435 ICH patients, admitted from January 2013 to February 2021 in 3 ICUs and alive at 7-days post-ICU discharge. We performed a Lasso-penalized Cox survival analysis. RESULTS We estimated 7-year survival rates at 72.8% (95%CI from 67.3% to 78.7%) for ICH patients and at 84.9% (95%CI from 80.9% to 89.1%) for TBI patients: ICH patients presenting a higher mortality risk than TBI patients. Additionally, we identified variables associated with higher mortality risk (age, ICU length of stay, tracheostomy, low GCS, absence of intracranial pressure monitoring). We also observed anisocoria related with the mortality risk in the early stage after ICU stay. CONCLUSIONS In this ICU survivor population with a prolonged follow-up, we highlight an acute risk of death after ICU stay, which seems to last longer in ICH patients. Several variables characteristic of disease severity appeared associated with long-term mortality, raising the hypothesis that the most severe patients deserve closer follow-up after ICU stay.
Collapse
Affiliation(s)
- E Dantan
- Nantes Université, Univ Tours, CHU Nantes, INSERM, MethodS in Patients-centered outcomes and HEalth Research, SPHERE, F-44000 Nantes, France.
| | - Y Foucher
- Poitiers Université, CHU de Poitiers, CIC INSERM 1402, Poitiers, France
| | - J Simon-Pimmel
- Nantes Université, Univ Tours, CHU Nantes, INSERM, MethodS in Patients-centered outcomes and HEalth Research, SPHERE, F-44000 Nantes, France
| | - M Léger
- Department of Anaesthesiology and Critical Care, Angers University, CHU Angers, Angers, France
| | - M Campfort
- Department of Anaesthesiology and Critical Care, Angers University, CHU Angers, Angers, France
| | - S Lasocki
- Department of Anaesthesiology and Critical Care, Angers University, CHU Angers, Angers, France
| | - K Lakhal
- Nantes Université, CHU Nantes, Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôpital Laennec, Nantes F-44093, France
| | - M Bouras
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR, 1064 Nantes, France; CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC0004, 1413 Nantes, France
| | - A Roquilly
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR, 1064 Nantes, France; CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC0004, 1413 Nantes, France
| | - R Cinotti
- Nantes Université, Univ Tours, CHU Nantes, INSERM, MethodS in Patients-centered outcomes and HEalth Research, SPHERE, F-44000 Nantes, France; Nantes Université, CHU Nantes, Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation chirurgicale, Hôtel Dieu, Nantes F-44093, France
| |
Collapse
|
5
|
Yan A, Torpey A, Morrisroe E, Andraous W, Costa A, Bergese S. Clinical Management in Traumatic Brain Injury. Biomedicines 2024; 12:781. [PMID: 38672137 PMCID: PMC11048642 DOI: 10.3390/biomedicines12040781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Traumatic brain injury is one of the leading causes of morbidity and mortality worldwide and is one of the major public healthcare burdens in the US, with millions of patients suffering from the traumatic brain injury itself (approximately 1.6 million/year) or its repercussions (2-6 million patients with disabilities). The severity of traumatic brain injury can range from mild transient neurological dysfunction or impairment to severe profound disability that leaves patients completely non-functional. Indications for treatment differ based on the injury's severity, but one of the goals of early treatment is to prevent secondary brain injury. Hemodynamic stability, monitoring and treatment of intracranial pressure, maintenance of cerebral perfusion pressure, support of adequate oxygenation and ventilation, administration of hyperosmolar agents and/or sedatives, nutritional support, and seizure prophylaxis are the mainstays of medical treatment for severe traumatic brain injury. Surgical management options include decompressive craniectomy or cerebrospinal fluid drainage via the insertion of an external ventricular drain. Several emerging treatment modalities are being investigated, such as anti-excitotoxic agents, anti-ischemic and cerebral dysregulation agents, S100B protein, erythropoietin, endogenous neuroprotectors, anti-inflammatory agents, and stem cell and neuronal restoration agents, among others.
Collapse
Affiliation(s)
- Amy Yan
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.Y.); (A.T.); (W.A.); (A.C.)
| | - Andrew Torpey
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.Y.); (A.T.); (W.A.); (A.C.)
| | - Erin Morrisroe
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Wesam Andraous
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.Y.); (A.T.); (W.A.); (A.C.)
| | - Ana Costa
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.Y.); (A.T.); (W.A.); (A.C.)
| | - Sergio Bergese
- Department of Anesthesiology and Neurological Surgery, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
6
|
Austin SE, Galvagno SM, Podell JE, Teeter WA, Kundi R, Haase DJ, Taylor BS, Betzold R, Stein DM, Scalea TM, Powell EK. Venovenous extracorporeal membrane oxygenation in patients with traumatic brain injuries and severe respiratory failure: A single-center retrospective analysis. J Trauma Acute Care Surg 2024; 96:332-339. [PMID: 37828680 PMCID: PMC11444359 DOI: 10.1097/ta.0000000000004159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Venovenous extracorporeal membrane oxygenation (VV ECMO) can support trauma patients with severe respiratory failure. Use in traumatic brain injury (TBI) may raise concerns of worsening complications from intracranial bleeding. However, VV ECMO can rapidly correct hypoxemia and hypercarbia, possibly preventing secondary brain injury. We hypothesize that adult trauma patients with TBI on VV ECMO have comparable survival with trauma patients without TBI. METHODS A single-center, retrospective cohort study involving review of electronic medical records of trauma admissions between July 1, 2014, and August 30, 2022, with discharge diagnosis of TBI who were placed on VV ECMO during their hospital course was performed. RESULTS Seventy-five trauma patients were treated with VV ECMO; 36 (48%) had TBI. Of those with TBI, 19 (53%) had a hemorrhagic component. Survival was similar between patients with and without a TBI (72% vs. 64%, p = 0.45). Traumatic brain injury survivors had a higher admission Glasgow Coma Scale (7 vs. 3, p < 0.001) than nonsurvivors. Evaluation of prognostic scoring systems on initial head computed tomography demonstrated that TBI VV ECMO survivors were more likely to have a Rotterdam score of 2 (62% vs. 20%, p = 0.03) and no survivors had a Marshall score of ≥4. Twenty-nine patients (81%) had a repeat head computed tomography on VV ECMO with one incidence of expanding hematoma and one new focus of bleeding. Neither patient with a new/worsening bleed received anticoagulation. Survivors demonstrated favorable neurologic outcomes at discharge and outpatient follow-up, based on their mean Rancho Los Amigos Scale (6.5; SD, 1.2), median Cerebral Performance Category (2; interquartile range, 1-2), and median Glasgow Outcome Scale-Extended (7.5; interquartile range, 7-8). CONCLUSION In this series, the majority of TBI patients survived and had good neurologic outcomes despite a low admission Glasgow Coma Scale. Venovenous extracorporeal membrane oxygenation may minimize secondary brain injury and may be considered in select patients with TBI. LEVEL OF EVIDENCE Prognostic and Epidemiological; Level IV.
Collapse
|
7
|
Kim JH, Chung KM, Lee JJ, Choi HJ, Kwon YS. Predictive Modeling and Integrated Risk Assessment of Postoperative Mortality and Pneumonia in Traumatic Brain Injury Patients through Clustering and Machine Learning: Retrospective Study. Biomedicines 2023; 11:2880. [PMID: 38001880 PMCID: PMC10669264 DOI: 10.3390/biomedicines11112880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
This study harnessed machine learning to forecast postoperative mortality (POM) and postoperative pneumonia (PPN) among surgical traumatic brain injury (TBI) patients. Our analysis centered on the following key variables: Glasgow Coma Scale (GCS), midline brain shift (MSB), and time from injury to emergency room arrival (TIE). Additionally, we introduced innovative clustered variables to enhance predictive accuracy and risk assessment. Exploring data from 617 patients spanning 2012 to 2022, we observed that 22.9% encountered postoperative mortality, while 30.0% faced postoperative pneumonia (PPN). Sensitivity for POM and PPN prediction, before incorporating clustering, was in the ranges of 0.43-0.82 (POM) and 0.54-0.76 (PPN). Following clustering, sensitivity values were 0.47-0.76 (POM) and 0.61-0.77 (PPN). Accuracy was in the ranges of 0.67-0.76 (POM) and 0.70-0.81 (PPN) prior to clustering and 0.42-0.73 (POM) and 0.55-0.73 (PPN) after clustering. Clusters characterized by low GCS, small MSB, and short TIE exhibited a 3.2-fold higher POM risk compared to clusters with high GCS, small MSB, and short TIE. In summary, leveraging clustered variables offers a novel avenue for predicting POM and PPN in TBI patients. Assessing the amalgamated impact of GCS, MSB, and TIE characteristics provides valuable insights for clinical decision making.
Collapse
Affiliation(s)
- Jong-Ho Kim
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea; (J.-H.K.); (J.-J.L.)
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Kyung-Min Chung
- Department of Neurosurgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea;
| | - Jae-Jun Lee
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea; (J.-H.K.); (J.-J.L.)
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Hyuk-Jai Choi
- Department of Neurosurgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea;
| | - Young-Suk Kwon
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea; (J.-H.K.); (J.-J.L.)
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| |
Collapse
|
8
|
Asehnoune K, Rooze P, Robba C, Bouras M, Mascia L, Cinotti R, Pelosi P, Roquilly A. Mechanical ventilation in patients with acute brain injury: a systematic review with meta-analysis. Crit Care 2023; 27:221. [PMID: 37280579 PMCID: PMC10242967 DOI: 10.1186/s13054-023-04509-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
OBJECTIVE To describe the potential effects of ventilatory strategies on the outcome of acute brain-injured patients undergoing invasive mechanical ventilation. DESIGN Systematic review with an individual data meta-analysis. SETTING Observational and interventional (before/after) studies published up to August 22nd, 2022, were considered for inclusion. We investigated the effects of low tidal volume Vt < 8 ml/Kg of IBW versus Vt > = 8 ml/Kg of IBW, positive end-expiratory pressure (PEEP) < or > = 5 cmH2O and protective ventilation (association of both) on relevant clinical outcomes. POPULATION Patients with acute brain injury (trauma or haemorrhagic stroke) with invasive mechanical ventilation for ≥ 24 h. MAIN OUTCOME MEASURES The primary outcome was mortality at 28 days or in-hospital mortality. Secondary outcomes were the incidence of acute respiratory distress syndrome (ARDS), the duration of mechanical ventilation and the partial pressure of oxygen (PaO2)/fraction of inspired oxygen (FiO2) ratio. RESULTS The meta-analysis included eight studies with a total of 5639 patients. There was no difference in mortality between low and high tidal volume [Odds Ratio, OR 0.88 (95%Confidence Interval, CI 0.74 to 1.05), p = 0.16, I2 = 20%], low and moderate to high PEEP [OR 0.8 (95% CI 0.59 to 1.07), p = 0.13, I2 = 80%] or protective and non-protective ventilation [OR 1.03 (95% CI 0.93 to 1.15), p = 0.6, I2 = 11]. Low tidal volume [OR 0.74 (95% CI 0.45 to 1.21, p = 0.23, I2 = 88%], moderate PEEP [OR 0.98 (95% CI 0.76 to 1.26), p = 0.9, I2 = 21%] or protective ventilation [OR 1.22 (95% CI 0.94 to 1.58), p = 0.13, I2 = 22%] did not affect the incidence of acute respiratory distress syndrome. Protective ventilation improved the PaO2/FiO2 ratio in the first five days of mechanical ventilation (p < 0.01). CONCLUSIONS Low tidal volume, moderate to high PEEP, or protective ventilation were not associated with mortality and lower incidence of ARDS in patients with acute brain injury undergoing invasive mechanical ventilation. However, protective ventilation improved oxygenation and could be safely considered in this setting. The exact role of ventilatory management on the outcome of patients with a severe brain injury needs to be more accurately delineated.
Collapse
Affiliation(s)
- Karim Asehnoune
- Nantes Université, CHU Nantes, Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, 44093, Nantes, France.
- Department of Anaesthesia and Critical Care, Hôtel-Dieu, University Hospital of Nantes, 1 Place Alexis Ricordeau, 44093, Nantes, France.
| | - Paul Rooze
- Nantes Université, CHU Nantes, Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, 44093, Nantes, France
| | - Chiara Robba
- Anesthesia and Critical Care, San Martino Policlinico Hospital, University of Genoa, Genoa, Italy
| | - Marwan Bouras
- Nantes Université, CHU Nantes, Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, 44093, Nantes, France
| | - Luciana Mascia
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, Bologna, Italy
| | - Raphaël Cinotti
- Nantes Université, CHU Nantes, Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, 44093, Nantes, France
- Nantes Université, Univ Tours, CHU Nantes, CHU Tours, INSERM, MethodS in Patients-Centered Outcomes and HEalth Research, SPHERE, 44000, Nantes, France
| | - Paolo Pelosi
- Anesthesia and Critical Care, San Martino Policlinico Hospital, University of Genoa, Genoa, Italy
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, 44093, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France
| |
Collapse
|
9
|
Taran S, Hamad DM, von Düring S, Malhotra AK, Veroniki AA, McCredie VA, Singh JM, Hansen B, Englesakis M, Adhikari NKJ. Factors associated with acute respiratory distress syndrome in brain-injured patients: A systematic review and meta-analysis. J Crit Care 2023; 77:154341. [PMID: 37235919 DOI: 10.1016/j.jcrc.2023.154341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/29/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
PURPOSE Acute respiratory distress syndrome (ARDS) is common in patients with acute brain injury admitted to the ICU. We aimed to identify factors associated with ARDS in this population. METHODS We searched MEDLINE, Embase, Cochrane Central, Scopus, and Web of Science from inception to January 14, 2022. Three reviewers independently screened articles and selected English-language studies reporting risk factors for ARDS in brain-injured adult patients. Data were extracted on ARDS incidence, adjusted and unadjusted risk factors, and clinical outcomes. Risk of bias was reported using the Quality in Prognostic Studies tool. Certainty of evidence was assessed using GRADE. RESULTS We selected 23 studies involving 6,961,284 patients with acute brain injury. The pooled cumulative incidence of ARDS after brain injury was 17.0% (95%CI 10.7-25.8). In adjusted analysis, factors associated with ARDS included sepsis (odds ratio (OR) 4.38, 95%CI 2.37-8.10; high certainty), history of hypertension (OR 3.11, 95%CI 2.31-4.19; high certainty), pneumonia (OR 2.69, 95%CI 2.35-3.10; high certainty), acute kidney injury (OR 1.44, 95%CI 1.30-1.59; moderate certainty), admission hypoxemia (OR 1.67, 95%CI 1.29-2.17; moderate certainty), male sex (OR 1.30, 95%CI 1.06-1.58; moderate certainty), and chronic obstructive pulmonary disease (OR 1.27, 95%CI 1.13-1.44; moderate certainty). Development of ARDS was independently associated with increased odds of in-hospital mortality (OR 3.12, 95% CI 1.39-7.00). CONCLUSIONS Multiple risk factors are associated with ARDS in brain-injured patients. These findings could be used to develop prognostic models for ARDS or as prognostic enrichment strategies for patient enrolment in future clinical trials.
Collapse
Affiliation(s)
- Shaurya Taran
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Neurology, Massachusetts General Hospital, Harvard University, Boston, MA, USA.
| | - Doulia M Hamad
- Department of Surgery, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
| | - Stephan von Düring
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Intensive Care Division, Geneva University Hospitals (HUG) and Faculty of Medicine, University of Geneva, Switzerland
| | - Armaan K Malhotra
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Areti Angeliki Veroniki
- Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada; Knowledge Translation Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Victoria A McCredie
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Jeffrey M Singh
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Bettina Hansen
- Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada; Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, ON, Canada; Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Marina Englesakis
- Library and Health Information Services, University Health Network, Toronto, ON, Canada
| | - Neill K J Adhikari
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Recent studies have focused on identifying optimal targets and strategies of mechanical ventilation in patients with acute brain injury (ABI). The present review will summarize these findings and provide practical guidance to titrate ventilatory settings at the bedside, with a focus on managing potential brain-lung conflicts. RECENT FINDINGS Physiologic studies have elucidated the impact of low tidal volume ventilation and varying levels of positive end expiratory pressure on intracranial pressure and cerebral perfusion. Epidemiologic studies have reported the association of different thresholds of tidal volume, plateau pressure, driving pressure, mechanical power, and arterial oxygen and carbon dioxide concentrations with mortality and neurologic outcomes in patients with ABI. The data collectively make clear that injurious ventilation in this population is associated with worse outcomes; however, optimal ventilatory targets remain poorly defined. SUMMARY Although direct data to guide mechanical ventilation in brain-injured patients is accumulating, the current evidence base remains limited. Ventilatory considerations in this population should be extrapolated from high-quality evidence in patients without brain injury - keeping in mind relevant effects on intracranial pressure and cerebral perfusion in patients with ABI and individualizing the chosen strategy to manage brain-lung conflicts where necessary.
Collapse
Affiliation(s)
- Shaurya Taran
- Department of Neurology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Wahlster
- Department of Neurology
- Department of Neurological Surgery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Chiara Robba
- IRCCS, Policlinico San Martino
- Department of Surgical Sciences and Diagnostic Integrated, University of Genoa, Genoa, Italy
| |
Collapse
|
11
|
De Vlieger G, Meyfroidt G. Kidney Dysfunction After Traumatic Brain Injury: Pathophysiology and General Management. Neurocrit Care 2023; 38:504-516. [PMID: 36324003 PMCID: PMC9629888 DOI: 10.1007/s12028-022-01630-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Traumatic brain injury (TBI) remains a major cause of mortality and morbidity, and almost half of these patients are admitted to the intensive care unit. Of those, 10% develop acute kidney injury (AKI) and 2% even need kidney replacement therapy (KRT). Although clinical trials in patients with TBI who have AKI are lacking, some general principles in this population may apply. The present review is an overview on the epidemiology and pathophysiology of AKI in patients with TBI admitted to the intensive care unit who are at risk for or who have developed AKI. A cornerstone in severe TBI management is preventing secondary brain damage, in which reducing the intracranial pressure (ICP) and optimizing the cerebral perfusion pressure (CPP) remain important therapeutic targets. To treat episodes of elevated ICP, osmolar agents such as mannitol and hypertonic saline are frequently administered. Although we are currently awaiting the results of a prospective randomized controlled trial that compares both agents, it is important to realize that both agents have been associated with an increased risk of developing AKI which is probably higher for mannitol compared with hypertonic saline. For the brain, as well as for the kidney, targeting an adequate perfusion pressure is important. Hemodynamic management based on the combined use of intravascular fluids and vasopressors is ideally guided by hemodynamic monitoring. Hypotonic albumin or crystalloid resuscitation solutions may increase the risk of brain edema, and saline-based solutions are frequently used but have a risk of hyperchloremia, which might jeopardize kidney function. In patients at risk, frequent assessment of serum chloride might be advised. Maintenance of an adequate CPP involves the optimization of circulating blood volume, often combined with vasopressor agents. Whether individualized CPP targets based on cerebrovascular autoregulation monitoring are beneficial need to be further investigated. Interestingly, such individualized perfusion targets are also under investigation in patients as a strategy to mitigate the risk for AKI in patients with chronic hypertension. In the small proportion of patients with TBI who need KRT, continuous techniques are advised based on pathophysiology and expert opinion. The need for KRT is associated with a higher risk of intracranial hypertension, especially if osmolar clearance occurs fast, which can even occur in continuous techniques. Precise ICP and CPP monitoring is mandatory, especially at the initiation of KRT.
Collapse
Affiliation(s)
- Greet De Vlieger
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
- Clinical Division of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium.
| | - Geert Meyfroidt
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Clinical Division of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Beqiri E, Smielewski P, Guérin C, Czosnyka M, Robba C, Bjertnæs L, Frisvold SK. Neurological and respiratory effects of lung protective ventilation in acute brain injury patients without lung injury: brain vent, a single centre randomized interventional study. Crit Care 2023; 27:115. [PMID: 36941683 PMCID: PMC10026451 DOI: 10.1186/s13054-023-04383-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/25/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Lung protective ventilation (LPV) comprising low tidal volume (VT) and high positive end-expiratory pressure (PEEP) may compromise cerebral perfusion in acute brain injury (ABI). In patients with ABI, we investigated whether LPV is associated with increased intracranial pressure (ICP) and/or deranged cerebral autoregulation (CA), brain compensatory reserve and oxygenation. METHODS In a prospective, crossover study, 30 intubated ABI patients with normal ICP and no lung injury were randomly assigned to receive low VT [6 ml/kg/predicted (pbw)]/at either low (5 cmH2O) or high PEEP (12 cmH2O). Between each intervention, baseline ventilation (VT 9 ml/kg/pbw and PEEP 5 cmH2O) were resumed. The safety limit for interruption of the intervention was ICP above 22 mmHg for more than 5 min. Airway and transpulmonary pressures were continuously monitored to assess respiratory mechanics. We recorded ICP by using external ventricular drainage or a parenchymal probe. CA and brain compensatory reserve were derived from ICP waveform analysis. RESULTS We included 27 patients (intracerebral haemorrhage, traumatic brain injury, subarachnoid haemorrhage), of whom 6 reached the safety limit, which required interruption of at least one intervention. For those without intervention interruption, the ICP change from baseline to "low VT/low PEEP" and "low VT/high PEEP" were 2.2 mmHg and 2.3 mmHg, respectively, and considered clinically non-relevant. None of the interventions affected CA or oxygenation significantly. Interrupted events were associated with high baseline ICP (p < 0.001), low brain compensatory reserve (p < 0.01) and mechanical power (p < 0.05). The transpulmonary driving pressure was 5 ± 2 cmH2O in both interventions. Partial arterial pressure of carbon dioxide was kept in the range 34-36 mmHg by adjusting the respiratory rate, hence, changes in carbon dioxide were not associated with the increase in ICP. CONCLUSIONS The present study found that most patients did not experience any adverse effects of LPV, neither on ICP nor CA. However, in almost a quarter of patients, the ICP rose above the safety limit for interrupting the interventions. Baseline ICP, brain compensatory reserve, and mechanical power can predict a potentially deleterious effect of LPV and can be used to personalize ventilator settings. Trial registration NCT03278769 . Registered September 12, 2017.
Collapse
Affiliation(s)
- Erta Beqiri
- Department of Clinical Neurosciences, Neurosurgery Department, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Department of Clinical Neurosciences, Neurosurgery Department, University of Cambridge, Cambridge, UK
| | - Claude Guérin
- University of Lyon, Lyon, France
- INSERM955, Créteil, France
| | - Marek Czosnyka
- Department of Clinical Neurosciences, Neurosurgery Department, University of Cambridge, Cambridge, UK
| | - Chiara Robba
- IRCCS for Oncology and Neuroscience, Policlinico San Martino, Genoa, Italy
- Department of Surgical Science Diagnostic and Integrated, University of Genova, Genoa, Italy
| | - Lars Bjertnæs
- Department of Anaesthesia and Intensive Care, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Shirin K Frisvold
- Department of Anaesthesia and Intensive Care, University Hospital of North Norway, Tromsø, Norway.
- Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
13
|
Wu J, Gao W, Zhang H. Development of acute lung injury or acute respiratory distress syndrome after subarachnoid hemorrhage, predictive factors, and impact on prognosis. Acta Neurol Belg 2023:10.1007/s13760-023-02207-z. [PMID: 36922484 DOI: 10.1007/s13760-023-02207-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/30/2023] [Indexed: 03/17/2023]
Abstract
Acute lung injury or acute respiratory distress syndrome (ALI/ARDS) is a common complication after aneurysmal subarachnoid hemorrhage (aSAH), and is associated with worse neurologic outcomes and longer hospitalization. However, the effect of ALI/ARDS in SAH has not been well elucidated. The purpose of this study was to determine the incidence of ALI/ARDS in a cohort of patients with SAH and to determine the risk factors for ALI/ARDS and their impact on patient prognosis. We performed a retrospective analysis of 167 consecutive patients with aSAH enrolled. ALI/ARDS patients were rigorously adjudicated using North American-European Consensus Conference definition. Regression analyses were used to test the risk factors for ALI/ARDS in patients with SAH. A total of 167 patients fulfilled the inclusion criteria, and 27% patients (45 of 167) developed ALI. Among all 45 ALI patients, 33 (20%, 33 of 167) patients met criteria for ARDS. On multivariate analysis, elderly patients, lower glasgow coma scale (GCS), higher Hunt-Hess grade, higher simplified acute physiology score (SAPS) II score, pre-existing pneumonia, gastric aspiration, hypoxemia, and tachypnea were the strongest risk factor for ALI/ARDS. Patients with ALI/ARDS showed worse clinical outcomes measured at 30 days. Development of ALI/ARDS was associated with a statistically significant increasing the odds of tracheostomy and hospital complications, and increasing duration of mechanical ventilation, intensive care unit (ICU) length and hospitalization stay. Development of ALI/ARDS is a severe complication of SAH and is associated with a poor clinical outcome, and further studies should focus on both prevention and management strategies specific to SAH-associated ALI/ARDS.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215026, Jiangsu, People's Republic of China
| | - Wei Gao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215026, Jiangsu, People's Republic of China
| | - Hongrong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215026, Jiangsu, People's Republic of China.
| |
Collapse
|
14
|
Mechanical Ventilation in Patients with Traumatic Brain Injury: Is it so Different? Neurocrit Care 2023; 38:178-191. [PMID: 36071333 DOI: 10.1007/s12028-022-01593-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022]
Abstract
Patients with traumatic brain injury (TBI) frequently require invasive mechanical ventilation and admission to an intensive care unit. Ventilation of patients with TBI poses unique clinical challenges, and careful attention is required to ensure that the ventilatory strategy (including selection of appropriate tidal volume, plateau pressure, and positive end-expiratory pressure) does not cause significant additional injury to the brain and lungs. Selection of ventilatory targets may be guided by principles of lung protection but with careful attention to relevant intracranial effects. In patients with TBI and concomitant acute respiratory distress syndrome (ARDS), adjunctive strategies include sedation optimization, neuromuscular blockade, recruitment maneuvers, prone positioning, and extracorporeal life support. However, these approaches have been largely extrapolated from studies in patients with ARDS and without brain injury, with limited data in patients with TBI. This narrative review will summarize the existing evidence for mechanical ventilation in patients with TBI. Relevant literature in patients with ARDS will be summarized, and where available, direct data in the TBI population will be reviewed. Next, practical strategies to optimize the delivery of mechanical ventilation and determine readiness for extubation will be reviewed. Finally, future directions for research in this evolving clinical domain will be presented, with considerations for the design of studies to address relevant knowledge gaps.
Collapse
|
15
|
Fuller BM, Mohr NM, Ablordeppey E, Roman O, Mittauer D, Yan Y, Kollef MH, Carpenter CR, Roberts BW. The Practice Change and Clinical Impact of Lung-Protective Ventilation Initiated in the Emergency Department: A Secondary Analysis of Individual Patient-Level Data From Prior Clinical Trials and Cohort Studies. Crit Care Med 2023; 51:279-290. [PMID: 36374044 PMCID: PMC10907984 DOI: 10.1097/ccm.0000000000005717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Mechanically ventilated emergency department (ED) patients experience high morbidity and mortality. In a prior trial at our center, ED-based lung-protective ventilation was associated with improved care delivery and outcomes. Whether this strategy has persisted in the years after the trial remains unclear. The objective was to assess practice change and clinical outcomes associated with ED lung-protective ventilation. DESIGN Secondary analysis of individual patient-level data from prior clinical trials and cohort studies. SETTING ED and ICUs of a single academic center. PATIENTS Mechanically ventilated adults. INTERVENTIONS A lung-protective ventilator protocol used as the default approach in the ED. MEASUREMENTS AND MAIN RESULTS The primary ventilator-related outcome was tidal volume, and the primary clinical outcome was hospital mortality. Secondary outcomes included ventilator-, hospital-, and ICU-free days. Multivariable logistic regression, propensity score (PS)-adjustment, and multiple a priori subgroup analyses were used to evaluate outcome as a function of the intervention. A total of 1,796 patients in the preintervention period and 1,403 patients in the intervention period were included. In the intervention period, tidal volume was reduced from 8.2 mL/kg predicted body weight (PBW) (7.3-9.1) to 6.5 mL/kg PBW (6.1-7.1), and low tidal volume ventilation increased from 46.8% to 96.2% ( p < 0.01). The intervention period was associated with lower mortality (35.9% vs 19.1%), remaining significant after multivariable logistic regression analysis (adjusted odds ratio [aOR], 0.43; 95% CI, 0.35-0.53; p < 0.01). Similar results were seen after PS adjustment and in subgroups. The intervention group had more ventilator- (18.8 [10.1] vs 14.1 [11.9]; p < 0.01), hospital- (12.2 [9.6] vs 9.4 [9.5]; p < 0.01), and ICU-free days (16.6 [10.1] vs 13.1 [11.1]; p < 0.01). CONCLUSIONS ED lung-protective ventilation has persisted in the years since implementation and was associated with improved outcomes. These data suggest the use of ED-based lung-protective ventilation as a means to improve outcome.
Collapse
Affiliation(s)
- Brian M Fuller
- Departments of Emergency Medicine and Anesthesiology, Division of Critical Care, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Nicholas M Mohr
- Departments of Emergency Medicine and Anesthesiology, Division of Critical Care, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Enyo Ablordeppey
- Departments of Emergency Medicine and Anesthesiology, Division of Critical Care, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Olivia Roman
- Department of Emergency Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Dylan Mittauer
- Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Yan Yan
- Division of Public Health Sciences, Department of Surgery, Division of Biostatistics, Washington University School of Medicine, St. Louis, MO
| | - Marin H Kollef
- Department of Emergency Medicine, Cooper University Hospital, Camden, NJ
| | - Christopher R Carpenter
- Department of Emergency Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Brian W Roberts
- Departments of Emergency Medicine and Anesthesiology, Division of Critical Care, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
16
|
Humayun M, Premraj L, Shah V, Cho SM. Mechanical ventilation in acute brain injury patients with acute respiratory distress syndrome. Front Med (Lausanne) 2022; 9:999885. [PMID: 36275802 PMCID: PMC9582443 DOI: 10.3389/fmed.2022.999885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is commonly seen in patients with acute brain injury (ABI), with prevalence being as high as 35%. These patients often have additional risk factors for ARDS compared to general critical care patients. Lung injury in ABI occurs secondary to catecholamine surge and neuro-inflammatory processes. ARDS patients benefit from lung protective ventilation using low tidal volumes, permissive hypercapnia, high PEEP, and lower PO2 goals. These strategies can often be detrimental in ABI given the risk of brain hypoxia and elevation of intracranial pressure (ICP). While lung protective ventilation is not contraindicated in ABI, special consideration is warranted to make sure it does not interfere with neurological recovery. Permissive hypercapnia with low lung volumes can be utilized in patients without any ICP issues but those with ICP elevations can benefit from continuous ICP monitoring to personalize PCO2 goals. Hypoxia leads to poor outcomes in ABI, hence the ARDSnet protocol of lower PO2 target (55-80 mmHg) might not be the best practice in patients with concomitant ARDS and ABI. High-normal PO2 levels are reasonable in target in severe ABI with ARDS. Studies have shown that PEEP up to 12 mmHg does not cause significant elevations in ICP and is safe to use in ABI though mean arterial pressure, respiratory system compliance, and cerebral perfusion pressure should be closely monitored. Given most trials investigating therapeutics in ARDS have excluded ABI patients, focused research is needed in the field to advance the care of these patients using evidence-based medicine.
Collapse
Affiliation(s)
- Mariyam Humayun
- Division of Neuroscience Critical Care, Department of Neurology, Neurosurgery, Surgery, Anesthesiology, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lavienraj Premraj
- School of Medicine, Griffith University, Gold Coast, QLD, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Vishank Shah
- Division of Neuroscience Critical Care, Department of Neurology, Neurosurgery, Surgery, Anesthesiology, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sung-Min Cho
- Division of Neuroscience Critical Care, Department of Neurology, Neurosurgery, Surgery, Anesthesiology, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Maslonka MA, Sheehan KN, Datar SV, Vachharajani V, Namen A. Pathophysiology and Management of Neurogenic Pulmonary Edema in Patients with Acute Severe Brain Injury. South Med J 2022; 115:784-789. [DOI: 10.14423/smj.0000000000001457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Weaning Outcomes in Patients with Brain Injury. Neurocrit Care 2022; 37:649-659. [PMID: 36050534 DOI: 10.1007/s12028-022-01584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/18/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Despite the need for specific weaning strategies in neurological patients, evidence is generally insufficient or lacking. We aimed to describe the evolution over time of weaning and extubation practices in patients with acute brain injury compared with patients who are mechanically ventilated (MV) due to other reasons. METHODS We performed a secondary analysis of three prospective, observational, multicenter international studies conducted in 2004, 2010, and 2016 in adults who had need of invasive MV for more than 12 h. We collected data on baseline characteristics, variables related to management ventilator settings, and complications while patients were ventilated or until day 28. RESULTS Among the 20,929 patients enrolled, we included 12,618 (60%) who started the weaning from MV, of whom 1722 (14%) were patients with acute brain injury. In the acutely brain-injured cohort, 538 patients (31%) did not undergo planned extubation, defined as the need for a tracheostomy without an attempt of extubation, accidental extubation, and death. Among the 1184 planned extubated patients with acute brain injury, 202 required reintubation (17%). Patients with acute brain injury had a higher odds for unplanned extubation (odds ratio [OR] 1.35, confidence interval for 95% [CI 95%] 1.19-1.54; p < 0.001), a higher odds of failure after the first attempt of weaning (spontaneous breathing trial or gradual reduction of ventilatory support; OR 1.14 [CI 95% 1.01-1.30; p = 0.03]), and a higher odds for reintubation (OR 1.41 [CI 95% 1.20-1.66; p < 0.001]) than patients without brain injury. Patients with hemorrhagic stroke had the highest odds for unplanned extubation (OR 1.47 [CI 95% 1.22-1.77; p < 0.001]), of failed extubation after the first attempt of weaning (OR 1.28 [CI 95% 1.06-1.55; p = 0.009]), and for reintubation (OR 1.49 [CI 95% 1.17-1.88; p < 0.001]). In relation to weaning evolution over time in patients with acute brain injury, the risk for unplanned extubation showed a downward trend; the risk for reintubation was not associated to time; and there was a significant increase in the percentage of patients who underwent extubation after the first attempt of weaning from MV. CONCLUSIONS Patients with acute brain injury, compared with patients without brain injury, present higher odds of undergoing unplanned extubated after weaning was started, lower odds of being extubated after the first attempt, and a higher risk of reintubation.
Collapse
|
19
|
Matin N, Sarhadi K, Crooks CP, Lele AV, Srinivasan V, Johnson NJ, Robba C, Town JA, Wahlster S. Brain-Lung Crosstalk: Management of Concomitant Severe Acute Brain Injury and Acute Respiratory Distress Syndrome. Curr Treat Options Neurol 2022; 24:383-408. [PMID: 35965956 PMCID: PMC9363869 DOI: 10.1007/s11940-022-00726-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 12/15/2022]
Abstract
Purpose of Review To summarize pathophysiology, key conflicts, and therapeutic approaches in managing concomitant severe acute brain injury (SABI) and acute respiratory distress syndrome (ARDS). Recent Findings ARDS is common in SABI and independently associated with worse outcomes in all SABI subtypes. Most landmark ARDS trials excluded patients with SABI, and evidence to guide decisions is limited in this population. Potential areas of conflict in the management of patients with both SABI and ARDS are (1) risk of intracranial pressure (ICP) elevation with high levels of positive end-expiratory pressure (PEEP), permissive hypercapnia due to lung protective ventilation (LPV), or prone ventilation; (2) balancing a conservative fluid management strategy with ensuring adequate cerebral perfusion, particularly in patients with symptomatic vasospasm or impaired cerebrovascular blood flow; and (3) uncertainty about the benefit and harm of corticosteroids in this population, with a mortality benefit in ARDS, increased mortality shown in TBI, and conflicting data in other SABI subtypes. Also, the widely adapted partial pressure of oxygen (PaO2) target of > 55 mmHg for ARDS may exacerbate secondary brain injury, and recent guidelines recommend higher goals of 80-120 mmHg in SABI. Distinct pathophysiology and trajectories among different SABI subtypes need to be considered. Summary The management of SABI with ARDS is highly complex, and conventional ARDS management strategies may result in increased ICP and decreased cerebral perfusion. A crucial aspect of concurrent management is to recognize the risk of secondary brain injury in the individual patient, monitor with vigilance, and adjust management during critical time windows. The care of these patients requires meticulous attention to oxygenation and ventilation, hemodynamics, temperature management, and the neurological exam. LPV and prone ventilation should be utilized, and supplemented with invasive ICP monitoring if there is concern for cerebral edema and increased ICP. PEEP titration should be deliberate, involving measures of hemodynamic, pulmonary, and brain physiology. Serial volume status assessments should be performed in SABI and ARDS, and fluid management should be individualized based on measures of brain perfusion, the neurological exam, and cardiopulmonary status. More research is needed to define risks and benefits in corticosteroids in this population.
Collapse
Affiliation(s)
- Nassim Matin
- Department of Neurology, University of Washington, Seattle, WA USA
| | - Kasra Sarhadi
- Department of Neurology, University of Washington, Seattle, WA USA
| | | | - Abhijit V. Lele
- Department of Anesthesiology, University of Washington, Seattle, WA USA
- Department of Neurological Surgery, University of Washington, Seattle, WA USA
| | - Vasisht Srinivasan
- Department of Emergency Medicine, University of Washington, Seattle, WA USA
| | - Nicholas J. Johnson
- Department of Emergency Medicine, University of Washington, Seattle, WA USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA USA
| | - Chiara Robba
- Departments of Anesthesia and Intensive Care, Policlinico San Martino IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Genoa, Italy
| | - James A. Town
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA USA
| | - Sarah Wahlster
- Department of Neurology, University of Washington, Seattle, WA USA
- Department of Anesthesiology, University of Washington, Seattle, WA USA
- Department of Neurological Surgery, University of Washington, Seattle, WA USA
| |
Collapse
|
20
|
Rezoagli E, Laffey JG, Bellani G. Monitoring Lung Injury Severity and Ventilation Intensity during Mechanical Ventilation. Semin Respir Crit Care Med 2022; 43:346-368. [PMID: 35896391 DOI: 10.1055/s-0042-1748917] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe form of respiratory failure burden by high hospital mortality. No specific pharmacologic treatment is currently available and its ventilatory management is a key strategy to allow reparative and regenerative lung tissue processes. Unfortunately, a poor management of mechanical ventilation can induce ventilation induced lung injury (VILI) caused by physical and biological forces which are at play. Different parameters have been described over the years to assess lung injury severity and facilitate optimization of mechanical ventilation. Indices of lung injury severity include variables related to gas exchange abnormalities, ventilatory setting and respiratory mechanics, ventilation intensity, and the presence of lung hyperinflation versus derecruitment. Recently, specific indexes have been proposed to quantify the stress and the strain released over time using more comprehensive algorithms of calculation such as the mechanical power, and the interaction between driving pressure (DP) and respiratory rate (RR) in the novel DP multiplied by four plus RR [(4 × DP) + RR] index. These new parameters introduce the concept of ventilation intensity as contributing factor of VILI. Ventilation intensity should be taken into account to optimize protective mechanical ventilation strategies, with the aim to reduce intensity to the lowest level required to maintain gas exchange to reduce the potential for VILI. This is further gaining relevance in the current era of phenotyping and enrichment strategies in ARDS.
Collapse
Affiliation(s)
- Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Emergency and Intensive Care, San Gerardo University Hospital, Monza, Italy
| | - John G Laffey
- School of Medicine, National University of Ireland, Galway, Ireland.,Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospital Group, Galway, Ireland.,Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Emergency and Intensive Care, San Gerardo University Hospital, Monza, Italy
| |
Collapse
|
21
|
Bery A, Marklin G, Itoh A, Kreisel D, Takahashi T, Meyers BF, Nava R, Kozower BD, Shepherd H, Patterson GA, Puri V. Specialized Donor Care Facility Model and Advances in Management of Thoracic Organ Donors. Ann Thorac Surg 2022; 113:1778-1786. [PMID: 33421385 PMCID: PMC8257761 DOI: 10.1016/j.athoracsur.2020.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Donor hearts and lungs are more susceptible to the inflammatory physiologic changes that occur after brain death. Prior investigations have shown that protocolized management of potential organ donors can rehabilitate donor organs that are initially deemed unacceptable. In this review we discuss advances in donor management models with particular attention to the specialized donor care facility model. In addition we review specific strategies to optimize donor thoracic organs and improve organ yield in thoracic transplantation. METHODS We performed a literature review by searching the PubMed database for medical subject heading terms associated with organ donor management models. We also communicated with our local organ procurement organization to gather published and unpublished information first-hand. RESULTS The specialized donor care facility model has been shown to improve the efficiency of organ donor management and procurement while reducing costs and minimizing travel and its associated risks. Lung protective ventilation, recruitment of atelectatic lung, and hormone therapy (eg, glucocorticoids and triiodothyronine/thyroxine) are associated with improved lung utilization rates. Stroke volume-based resuscitation is associated with improved heart utilization rates, whereas studies evaluating hormone therapy (eg, glucocorticoids and triiodothyronine/thyroxine) have shown variable results. CONCLUSIONS Lack of high-quality prospective evidence results in conflicting practices across organ procurement organizations, and best practices remain controversial. Future studies should focus on prospective, randomized investigations to evaluate donor management strategies. The specialized donor care facility model fosters a collaborative environment that encourages academic inquiry and is an ideal setting for these investigations.
Collapse
Affiliation(s)
- Amit Bery
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St Louis, Missouri.
| | | | - Akinobu Itoh
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Tsuyoshi Takahashi
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Bryan F Meyers
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Ruben Nava
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Benjamin D Kozower
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Hailey Shepherd
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - G Alexander Patterson
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Varun Puri
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
22
|
Arjuna A, Mazzeo AT, Tonetti T, Walia R, Mascia L. Management of the Potential Lung Donor. Thorac Surg Clin 2022; 32:143-151. [PMID: 35512933 DOI: 10.1016/j.thorsurg.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of donor management protocols has significantly improved recovery rates; however, the inherent instability of lungs after death results in low utilization rates of potential donor lungs. Donor lungs are susceptible to direct trauma, aspiration, neurogenic edema, ventilator-associated barotrauma, and ventilator-associated pneumonia. After irreversible brain injury and determination of futility of care, the goal of medical management of the donor shifts to maintaining hemodynamic stability and maximizing the likelihood of successful organ recovery.
Collapse
Affiliation(s)
- Ashwini Arjuna
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 500 West Thomas Road, Suite 500, Phoenix, AZ 85013, USA; Creighton University School of Medicine-Phoenix Campus, Phoenix, AZ, USA.
| | - Anna Teresa Mazzeo
- Department of Adult and Pediatric Pathology, University of Messina, Messina, Italy
| | - Tommaso Tonetti
- University of Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Medicine, Sant'Orsola Research Hospital - Bologna, Bologna, Italy. https://twitter.com/tomton87
| | - Rajat Walia
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 500 West Thomas Road, Suite 500, Phoenix, AZ 85013, USA; Creighton University School of Medicine-Phoenix Campus, Phoenix, AZ, USA
| | - Luciana Mascia
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Wen J, Chen J, Chang J, Wei J. Pulmonary complications and respiratory management in neurocritical care: a narrative review. Chin Med J (Engl) 2022; 135:779-789. [PMID: 35671179 PMCID: PMC9276382 DOI: 10.1097/cm9.0000000000001930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Neurocritical care (NCC) is not only generally guided by principles of general intensive care, but also directed by specific goals and methods. This review summarizes the common pulmonary diseases and pathophysiology affecting NCC patients and the progress made in strategies of respiratory support in NCC. This review highlights the possible interactions and pathways that have been revealed between neurological injuries and respiratory diseases, including the catecholamine pathway, systemic inflammatory reactions, adrenergic hypersensitivity, and dopaminergic signaling. Pulmonary complications of neurocritical patients include pneumonia, neurological pulmonary edema, and respiratory distress. Specific aspects of respiratory management include prioritizing the protection of the brain, and the goal of respiratory management is to avoid inappropriate blood gas composition levels and intracranial hypertension. Compared with the traditional mode of protective mechanical ventilation with low tidal volume (Vt), high positive end-expiratory pressure (PEEP), and recruitment maneuvers, low PEEP might yield a potential benefit in closing and protecting the lung tissue. Multimodal neuromonitoring can ensure the safety of respiratory maneuvers in clinical and scientific practice. Future studies are required to develop guidelines for respiratory management in NCC.
Collapse
Affiliation(s)
- Junxian Wen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing 100730, China
| | | | | | | |
Collapse
|
24
|
Chacón-Aponte AA, Durán-Vargas ÉA, Arévalo-Carrillo JA, Lozada-Martínez ID, Bolaño-Romero MP, Moscote-Salazar LR, Grille P, Janjua T. Brain-lung interaction: a vicious cycle in traumatic brain injury. Acute Crit Care 2022; 37:35-44. [PMID: 35172526 PMCID: PMC8918716 DOI: 10.4266/acc.2021.01193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
The brain-lung interaction can seriously affect patients with traumatic brain injury, triggering a vicious cycle that worsens patient prognosis. Although the mechanisms of the interaction are not fully elucidated, several hypotheses, notably the "blast injury" theory or "double hit" model, have been proposed and constitute the basis of its development and progression. The brain and lungs strongly interact via complex pathways from the brain to the lungs but also from the lungs to the brain. The main pulmonary disorders that occur after brain injuries are neurogenic pulmonary edema, acute respiratory distress syndrome, and ventilator-associated pneumonia, and the principal brain disorders after lung injuries include brain hypoxia and intracranial hypertension. All of these conditions are key considerations for management therapies after traumatic brain injury and need exceptional case-by-case monitoring to avoid neurological or pulmonary complications. This review aims to describe the history, pathophysiology, risk factors, characteristics, and complications of brain-lung and lung-brain interactions and the impact of different old and recent modalities of treatment in the context of traumatic brain injury.
Collapse
Affiliation(s)
| | | | | | - Iván David Lozada-Martínez
- Colombian Clinical Research Group in Neurocritical Care, University of Cartagena, Cartagena, Colombia
- Latin American Council of Neurocritical Care (CLaNi), Cartagena, Colombia
- Global Neurosurgery Committee, World Federation of Neurosurgical Societies, Cartagena, Colombia
- Medical and Surgical Research Center, Cartagena, Colombia
| | | | - Luis Rafael Moscote-Salazar
- Colombian Clinical Research Group in Neurocritical Care, University of Cartagena, Cartagena, Colombia
- Latin American Council of Neurocritical Care (CLaNi), Cartagena, Colombia
- Medical and Surgical Research Center, Cartagena, Colombia
| | - Pedro Grille
- Department of Intensive Care, Hospital Maciel, Montevideo, Uruguay
| | - Tariq Janjua
- Department of Intensive Care, Regions Hospital, St. Paul, MN, USA
| |
Collapse
|
25
|
Molecular hydrogen alleviates lung injury after traumatic brain injury: Pyroptosis and apoptosis. Eur J Pharmacol 2022; 914:174664. [PMID: 34883075 DOI: 10.1016/j.ejphar.2021.174664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI)-induced acute lung injury (ALI) is a critical condition, and inflammation and apoptosis play essential roles. Molecular hydrogen (H2) exerts anti-inflammatory and anti-apoptotic effects. Our previous work has shown that 42% H2 can improve TBI. In the current study, we tested the hypothesis that inhalation of hydrogen (42% H2, 21% O2, balanced nitrogen) for 1 h per day can improve TBI-induced ALI. METHODS Sprague-Dawley male rats were randomly divided into 3 groups. Except for the sham group (group S), rats were subjected to a fluid percussion injury (FPI) and the H2 treatment group were given inhaled hydrogen for 1 h per day. We evaluated the lung function, pyroptosis and apoptosis at 24 h, 48 h and 72 h. RESULTS Compared with group S, the rats in the TBI group (group T) showed obvious pulmonary edema after a TBI. Inhalation of high-concentration hydrogen significantly improved the rats. During this process, rats had some tendency to heal on their own, and H2 also accelerated the self-healing process. Lung injury scores, oxygenation index and pulmonary edema were consistent. Compared with group S, the pyroptosis-related proteins Caspase-1, apoptosis-associated speck-like protein containing CARD (ASC) and Gasdermin-D (GSDM-D) in the lung tissues of the rats in group T were significantly increased after a TBI. In the H2 treatment group (group H), these proteins were significantly decreased. The levels of IL-1β and IL-18 were significantly increased after TBI while in group H were significantly decreased. At the same time, cleaved caspase-3 and BCL-2/Bax were also changed after H2 treatment. These demonstrates the powerful ameliorating effect of H2 on pyroptosis, apoptosis and systemic inflammation. However, rats also had tendency to heal on their own, and H2 also accelerated the self-healing process at the same time. CONCLUSIONS H2 improves TBI-ALI, and the mechanism may be due to the decrease of both pyroptosis and apoptosis and the alleviation of inflammation. These findings provide a reference and evidence for the use of H2 in TBI-ALI patients in the intensive care unit (ICU).
Collapse
|
26
|
Focused Management of Patients With Severe Acute Brain Injury and ARDS. Chest 2022; 161:140-151. [PMID: 34506794 PMCID: PMC8423666 DOI: 10.1016/j.chest.2021.08.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 02/04/2023] Open
Abstract
Considering the COVID-19 pandemic where concomitant occurrence of ARDS and severe acute brain injury (sABI) has increasingly coemerged, we synthesize existing data regarding the simultaneous management of both conditions. Our aim is to provide readers with fundamental principles and concepts for the management of sABI and ARDS, and highlight challenges and conflicts encountered while managing concurrent disease. Up to 40% of patients with sABI can develop ARDS. Although there are trials and guidelines to support the mainstays of treatment for ARDS and sABI independently, guidance on concomitant management is limited. Treatment strategies aimed at managing severe ARDS may at times conflict with the management of sABI. In this narrative review, we discuss the physiological basis and risks involved during simultaneous management of ARDS and sABI, summarize evidence for treatment decisions, and demonstrate these principles using hypothetical case scenarios. Use of invasive or noninvasive monitoring to assess brain and lung physiology may facilitate goal-directed treatment strategies with the potential to improve outcome. Understanding the pathophysiology and key treatment concepts for comanagement of these conditions is critical to optimizing care in this high-acuity patient population.
Collapse
|
27
|
Taran S, McCredie VA, Goligher EC. Noninvasive and invasive mechanical ventilation for neurologic disorders. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:361-386. [PMID: 36031314 DOI: 10.1016/b978-0-323-91532-8.00015-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Patients with acute neurologic injuries frequently require mechanical ventilation due to diminished airway protective reflexes, cardiopulmonary failure secondary to neurologic insults, or to facilitate gas exchange to precise targets. Mechanical ventilation enables tight control of oxygenation and carbon dioxide levels, enabling clinicians to modulate cerebral hemodynamics and intracranial pressure with the goal of minimizing secondary brain injury. In patients with acute spinal cord injuries, neuromuscular conditions, or diseases of the peripheral nerve, mechanical ventilation enables respiratory support under conditions of impending or established respiratory failure. Noninvasive ventilatory approaches may be carefully considered for certain disease conditions, including myasthenia gravis and amyotrophic lateral sclerosis, but may be inappropriate in patients with Guillain-Barré syndrome or when relevant contra-indications exist. With regard to discontinuing mechanical ventilation, considerable uncertainty persists about the best approach to wean patients, how to identify patients ready for extubation, and when to consider primary tracheostomy. Recent consensus guidelines highlight these and other knowledge gaps that are the focus of active research efforts. This chapter outlines important general principles to consider when initiating, titrating, and discontinuing mechanical ventilation in patients with acute neurologic injuries. Important disease-specific considerations are also reviewed where appropriate.
Collapse
Affiliation(s)
- Shaurya Taran
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada; Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Victoria A McCredie
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada; Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada; Department of Medicine, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
28
|
Ziaka M, Exadaktylos A. Brain-lung interactions and mechanical ventilation in patients with isolated brain injury. Crit Care 2021; 25:358. [PMID: 34645485 PMCID: PMC8512596 DOI: 10.1186/s13054-021-03778-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022] Open
Abstract
During the last decade, experimental and clinical studies have demonstrated that isolated acute brain injury (ABI) may cause severe dysfunction of peripheral extracranial organs and systems. Of all potential target organs and systems, the lung appears to be the most vulnerable to damage after brain injury (BI). The pathophysiology of these brain–lung interactions are complex and involve neurogenic pulmonary oedema, inflammation, neurodegeneration, neurotransmitters, immune suppression and dysfunction of the autonomic system. The systemic effects of inflammatory mediators in patients with BI create a systemic inflammatory environment that makes extracranial organs vulnerable to secondary procedures that enhance inflammation, such as mechanical ventilation (MV), surgery and infections. Indeed, previous studies have shown that in the presence of a systemic inflammatory environment, specific neurointensive care interventions—such as MV—may significantly contribute to the development of lung injury, regardless of the underlying mechanisms. Although current knowledge supports protective ventilation in patients with BI, it must be born in mind that ABI-related lung injury has distinct mechanisms that involve complex interactions between the brain and lungs. In this context, the role of extracerebral pathophysiology, especially in the lungs, has often been overlooked, as most physicians focus on intracranial injury and cerebral dysfunction. The present review aims to fill this gap by describing the pathophysiology of complications due to lung injuries in patients with a single ABI, and discusses the possible impact of MV in neurocritical care patients with normal lungs.
Collapse
Affiliation(s)
- Mairi Ziaka
- Department of Internal Medicine, Thun General Hospital, Thun, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
29
|
Jiang L, Wu Y, Zhang Y, Lu D, Yan K, Gao J. Effects of intraoperative lung-protective ventilation on clinical outcomes in patients with traumatic brain injury: a randomized controlled trial. BMC Anesthesiol 2021; 21:182. [PMID: 34182951 PMCID: PMC8236740 DOI: 10.1186/s12871-021-01402-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/15/2021] [Indexed: 11/11/2022] Open
Abstract
Background Secondary lung injury is the most common non-neurological complication after traumatic brain injury (TBI). Lung-protective ventilation (LPV) has been proven to improve perioperative oxygenation and lung compliance in some critical patients. This study aimed to investigate whether intraoperative LPV could improve respiratory function and prevent postoperative complications in emergency TBI patients. Methods Ninety TBI patients were randomly allocated to three groups (1:1:1): Group A, conventional mechanical ventilation [tidal volume (VT) 10 mL/kg only]; Group B, small VT (8 mL/kg) + positive end-expiratory pressure (PEEP) (5 cmH2O); and Group C, small VT (8 mL/kg) + PEEP (5 cmH2O) + recruitment maneuvers (RMs). The primary outcome was the incidence of total postoperative pulmonary complications; Secondary outcomes were intraoperative respiratory mechanics parameters and serum levels of brain injury markers, and the incidence of each postoperative pulmonary and neurological complication. Results Seventy-nine patients completed the final analysis. The intraoperative PaO2 and dynamic pulmonary compliance of Groups B and C were higher than those of Group A (P = 0.028; P = 0.005), while their airway peak pressure and plateau pressure were lower than those of group A (P = 0.004; P = 0.005). Compared to Group A, Groups B and C had decreased 30-day postoperative incidences of total pulmonary complications, hypoxemia, pulmonary infection, and atelectasis (84.0 % vs. 57.1 % vs. 53.8 %, P = 0.047; 52.0 % vs. 14.3 % vs. 19.2 %, P = 0.005; 84.0 % vs. 50.0 % vs. 42.3 %, P = 0.006; 24.0 % vs. 3.6 % vs. 0.0 %, P = 0.004). Moreover, intraoperative hypotension was more frequent in Group C than in Groups A and B (P = 0.007). At the end of surgery, the serum levels of glial fibrillary acidic protein and ubiquitin carboxyl-terminal hydrolase isozyme L1 in Group B were lower than those in Groups A and C (P = 0.002; P < 0.001). The postoperative incidences of neurological complications among the three groups were comparable. Conclusions Continuous intraoperative administration of small VT + PEEP is beneficial to TBI patients. Additional RMs can be performed with caution to prevent disturbances in the stability of cerebral hemodynamics. Trial registration Chinese Clinical Trial Registry (ChiCTR2000038314), retrospectively registered on September 17, 2020.
Collapse
Affiliation(s)
- Lulu Jiang
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, 139# Renmin Central Road, 410011, Changsha, China.,Department of Anesthesiology, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, 98# Nantong West Road, 225001, Yangzhou, China
| | - Yujuan Wu
- Department of Anesthesiology, Xiangtan Central Hospital, 120# Heping Road, 411100, Xiangtan, China
| | - Yang Zhang
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, 139# Renmin Central Road, 410011, Changsha, China.,Department of Anesthesiology, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, 98# Nantong West Road, 225001, Yangzhou, China
| | - Dahao Lu
- Department of Anesthesiology, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, 98# Nantong West Road, 225001, Yangzhou, China
| | - Keshi Yan
- Department of Anesthesiology, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, 98# Nantong West Road, 225001, Yangzhou, China
| | - Ju Gao
- Department of Anesthesiology, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, 98# Nantong West Road, 225001, Yangzhou, China.
| |
Collapse
|
30
|
Association Between Hyperoxia, Supplemental Oxygen, and Mortality in Critically Injured Patients. Crit Care Explor 2021; 3:e0418. [PMID: 34036272 PMCID: PMC8133168 DOI: 10.1097/cce.0000000000000418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Supplemental Digital Content is available in the text. OBJECTIVES: Hyperoxia is common among critically ill patients and may increase morbidity and mortality. However, limited evidence exists for critically injured patients. The objective of this study was to determine the association between hyperoxia and in-hospital mortality in adult trauma patients requiring ICU admission. DESIGN, SETTING, AND PARTICIPANTS: This multicenter, retrospective cohort study was conducted at two level I trauma centers and one level II trauma center in CO between October 2015 and June 2018. All adult trauma patients requiring ICU admission within 24 hours of emergency department arrival were eligible. The primary exposure was oxygenation during the first 7 days of hospitalization. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Primary outcome was in-hospital mortality. Secondary outcomes were hospital-free days and ventilator-free days. We included 3,464 critically injured patients with a mean age of 52.6 years. Sixty-five percent were male, and 66% had blunt trauma mechanism of injury. The primary outcome of in-hospital mortality occurred in 264 patients (7.6%). Of 226,057 patient-hours, 46% were spent in hyperoxia (oxygen saturation > 96%) and 52% in normoxia (oxygen saturation 90–96%). During periods of hyperoxia, the adjusted risk for mortality was higher with greater oxygen administration. At oxygen saturation of 100%, the adjusted risk scores for mortality (95% CI) at Fio2 of 100%, 80%, 60%, and 50% were 6.4 (3.5–11.8), 5.4 (3.4–8.6), 2.7 (1.7–4.1), and 1.5 (1.1–2.2), respectively. At oxygen saturation of 98%, the adjusted risk scores for mortality (95% CI) at Fio2 of 100%, 80%, 60%, and 50% were 7.7 (4.3–13.5), 6.3 (4.1–9.7), 3.2 (2.2–4.8), and 1.9 (1.4–2.7), respectively. CONCLUSIONS: During hyperoxia, higher oxygen administration was independently associated with a greater risk of mortality among critically injured patients. Level of evidence: Cohort study, level III.
Collapse
|
31
|
Shi ZH, Jonkman AH, Tuinman PR, Chen GQ, Xu M, Yang YL, Heunks LMA, Zhou JX. Role of a successful spontaneous breathing trial in ventilator liberation in brain-injured patients. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:548. [PMID: 33987246 PMCID: PMC8105847 DOI: 10.21037/atm-20-6407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/18/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Spontaneous breathing trials (SBTs) have been shown to improve outcomes in critically ill patients. However, in patients with brain injury, indications for intubation and mechanical ventilation are different from those of non-neurological patients, and the role of an SBT in patients with brain injury is less established. The aim of the present study was to compare key respiratory variables acquired during a successful SBT between patients with successful ventilator liberation versus failed ventilator liberation. METHODS In this prospective study, patients with brain injury (≥18 years of age), who completed a 30-min SBT, were enrolled. Airway pressure, flow, esophageal pressure, and diaphragm electrical activity (ΔEAdi) were recorded before (baseline) and during the SBT. Respiratory rate (RR), tidal volume, inspiratory muscle pressure (ΔPmus), ΔEAdi, and neuromechanical efficiency (ΔPmus/ΔEAdi) of the diaphragm were calculated breath by breath and compared between the liberation success and failure groups. Failed liberation was defined as the need for invasive ventilator assistance within 48 h after the SBT. RESULTS In total, 46 patients (51.9±13.2 years, 67.4% male) completed the SBT. Seventeen (37%) patients failed ventilator liberation within 48 h. Another 11 patients required invasive ventilation within 7 days after completing the SBT. There were no differences in baseline characteristics between the success and failed groups. In-depth analysis showed similar changes in patterns and values of respiratory physiological parameters between the groups. CONCLUSIONS In patients with brain injury, ventilator liberation failure was common after successful SBT. In-depth physiological analysis during the SBT did not provide data to predict successful liberation in these patients. TRIAL REGISTRATION The trial was registered at ClinicalTrials.gov (No. NCT02863237).
Collapse
Affiliation(s)
- Zhong-Hua Shi
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Intensive Care, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
- Research VUmc Intensive Care (REVIVE), Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| | - Annemijn H. Jonkman
- Department of Intensive Care, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
- Research VUmc Intensive Care (REVIVE), Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| | - Pieter Roel Tuinman
- Department of Intensive Care, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
- Research VUmc Intensive Care (REVIVE), Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| | - Guang-Qiang Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming Xu
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan-Lin Yang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Leo M. A. Heunks
- Department of Intensive Care, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
- Research VUmc Intensive Care (REVIVE), Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Evolution Over Time of Ventilatory Management and Outcome of Patients With Neurologic Disease. Crit Care Med 2021; 49:1095-1106. [PMID: 33729719 DOI: 10.1097/ccm.0000000000004921] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To describe the changes in ventilator management over time in patients with neurologic disease at ICU admission and to estimate factors associated with 28-day hospital mortality. DESIGN Secondary analysis of three prospective, observational, multicenter studies. SETTING Cohort studies conducted in 2004, 2010, and 2016. PATIENTS Adult patients who received mechanical ventilation for more than 12 hours. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Among the 20,929 patients enrolled, we included 4,152 (20%) mechanically ventilated patients due to different neurologic diseases. Hemorrhagic stroke and brain trauma were the most common pathologies associated with the need for mechanical ventilation. Although volume-cycled ventilation remained the preferred ventilation mode, there was a significant (p < 0.001) increment in the use of pressure support ventilation. The proportion of patients receiving a protective lung ventilation strategy was increased over time: 47% in 2004, 63% in 2010, and 65% in 2016 (p < 0.001), as well as the duration of protective ventilation strategies: 406 days per 1,000 mechanical ventilation days in 2004, 523 days per 1,000 mechanical ventilation days in 2010, and 585 days per 1,000 mechanical ventilation days in 2016 (p < 0.001). There were no differences in the length of stay in the ICU, mortality in the ICU, and mortality in hospital from 2004 to 2016. Independent risk factors for 28-day mortality were age greater than 75 years, Simplified Acute Physiology Score II greater than 50, the occurrence of organ dysfunction within first 48 hours after brain injury, and specific neurologic diseases such as hemorrhagic stroke, ischemic stroke, and brain trauma. CONCLUSIONS More lung-protective ventilatory strategies have been implemented over years in neurologic patients with no effect on pulmonary complications or on survival. We found several prognostic factors on mortality such as advanced age, the severity of the disease, organ dysfunctions, and the etiology of neurologic disease.
Collapse
|
33
|
Gouvea Bogossian E, Peluso L, Creteur J, Taccone FS. Hyperventilation in Adult TBI Patients: How to Approach It? Front Neurol 2021; 11:580859. [PMID: 33584492 PMCID: PMC7875871 DOI: 10.3389/fneur.2020.580859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Hyperventilation is a commonly used therapy to treat intracranial hypertension (ICTH) in traumatic brain injury patients (TBI). Hyperventilation promotes hypocapnia, which causes vasoconstriction in the cerebral arterioles and thus reduces cerebral blood flow and, to a lesser extent, cerebral blood volume effectively, decreasing temporarily intracranial pressure. However, hyperventilation can have serious systemic and cerebral deleterious effects, such as ventilator-induced lung injury or cerebral ischemia. The routine use of this therapy is therefore not recommended. Conversely, in specific conditions, such as refractory ICHT and imminent brain herniation, it can be an effective life-saving rescue therapy. The aim of this review is to describe the impact of hyperventilation on extra-cerebral organs and cerebral hemodynamics or metabolism, as well as to discuss the side effects and how to implement it to manage TBI patients.
Collapse
Affiliation(s)
- Elisa Gouvea Bogossian
- Intensive Care Department, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorenzo Peluso
- Intensive Care Department, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Creteur
- Intensive Care Department, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabio Silvio Taccone
- Intensive Care Department, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
34
|
Westphal GA, Robinson CC, Cavalcanti AB, Gonçalves ARR, Guterres CM, Teixeira C, Stein C, Franke CA, da Silva DB, Pontes DFS, Nunes DSL, Abdala E, Dal-Pizzol F, Bozza FA, Machado FR, de Andrade J, Cruz LN, de Azevedo LCP, Machado MCV, Rosa RG, Manfro RC, Nothen RR, Lobo SM, Rech TH, Lisboa T, Colpani V, Falavigna M. Brazilian guidelines for the management of brain-dead potential organ donors. The task force of the AMIB, ABTO, BRICNet, and the General Coordination of the National Transplant System. Ann Intensive Care 2020; 10:169. [PMID: 33315161 PMCID: PMC7736434 DOI: 10.1186/s13613-020-00787-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE To contribute to updating the recommendations for brain-dead potential organ donor management. METHOD A group of 27 experts, including intensivists, transplant coordinators, transplant surgeons, and epidemiologists, joined a task force formed by the General Coordination Office of the National Transplant System/Brazilian Ministry of Health (CGSNT-MS), the Brazilian Association of Intensive Care Medicine (AMIB), the Brazilian Association of Organ Transplantation (ABTO), and the Brazilian Research in Intensive Care Network (BRICNet). The questions were developed within the scope of the 2011 Brazilian Guidelines for Management of Adult Potential Multiple-Organ Deceased Donors. The topics were divided into mechanical ventilation, hemodynamic support, endocrine-metabolic management, infection, body temperature, blood transfusion, and use of checklists. The outcomes considered for decision-making were cardiac arrest, number of organs recovered or transplanted per donor, and graft function/survival. Rapid systematic reviews were conducted, and the quality of evidence of the recommendations was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. Two expert panels were held in November 2016 and February 2017 to classify the recommendations. A systematic review update was performed in June 2020, and the recommendations were reviewed through a Delphi process with the panelists between June and July 2020. RESULTS A total of 19 recommendations were drawn from the expert panel. Of these, 7 were classified as strong (lung-protective ventilation strategy, vasopressors and combining arginine vasopressin to control blood pressure, antidiuretic hormones to control polyuria, serum potassium and magnesium control, and antibiotic use), 11 as weak (alveolar recruitment maneuvers, low-dose dopamine, low-dose corticosteroids, thyroid hormones, glycemic and serum sodium control, nutritional support, body temperature control or hypothermia, red blood cell transfusion, and goal-directed protocols), and 1 was considered a good clinical practice (volemic expansion). CONCLUSION Despite the agreement among panel members on most recommendations, the grade of recommendation was mostly weak. The observed lack of robust evidence on the topic highlights the importance of the present guideline to improve the management of brain-dead potential organ donors.
Collapse
Affiliation(s)
- Glauco Adrieno Westphal
- Hospital Moinhos de Vento (HMV), R. Ramiro Barcelos, 910, Porto Alegre, RS, 90035000, Brazil. .,Hospital Municipal São José (HMSJ), Joinville, SC, Brazil. .,Centro Hospitalar Unimed, Joinville, SC, Brazil.
| | | | | | - Anderson Ricardo Roman Gonçalves
- Universidade da Região de Joinville (UNIVILLE), R. Paulo Malschitzki, 10, Joinville, SC, 89219710, Brazil.,Clínica de Nefrologia de Joinville, R. Plácido Gomes, 370, Joinville, SC, 89202-050, Brazil
| | - Cátia Moreira Guterres
- Hospital Moinhos de Vento (HMV), R. Ramiro Barcelos, 910, Porto Alegre, RS, 90035000, Brazil
| | - Cassiano Teixeira
- Hospital de Clínicas de Porto Alegre (HCPA), R. Ramiro Barcelos, 2350, Porto Alegre, RS, 90035007, Brazil.,Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Cinara Stein
- Hospital Moinhos de Vento (HMV), R. Ramiro Barcelos, 910, Porto Alegre, RS, 90035000, Brazil
| | - Cristiano Augusto Franke
- Hospital de Clínicas de Porto Alegre (HCPA), R. Ramiro Barcelos, 2350, Porto Alegre, RS, 90035007, Brazil.,Hospital de Pronto de Socorro (HPS), Porto Alegre, RS, Brazil
| | - Daiana Barbosa da Silva
- Hospital Moinhos de Vento (HMV), R. Ramiro Barcelos, 910, Porto Alegre, RS, 90035000, Brazil
| | - Daniela Ferreira Salomão Pontes
- General Coordination Office of the National Transplant System, Brazilian Ministry of Health, Esplanada dos Ministérios, Bloco G, Edifício Sede, Brasília, DF, 70058900, Brazil
| | - Diego Silva Leite Nunes
- General Coordination Office of the National Transplant System, Brazilian Ministry of Health, Esplanada dos Ministérios, Bloco G, Edifício Sede, Brasília, DF, 70058900, Brazil
| | - Edson Abdala
- Faculdade de Medicina, Universidade de São Paulo (USP), Av. Dr, Arnaldo 455, Sala 3206, São Paulo, SP, 01246903, Brazil
| | - Felipe Dal-Pizzol
- Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806000, Brazil.,Intensive Care Unit, Hospital São José, R. Cel. Pedro Benedet, 630, Criciúma, SC, 88801-250, Brazil
| | - Fernando Augusto Bozza
- National Institute of Infectious Disease Evandro Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Av. Brasil, 4365, Rio de Janeiro, RJ, 21040360, Brazil.,Instituto D'Or de Pesquisa e Ensino (IDOR), R. Diniz Cordeiro, 30, Rio de Janeiro, RJ, 22281100, Brazil
| | - Flávia Ribeiro Machado
- Hospital São Paulo (HU), Universidade Federal de São Paulo (UNIFESP), R. Napoleão de Barros 737, São Paulo, SP, 04024002, Brazil
| | - Joel de Andrade
- Organização de Procura de Órgãos e Tecidos de Santa Catarina (OPO/SC), Rua Esteves Júnior, 390, Florianópolis, SC, 88015130, Brazil
| | - Luciane Nascimento Cruz
- Hospital Moinhos de Vento (HMV), R. Ramiro Barcelos, 910, Porto Alegre, RS, 90035000, Brazil
| | | | | | - Regis Goulart Rosa
- Hospital Moinhos de Vento (HMV), R. Ramiro Barcelos, 910, Porto Alegre, RS, 90035000, Brazil
| | - Roberto Ceratti Manfro
- Hospital de Clínicas de Porto Alegre (HCPA), R. Ramiro Barcelos, 2350, Porto Alegre, RS, 90035007, Brazil.,Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035007, Brazil
| | - Rosana Reis Nothen
- Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035007, Brazil
| | - Suzana Margareth Lobo
- Faculdade de Medicina de São José do Rio Preto, Av Faria Lima, 5544, São José do Rio Preto, SP, 15090000, Brazil
| | - Tatiana Helena Rech
- Hospital de Clínicas de Porto Alegre (HCPA), R. Ramiro Barcelos, 2350, Porto Alegre, RS, 90035007, Brazil
| | - Thiago Lisboa
- Hospital de Clínicas de Porto Alegre (HCPA), R. Ramiro Barcelos, 2350, Porto Alegre, RS, 90035007, Brazil
| | - Verônica Colpani
- Hospital Moinhos de Vento (HMV), R. Ramiro Barcelos, 910, Porto Alegre, RS, 90035000, Brazil
| | - Maicon Falavigna
- Hospital Moinhos de Vento (HMV), R. Ramiro Barcelos, 910, Porto Alegre, RS, 90035000, Brazil.,National Institute for Health Technology Assessment, UFRGS, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035903, Brazil.,Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University, 1280 Main St W, Hamilton, ON, Canada
| |
Collapse
|
35
|
Komisarow JM, Chen F, Vavilala MS, Laskowitz D, James ML, Krishnamoorthy V. Epidemiology and Outcomes of Acute Respiratory Distress Syndrome Following Isolated Severe Traumatic Brain Injury. J Intensive Care Med 2020; 37:68-74. [PMID: 33191844 DOI: 10.1177/0885066620972001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with traumatic brain injury (TBI) are at risk for extra-cranial complications, such as the acute respiratory distress syndrome (ARDS). We conducted an analysis of risk factors, mortality, and healthcare utilization associated with ARDS following isolated severe TBI. The National Trauma Data Bank (NTDB) dataset files from 2007-2014 were used to identify adult patients who suffered isolated [other body region-specific Abbreviated Injury Scale (AIS) < 3] severe TBI [admission total Glasgow Coma Scale (GCS) from 3 to 8 and head region-specific AIS >3]. In-hospital mortality was compared between patients who developed ARDS and those who did not. Utilization of healthcare resources (ICU length of stay, hospital length of stay, duration of mechanical ventilation, and frequency of tracheostomy and gastrostomy tube placement) was also examined. This retrospective cohort study included 38,213 patients with an overall ARDS occurrence of 7.5%. Younger age, admission tachycardia, pre-existing vascular and respiratory diseases, and pneumonia were associated with the development of ARDS. Compared to patients without ARDS, patients that developed ARDS experienced increased in-hospital mortality (OR 1.13, 95% CI 1.01-1.26), length of stay (p = <0.001), duration of mechanical ventilation (p = < 0.001), and placement of tracheostomy (OR 2.70, 95% CI 2.34-3.13) and gastrostomy (OR 2.42, 95% CI 2.06-2.84). After isolated severe TBI, ARDS is associated with increased mortality and healthcare utilization. Future studies should focus on both prevention and management strategies specific to TBI-associated ARDS.
Collapse
Affiliation(s)
| | - Fangyu Chen
- School of Medicine, 12277Duke University, Durham, NC, USA
| | - Monica S Vavilala
- Department of Anesthesiology, 7284University of Washington, Seattle, WA, USA
| | | | - Michael L James
- Department of Neurology, 12277Duke University, Durham, NC, USA.,Department of Anesthesiology, 12277Duke University, Durham, NC, USA
| | | |
Collapse
|
36
|
Robba C, Poole D, McNett M, Asehnoune K, Bösel J, Bruder N, Chieregato A, Cinotti R, Duranteau J, Einav S, Ercole A, Ferguson N, Guerin C, Siempos II, Kurtz P, Juffermans NP, Mancebo J, Mascia L, McCredie V, Nin N, Oddo M, Pelosi P, Rabinstein AA, Neto AS, Seder DB, Skrifvars MB, Suarez JI, Taccone FS, van der Jagt M, Citerio G, Stevens RD. Mechanical ventilation in patients with acute brain injury: recommendations of the European Society of Intensive Care Medicine consensus. Intensive Care Med 2020; 46:2397-2410. [PMID: 33175276 PMCID: PMC7655906 DOI: 10.1007/s00134-020-06283-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022]
Abstract
Purpose To provide clinical practice recommendations and generate a research agenda on mechanical ventilation and respiratory support in patients with acute brain injury (ABI). Methods An international consensus panel was convened including 29 clinician-scientists in intensive care medicine with expertise in acute respiratory failure, neurointensive care, or both, and two non-voting methodologists. The panel was divided into seven subgroups, each addressing a predefined clinical practice domain relevant to patients admitted to the intensive care unit (ICU) with ABI, defined as acute traumatic brain or cerebrovascular injury. The panel conducted systematic searches and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) method was used to evaluate evidence and formulate questions. A modified Delphi process was implemented with four rounds of voting in which panellists were asked to respond to questions (rounds 1–3) and then recommendation statements (final round). Strong recommendation, weak recommendation, or no recommendation were defined when > 85%, 75–85%, and < 75% of panellists, respectively, agreed with a statement. Results The GRADE rating was low, very low, or absent across domains. The consensus produced 36 statements (19 strong recommendations, 6 weak recommendations, 11 no recommendation) regarding airway management, non-invasive respiratory support, strategies for mechanical ventilation, rescue interventions for respiratory failure, ventilator liberation, and tracheostomy in brain-injured patients. Several knowledge gaps were identified to inform future research efforts. Conclusions This consensus provides guidance for the care of patients admitted to the ICU with ABI. Evidence was generally insufficient or lacking, and research is needed to demonstrate the feasibility, safety, and efficacy of different management approaches. Electronic supplementary material The online version of this article (10.1007/s00134-020-06283-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chiara Robba
- San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Daniele Poole
- Anesthesia and Intensive Care Operative Unit, S. Martino Hospital, Belluno, Italy
| | - Molly McNett
- Implementation Science, The Helene Fuld Health Trust National Institute for EBP, College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Karim Asehnoune
- Department of Anaesthesia and Critical Care, Hôtel Dieu, University Hospital of Nantes, Nantes, France
| | - Julian Bösel
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Neurology, Klinikum Kassel, Kassel, Germany
| | - Nicolas Bruder
- Anesthesiology-Intensive Care Department, Aix-Marseille University, APHM, CHU Timone, Marseille, France
| | - Arturo Chieregato
- Neurointensive Care Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Raphael Cinotti
- Department of Anaesthesia and Critical Care, Hôpital Guillaume et René Laennec, University Hospital of Nantes, Saint-Herblain, France
| | - Jacques Duranteau
- Department of Anesthesiology and Perioperative Intensive Care Medicine, Bicêtre Hospital, Assistance Publique Hôpitaux de Paris, Paris-Saclay University, Paris, France
| | - Sharon Einav
- Faculty of Medicine, Intensive Care Unit of the Shaare Zedek Medical Centre and Hebrew University, Jerusalem, Israel
| | - Ari Ercole
- University of Cambridge Division of Anaesthesia, Addenbrooke's Hospital, Cambridge, UK
| | - Niall Ferguson
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Claude Guerin
- Medecine Intensive-Réanimation, Hopital Edouard Herriot, University of Lyon, Lyon, France
- INSERM 955, Créteil, France
| | - Ilias I Siempos
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital-Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY, USA
| | - Pedro Kurtz
- Department of Neurointensive Care, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Nicole P Juffermans
- Department of Intensive Care Medicine, Olvg Hospital, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jordi Mancebo
- Servei Medicina Intensiva, Hospital Sant Pau, Barcelona, Spain
| | - Luciana Mascia
- Alma Mater Studiorum, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Victoria McCredie
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicolas Nin
- Department of Intensive Care Medicine, Hospital Español, Montevideo, Uruguay
| | - Mauro Oddo
- Department of Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Paolo Pelosi
- San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | | | - Ary Serpa Neto
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Critical Care Medicine, Hospital Israelita Alberto Einstein, São Paulo, Brazil
| | - David B Seder
- Department of Critical Care Services, Neuroscience Institute, Maine Medical Center, 22 Bramhall Street, Portland, ME, 04102, USA
| | - Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Meilahden sairaala, Haartmaninkatu 4, 00029 HUS, Helsinki, Finland
| | - Jose I Suarez
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Phipps 455, Baltimore, MD, 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabio Silvio Taccone
- Department of Intensive Care Medicine, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathieu van der Jagt
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano - Bicocca, Milan, Italy
| | - Robert D Stevens
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Phipps 455, Baltimore, MD, 21287, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
37
|
Mal H, Santin G, Cantrelle C, Durand L, Legeai C, Cheisson G, Saint-Marcel L, Pipien I, Durin L, Bastien O, Dorent R. Effect of Lung-Protective Ventilation in Organ Donors on Lung Procurement and Recipient Survival. Am J Respir Crit Care Med 2020; 202:250-258. [DOI: 10.1164/rccm.201910-2067oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Hervé Mal
- Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
- Inserm UMR1152, Université Paris 7 Denis Diderot, Paris, France
| | | | | | | | | | - Gaëlle Cheisson
- Hôpital Kremlin Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France; and
| | | | | | | | | | | |
Collapse
|
38
|
Mrozek S, Gobin J, Constantin JM, Fourcade O, Geeraerts T. Crosstalk between brain, lung and heart in critical care. Anaesth Crit Care Pain Med 2020; 39:519-530. [PMID: 32659457 DOI: 10.1016/j.accpm.2020.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 05/05/2020] [Accepted: 06/07/2020] [Indexed: 12/17/2022]
Abstract
Extracerebral complications, especially pulmonary and cardiovascular, are frequent in brain-injured patients and are major outcome determinants. Two major pathways have been described: brain-lung and brain-heart interactions. Lung injuries after acute brain damages include ventilator-associated pneumonia (VAP), acute respiratory distress syndrome (ARDS) and neurogenic pulmonary œdema (NPE), whereas heart injuries can range from cardiac enzymes release, ECG abnormalities to left ventricle dysfunction or cardiogenic shock. The pathophysiologies of these brain-lung and brain-heart crosstalk are complex and sometimes interconnected. This review aims to describe the epidemiology and pathophysiology of lung and heart injuries in brain-injured patients with the different pathways implicated and the clinical implications for critical care physicians.
Collapse
Affiliation(s)
- Ségolène Mrozek
- Department of anaesthesia and critical care, university hospital of Toulouse, university Toulouse 3 Paul Sabatier, Toulouse, France.
| | - Julie Gobin
- Department of anaesthesia and critical care, university hospital of Toulouse, university Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jean-Michel Constantin
- Department of anaesthesia and critical care, Sorbonne university, La Pitié-Salpêtrière hospital, Assistance publique-Hôpitaux de Paris, Paris, France
| | - Olivier Fourcade
- Department of anaesthesia and critical care, university hospital of Toulouse, university Toulouse 3 Paul Sabatier, Toulouse, France
| | - Thomas Geeraerts
- Department of anaesthesia and critical care, university hospital of Toulouse, university Toulouse 3 Paul Sabatier, Toulouse, France
| |
Collapse
|
39
|
Systematic review of oxygenation and clinical outcomes to inform oxygen targets in critically ill trauma patients. J Trauma Acute Care Surg 2020; 87:961-977. [PMID: 31162333 DOI: 10.1097/ta.0000000000002392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Oxygen therapy is frequently administered to critically ill trauma patients to avoid hypoxia, but optimal oxygenation strategies are not clear. METHODS We conducted a systematic review of oxygen targets and clinical outcomes in trauma and critically ill patients. We searched Ovid MEDLINE, Cochrane Library, Embase, and Web of Science Core Collection from 1946 through 2017. Our initial search yielded 14,774 articles with 209 remaining after abstract review. We reviewed full text articles of human subjects with conditions of interest, an oxygen exposure or measurement, and clinical outcomes, narrowing the review to 43 articles. We assessed article quality using Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) criteria. RESULTS Of the 43 final studies meeting inclusions criteria, 17 focused on trauma and 26 studies focused on medical and/or surgical critical illness without trauma specifically. Four trauma studies supported lower oxygenation/normoxia, two supported higher oxygenation, and 11 supported neither normoxia nor higher oxygenation (five neutral and six supported avoidance of hypoxia). Fifteen critical illness studies supported lower oxygenation/normoxia, one supported higher oxygenation, and 10 supported neither normoxia nor higher oxygenation (nine neutral and one supported avoidance of hypoxia). We identified seven randomized controlled trials (four high quality, three moderate quality). Of the high-quality randomized controlled trials (none trauma-related), one supported lower oxygenation/normoxia and three were neutral. Of the moderate-quality randomized controlled trials (one trauma-related), one supported higher oxygenation, one was neutral, and one supported avoidance of hypoxia. CONCLUSION We identified few trauma-specific studies beyond traumatic brain injury; none were high quality. Extrapolating primarily from nontrauma critical illness, reduced oxygen administration targeting normoxia in critically ill trauma patients may result in better or equivalent clinical outcomes. Additional trauma-specific trials are needed to determine the optimal oxygen strategy in critically injured patients. LEVEL OF EVIDENCE Systematic review, level IV.
Collapse
|
40
|
Bera KD, Shah A, English MR, Harvey D, Ploeg RJ. Optimisation of the organ donor and effects on transplanted organs: a narrative review on current practice and future directions. Anaesthesia 2020; 75:1191-1204. [PMID: 32430910 DOI: 10.1111/anae.15037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Mortality remains high for patients on the waiting list for organ transplantation. A marked imbalance between the number of available organs and recipients that need to be transplanted persists. Organs from deceased donors are often declined due to perceived and actual suboptimal quality. Adequate donor management offers an opportunity to reduce organ injury and maximise the number of organs than can be offered in order to respect the donor's altruistic gift. The cornerstones of management include: correction of hypovolaemia; maintenance of organ perfusion; prompt treatment of diabetes insipidus; corticosteroid therapy; and lung protective ventilation. The interventions used to deliver these goals are largely based on pathophysiological rationale or extrapolations from general critical care patients. There is currently insufficient high-quality evidence that has assessed whether any interventions in the donor after brain death may actually improve immediate post-transplant function and long-term graft survival or recipient survival after transplantation. Improvements in our understanding of the underlying mechanisms following brain death, in particular the role of immunological and metabolic changes in donors, offer promising future therapeutic opportunities to increase organ utilisation. Establishing a UK donor management research programme involves consideration of ethical, logistical and legal issues that will benefit transplanted patients while respecting the wishes of donors and their families.
Collapse
Affiliation(s)
- K D Bera
- Oxford Biomedical Research Centre and Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - A Shah
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Nuffield Department of Anaesthesia, John Radcliffe Hospital, Oxford, UK
| | - M R English
- University of Oxford Medical School, Oxford, UK
| | - D Harvey
- Department of Intensive Care Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - R J Ploeg
- Nuffield Department of Surgical Sciences and Oxford Biomedical Research Centre, University of Oxford, UK
| |
Collapse
|
41
|
Cammarota G, Verdina F, Lauro G, Boniolo E, Tarquini R, Messina A, De Vita N, Sguazzoti I, Perucca R, Corte FD, Vignazia GL, Grossi F, Crudo S, Navalesi P, Santangelo E, Vaschetto R. Neurally adjusted ventilatory assist preserves cerebral blood flow velocity in patients recovering from acute brain injury. J Clin Monit Comput 2020; 35:627-636. [PMID: 32388653 PMCID: PMC7223974 DOI: 10.1007/s10877-020-00523-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
Neurally adjusted ventilatory assist (NAVA) has never been applied in patients recovering from acute brain injury (ABI) because neural respiratory drive could be affected by intracranial disease with detrimental effects on cerebral blood flow (CBF) velocity. Our primary aim was to assess the impact of NAVA and pressure support ventilation (PSV) on CBF velocity. In fifteen adult patients recovering from ABI and undergoing invasive assisted ventilation, PSV and NAVA were applied over 30-min-lasting trials, in the following sequence: PSV1, NAVA, and PSV2. While PSV was set to deliver a tidal volume ranging between 6 and 8 ml kg−1 of predicted body weight, in NAVA the level of assistance was chosen to achieve the same inspiratory peak airway pressure as PSV. At the end of each trial, a sonographic evaluation of CBF mean velocity was bilaterally obtained on the middle cerebral artery and an arterial blood gas sample was taken for analysis. CBF mean velocity was 51.8 [41.9,75.2] cm s−1 at baseline, 51.9 [43.4,71.0] cm s−1 in PSV1, 53.6 [40.7,67.7] cm s−1 in NAVA, and 49.5 [42.1,70.8] cm s−1 in PSV2 (p = 0.0514) on the left and 50.2 [38.0,77.7] cm s−1 at baseline, 47.8 [41.7,68.2] cm s−1 in PSV1, 53.9 [40.1,78.5] cm s−1 in NAVA, and 55.6 [35.9,74.1] cm s−1 in PSV2 (p = 0.8240) on the right side. No differences were detected for pH (p = 0.0551), arterial carbon dioxide tension (p = 0.8142), and oxygenation (p = 0.0928) over the entire study duration. NAVA and PSV preserved CBF velocity in patients recovering from ABI. Trial registration: The present trial was prospectively registered at www.clinicatrials.gov (NCT03721354) on October 18th, 2018.
Collapse
Affiliation(s)
- Gianmaria Cammarota
- Department of Anesthesiology and Intensive Care, Azienda Ospedaliero-Universitaria "Maggiore Della Carità", Corso Mazzini18, 28100, Novara, Italy.
| | - Federico Verdina
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Gianluigi Lauro
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Ester Boniolo
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Riccardo Tarquini
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Antonio Messina
- Humanitas Clinical and Research Center - IRCCS, Rozzano, MI, Italy
| | - Nello De Vita
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Ilaria Sguazzoti
- Department of Anesthesiology and Intensive Care, Azienda Ospedaliero-Universitaria "Maggiore Della Carità", Corso Mazzini18, 28100, Novara, Italy
| | - Raffaella Perucca
- Department of Anesthesiology and Intensive Care, Azienda Ospedaliero-Universitaria "Maggiore Della Carità", Corso Mazzini18, 28100, Novara, Italy
| | - Francesco Della Corte
- Department of Anesthesiology and Intensive Care, Azienda Ospedaliero-Universitaria "Maggiore Della Carità", Corso Mazzini18, 28100, Novara, Italy.,Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Gian Luca Vignazia
- Department of Anesthesiology and Intensive Care, Azienda Ospedaliero-Universitaria "Maggiore Della Carità", Corso Mazzini18, 28100, Novara, Italy
| | - Francesca Grossi
- Department of Anesthesiology and Intensive Care, Azienda Ospedaliero-Universitaria "Maggiore Della Carità", Corso Mazzini18, 28100, Novara, Italy
| | - Samuele Crudo
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Paolo Navalesi
- Department of Medicine, University of Padua, Padua, Italy
| | - Erminio Santangelo
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Rosanna Vaschetto
- Department of Anesthesiology and Intensive Care, Azienda Ospedaliero-Universitaria "Maggiore Della Carità", Corso Mazzini18, 28100, Novara, Italy.,Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
42
|
Quiñones-Ossa GA, Durango-Espinosa YA, Padilla-Zambrano H, Ruiz J, Moscote-Salazar LR, Galwankar S, Gerber J, Hollandx R, Ghosh A, Pal R, Agrawal A. Current Status of Indications, Timing, Management, Complications, and Outcomes of Tracheostomy in Traumatic Brain Injury Patients. J Neurosci Rural Pract 2020; 11:222-229. [PMID: 32367975 PMCID: PMC7195963 DOI: 10.1055/s-0040-1709971] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tracheostomy is the commonest bedside surgical procedure performed on patients needing mechanical ventilation with traumatic brain injury (TBI). The researchers made an effort to organize a narrative review of the indications, timing, management, complications, and outcomes of tracheostomy in relation to neuronal and brain-injured patients following TBI. The study observations were collated from the published literature, namely original articles, book chapters, case series, randomized studies, systematic reviews, and review articles. Information sorting was restricted to tracheostomy and its association with TBI. Care was taken to review the correlation of tracheostomy with clinical correlates including indications, scheduling, interventions, prognosis, and complications of the patients suffering from mild, moderate and severe TBIs using Glasgow Coma Scale, Glasgow Outcome Scale, intraclass correlation coefficient, and other internationally acclaimed outcome scales. Tracheostomy is needed to overcome airway obstruction, prolonged respiratory failure and as indispensable component of mechanical ventilation due to diverse reasons in intensive care unit. Researchers are divided over early tracheostomy or late tracheostomy from days to weeks. The conventional classic surgical technique of tracheostomy has been superseded by percutaneous techniques by being less invasive with lesser complications, classified into early and late complications that may be life threatening. Additional studies have to be conducted to validate and streamline varied observations to frame evidence-based practice for successful weaning and decannulation. Tracheostomy is a safer option in critically ill TBI patients for which a universally accepted protocol for tracheostomy is needed that can help to optimize indications and outcomes.
Collapse
Affiliation(s)
| | - Y A Durango-Espinosa
- Cartagena Neurotrauma Research Group Research Line, Faculty of Medicine, University of Cartagena, Cartagena de Indias, Colombia
| | - H Padilla-Zambrano
- Center for Biomedical Research (CIB), Cartagena Neurotrauma Research Group Research Line, Faculty of Medicine, University of Cartagena, Cartagena de Indias, Colombia
| | - Jenny Ruiz
- Cartagena Neurotrauma Research Group Research Line, Faculty of Medicine, University of Cartagena, Cartagena de Indias, Colombia
| | - Luis Rafael Moscote-Salazar
- Center for Biomedical Research (CIB), Faculty of Medicine - University of Cartagena, Cartagena Colombia, CLaNi- Latin American Council of Neurocritical Care, Cartagena, Colombia
| | - S Galwankar
- Department of Emergency Medicine, Sarasota Memorial Hospital, Florida State University, Florida, United States
| | - J Gerber
- Department of Emergency Medicine, Sarasota Memorial Hospital, Florida State University, Florida, United States
| | - R Hollandx
- Department of Emergency Medicine, Sarasota Memorial Hospital, Florida State University, Florida, United States
| | - Amrita Ghosh
- Department of Biochemistry, Medical College, Kolkata, India
| | - R Pal
- Department of Community Medicine, MGM Medical College & LSK Hospital, Kishanganj, Bihar, India
| | - Amit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| |
Collapse
|
43
|
Pitoni S, D'Arrigo S, Grieco DL, Idone FA, Santantonio MT, Di Giannatale P, Ferrieri A, Natalini D, Eleuteri D, Jonson B, Antonelli M, Maggiore SM. Tidal Volume Lowering by Instrumental Dead Space Reduction in Brain-Injured ARDS Patients: Effects on Respiratory Mechanics, Gas Exchange, and Cerebral Hemodynamics. Neurocrit Care 2020; 34:21-30. [PMID: 32323146 PMCID: PMC7224122 DOI: 10.1007/s12028-020-00969-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Limiting tidal volume (VT), plateau pressure, and driving pressure is essential during the acute respiratory distress syndrome (ARDS), but may be challenging when brain injury coexists due to the risk of hypercapnia. Because lowering dead space enhances CO2 clearance, we conducted a study to determine whether and to what extent replacing heat and moisture exchangers (HME) with heated humidifiers (HH) facilitate safe VT lowering in brain-injured patients with ARDS. Methods Brain-injured patients (head trauma or spontaneous cerebral hemorrhage with Glasgow Coma Scale at admission < 9) with mild and moderate ARDS received three ventilatory strategies in a sequential order during continuous paralysis: (1) HME with VT to obtain a PaCO2 within 30–35 mmHg (HME1); (2) HH with VT titrated to obtain the same PaCO2 (HH); and (3) HME1 settings resumed (HME2). Arterial blood gases, static and quasi-static respiratory mechanics, alveolar recruitment by multiple pressure–volume curves, intracranial pressure, cerebral perfusion pressure, mean arterial pressure, and mean flow velocity in the middle cerebral artery by transcranial Doppler were recorded. Dead space was measured and partitioned by volumetric capnography. Results Eighteen brain-injured patients were studied: 7 (39%) had mild and 11 (61%) had moderate ARDS. At inclusion, median [interquartile range] PaO2/FiO2 was 173 [146–213] and median PEEP was 8 cmH2O [5–9]. HH allowed to reduce VT by 120 ml [95% CI: 98–144], VT/kg predicted body weight by 1.8 ml/kg [95% CI: 1.5–2.1], plateau pressure and driving pressure by 3.7 cmH2O [2.9–4.3], without affecting PaCO2, alveolar recruitment, and oxygenation. This was permitted by lower airway (− 84 ml [95% CI: − 79 to − 89]) and total dead space (− 86 ml [95% CI: − 73 to − 98]). Sixteen patients (89%) showed driving pressure equal or lower than 14 cmH2O while on HH, as compared to 7 (39%) and 8 (44%) during HME1 and HME2 (p < 0.001). No changes in mean arterial pressure, cerebral perfusion pressure, intracranial pressure, and middle cerebral artery mean flow velocity were documented during HH. Conclusion The dead space reduction provided by HH allows to safely reduce VT without modifying PaCO2 nor cerebral perfusion. This permits to provide a wider proportion of brain-injured ARDS patients with less injurious ventilation.
Collapse
Affiliation(s)
- Sara Pitoni
- Department of Anesthesiology and Intensive Care, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Sonia D'Arrigo
- Department of Anesthesiology and Intensive Care, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Domenico Luca Grieco
- Department of Anesthesiology and Intensive Care, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Francesco Antonio Idone
- Department of Anesthesiology and Intensive Care, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Maria Teresa Santantonio
- Department of Anesthesiology and Intensive Care, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Pierluigi Di Giannatale
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS. Annunziata Hospital, Gabriele d'Annunzio University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Alessandro Ferrieri
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS. Annunziata Hospital, Gabriele d'Annunzio University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Daniele Natalini
- Department of Anesthesiology and Intensive Care, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Davide Eleuteri
- Department of Anesthesiology and Intensive Care, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Bjorn Jonson
- Clinical Physiology, Skane University Hospital, 221 85, Lund, Sweden
| | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Salvatore Maurizio Maggiore
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS. Annunziata Hospital, Gabriele d'Annunzio University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy.
| |
Collapse
|
44
|
Picetti E, Pelosi P, Taccone FS, Citerio G, Mancebo J, Robba C. VENTILatOry strategies in patients with severe traumatic brain injury: the VENTILO Survey of the European Society of Intensive Care Medicine (ESICM). CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:158. [PMID: 32303255 PMCID: PMC7165367 DOI: 10.1186/s13054-020-02875-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Background Severe traumatic brain injury (TBI) patients often develop acute respiratory failure. Optimal ventilator strategies in this setting are not well established. We performed an international survey to investigate the practice in the ventilatory management of TBI patients with and without respiratory failure. Methods An electronic questionnaire, including 38 items and 3 different clinical scenarios [arterial partial pressure of oxygen (PaO2)/inspired fraction of oxygen (FiO2) > 300 (scenario 1), 150–300 (scenario 2), < 150 (scenario 3)], was available on the European Society of Intensive Care Medicine (ESICM) website between November 2018 and March 2019. The survey was endorsed by ESICM. Results There were 687 respondents [472 (69%) from Europe], mainly intensivists [328 (48%)] and anesthesiologists [206 (30%)]. A standard protocol for mechanical ventilation in TBI patients was utilized by 277 (40%) respondents and a specific weaning protocol by 198 (30%). The most common tidal volume (TV) applied was 6–8 ml/kg of predicted body weight (PBW) in scenarios 1–2 (72% PaO2/FIO2 > 300 and 61% PaO2/FiO2 150–300) and 4–6 ml/kg/PBW in scenario 3 (53% PaO2/FiO2 < 150). The most common level of highest positive end-expiratory pressure (PEEP) used was 15 cmH2O in patients with a PaO2/FiO2 ≤ 300 without intracranial hypertension (41% if PaO2/FiO2 150–300 and 50% if PaO2/FiO2 < 150) and 10 cmH2O in patients with intracranial hypertension (32% if PaO2/FiO2 150–300 and 33% if PaO2/FiO2 < 150). Regardless of the presence of intracranial hypertension, the most common carbon dioxide target remained 36–40 mmHg whereas the most common PaO2 target was 81–100 mmHg in all the 3 scenarios. The most frequent rescue strategies utilized in case of refractory respiratory failure despite conventional ventilator settings were neuromuscular blocking agents [406 (88%)], recruitment manoeuvres [319 (69%)] and prone position [292 (63%)]. Conclusions Ventilatory management, targets and practice of adult severe TBI patients with and without respiratory failure are widely different among centres. These findings may be helpful to define future investigations in this topic.
Collapse
Affiliation(s)
- Edoardo Picetti
- Department of Anesthesia and Intensive Care, Parma University Hospital, Via Gramsci 14, 43100, Parma, Italy.
| | - Paolo Pelosi
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan - Bicocca, Monza, Italy
| | - Jordi Mancebo
- Department of Intensive Care, Sant Pau Hospital, Barcelona, Spain
| | - Chiara Robba
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | | |
Collapse
|
45
|
Robba C, Hemmes SNT, Serpa Neto A, Bluth T, Canet J, Hiesmayr M, Hollmann MW, Mills GH, Vidal Melo MF, Putensen C, Jaber S, Schmid W, Severgnini P, Wrigge H, Battaglini D, Ball L, Gama de Abreu M, Schultz MJ, Pelosi P. Intraoperative ventilator settings and their association with postoperative pulmonary complications in neurosurgical patients: post-hoc analysis of LAS VEGAS study. BMC Anesthesiol 2020; 20:73. [PMID: 32241266 PMCID: PMC7114790 DOI: 10.1186/s12871-020-00988-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Limited information is available regarding intraoperative ventilator settings and the incidence of postoperative pulmonary complications (PPCs) in patients undergoing neurosurgical procedures. The aim of this post-hoc analysis of the 'Multicentre Local ASsessment of VEntilatory management during General Anaesthesia for Surgery' (LAS VEGAS) study was to examine the ventilator settings of patients undergoing neurosurgical procedures, and to explore the association between perioperative variables and the development of PPCs in neurosurgical patients. METHODS Post-hoc analysis of LAS VEGAS study, restricted to patients undergoing neurosurgery. Patients were stratified into groups based on the type of surgery (brain and spine), the occurrence of PPCs and the assess respiratory risk in surgical patients in Catalonia (ARISCAT) score risk for PPCs. RESULTS Seven hundred eighty-four patients were included in the analysis; 408 patients (52%) underwent spine surgery and 376 patients (48%) brain surgery. Median tidal volume (VT) was 8 ml [Interquartile Range, IQR = 7.3-9] per predicted body weight; median positive end-expiratory pressure (PEEP) was 5 [3 to 5] cmH20. Planned recruitment manoeuvres were used in the 6.9% of patients. No differences in ventilator settings were found among the sub-groups. PPCs occurred in 81 patients (10.3%). Duration of anaesthesia (odds ratio, 1.295 [95% confidence interval 1.067 to 1.572]; p = 0.009) and higher age for the brain group (odds ratio, 0.000 [0.000 to 0.189]; p = 0.031), but not intraoperative ventilator settings were independently associated with development of PPCs. CONCLUSIONS Neurosurgical patients are ventilated with low VT and low PEEP, while recruitment manoeuvres are seldom applied. Intraoperative ventilator settings are not associated with PPCs.
Collapse
Affiliation(s)
- Chiara Robba
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Largo Rosanna Benzi 8, 16131, Genoa, Italy.
| | - Sabrine N T Hemmes
- Department of Intensive Care, Amsterdam University Medical Centers, location 'AMC', Amsterdam, The Netherlands.,Department of Anaesthesiology, Amsterdam University Medical Centers, location 'AMC', Amsterdam, The Netherlands
| | - Ary Serpa Neto
- Department of Intensive Care, Amsterdam University Medical Centers, location 'AMC', Amsterdam, The Netherlands.,Department of Critical Care Medicine, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Thomas Bluth
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary engineering group, University Hospital Carl Gustav Carus, Technische Universitat Dresden, Dresden, Germany
| | - Jaume Canet
- Department of Anaesthesiology and Postoperative Care, Hospital Universitari Germans Trials I Pujol, Barcelona, Spain
| | - Michael Hiesmayr
- Division Cardiac, Thoracic, Vascular Anesthesia and Intensive Care, Medical University Vienna, Vienna, Austria
| | - M Wiersma Hollmann
- Department of Anaesthesiology, Amsterdam University Medical Centers, location 'AMC', Amsterdam, The Netherlands
| | - Gary H Mills
- Operating Services, Critical Care and Anaesthesia, Sheffield Teaching Hospitals and University of Sheffield, Sheffield, UK
| | - Marcos F Vidal Melo
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachussetts General Hospital, Boston, MA, USA
| | - Christian Putensen
- Department of Anesthesiology and Intenisve Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Samir Jaber
- Department of Anaesthesia and Intensive Care, Saint Eloi Montpellier University Hospital, and PhyMedExp, University of Montpellier, Montpellier, France
| | - Werner Schmid
- Division Cardiac, Thoracic, Vascular Anesthesia and Intensive Care, Medical University Vienna, Vienna, Austria
| | - Paolo Severgnini
- Department of Biotechnology and Sciences of Life, ASST-Setteleghi Ospedale di circolo e Fondazione Macchi, University of Insubria, Varese, Italy
| | - Hermann Wrigge
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig, Germany
| | - Denise Battaglini
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Largo Rosanna Benzi 8, 16131, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Lorenzo Ball
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Largo Rosanna Benzi 8, 16131, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Marcelo Gama de Abreu
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary engineering group, University Hospital Carl Gustav Carus, Technische Universitat Dresden, Dresden, Germany
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, location 'AMC', Amsterdam, The Netherlands.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
| | - Paolo Pelosi
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Largo Rosanna Benzi 8, 16131, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | | | | |
Collapse
|
46
|
Schaefer MS, Serpa Neto A, Pelosi P, Gama de Abreu M, Kienbaum P, Schultz MJ, Meyer-Treschan TA. Temporal Changes in Ventilator Settings in Patients With Uninjured Lungs: A Systematic Review. Anesth Analg 2020; 129:129-140. [PMID: 30222649 DOI: 10.1213/ane.0000000000003758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In patients with uninjured lungs, increasing evidence indicates that tidal volume (VT) reduction improves outcomes in the intensive care unit (ICU) and in the operating room (OR). However, the degree to which this evidence has translated to clinical changes in ventilator settings for patients with uninjured lungs is unknown. To clarify whether ventilator settings have changed, we searched MEDLINE, Cochrane Central Register of Controlled Trials, and Web of Science for publications on invasive ventilation in ICUs or ORs, excluding those on patients <18 years of age or those with >25% of patients with acute respiratory distress syndrome (ARDS). Our primary end point was temporal change in VT over time. Secondary end points were changes in maximum airway pressure, mean airway pressure, positive end-expiratory pressure, inspiratory oxygen fraction, development of ARDS (ICU studies only), and postoperative pulmonary complications (OR studies only) determined using correlation analysis and linear regression. We identified 96 ICU and 96 OR studies comprising 130,316 patients from 1975 to 2014 and observed that in the ICU, VT size decreased annually by 0.16 mL/kg (-0.19 to -0.12 mL/kg) (P < .001), while positive end-expiratory pressure increased by an average of 0.1 mbar/y (0.02-0.17 mbar/y) (P = .017). In the OR, VT size decreased by 0.09 mL/kg per year (-0.14 to -0.04 mL/kg per year) (P < .001). The change in VTs leveled off in 1995. Other intraoperative ventilator settings did not change in the study period. Incidences of ARDS (ICU studies) and postoperative pulmonary complications (OR studies) also did not change over time. We found that, during a 39-year period, from 1975 to 2014, VTs in clinical studies on mechanical ventilation have decreased significantly in the ICU and in the OR.
Collapse
Affiliation(s)
- Maximilian S Schaefer
- From the Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Ary Serpa Neto
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Program of Post-Graduation, Innovation and Research, Faculdade de Medicina do ABC, Santo Andre, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, San Martino Policlinico Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology, Genoa, Italy
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Therapy, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Peter Kienbaum
- From the Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Marcus J Schultz
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, the Netherlands
| | | |
Collapse
|
47
|
Shao XF, Li B, Shen J, Wang QF, Chen SS, Jiang XC, Qiang D. Ghrelin alleviates traumatic brain injury-induced acute lung injury through pyroptosis/NF-κB pathway. Int Immunopharmacol 2020; 79:106175. [PMID: 31918060 DOI: 10.1016/j.intimp.2019.106175] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/22/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022]
Abstract
Acute lung injury (ALI) is one of the severe complications in patients with traumatic brain injury (TBI), contributing to the high mortality. Ghrelin has protective effects against various inflammatory diseases, but the effects of Ghrelin on TBI-induced ALI and its mechanisms remain unknown. In this study, Ghrelin administration was performed on the mice with TBI, then histological change in cortex and lung tissues, lung vascular permeability and macrophage number in bronchoalveolar lavage fluid (BALF) were examined, respectively. Simultaneously, the alterations of proinflammatory factors and pyroptosis-related proteins in lung tissues were detected. As a result, TBI-induced ALI was ameliorated after Ghrelin treatment, which was demonstrated by improved histology, reduced lung vascular permeability, and peripheral macrophage number. Furthermore, Ghrelin decreased the mRNA levels of proinflammatory factors (IL-1β, IL-6, TNF-α and IL-18), the protein levels of pyroptosis-related proteins (NLRP3, Caspase1-P20, HMGB1 and Gasdermin D), and the phosphorylation levels of NF-κB in lung tissues. These results showed that Ghrelin attenuating TBI-induced ALI might be via ameliorating inflammasome-induced pyroptosis by blocking NF-κB signal, which are important for the prevention and treatment of TBI-induced ALI.
Collapse
Affiliation(s)
- Xue-Fei Shao
- Department of Neurosurgery, Yi Ji Shan Hospital of Wannan Medical College, Wuhu, China.
| | - Bo Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Shen
- Department of Neurosurgery, Yi Ji Shan Hospital of Wannan Medical College, Wuhu, China
| | - Qi-Fu Wang
- Department of Neurosurgery, Yi Ji Shan Hospital of Wannan Medical College, Wuhu, China
| | - San-Song Chen
- Department of Neurosurgery, Yi Ji Shan Hospital of Wannan Medical College, Wuhu, China
| | - Xiao-Chun Jiang
- Department of Neurosurgery, Yi Ji Shan Hospital of Wannan Medical College, Wuhu, China
| | - Di Qiang
- Department of Dermatology and STD, Yi-Ji Shan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
48
|
Ziaka M, Makris D, Fotakopoulos G, Tsilioni I, Befani C, Liakos P, Zygoulis P, Zakynthinos E. High-Tidal-Volume Mechanical Ventilation and Lung Inflammation in Intensive Care Patients With Normal Lungs. Am J Crit Care 2020; 29:15-21. [PMID: 31968080 DOI: 10.4037/ajcc2020161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND This study was conducted to investigate whether high-tidal-volume mechanical ventilation is associated with increased lung inflammation compared with low-tidal-volume mechanical ventilation in critically ill patients with no evidence of lung injury. METHODS In this prospective, single-blind, randomized (1:1), parallel-group study, 18 critically ill patients with normal lungs were randomly assigned to receive mechanical ventilation with a tidal volume of either 6 mL/kg (low tidal volume) or 12 mL/kg (high tidal volume) during the first 4 days in the intensive care unit. RESULTS At baseline and at 24, 48, and 96 hours, exhaled breath condensate was collected to measure interleukin 1β, interleukin 10, tumor necrosis factor α, and total nitric oxide metabolites. Interleukin 1β levels in exhaled breath condensate were significantly increased at 24 hours compared with baseline in the high-tidal-volume group but not in the low-tidal-volume group. The interleukin 1β increase in the high-tidal-volume group was transient. Exhaled breath condensate levels of interleukin 1β, interleukin 10, tumor necrosis factor α, and total nitric oxide metabolites did not differ significantly between the high-tidal-volume and low-tidal-volume groups at any time point. CONCLUSION Short-term mechanical ventilation with a tidal volume of 12 mL/kg may trigger inflammatory responses in the lungs of intensive care unit patients without preexisting lung injury.
Collapse
Affiliation(s)
- Mairi Ziaka
- Mairi Ziaka is associate director, Department of Internal Medicine, Clinic Barmelweid, Switzerland, and lecturer, School of Dentistry, Danube Private University, Krems, Austria; during the study, she was specialized in intensive care medicine, Critical Care Department, University of Thessaly, Larissa, Greece
| | | | - George Fotakopoulos
- George Fotakopoulos is a neurosurgeon academic fellow, Department of Neurosurgery, University of Thessaly
| | - Irini Tsilioni
- Irini Tsilioni, Christina Befani, and Paris Zygoulis are physicians
| | - Christina Befani
- Irini Tsilioni, Christina Befani, and Paris Zygoulis are physicians
| | | | - Paris Zygoulis
- Irini Tsilioni, Christina Befani, and Paris Zygoulis are physicians
| | - Epaminondas Zakynthinos
- Epaminondas Zakynthinos is a professor and director; Intensive Care Medicine, Critical Care Department, University of Thessaly
| |
Collapse
|
49
|
Sasannejad C, Ely EW, Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:352. [PMID: 31718695 PMCID: PMC6852966 DOI: 10.1186/s13054-019-2626-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
Abstract
Acute respiratory distress syndrome (ARDS) survivors experience a high prevalence of cognitive impairment with concomitantly impaired functional status and quality of life, often persisting months after hospital discharge. In this review, we explore the pathophysiological mechanisms underlying cognitive impairment following ARDS, the interrelations between mechanisms and risk factors, and interventions that may mitigate the risk of cognitive impairment. Risk factors for cognitive decline following ARDS include pre-existing cognitive impairment, neurological injury, delirium, mechanical ventilation, prolonged exposure to sedating medications, sepsis, systemic inflammation, and environmental factors in the intensive care unit, which can co-occur synergistically in various combinations. Detection and characterization of pre-existing cognitive impairment imparts challenges in clinical management and longitudinal outcome study enrollment. Patients with brain injury who experience ARDS constitute a distinct population with a particular combination of risk factors and pathophysiological mechanisms: considerations raised by brain injury include neurogenic pulmonary edema, differences in sympathetic activation and cholinergic transmission, effects of positive end-expiratory pressure on cerebral microcirculation and intracranial pressure, and sensitivity to vasopressor use and volume status. The blood-brain barrier represents a physiological interface at which multiple mechanisms of cognitive impairment interact, as acute blood-brain barrier weakening from mechanical ventilation and systemic inflammation can compound existing chronic blood-brain barrier dysfunction from Alzheimer’s-type pathophysiology, rendering the brain vulnerable to both amyloid-beta accumulation and cytokine-mediated hippocampal damage. Although some contributory elements, such as the presenting brain injury or pre-existing cognitive impairment, may be irreversible, interventions such as minimizing mechanical ventilation tidal volume, minimizing duration of exposure to sedating medications, maintaining hemodynamic stability, optimizing fluid balance, and implementing bundles to enhance patient care help dramatically to reduce duration of delirium and may help prevent acquisition of long-term cognitive impairment.
Collapse
Affiliation(s)
- Cina Sasannejad
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - E Wesley Ely
- Critical Illness, Brain Dysfunction, Survivorship (CIBS) Center, Department of Pulmonary and Critical Care Medicine, Veteran's Affairs Tennessee Valley Geriatric Research Education and Clinical Center (GRECC), Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shouri Lahiri
- Division of Neurocritical Care, Department of Neurology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA. .,Division of Neurocritical Care, Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA. .,Division of Neurocritical Care, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA.
| |
Collapse
|
50
|
Ziebart A, Schaefer MM, Thomas R, Kamuf J, Garcia-Bardon A, Möllmann C, Ruemmler R, Heid F, Schad A, Hartmann EK. Random allogeneic blood transfusion in pigs: characterisation of a novel experimental model. PeerJ 2019; 7:e7439. [PMID: 31440432 PMCID: PMC6699485 DOI: 10.7717/peerj.7439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/08/2019] [Indexed: 12/29/2022] Open
Abstract
Background Organ cross-talk describes interactions between a primary affected organ and a secondarily injured remote organ, particularly in lung-brain interactions. A common theory is the systemic distribution of inflammatory mediators that are released by the affected organ and transferred through the bloodstream. The present study characterises the baseline immunogenic effects of a novel experimental model of random allogeneic blood transfusion in pigs designed to analyse the role of the bloodstream in organ cross-talk. Methods After approval of the State and Institutional Animal Care Committee, 20 anesthetized pig were randomized in a donor and an acceptor (each n = 8): the acceptor animals each received high-volume whole blood transfusion from the donor (35–40 ml kg−1). Four animals received balanced electrolyte solution instead of blood transfusion (control group; n = 4). Afterwards the animals underwent extended cardiorespiratory monitoring for eight hours. Post mortem assessment included pulmonary, cerebral and systemic mediators of early inflammatory response (IL-6, TNF-alpha, iNOS), wet to dry ratio, and lung histology. Results No adverse events or incompatibilities occurred during the blood transfusion procedures. Systemic cytokine levels and pulmonary function were unaffected. Lung histopathology scoring did not display relevant intergroup differences. Neither within the lung nor within the brain an up-regulation of inflammatory mediators was detected. High volume random allogeneic blood transfusion in pigs neither impaired pulmonary integrity nor induced systemic, lung, or brain inflammatory response. Conclusion This approach can represent a novel experimental model to characterize the blood-bound transmission in remote organ injury.
Collapse
Affiliation(s)
- Alexander Ziebart
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Moritz M Schaefer
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Rainer Thomas
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Jens Kamuf
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Andreas Garcia-Bardon
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Christian Möllmann
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Robert Ruemmler
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Florian Heid
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Arno Schad
- Institute of Pathology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Erik K Hartmann
- Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|