1
|
Guo Q, Li J, Wang Z, Wu X, Jin Z, Zhu S, Li H, Zhang D, Hu W, Xu H, Yang L, Shi L, Wang Y. Potassium dehydroandrographolide succinate regulates the MyD88/CDH13 signaling pathway to enhance vascular injury-induced pathological vascular remodeling. Chin J Nat Med 2024; 22:62-74. [PMID: 38278560 DOI: 10.1016/s1875-5364(24)60562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Indexed: 01/28/2024]
Abstract
Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.
Collapse
Affiliation(s)
- Qiru Guo
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Jiali Li
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Zheng Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Xiao Wu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Zhong Jin
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Song Zhu
- Chengdu University of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Hongfei Li
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Delai Zhang
- Chengdu University of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Wangming Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Huan Xu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Lan Yang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Liangqin Shi
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Yong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China.
| |
Collapse
|
2
|
Zarkasi KA, Abdullah N, Abdul Murad NA, Ahmad N, Jamal R. Genetic Factors for Coronary Heart Disease and Their Mechanisms: A Meta-Analysis and Comprehensive Review of Common Variants from Genome-Wide Association Studies. Diagnostics (Basel) 2022; 12:2561. [PMID: 36292250 PMCID: PMC9601486 DOI: 10.3390/diagnostics12102561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) have discovered 163 loci related to coronary heart disease (CHD). Most GWAS have emphasized pathways related to single-nucleotide polymorphisms (SNPs) that reached genome-wide significance in their reports, while identification of CHD pathways based on the combination of all published GWAS involving various ethnicities has yet to be performed. We conducted a systematic search for articles with comprehensive GWAS data in the GWAS Catalog and PubMed, followed by a meta-analysis of the top recurring SNPs from ≥2 different articles using random or fixed-effect models according to Cochran Q and I2 statistics, and pathway enrichment analysis. Meta-analyses showed significance for 265 of 309 recurring SNPs. Enrichment analysis returned 107 significant pathways, including lipoprotein and lipid metabolisms (rs7412, rs6511720, rs11591147, rs1412444, rs11172113, rs11057830, rs4299376), atherogenesis (rs7500448, rs6504218, rs3918226, rs7623687), shared cardiovascular pathways (rs72689147, rs1800449, rs7568458), diabetes-related pathways (rs200787930, rs12146487, rs6129767), hepatitis C virus infection/hepatocellular carcinoma (rs73045269/rs8108632, rs56062135, rs188378669, rs4845625, rs11838776), and miR-29b-3p pathways (rs116843064, rs11617955, rs146092501, rs11838776, rs73045269/rs8108632). In this meta-analysis, the identification of various genetic factors and their associated pathways associated with CHD denotes the complexity of the disease. This provides an opportunity for the future development of novel CHD genetic risk scores relevant to personalized and precision medicine.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Biochemistry Unit, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (UPNM), Kuala Lumpur 57000, Malaysia
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Norfazilah Ahmad
- Epidemiology and Statistics Unit, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Rubina KA, Semina EV, Kalinina NI, Sysoeva VY, Balatskiy AV, Tkachuk VA. Revisiting the multiple roles of T-cadherin in health and disease. Eur J Cell Biol 2021; 100:151183. [PMID: 34798557 DOI: 10.1016/j.ejcb.2021.151183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023] Open
Abstract
As a non-canonical member of cadherin superfamily, T-cadherin was initially described as a molecule involved in homophilic recognition in the nervous and vascular systems. The ensuing decades clearly demonstrated that T-cadherin is a remarkably multifunctional molecule. It was validated as a bona fide receptor for both: LDL exerting adverse atherogenic action and adiponectin mediating many protective metabolic and cardiovascular effects. Motivated by the latest progress and accumulated data unmasking important roles of T-cadherin in blood vessel function and tissue regeneration, here we revisit the original function of T-cadherin as a guidance receptor for the growing axons and blood vessels, consider the recent data on T-cadherin-induced exosomes' biogenesis and their role in myocardial regeneration and revascularization. The review expands upon T-cadherin contribution to mesenchymal stem/stromal cell compartment in adipose tissue. We also dwell upon T-cadherin polymorphisms (SNP) and their possible therapeutic applications. Furthermore, we scrutinize the molecular hub of insulin and adiponectin receptors (AdipoR1 and AdipoR2) conveying signals to their downstream targets in quest for defining a putative place of T-cadherin in this molecular circuitry.
Collapse
Affiliation(s)
- K A Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia.
| | - E V Semina
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - N I Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - V Yu Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - A V Balatskiy
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - V A Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| |
Collapse
|
4
|
T-Cadherin and the Ratio of Its Ligands as Predictors of Carotid Atherosclerosis: A Pilot Study. Biomedicines 2021; 9:biomedicines9101398. [PMID: 34680515 PMCID: PMC8533356 DOI: 10.3390/biomedicines9101398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/27/2022] Open
Abstract
In the cardiovascular system, atherogenic low-density lipoproteins (LDL) and the protective hormone adiponectin bind to the same receptor, T-cadherin. In this study, we tested the hypothesis that the ratio of circulating LDL to high-molecular weight (HMW) adiponectin could predict the development of atherosclerosis. Using enzyme-linked immunosorbent assay, we measured the level of circulating HMW adiponectin in the blood of donors together with ultrasound measuring of intima-media thickness (IMT) of carotid arteries. Single-nucleotide polymorphisms in the T-cadherin gene were identified using polymerase chain reaction. We found that carotid artery IMT is inversely correlated with the level of HMW in male subjects. We also found that the G allele of rs12444338 SNP in the T-cadherin gene correlates with a lower level of circulating T-cadherin and thinner IMT and therefore could be considered as an atheroprotective genotype. Despite our data, we could not provide direct evidence for the initial study hypothesis. However, we did uncover an important correlation between circulating T-cadherin and thinner carotid IMT.
Collapse
|
5
|
Lu Q, Huang Y, Wu J, Guan Y, Du M, Wang F, Liu Z, Zhu Y, Gong G, Hou H, Zhang M, Zhang JY, Ning F, Chen L, Wang L, Lash GE. T-cadherin inhibits invasion and migration of endometrial stromal cells in endometriosis. Hum Reprod 2021; 35:145-156. [PMID: 31886853 DOI: 10.1093/humrep/dez252] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/10/2019] [Indexed: 12/18/2022] Open
Abstract
STUDY QUESTION What is the expression level of T-cadherin in endometriosis, and does T-cadherin play a role in regulating invasion and migration of endometrial stromal cells? SUMMARY ANSWER T-cadherin expression was reduced in ectopic endometriotic lesions compared to eutopic endometrium, and T-cadherin overexpression inhibited the invasion and migration of endometrial stromal cells. WHAT IS KNOWN ALREADY Endometriosis is a disease that involves active cell invasion and migration. T-cadherin can inhibit cell invasion, migration and proliferation in various cancer cells, but its role in endometriosis has not been investigated. STUDY DESIGN, SIZE, DURATION We explored the expression status of T-cadherin in 40 patients with and 24 without endometriosis. We also isolated endometrial stromal cells to study the invasion, migration and signaling pathway regulation of T-cadherin overexpression. PARTICIPANTS/MATERIALS, SETTING, METHODS Patients were recruited at the Guangzhou Women and Children's Medical Center to study the expression levels of T-cadherin. The expression of T-cadherin was detected by immunohistochemistry staining and western blot. H-score was used to evaluate the staining intensity of T-cadherin. The correlation between T-cadherin expression levels (H-score) and endometriosis patients' age, stage, lesion size and adhesion was analyzed. Endometrial stromal cells from patients with and without endometriosis were isolated, and cell invasion and migration were detected by transwell assays after T-cadherin overexpression. The expression of vimentin in T-cadherin-overexpressed cells was detected by western blot. After T-cadherin overexpression, the phosphorylation profile of signaling pathway proteins was detected with the Proteome Profiler Human Phospho-Kinase Array Kit. MAIN RESULTS AND THE ROLE OF CHANCE There was no difference in the expression of T-cadherin in the normal endometrium of control patients and the eutopic endometrium of endometriotic patients, but it was significantly decreased in the ectopic endometrium of endometriotic patients, compared with control endometrium and eutopic endometrium of endometriosis patients (P < 0.0001, for both). Western blot analysis also showed that the expression of T-cadherin was decreased in ectopic endometriotic lesions, but not the normal control endometrium or the endometriotic eutopic endometrium. The results of transwell assays indicated that T-cadherin overexpression inhibited the invasion and migration of endometrial stromal cells. In addition, T-cadherin overexpression promoted the phosphorylation of HSP27 (S78/S82) and JNK 1/2/3 (T183/Y185, T221/Y223) and decreased the expression of vimentin, MMP2 and MMP9 in eutopic endometriosis stromal cells. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The control group were patients with benign gynecological conditions (e.g. uterus myoma, endometrial or cervical polyp), which may have genetic or epigenetic variations associated with T-cadherin expression and signaling pathways. The case numbers of involved endometriosis and control patients were limited. This study only used endometrial stromal cells from patients with or without endometriosis. Ideally, ectopic endometrial stromal cells of the ovarian endometriotic lesions should also be utilized to explore the function of T-cadherin. WIDER IMPLICATIONS OF THE FINDINGS Further investigation of the role of T-cadherin in endometriosis may generate new potential therapeutic targets for this complex disorder. STUDY FUNDING AND COMPETING INTEREST(S) This study was supported by the Natural Science Foundation of Guangdong Province (2016A030313495), National Natural Science Foundation of China (81702567, 81671406, 31871412), the Science and Technology Programs of Guangdong (2017A050501021), Medical Science Technology Research Fund of Guangdong Province (A2018075), the Science and Technology Programs of Guangzhou City (201704030103), Internal Project of Family Planning Research Institute of Guangdong Province (S2018004), Post-doc initiation fund of Guangzhou (3302) and Post-doc science research initiation fund of Guangzhou Women and Children's Medical Center (20160322). There are no conflicts of interest.
Collapse
Affiliation(s)
- Qinsheng Lu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, P.R. China
| | - Yanqing Huang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, P.R. China
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, Guangdong 510600, P.R. China
| | - Yutao Guan
- Department of Obstetrics and Gynecology, the First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Miaomiao Du
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, P.R. China
| | - Fenghua Wang
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Zhihong Liu
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, P.R. China
| | - Yali Zhu
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, P.R. China
| | - Guifang Gong
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, P.R. China
| | - Huomei Hou
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, P.R. China
| | - Min Zhang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, P.R. China
| | - Joy Yue Zhang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, P.R. China
| | - Fen Ning
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, P.R. China
| | - Lixin Chen
- Department of Physiology, Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Liwei Wang
- Department of Physiology, Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Gendie E Lash
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, P.R. China
| |
Collapse
|
6
|
The Missing Protein: Is T-Cadherin a Previously Unknown GPI-Anchored Receptor on Platelets? MEMBRANES 2021; 11:membranes11030218. [PMID: 33808741 PMCID: PMC8003554 DOI: 10.3390/membranes11030218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/01/2022]
Abstract
The membrane of platelets contains at least one uncharacterized glycosylphosphatidylinositol (GPI)-anchored protein according to the literature. Moreover, there is not enough knowledge on the receptor of low-density lipoproteins (LDL) mediating rapid Ca2+ signaling in platelets. Coincidentally, expression of a GPI-anchored protein T-cadherin increases LDL-induced Ca2+ signaling in nucleated cells. Here we showed evidence that supports the hypothesis about the presence of T-cadherin on platelets. The presence of T-cadherin on the surface of platelets and megakaryocytes was proven using antibodies whose specificity was tested on several negative and positive control cells by flow cytometry and confocal microscopy. Using phosphatidylinositol-specific phospholipase C, the presence of glycosylphosphatidylinositol anchor in the platelet T-cadherin form as well as in other known forms was confirmed. We showed by immunoblotting that the significant part of T-cadherin was detected in specific membrane domains (detergent Triton X-114 resistant) and the molecular weight of this newly identified protein was greater than that of T-cadherin from nucleated cells. Nevertheless, polymerase chain reaction data confirmed only the presence of isoform-1 of T-cadherin in platelets and megakaryocytes, which was also present in nucleated cells. We observed the redistribution of this newly identified protein after the activation of platelets, but only further work may explain its functional importance. Thus, our data described T-cadherin with some post-translational modifications as a new GPI-anchored protein on human platelets.
Collapse
|
7
|
Qiu Y, Zhou J, Zhang D, Song H, Qian L. Bile salt-dependent lipase promotes the barrier integrity of Caco-2 cells by activating Wnt/β-catenin signaling via LRP6 receptor. Cell Tissue Res 2020; 383:1077-1092. [PMID: 33245415 DOI: 10.1007/s00441-020-03316-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/30/2020] [Indexed: 01/13/2023]
Abstract
Bile salt-dependent lipase (BSDL) within intestinal lumen can be endocytosed by enterocytes and support the intestinal barrier function. However, the epithelial-supporting effect of this protein has not been verified in a human cell line and neither the direct signaling pathway nor the function of endocytosis in this process has been clearly identified. We sought to investigate the signaling pathway and the membrane receptor through which BSDL might exert these effects using intestinal epithelial cells. Caco-2 cells were treated with recombinant BSDL, and the barrier function, cell proliferation, and activation of the Wnt signaling pathway were assessed. The effect of Wnt signaling activation induced by BSDL and BSDL endocytosis was investigated in LRP6-silenced and non-silenced cells. Moreover, caveolae- and clathrin-dependent endocytosis inhibitors were also applied respectively to analyze their effects on Wnt signaling activation induced by BSDL. BSDL treatment increased the barrier function but not proliferation of Caco-2 cells. It also induced β-catenin nuclear translocation and activated Wnt target gene transcription. Moreover, in the Wnt pathway, BSDL increased the levels of non-phosphorylated-β-catenin (Ser33/37/Thr41) and phosphorylated-β-catenin (Ser552). Notably, the silencing of LRP6 expression impaired BSDL endocytosis and decreased BSDL-induced β-catenin nuclear translocation. The inhibition of BSDL endocytosis induced by caveolae-mediated endocytosis inhibitor was stronger than that by clathrin-mediated endocytosis inhibitor, and the Wnt signaling activation associated with its endocytosis was also most likely caveolae-dependent. Our findings suggested that LRP6, a canonical Wnt pathway co-receptor, can mediate BSDL endocytosis and then activate Wnt signaling in Caco-2 cells.
Collapse
Affiliation(s)
- Yaqi Qiu
- Xinhua Hospital, Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jiefei Zhou
- Xinhua Hospital, Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Dandan Zhang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Huanlei Song
- Xinhua Hospital, Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Linxi Qian
- Xinhua Hospital, Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
8
|
Different spatiotemporal organization of GPI-anchored T-cadherin in response to low-density lipoprotein and adiponectin. Biochim Biophys Acta Gen Subj 2019; 1863:129414. [DOI: 10.1016/j.bbagen.2019.129414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 07/23/2019] [Accepted: 08/07/2019] [Indexed: 01/10/2023]
|
9
|
Frismantiene A, Philippova M, Erne P, Resink TJ. Cadherins in vascular smooth muscle cell (patho)biology: Quid nos scimus? Cell Signal 2018; 45:23-42. [DOI: 10.1016/j.cellsig.2018.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 12/16/2022]
|
10
|
Sternberg J, Wankell M, Nathan Subramaniam V, W. Hebbard L. The functional roles of T-cadherin in mammalian biology. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.1.62] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
11
|
Balatskaya MN, Balatskii AV, Sharonov GV, Tkachuk VA. T-cadherin as a novel receptor regulating metabolism in the blood vessel and heart cells: from structure to function. J EVOL BIOCHEM PHYS+ 2016. [DOI: 10.1134/s0022093016020010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Lee JH, Shin DJ, Park S, Kang SM, Jang Y, Lee SH. Association between CDH13 variants and cardiometabolic and vascular phenotypes in a Korean population. Yonsei Med J 2013; 54:1305-12. [PMID: 24142632 PMCID: PMC3809859 DOI: 10.3349/ymj.2013.54.6.1305] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Although some CDH13 single nucleotide polymorphisms (SNPs) have been shown to be determinants of blood adiponectin levels, the clinical implications of CDH13 variants are not yet completely understood. The purpose of this study was to evaluate the effects of SNPs of CDH13 on metabolic and vascular phenotypes. MATERIALS AND METHODS We included 238 hypertensive subjects and 260 age- and sex-matched controls. Seven tagging-SNPs were identified in the CDH13 gene by whole gene sequencing. The association between these SNP variants and the risk of hypertension, metabolic traits, and carotid intima-media thickness (IMT) was examined. RESULTS Minor allele carriers of rs12444338 had a lower risk of hypertension, but the association turned out just marginal after adjusting confoudners. Blood glucose levels were higher in the minor allele carriers of c.1407C>T (p=0.01), whereas low-density lipoprotein-cholesterol levels were greater in those of rs6565105 (p=0.02). The minor allele of rs1048612 was associated with a higher body mass index (p=0.01). In addition, the mean carotid IMT was significantly associated with rs12444338 (p=0.02) and rs1048612 (p=0.02). CONCLUSION These results provide evidence that CDH13 variants are associated with metabolic traits and carotid atherosclerosis in Koreans. This study shows the multifaceted effects of CDH13 variants on cardiometabolic risk.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Cardiology Division, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea.
| | | | | | | | | | | |
Collapse
|
13
|
Impact of the ADHD-susceptibility gene CDH13 on development and function of brain networks. Eur Neuropsychopharmacol 2013; 23:492-507. [PMID: 22795700 DOI: 10.1016/j.euroneuro.2012.06.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/30/2012] [Accepted: 06/20/2012] [Indexed: 12/18/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common, early onset and enduring neuropsychiatric disorder characterized by developmentally inappropriate inattention, hyperactivity, increased impulsivity and motivational/emotional dysregulation with similar prevalence rates throughout different cultural settings. Persistence of ADHD into adulthood is associated with considerable risk for co-morbidities such as depression and substance use disorder. Although the substantial heritability of ADHD is well documented the etiology is characterized by a complex coherence of genetic and environmental factors rendering identification of risk genes difficult. Genome-wide linkage as well as single nucleotide polymorphism (SNP) and copy-number variant (CNV) association scans recently allow to reliably define aetiopathogenesis-related genes. A considerable number of novel ADHD risk genes implicate biological processes involved in neurite outgrowth and axon guidance. Here, we focus on the gene encoding Cadherin-13 (CDH13), a cell adhesion molecule which was replicably associated with liability to ADHD and related neuropsychiatric conditions. Based on its unique expression pattern in the brain, we discuss the molecular structure and neuronal mechanisms of Cadherin-13 in relation to other cadherins and the cardiovascular system. An appraisal of various Cadherin-13-modulated signaling pathways impacting proliferation, migration and connectivity of specific neurons is also provided. Finally, we develop an integrative hypothesis of the mechanisms in which Cadherin-13 plays a central role in the regulation of brain network development, plasticity and function. The review concludes with emerging concepts about alterations in Cadherin-13 signaling contributing to the pathophysiology of neurodevelopmental disorders.
Collapse
|
14
|
Calcium influx blocked by SK&F 96365 modulates the LPS plus IFN-γ-induced inflammatory response in murine peritoneal macrophages. Int Immunopharmacol 2012; 12:384-93. [DOI: 10.1016/j.intimp.2011.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/25/2011] [Accepted: 12/15/2011] [Indexed: 11/19/2022]
|
15
|
Chung CM, Lin TH, Chen JW, Leu HB, Yang HC, Ho HY, Ting CT, Sheu SH, Tsai WC, Chen JH, Lin SJ, Chen YT, Pan WH. A genome-wide association study reveals a quantitative trait locus of adiponectin on CDH13 that predicts cardiometabolic outcomes. Diabetes 2011; 60:2417-23. [PMID: 21771975 PMCID: PMC3161336 DOI: 10.2337/db10-1321] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The plasma adiponectin level, a potential upstream and internal facet of metabolic and cardiovascular diseases, has a reasonably high heritability. Whether other novel genes influence the variation in adiponectin level and the roles of these genetic variants on subsequent clinical outcomes has not been thoroughly investigated. Therefore, we aimed not only to identify genetic variants modulating plasma adiponectin levels but also to investigate whether these variants are associated with adiponectin-related metabolic traits and cardiovascular diseases. RESEARCH DESIGN AND METHODS We conducted a genome-wide association study (GWAS) to identify quantitative trait loci (QTL) associated with high molecular weight forms of adiponectin levels by genotyping 382 young-onset hypertensive (YOH) subjects with Illumina HumanHap550 SNP chips. The culpable single nucleotide polymorphism (SNP) variants responsible for lowered adiponectin were then confirmed in another 559 YOH subjects, and the association of these SNP variants with the risk of metabolic syndrome (MS), type 2 diabetes mellitus (T2DM), and ischemic stroke was examined in an independent community-based prospective cohort, the CardioVascular Disease risk FACtors Two-township Study (CVDFACTS, n = 3,350). RESULTS The SNP (rs4783244) most significantly associated with adiponectin levels was located in intron 1 of the T-cadherin (CDH13) gene in the first stage (P = 7.57 × 10(-9)). We replicated and confirmed the association between rs4783244 and plasma adiponectin levels in an additional 559 YOH subjects (P = 5.70 × 10(-17)). This SNP was further associated with the risk of MS (odds ratio [OR] = 1.42, P = 0.027), T2DM in men (OR = 3.25, P = 0.026), and ischemic stroke (OR = 2.13, P = 0.002) in the CVDFACTS. CONCLUSIONS These findings indicated the role of T-cadherin in modulating adiponectin levels and the involvement of CDH13 or adiponectin in the development of cardiometabolic diseases.
Collapse
Affiliation(s)
- Chia-Min Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Wen Chen
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Bang Leu
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hung-Yun Ho
- Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Tai Ting
- Taichung Veterans General Hospital, Taichung, Taiwan
| | - Sheng-Hsiung Sheu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chuan Tsai
- College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jyh-Hong Chen
- College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shing-Jong Lin
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Harn Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Division of Preventive Medicine and Health Service Research, National Health Research Institutes, Miaoli, Taiwan
- Corresponding author: Wen-Harn Pan,
| |
Collapse
|
16
|
Monda KL, North KE, Hunt SC, Rao DC, Province MA, Kraja AT. The genetics of obesity and the metabolic syndrome. Endocr Metab Immune Disord Drug Targets 2011; 10:86-108. [PMID: 20406164 DOI: 10.2174/187153010791213100] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/04/2010] [Indexed: 12/19/2022]
Abstract
In this review, we discuss the genetic architecture of obesity and the metabolic syndrome, highlighting recent advances in identifying genetic variants and loci responsible for a portion of the variation in components of the metabolic syndrome, namely, adiposity traits, serum HDL and triglycerides, blood pressure, and glycemic traits. We focus particularly on recent progress from large-scale genome-wide association studies (GWAS), by detailing their successes and how lessons learned can pave the way for future discovery. Results from recent GWAS coalesce with earlier work suggesting numerous interconnections between obesity and the metabolic syndrome, developed through several potentially pleiotropic effects. We detail recent work by way of a case study on the cadherin 13 gene and its relation with adiponectin in the HyperGEN and the Framingham Heart Studies, and its association with obesity and the metabolic syndrome. We provide also a gene network analysis of recent variants related to obesity and metabolic syndrome discovered through genome-wide association studies, and 4 gene networks based on searching the NCBI database.
Collapse
Affiliation(s)
- Keri L Monda
- Department of Epidemiology, University of North Carolina at Chapel Hill, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Philippova M, Suter Y, Toggweiler S, Schoenenberger AW, Joshi MB, Kyriakakis E, Erne P, Resink TJ. T-cadherin is present on endothelial microparticles and is elevated in plasma in early atherosclerosis. Eur Heart J 2010; 32:760-71. [PMID: 20584775 DOI: 10.1093/eurheartj/ehq206] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS The presence of endothelial cell (EC)-derived surface molecules in the circulation is among hallmarks of endothelial activation and damage in vivo. Previous investigations suggest that upregulation of T-cadherin (T-cad) on the surface of ECs may be a characteristic marker of EC activation and stress. We investigated whether T-cad might also be shed from ECs and in amounts reflecting the extent of activation or damage. METHODS AND RESULTS Immunoblotting showed the presence of T-cad protein in the culture medium from normal proliferating ECs and higher levels in the medium from stressed/apoptotic ECs. Release of T-cad into the circulation occurs in vivo and in association with endothelial dysfunction. Sandwich ELISA revealed negligible T-cad protein in the plasma of healthy volunteers (0.90 ± 0.90 ng/mL, n = 30), and increased levels in the plasma from patients with non-significant atherosclerosis (9.23 ± 2.61 ng/mL, n = 63) and patients with chronic coronary artery disease (6.93 ± 1.31 ng/mL, n = 162). In both patient groups there was a significant (P = 0.043) dependency of T-cad and degree of endothelial dysfunction as measured by reactive hyperaemia peripheral tonometry. Flow cytometry analysis showed that the major fraction of T-cad was released into the EC culture medium and the plasma as a surface component of EC-derived annexin V- and CD144/CD31-positive microparticles (MPs). Gain-of-function and loss-of-function studies demonstrate that MP-bound T-cad induced Akt phosphorylation and activated angiogenic behaviour in target ECs via homophilic-based interactions. CONCLUSION Our findings reveal a novel mechanism of T-cad-dependent signalling in the vascular endothelium. We identify T-cad as an endothelial MP antigen in vivo and demonstrate that its level in plasma is increased in early atherosclerosis and correlates with endothelial dysfunction.
Collapse
Affiliation(s)
- Maria Philippova
- Department of Biomedicine, Laboratory for Signal Transduction, Basel University Hospital, ZLF 316 Hebelstrasse 20, CH 4031, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Saccone SF, Bierut LJ, Chesler EJ, Kalivas PW, Lerman C, Saccone NL, Uhl GR, Li CY, Philip VM, Edenberg HJ, Sherry ST, Feolo M, Moyzis RK, Rutter JL. Supplementing high-density SNP microarrays for additional coverage of disease-related genes: addiction as a paradigm. PLoS One 2009; 4:e5225. [PMID: 19381300 PMCID: PMC2668711 DOI: 10.1371/journal.pone.0005225] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/18/2009] [Indexed: 11/19/2022] Open
Abstract
Commercial SNP microarrays now provide comprehensive and affordable coverage of the human genome. However, some diseases have biologically relevant genomic regions that may require additional coverage. Addiction, for example, is thought to be influenced by complex interactions among many relevant genes and pathways. We have assembled a list of 486 biologically relevant genes nominated by a panel of experts on addiction. We then added 424 genes that showed evidence of association with addiction phenotypes through mouse QTL mappings and gene co-expression analysis. We demonstrate that there are a substantial number of SNPs in these genes that are not well represented by commercial SNP platforms. We address this problem by introducing a publicly available SNP database for addiction. The database is annotated using numeric prioritization scores indicating the extent of biological relevance. The scores incorporate a number of factors such as SNP/gene functional properties (including synonymy and promoter regions), data from mouse systems genetics and measures of human/mouse evolutionary conservation. We then used HapMap genotyping data to determine if a SNP is tagged by a commercial microarray through linkage disequilibrium. This combination of biological prioritization scores and LD tagging annotation will enable addiction researchers to supplement commercial SNP microarrays to ensure comprehensive coverage of biologically relevant regions.
Collapse
Affiliation(s)
- Scott F Saccone
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Uhl GR, Drgon T, Johnson C, Liu QR. Addiction genetics and pleiotropic effects of common haplotypes that make polygenic contributions to vulnerability to substance dependence. J Neurogenet 2009; 23:272-82. [PMID: 19152208 DOI: 10.1080/01677060802572929] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abundant evidence from family, adoption, and twin studies point to large genetic contributions to individual differences in vulnerability to develop dependence on one or more addictive substances. Twin data suggest that most of this genetic vulnerability is shared by individuals who are dependent on a variety of addictive substances. Molecular genetic studies, especially genomewide and candidate gene association studies, have elucidated common haplotypes in dozens of genes that appear to make polygenic contributions to vulnerability to developing dependence. Most genes that harbor currently identified addiction-associated haplotypes are expressed in the brain. Haplotypes in many of the same genes are identified in genomewide association studies that compare allele frequencies in substance dependent vs. control individuals from European, African, and Asian racial/ethnic backgrounds. Many of these addiction-associated haplotypes display pleiotropic influences on a variety of related brain-based phenotypes that display 1) substantial heritability and 2) clinical cooccurence with substance dependence.
Collapse
Affiliation(s)
- George R Uhl
- Molecular Neurobiology Branch, NIH-IRP (NIDA), Baltimore, Maryland 21224, USA.
| | | | | | | |
Collapse
|
21
|
Uhl GR, Drgon T, Johnson C, Li CY, Contoreggi C, Hess J, Naiman D, Liu QR. Molecular genetics of addiction and related heritable phenotypes: genome-wide association approaches identify "connectivity constellation" and drug target genes with pleiotropic effects. Ann N Y Acad Sci 2008; 1141:318-81. [PMID: 18991966 PMCID: PMC3922196 DOI: 10.1196/annals.1441.018] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genome-wide association (GWA) can elucidate molecular genetic bases for human individual differences in complex phenotypes that include vulnerability to addiction. Here, we review (a) evidence that supports polygenic models with (at least) modest heterogeneity for the genetic architectures of addiction and several related phenotypes; (b) technical and ethical aspects of importance for understanding GWA data, including genotyping in individual samples versus DNA pools, analytic approaches, power estimation, and ethical issues in genotyping individuals with illegal behaviors; (c) the samples and the data that shape our current understanding of the molecular genetics of individual differences in vulnerability to substance dependence and related phenotypes; (d) overlaps between GWA data sets for dependence on different substances; and (e) overlaps between GWA data for addictions versus other heritable, brain-based phenotypes that include bipolar disorder, cognitive ability, frontal lobe brain volume, the ability to successfully quit smoking, neuroticism, and Alzheimer's disease. These convergent results identify potential targets for drugs that might modify addictions and play roles in these other phenotypes. They add to evidence that individual differences in the quality and quantity of brain connections make pleiotropic contributions to individual differences in vulnerability to addictions and to related brain disorders and phenotypes. A "connectivity constellation" of brain phenotypes and disorders appears to receive substantial pathogenic contributions from individual differences in a constellation of genes whose variants provide individual differences in the specification of brain connectivities during development and in adulthood. Heritable brain differences that underlie addiction vulnerability thus lie squarely in the midst of the repertoire of heritable brain differences that underlie vulnerability to other common brain disorders and phenotypes.
Collapse
Affiliation(s)
- George R Uhl
- Molecular Neurobiology Branch, National Institutes of Health (NIH), Intramural Research Program (IRP), National Institute on Drug Abuse (NIDA), Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sui GP, Wu C, Roosen A, Ikeda Y, Kanai AJ, Fry CH. Modulation of bladder myofibroblast activity: implications for bladder function. Am J Physiol Renal Physiol 2008; 295:F688-97. [PMID: 18632799 PMCID: PMC2536873 DOI: 10.1152/ajprenal.00133.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Bladder suburothelial myofibroblasts may modulate both sensory responses from the bladder wall and spontaneous activity. This study aimed to characterize further these cells in their response to exogenous agents implicated in mediating the above activity. Detrusor strips, with or without mucosa, and isolated suburothelial myofibroblasts were prepared from guinea pig bladders. Isometric tension, intracellular Ca2+, and membrane current were recorded. Cell pairs were formed by pushing two cells together. Tension, intracellular Ca2+, and membrane potential were also recorded from bladder sheets using normal or spinal cord-transected (SCT) rats. Spontaneous contractions were greater in detrusor strips with an intact mucosa and were augmented by 10 μM UTP. ATP, UTP, or reduced extracellular pH elicited Ca2+ transients and inward currents (Erev −30 mV) in isolated cells. Capsaicin (5–30 μM) reduced membrane current (37 ± 12% of control) with minor effects on Ca2+ transients: sodium nitroprusside reduced membrane currents (40 ± 21% of control). Cell pair formation, without an increase in cell capacitance, augmented ATP and pH responses (180 ± 58% of control) and reduced the threshold to ATP and acidosis. Glivec (20–50 μM) reversibly blocked the augmentation and also reduced spontaneous activity in bladder sheets from SCT, but not normal, rats. Glivec also disrupted the spread of Ca2+ waves in SCT sheets, generating patterns similar to normal bladders. Suburothelial myofibroblasts respond to exogenous agents implicated in modulating bladder sensory responses; responses augmented by physical intercellular contact. The action of glivec and its selective suppression of spontaneous activity in SCT rats identifies a possible pathway to attenuate bladder overactivity.
Collapse
Affiliation(s)
- Gui-Ping Sui
- Postgraduate Medical School, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | | | | | | | | |
Collapse
|
23
|
Uhl GR, Liu QR, Drgon T, Johnson C, Walther D, Rose JE, David SP, Niaura R, Lerman C. Molecular genetics of successful smoking cessation: convergent genome-wide association study results. ACTA ACUST UNITED AC 2008; 65:683-93. [PMID: 18519826 DOI: 10.1001/archpsyc.65.6.683] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT Smoking remains a major public health problem. Twin studies indicate that the ability to quit smoking is substantially heritable, with genetics that overlap modestly with the genetics of vulnerability to dependence on addictive substances. OBJECTIVES To identify replicated genes that facilitate smokers' abilities to achieve and sustain abstinence from smoking (herein after referred to as quit-success genes) found in more than 2 genome-wide association (GWA) studies of successful vs unsuccessful abstainers, and, secondarily, to nominate genes for selective involvement in smoking cessation success with bupropion hydrochloride vs nicotine replacement therapy (NRT). DESIGN The GWA results in subjects from 3 centers, with secondary analyses of NRT vs bupropion responders. SETTING Outpatient smoking cessation trial participants from 3 centers. PARTICIPANTS European American smokers who successfully vs unsuccessfully abstain from smoking with biochemical confirmation in a smoking cessation trial using NRT, bupropion, or placebo (N = 550). MAIN OUTCOME MEASURES Quit-success genes, reproducibly identified by clustered nominally positive single-nucleotide polymorphisms (SNPs) in more than 2 independent samples with significant P values based on Monte Carlo simulation trials. The NRT-selective genes were nominated by clustered SNPs that display much larger t values for NRT vs placebo comparisons. The bupropion-selective genes were nominated by bupropion-selective results. RESULTS Variants in quit-success genes are likely to alter cell adhesion, enzymatic, transcriptional, structural, and DNA, RNA, and/or protein-handling functions. Quit-success genes are identified by clustered nominally positive SNPs from more than 2 samples and are unlikely to represent chance observations (Monte Carlo P< .0003). These genes display modest overlap with genes identified in GWA studies of dependence on addictive substances and memory. CONCLUSIONS These results support polygenic genetics for success in abstaining from smoking, overlap with genetics of substance dependence and memory, and nominate gene variants for selective influences on therapeutic responses to bupropion vs NRT. Molecular genetics should help match the types and/or intensity of antismoking treatments with the smokers most likely to benefit from them.
Collapse
Affiliation(s)
- George R Uhl
- Molecular Neurobiology Research Branch, National Institutes of Health-Intramural Research Program, National Institute on Drug Abuse, 333 Cassell Dr, Ste 3510, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dames SA, Bang E, Haüssinger D, Ahrens T, Engel J, Grzesiek S. Insights into the low adhesive capacity of human T-cadherin from the NMR structure of Its N-terminal extracellular domain. J Biol Chem 2008; 283:23485-95. [PMID: 18550521 DOI: 10.1074/jbc.m708335200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T-cadherin is unique among the family of type I cadherins, because it lacks transmembrane and cytosolic domains, and attaches to the membrane via a glycophosphoinositol anchor. The N-terminal cadherin repeat of T-cadherin (Tcad1) is approximately 30% identical to E-, N-, and other classical cadherins. However, it lacks many amino acids crucial for their adhesive function of classical cadherins. Among others, Trp-2, which is the key residue forming the canonical strand-exchange dimer, is replaced by an isoleucine. Here, we report the NMR structure of the first cadherin repeat of T-cadherin (Tcad1). Tcad1, as other cadherin domains, adopts a beta-barrel structure with a Greek key folding topology. However, Tcad1 is monomeric in the absence and presence of calcium. Accordingly, lle-2 binds into a hydrophobic pocket on the same protomer and participates in an N-terminal beta-sheet. Specific amino acid replacements compared to classical cadherins reduce the size of the binding pocket for residue 2 and alter the backbone conformation and flexibility around residues 5 and 15 as well as many electrostatic interactions. These modifications apparently stabilize the monomeric form and make it less susceptible to a conformational switch upon calcium binding. The absence of a tendency for homoassociation observed by NMR is consistent with electron microscopy and solid-phase binding data of the full T-cadherin ectodomain (Tcad1-5). The apparent low adhesiveness of T-cadherin suggests that it is likely to be involved in reversible and dynamic cellular adhesion-deadhesion processes, which are consistent with its role in cell growth and migration.
Collapse
Affiliation(s)
- Sonja A Dames
- Department of Structural Biology, University of Basel, Klingelbergstr. 70, 4056 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
25
|
Uhl GR, Liu QR, Drgon T, Johnson C, Walther D, Rose JE. Molecular genetics of nicotine dependence and abstinence: whole genome association using 520,000 SNPs. BMC Genet 2007; 8:10. [PMID: 17407593 PMCID: PMC1853105 DOI: 10.1186/1471-2156-8-10] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 04/03/2007] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Classical genetic studies indicate that nicotine dependence is a substantially heritable complex disorder. Genetic vulnerabilities to nicotine dependence largely overlap with genetic vulnerabilities to dependence on other addictive substances. Successful abstinence from nicotine displays substantial heritable components as well. Some of the heritability for the ability to quit smoking appears to overlap with the genetics of nicotine dependence and some does not. We now report genome wide association studies of nicotine dependent individuals who were successful in abstaining from cigarette smoking, nicotine dependent individuals who were not successful in abstaining and ethnically-matched control subjects free from substantial lifetime use of any addictive substance. RESULTS These data, and their comparison with data that we have previously obtained from comparisons of four other substance dependent vs control samples support two main ideas: 1) Single nucleotide polymorphisms (SNPs) whose allele frequencies distinguish nicotine-dependent from control individuals identify a set of genes that overlaps significantly with the set of genes that contain markers whose allelic frequencies distinguish the four other substance dependent vs control groups (p < 0.018). 2) SNPs whose allelic frequencies distinguish successful vs unsuccessful abstainers cluster in small genomic regions in ways that are highly unlikely to be due to chance (Monte Carlo p < 0.00001). CONCLUSION These clustered SNPs nominate candidate genes for successful abstinence from smoking that are implicated in interesting functions: cell adhesion, enzymes, transcriptional regulators, neurotransmitters and receptors and regulation of DNA, RNA and proteins. As these observations are replicated, they will provide an increasingly-strong basis for understanding mechanisms of successful abstinence, for identifying individuals more or less likely to succeed in smoking cessation efforts and for tailoring therapies so that genotypes can help match smokers with the treatments that are most likely to benefit them.
Collapse
Affiliation(s)
- George R Uhl
- Molecular Neurobiology Branch, NIH-IRP, NIDA, Suite 3510, 333 Cassell Drive Baltimore, Maryland 21224, USA
| | - Qing-Rong Liu
- Molecular Neurobiology Branch, NIH-IRP, NIDA, Suite 3510, 333 Cassell Drive Baltimore, Maryland 21224, USA
| | - Tomas Drgon
- Molecular Neurobiology Branch, NIH-IRP, NIDA, Suite 3510, 333 Cassell Drive Baltimore, Maryland 21224, USA
| | - Catherine Johnson
- Molecular Neurobiology Branch, NIH-IRP, NIDA, Suite 3510, 333 Cassell Drive Baltimore, Maryland 21224, USA
| | - Donna Walther
- Molecular Neurobiology Branch, NIH-IRP, NIDA, Suite 3510, 333 Cassell Drive Baltimore, Maryland 21224, USA
| | - Jed E Rose
- Molecular Neurobiology Branch, NIH-IRP, NIDA, Suite 3510, 333 Cassell Drive Baltimore, Maryland 21224, USA
- Dept of Psychiatry and Center for Nicotine and Smoking Cessation Research, Duke University, Durham NC 27708, USA
| |
Collapse
|
26
|
Körner A, Pazaitou-Panayiotou K, Kelesidis T, Kelesidis I, Williams CJ, Kaprara A, Bullen J, Neuwirth A, Tseleni S, Mitsiades N, Kiess W, Mantzoros CS. Total and high-molecular-weight adiponectin in breast cancer: in vitro and in vivo studies. J Clin Endocrinol Metab 2007; 92:1041-8. [PMID: 17192291 DOI: 10.1210/jc.2006-1858] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Obesity is a major risk factor for breast cancer. We hypothesized that obesity-induced decreases in total and/or high-molecular-weight (HMW) adiponectin levels may underlie this association. METHODS We measured serum total and HMW adiponectin in a hospital-based case-control study of 74 female breast cancer patients and 76 controls. In parallel, expression of adiponectin and its receptors AdipoR1/R2 were measured in tissue samples using RT-PCR, and protein expression of AdipoR1/R2 was localized and quantified using immunohistochemistry. Finally, we documented AdipoR1/R2 expression in several breast cancer cell lines and studied adiponectin signaling and the effect of adiponectin on proliferation in the T47D breast cancer cell line in vitro. RESULTS Women with the highest adiponectin levels had a 65% reduced risk of breast cancer (P = 0.04). This association became stronger after adjustment for age, body mass index, and hormonal and reproductive factors (P = 0.02). Modeling HMW instead of total adiponectin produced similar results and did not offer any additional predictive value. Breast cancer cells expressed AdipoR1/R2 but not adiponectin. Expression of AdipoR1, but not AdipoR2, was higher in tumor tissue than both adjacent and control tissues. Exposure of T47D cells to adiponectin significantly inhibited the percentage of viable cells to 86% and proliferation to 66% but had no effect on apoptosis. These effects were associated with activation of ERK1/2 but not AMP-activated protein kinase or p38MAPK. CONCLUSION These studies suggest that adiponectin may act as a biomarker of carcinogenesis and may constitute a molecular link between obesity and breast cancer.
Collapse
Affiliation(s)
- Antje Körner
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Stoneman 816, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|