1
|
McLarnon SR, Honeycutt SE, N’Guetta PEY, Xiong Y, Li X, Abe K, Kitai H, Souma T, O’Brien LL. Altered renal vascular patterning reduces ischemic kidney injury and limits vascular loss associated with aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620969. [PMID: 39553980 PMCID: PMC11565873 DOI: 10.1101/2024.10.29.620969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The kidney vasculature has a complex arrangement, which runs in both series and parallel to perfuse the renal tissue and appropriately filter plasma. Recent studies have demonstrated that the development of this vascular pattern is dependent on netrin-1 secreted by renal stromal progenitors. Mice lacking netrin-1 develop an arterial tree with stochastic branching, particularly of the large interlobar vessels. The current study investigated whether abnormalities in renal vascular pattern altered kidney function or response to injury. To examine this, we analyzed kidney function at baseline as well as in response to recovery from a model of bilateral ischemic injury and measured vascular dynamics in aged mice. We found no differences in kidney function or morphology at baseline between mice with an abnormal arterial pattern compared to control. Interestingly, male and female mutant mice with stochastic vascular patterning showed a reduction in tubular injury in response to ischemia. Similarly, mutant mice also had a preservation of perfused vasculature with aging compared to a reduction in the control group. These results suggest that guided and organized patterning of the renal vasculature may not be required for normal kidney function; thus, modulating renal vascular patterning may represent an effective therapeutic strategy. Understanding how patterning and maturation of the arterial tree affects physiology and response to injury or aging has important implications for enhancing kidney regeneration and tissue engineering strategies.
Collapse
Affiliation(s)
- Sarah R. McLarnon
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Samuel E. Honeycutt
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pierre-Emmanuel Y. N’Guetta
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yubin Xiong
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xinwei Li
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Cell and Developmental Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Koki Abe
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hiroki Kitai
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lori L. O’Brien
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Nagata K, Tagami K, Okuzawa T, Hayakawa M, Nomura A, Nishimura T, Ikeda K, Kitada K, Kobuchi S, Fujisawa Y, Nishiyama A, Murohara T. Comparison of the effects of renal denervation at early or advanced stages of hypertension on cardiac, renal, and adipose tissue pathology in Dahl salt-sensitive rats. Hypertens Res 2024; 47:2731-2744. [PMID: 38355818 PMCID: PMC11456506 DOI: 10.1038/s41440-024-01605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Renal denervation (RDN) has emerged as a novel therapy for drug-resistant hypertension. We here examined the effects of RDN at early versus advanced stages of hypertension on blood pressure and organ pathology in rats with salt-sensitive hypertension. Dahl salt-sensitive (DahlS) rats fed an 8% NaCl diet from 6 weeks of age were subjected to RDN (surgical ablation and application of 10% phenol in ethanol) or sham surgery at 7 (early stage) or 9 (advanced stage) weeks and were studied at 12 weeks. RDN at early or advanced stages resulted in a moderate lowering of blood pressure. Although RDN at neither stage affected left ventricular (LV) and cardiomyocyte hypertrophy, it ameliorated LV diastolic dysfunction, fibrosis, and inflammation at both stages. Intervention at both stages also attenuated renal injury as well as downregulated the expression of angiotensinogen and angiotensin-converting enzyme (ACE) genes and angiotensin II type 1 receptor protein in the kidney. Furthermore, RDN at both stages inhibited proinflammatory gene expression in adipose tissue. The early intervention reduced both visceral fat mass and adipocyte size in association with downregulation of angiotensinogen and ACE gene expression. In contrast, the late intervention increased fat mass without affecting adipocyte size as well as attenuated angiotensinogen and ACE gene expression. Our results thus indicate that RDN at early or late stages after salt loading moderately alleviated hypertension and substantially ameliorated cardiac and renal injury and adipose tissue inflammation in DahlS rats. They also suggest that cross talk among the kidney, cardiovascular system, and adipose tissue may contribute to salt-sensitive hypertension. Supposed mechanism for the beneficial effects of RDN on hypertension and target organ damage in DahlS rats. RDN at early or late stages after salt loading moderately alleviated hypertension and substantially ameliorated renal injury in DahlS rats. Cross talk among the kidney, cardiovascular system, and adipose tissue possibly mediated by circulating RAS may contribute to salt-sensitive hypertension. LV; left ventricular, NE; norepinephrine, RAS; renin-angiotensin system, RDN; renal denervation.
Collapse
Affiliation(s)
- Kohzo Nagata
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Kaito Tagami
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Touko Okuzawa
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Misaki Hayakawa
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akane Nomura
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan
| | - Tomo Nishimura
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan
| | - Katsuhide Ikeda
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shuhei Kobuchi
- Division of Pharmacology, School of Pharmacy, Department of Pharmacy, Hyogo Medical University, Kobe, Japan
| | - Yoshihide Fujisawa
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Georges G, Trudeau F, Potvin J, Burkhoff D, Généreux P. Organ blood flow assessment with the ModulHeart cardiorenal support device. Artif Organs 2024; 48:61-69. [PMID: 37787101 DOI: 10.1111/aor.14655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/23/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND ModulHeart (Puzzle Medical Devices Inc) is a novel percutaneous flow entrainment pump anchored in the descending aorta. The current study evaluates the hemodynamic effect of ModulHeart support and its impact on cerebral, myocardial, and renal blood flow. METHODS ModulHeart was implanted in the descending aorta of four healthy calves. A ramp protocol (2000 RPM increments) was performed with the pump operating at five different speeds from 14 000 to 22 000 RPM. For each speed, pressures proximal and distal to the pump, and right heart catheterization measurements were recorded. Stable-isotope labeled microspheres were injected in the left ventricle to evaluate organ perfusion. RESULTS Thermodilution cardiac output increased by 23% at 22 000 RPM. Greater pump speeds resulted in greater pump gradients, up to 10 mm Hg in mean arterial pressure at 22 000 RPM, without significant reduction of proximal perfusion pressures. Arterial pulse pressure remained stable at all speeds. ModulHeart was not associated with a reduction in cerebral or myocardial blood flow at any speed. Renal cortical and medullary blood flow increased by up to 50% and 40%, respectively. CONCLUSION The ModulHeart device implanted in the descending aorta of healthy calves resulted in significant arterial pressure gradients and preserved pulse pressure. Greater pump speeds translated into greater increases in renal blood flow, with no decrease in cerebral or myocardial perfusion.
Collapse
Affiliation(s)
- Gabriel Georges
- Department of cardiac surgery, Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | | | - Jeannot Potvin
- Department of cardiology, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | | | - Philippe Généreux
- Department of cardiology, Gagnon Cardiovascular Institute, Morristown Medical Center, Morristown, New Jersey, USA
| |
Collapse
|
4
|
McLarnon SR. Pathophysiology of Red Blood Cell Trapping in Ischemic Acute Kidney Injury. Compr Physiol 2023; 14:5325-5343. [PMID: 38158367 DOI: 10.1002/cphy.c230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Red blood cell (RBC) trapping describes the accumulation of RBCs in the microvasculature of the kidney outer medulla that occurs following ischemic acute kidney injury (AKI). Despite its prominence in human kidneys following AKI, as well as evidence from experimental models demonstrating that the severity of RBC trapping is directly correlated with renal recovery, to date, RBC trapping has not been a primary focus in understanding the pathogenesis of ischemic kidney injury. New evidence from rodent models suggests that RBC trapping is responsible for much of the tubular injury occurring in the initial hours after kidney reperfusion from ischemia. This early injury appears to result from RBC cytotoxicity and closely reflects the injury profile observed in human kidneys, including sloughing of the medullary tubules and the formation of heme casts in the distal tubules. In this review, we discuss what is currently known about RBC trapping. We conclude that RBC trapping is likely avoidable. The primary causes of RBC trapping are thought to include rheologic alterations, blood coagulation, tubular cell swelling, and increased vascular permeability; however, new data indicate that a mismatch in blood flow between the cortex and medulla where medullary perfusion is maintained during cortical ischemia is also likely critical. The mechanism(s) by which RBC trapping contributes to renal functional decline require more investigation. We propose a renewed focus on the mechanisms mediating RBC trapping, and RBC trapping-associated injury is likely to provide important knowledge for improving AKI outcomes. © 2024 American Physiological Society. Compr Physiol 14:5325-5343, 2024.
Collapse
Affiliation(s)
- Sarah R McLarnon
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Chae SY, Kim Y, Park CW. Oxidative Stress Induced by Lipotoxicity and Renal Hypoxia in Diabetic Kidney Disease and Possible Therapeutic Interventions: Targeting the Lipid Metabolism and Hypoxia. Antioxidants (Basel) 2023; 12:2083. [PMID: 38136203 PMCID: PMC10740440 DOI: 10.3390/antiox12122083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Oxidative stress, a hallmark pathophysiological feature in diabetic kidney disease (DKD), arises from the intricate interplay between pro-oxidants and anti-oxidants. While hyperglycemia has been well established as a key contributor, lipotoxicity emerges as a significant instigator of oxidative stress. Lipotoxicity encompasses the accumulation of lipid intermediates, culminating in cellular dysfunction and cell death. However, the mechanisms underlying lipotoxic kidney injury in DKD still require further investigation. The key role of cell metabolism in the maintenance of cell viability and integrity in the kidney is of paramount importance to maintain proper renal function. Recently, dysfunction in energy metabolism, resulting from an imbalance in oxygen levels in the diabetic condition, may be the primary pathophysiologic pathway driving DKD. Therefore, we aim to shed light on the pivotal role of oxidative stress related to lipotoxicity and renal hypoxia in the initiation and progression of DKD. Multifaceted mechanisms underlying lipotoxicity, including oxidative stress with mitochondrial dysfunction, endoplasmic reticulum stress activated by the unfolded protein response pathway, pro-inflammation, and impaired autophagy, are delineated here. Also, we explore potential therapeutic interventions for DKD, targeting lipotoxicity- and hypoxia-induced oxidative stress. These interventions focus on ameliorating the molecular pathways of lipid accumulation within the kidney and enhancing renal metabolism in the face of lipid overload or ameliorating subsequent oxidative stress. This review highlights the significance of lipotoxicity, renal hypoxia-induced oxidative stress, and its potential for therapeutic intervention in DKD.
Collapse
Affiliation(s)
- Seung Yun Chae
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (S.Y.C.); (Y.K.)
| | - Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (S.Y.C.); (Y.K.)
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (S.Y.C.); (Y.K.)
- Institute for Aging and Metabolic Disease, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
6
|
Marques SM, Melo MR, Zoccal DB, Menani JV, Colombari DSA, Ferreira-Neto ML, Xavier CH, Colombari E, Pedrino GR. Acute inhibition of nicotinamide adenine dinucleotide phosphate oxidase in the commissural nucleus of the solitary tract reduces arterial pressure and renal sympathetic nerve activity in renovascular hypertension. J Hypertens 2023; 41:1634-1644. [PMID: 37466439 DOI: 10.1097/hjh.0000000000003516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
BACKGROUND A growing body of evidence suggests that oxidative stress plays a role in the pathophysiology of hypertension. However, the involvement of the reactive oxygen species (ROS) in the commissural nucleus of the solitary tract (commNTS) in development the of hypertension remains unclear. METHOD We evaluated the hemodynamic and sympathetic responses to acute inhibition of NADPH oxidase in the commNTS in renovascular hypertensive rats. Under anesthesia, male Holtzman rats were implanted with a silver clip around the left renal artery to induce 2-kidney 1-clip (2K1C) hypertension. After six weeks, these rats were anesthetized and instrumented for recording mean arterial pressure (MAP), renal blood flow (RBF), renal vascular resistance (RVR), and renal sympathetic nerve activity (RSNA) during baseline and after injection of apocynin (nicotinamide adenine dinucleotide phosphate oxidase inhibitor), NSC 23766 (RAC inhibitor) or saline into the commNTS. RESULTS Apocynin into the commNTS decreased MAP, RSNA, and RVR in 2K1C rats. NSC 23766 into the commNTS decreased MAP and RSNA, without changing RVR in 2K1C rats. CONCLUSION These results demonstrate that the formation of ROS in the commNTS is important to maintain sympathoexcitation and hypertension in 2K1C rats and suggest that NADPH oxidase in the commNTS could be a potential target for therapeutics in renovascular hypertension.
Collapse
Affiliation(s)
- Stefanne M Marques
- Center for Neuroscience and Cardiovascular Research, Federal University of Goias, Goiania, GO
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mariana R Melo
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - José V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marcos L Ferreira-Neto
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia
| | - Carlos H Xavier
- Systems Neurobiology Laboratory. Department of Physiological Sciences, Institute of Biological Science, Federal University of Goias, Goiania, GO, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Gustavo R Pedrino
- Center for Neuroscience and Cardiovascular Research, Federal University of Goias, Goiania, GO
| |
Collapse
|
7
|
Habas E, Al Adab A, Arryes M, Alfitori G, Farfar K, Habas AM, Akbar RA, Rayani A, Habas E, Elzouki A. Anemia and Hypoxia Impact on Chronic Kidney Disease Onset and Progression: Review and Updates. Cureus 2023; 15:e46737. [PMID: 38022248 PMCID: PMC10631488 DOI: 10.7759/cureus.46737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Chronic kidney disease (CKD) is caused by hypoxia in the renal tissue, leading to inflammation and increased migration of pathogenic cells. Studies showed that leukocytes directly sense hypoxia and respond by initiating gene transcription, encoding the 2-integrin adhesion molecules. Moreover, other mechanisms participate in hypoxia, including anemia. CKD-associated anemia is common, which induces and worsens hypoxia, contributing to CKD progression. Anemia correction can slow CKD progression, but it should be cautiously approached. In this comprehensive review, the underlying pathophysiology mechanisms and the impact of renal tissue hypoxia and anemia in CKD onset and progression will be reviewed and discussed in detail. Searching for the latest updates in PubMed Central, Medline, PubMed database, Google Scholar, and Google search engines were conducted for original studies, including cross-sectional studies, cohort studies, clinical trials, and review articles using different keywords, phrases, and texts such as "CKD progression, anemia in CKD, CKD, anemia effect on CKD progression, anemia effect on CKD progression, and hypoxia and CKD progression". Kidney tissue hypoxia and anemia have an impact on CKD onset and progression. Hypoxia causes nephron cell death, enhancing fibrosis by increasing interstitium protein deposition, inflammatory cell activation, and apoptosis. Severe anemia correction improves life quality and may delay CKD progression. Detection and avoidance of the risk factors of hypoxia prevent recurrent acute kidney injury (AKI) and reduce the CKD rate. A better understanding of kidney hypoxia would prevent AKI and CKD and lead to new therapeutic strategies.
Collapse
Affiliation(s)
| | - Aisha Al Adab
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | - Mehdi Arryes
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | | | | | - Ala M Habas
- Internal Medicine, Tripoli University, Tripoli, LBY
| | - Raza A Akbar
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | - Amnna Rayani
- Hemat-oncology Department, Pediatric Tripoli Hospital, Tripoli University, Tripoli, LBY
| | - Eshrak Habas
- Internal Medicine, Tripoli University, Tripoli, LBY
| | | |
Collapse
|
8
|
McLarnon SR, Johnson C, Sun J, Wei Q, Csanyi G, O'Herron P, Marshall B, Giddens P, Sullivan JC, Barrett A, O'Connor PM. Extravasation of Blood and Blood Toxicity Drives Tubular Injury from RBC Trapping in Ischemic AKI. FUNCTION 2023; 4:zqad050. [PMID: 37753180 PMCID: PMC10519276 DOI: 10.1093/function/zqad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Red blood cell (RBC) trapping is common in ischemic acute kidney injury (AKI) and presents as densely packed RBCs that accumulate within and engorge the kidney medullary circulation. In this study, we tested the hypothesis that "RBC trapping directly promotes tubular injury independent of extending ischemia time." Studies were performed on rats. Red blood cell congestion and tubular injury were compared between renal arterial clamping, venous clamping, and venous clamping of blood-free kidneys. Vessels were occluded for either 15 or 45 min with and without reperfusion. We found that RBC trapping in the medullary capillaries occurred rapidly following reperfusion from renal arterial clamping and that this was associated with extravasation of blood from congested vessels, uptake of blood proteins by the tubules, and marked tubular injury. To determine if this injury was due to blood toxicity or an extension of ischemia time, we compared renal venous and arterial clamping without reperfusion. Venous clamping resulted in RBC trapping and marked tubular injury within 45 min of ischemia. Conversely, despite the same ischemia time, RBC trapping and tubular injury were minimal following arterial clamping without reperfusion. Confirming the role of blood toward tubular injury, injury was markedly reduced in blood-free kidneys with venous clamping. Our data demonstrate that RBC trapping results in the rapid extravasation and uptake of blood components by tubular cells, causing toxic tubular injury. Tubular toxicity from extravasation of blood following RBC trapping appears to be a major component of tubular injury in ischemic AKI, which has not previously been recognized.
Collapse
Affiliation(s)
- Sarah R McLarnon
- Department of Physiology, Medical College of Georgia, Augusta University, 30912, Augusta, GA, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, 27599, Chapel Hill, NC, USA
| | - Chloe Johnson
- Department of Physiology, Medical College of Georgia, Augusta University, 30912, Augusta, GA, USA
| | - Jingping Sun
- Department of Physiology, Medical College of Georgia, Augusta University, 30912, Augusta, GA, USA
| | - Qingqing Wei
- Department of Anatomy and Cell Biology, Medical College of Georgia, Augusta University, 30912, Augusta, GA, USA
| | - Gabor Csanyi
- Department of Pharmacology and Toxicology, Augusta University, 30912, Augusta, GA, USA
| | - Phillip O'Herron
- Department of Physiology, Medical College of Georgia, Augusta University, 30912, Augusta, GA, USA
| | - Brendan Marshall
- Department of Anatomy and Cell Biology, Medical College of Georgia, Augusta University, 30912, Augusta, GA, USA
| | - Priya Giddens
- Department of Physiology, Medical College of Georgia, Augusta University, 30912, Augusta, GA, USA
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia, Augusta University, 30912, Augusta, GA, USA
| | - Amanda Barrett
- Department of Pathology, Medical College of Georgia, Augusta University, 30912, Augusta, GA, USA
| | - Paul M O'Connor
- Department of Physiology, Medical College of Georgia, Augusta University, 30912, Augusta, GA, USA
| |
Collapse
|
9
|
Wang R, Liu X, Li W, Tan Y, Qiu J, Su T. Pregnancy-Associated Renal Cortical Necrosis and Nonenhanced Functional MRI: A Case Series. Kidney Med 2023; 5:100623. [PMID: 37122390 PMCID: PMC10131107 DOI: 10.1016/j.xkme.2023.100623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Rationale & Objective Pregnancy-associated renal cortical necrosis is a critical illness with a poor prognosis. We aimed to describe the clinical and magnetic resonance imaging (MRI) characteristics of a case series of patients with acute kidney injury in the setting of pregnancy-associated renal cortical necrosis. Study Design Case series. Setting & Participants Seventeen patients from a single center diagnosed by nonenhanced functional MRI and/or kidney pathology. Results All patients presented with postpartum acute kidney injury stage 3. Of the 17 patients, 15 (88%) had pregnancy-associated atypical hemolytic uremic syndrome, 11 (65%) had postpartum hemorrhage, 7 (41%) had preeclampsia/hemolysis elevated liver enzymes low platelet count syndrome, and 4 (24%) had disseminated intravascular coagulation. On T2-weighted MRI, the diffuse phenotype showed outer cortex swelling in the early phase, with a dark signal rim involving the inner cortex and Bertin column, which became more apparent over time along with cortical thinning, substantially decreasing T2 signal intensity. The focal phenotype showed focally distributed hypointense signals in the cortex. After 8-101 (median: 60) months of follow-up, 4 individuals had estimated glomerular filtration rates ≥60 mL/min/1.73 m2, 6 had estimated glomerular filtration rates of 15-60 mL/min/1.73 m2, and 7 had kidney failure requiring kidney replacement therapy. The diffuse phenotype was present in all of the individuals who remained kidney replacement therapy dependent. Limitations Retrospective study; small sample size. Conclusions Different forms of pregnancy-associated thrombotic microangiopathy were the major causative diseases in our pregnancy-associated renal cortical necrosis case series. Nonenhanced functional MRI may provide valuable data for establishing diagnosis and kidney prognosis.
Collapse
|
10
|
Schulze-Zachau V, Winkel DJ, Kaul F, Demerath T, Potthast S, Heye TJ, Boll DT. Estimation of differential renal function on routine abdominal imaging employing compressed-sensed contrast-enhanced MR: a feasibility study referenced against dynamic renal scintigraphy in patients with deteriorating renal retention parameters. Abdom Radiol (NY) 2023; 48:1329-1339. [PMID: 36732406 PMCID: PMC10115688 DOI: 10.1007/s00261-023-03823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
PURPOSE To assess whether high temporal/spatial resolution GRASP MRI acquired during routine clinical imaging can identify several degrees of renal function impairment referenced against renal dynamic scintigraphy. METHODS This retrospective study consists of method development and method verification parts. During method development, patients subject to renal imaging using gadoterate meglumine and GRASP post-contrast MRI technique (TR/TE 3.3/1.6 ms; FoV320 × 320 mm; FA12°; Voxel1.1 × 1.1x2.5 mm) were matched into four equally-sized renal function groups (no-mild-moderate-severe impairment) according to their laboratory-determined estimated glomerular filtration rates (eGFR); 60|120 patients|kidneys were included. Regions-of-interest (ROIs) were placed on cortices, medullary pyramids and collecting systems of bilateral kidneys. Cortical perfusion, tubular concentration and collecting system excretion were determined as TimeCortex=Pyramid(sec), SlopeTubuli (sec-1), and TimeCollecting System (sec), respectively, and were measured by a combination of extraction of time intensity curves and respective quantitative parameters. For method verification, patients subject to GRASP MRI and renal dynamic scintigraphy (99mTc-MAG3, 100 MBq/patient) were matched into three renal function groups (no-mild/moderate-severe impairment). Split renal function parameters post 1.5-2.5 min as well as MAG3 TER were correlated with time intensity parameters retrieved using GRASP technique; 15|30 patients|kidneys were included. RESULTS Method development showed differing values for TimeCortex=Pyramid(71|75|93|122 s), SlopeTubuli(2.6|2.1|1.3|0.5 s-1) and TimeCollecting System(90|111|129|139 s) for the four renal function groups with partial significant tendencies (several p-values < 0.001). In method verification, 29/30 kidneys (96.7%) were assigned to the correct renal function group. CONCLUSION High temporal and spatial resolution GRASP MR imaging allows to identify several degrees of renal function impairment using routine clinical imaging with a high degree of accuracy.
Collapse
Affiliation(s)
| | - David J Winkel
- Department of Radiology, University Hospital of Basel, 4031, Basel, Switzerland.
| | - Felix Kaul
- Department of Nuclear Medicine, University Hospital of Basel, Basel, Switzerland
| | - Theo Demerath
- Neuroradiology Clinic, University Medical Center Freiburg, Freiburg, Germany
| | - Silke Potthast
- Department of Radiology, Spital Limmattal, Schlieren, Switzerland
| | - Tobias J Heye
- Department of Radiology, University Hospital of Basel, 4031, Basel, Switzerland
| | - Daniel T Boll
- Department of Radiology, University Hospital of Basel, 4031, Basel, Switzerland
| |
Collapse
|
11
|
Liang P, Yuan G, Li S, He K, Peng Y, Hu D, Li Z, Ma Z, Xu C. Non-invasive evaluation of the pathological and functional characteristics of chronic kidney disease by diffusion kurtosis imaging and intravoxel incoherent motion imaging: comparison with conventional DWI. Br J Radiol 2023; 96:20220644. [PMID: 36400040 PMCID: PMC10997028 DOI: 10.1259/bjr.20220644] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To explore the diagnostic performance of diffusion kurtosis imaging (DKI) and incoherent intravoxel movement (IVIM) in evaluating the clinical and pathological characteristics in chronic kidney disease (CKD) compared to conventional diffusion-weighted imaging (DWI). METHODS Forty-nine CKD patients and 24 healthy volunteers were included in this retrospective study from September 2020 to September 2021. All participants underwent MRI examinations before percutaneous renal biopsy. Coronal T2WI, axial T1WI and T2WI, and DWI (including IVIM and DKI) sequences obtained in one scan. We measured the apparent diffusion coefficient (ADC), true diffusion coefficient (Dt), pseudo-diffusion coefficient (Dp), perfusion fraction (fp), mean kurtosis (MK), and mean diffusivity (MD) values. One-way analysis of variance, correlation analysis, and receiver operating characteristic curve analysis were used in our study. RESULTS Cortex and medulla ADC, MK, Dt, fp were significantly different between the healthy volunteers and CKD stages 1-2 (all p < 0.05). All diffusion parameters showed significant differences between CKD stages 1-2 and CKD stages 3-5 (all p < 0.05). Except for the uncorrelation between MDMedulla and vascular lesion score, all other diffusion parameters were low-to-moderately related to clinical and pathological indicators. fpMedulla was the best parameter to differentiate healthy volunteers from CKD stages 1-2. MKCortex was the best parameter to differentiate CKD stages 1-2 from that CKD stages 3-5. CONCLUSION Renal cortex and medulla fp, Dt, and MK can provide more valuable information than ADC values for the evaluation of clinical and pathological characteristics of CKD patients, and thus can provide auxiliary diagnosis for fibrosis assessment and clinical management of CKD patients. ADVANCES IN KNOWLEDGE IVIM and DKI can provide more diagnostic valuable information for CKD patients than conventional DWI.
Collapse
Affiliation(s)
- Ping Liang
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Guanjie Yuan
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Shichao Li
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Kangwen He
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Yang Peng
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Zufu Ma
- Department of Nephrology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Chuou Xu
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| |
Collapse
|
12
|
Intra- and Inter-Observer Variability of Quantitative Parameters Used in Contrast-Enhanced Ultrasound of Kidneys of Healthy Cats. Animals (Basel) 2022; 12:ani12243557. [PMID: 36552476 PMCID: PMC9774712 DOI: 10.3390/ani12243557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Contrast-enhanced ultrasound (CEUS) is a non-invasive imaging technique which allows qualitative and quantitative assessment of tissue perfusion. Although CEUS offers numerous advantages, a major challenge remains the variability in tissue perfusion quantification. This study aimed to assess intra- and inter-observer variability for quantification of renal perfusion. Two observers with different levels of expertise performed a quantitative analysis of 36 renal CEUS studies, twice. The CEUS data were collected from 12 healthy cats at 3 different time points with a 7-day interval. The inter- and intra-observer agreement was assessed by the intraclass correlation coefficient. Within and between observers, a good agreement was demonstrated for intensity-related parameters in the cortex, medulla, and interlobular artery. For some parameters, ICCinter was considerably lower than ICCintra, mostly when the ROI encompassed the entire kidney or medulla. With the exception of time to peak (TTP) and mean transit time (mTTI), time-related and slope-related parameters showed poor agreement among observers. In conclusion, it may be advised against having the quantitative assessment of renal perfusion performed by different observers, especially if their experience levels differ. The cortical mTTI seemed to be the most appropriate parameter as it showed a favorable inter-observer agreement and inter-period agreement.
Collapse
|
13
|
Chen YX, Zhou W, Ye YQ, Zeng L, Wu XF, Ke B, Peng H, Fang XD. Clinical study on the use of advanced magnetic resonance imaging in lupus nephritis. BMC Med Imaging 2022; 22:210. [PMID: 36451131 PMCID: PMC9713986 DOI: 10.1186/s12880-022-00928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/05/2022] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVES To investigate the correlation between the histopathology of the kidney and clinical indicators in patients with lupus nephritis (LN) using magnetic resonance imaging (MRI). METHODS A total 50 female participants were enrolled in the study. Thirty patients with LN were divided into types 2, 3, 4, and 5, according to their pathological features. The control group consisted of 20 healthy female volunteers. Serum creatinine, C3, C1q, and anti-ds-DNA were measured. Conventional MRI, DTI, DWI, and BOLD scanning was performed to obtain the FA, ADC, and R2* values for the kidney. RESULTS Compared with the control group, FA and the ADC were decreased in patients with LN, while the R2* value was increased (P < 0.05). The overall comparison of the SLEDAI (Activity index of systemic lupus erythematosus) score, total pathological score, AI, and serum creatinine C3 showed that these were significantly different between the two groups (P < 0.05). FA and the ADC were negatively correlated with urinary, blood ds-DNA, and serum creatinine and positively correlated with C1q (P < 0.05). The R2* value was positively correlated with urinary NGAL, blood ds-DNA, and serum creatinine (P < 0.05). FA and the ADC were negatively correlated with the SLEDAI score, total pathological score, AI, CI, nephridial tissue C3, and C1q. The R2* value was positively correlated with the SLEDAI score, total pathological score, AI, CI, nephridial tissue C3, and C1q (P < 0.05). CONCLUSIONS MRI examination in female patients with LN was correlated with pathologic test results, which may have clinical significance in determining the disease's severity, treatment, and outcome.
Collapse
Affiliation(s)
- Yan-Xia Chen
- grid.412455.30000 0004 1756 5980Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006 China
| | - Wa Zhou
- grid.415002.20000 0004 1757 8108Department of Nephrology, Jiangxi Provincial People’s Hospital, Nanchang, 330006 China
| | - Yin-Quan Ye
- grid.412455.30000 0004 1756 5980Image Center, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Lei Zeng
- grid.412455.30000 0004 1756 5980Image Center, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Xian-Feng Wu
- grid.412455.30000 0004 1756 5980Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006 China
| | - Ben Ke
- grid.412455.30000 0004 1756 5980Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006 China
| | - Hao Peng
- grid.412455.30000 0004 1756 5980Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006 China
| | - Xiang-Dong Fang
- grid.412455.30000 0004 1756 5980Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006 China
| |
Collapse
|
14
|
Zhang W, Yi H, Cai B, He Y, Huang S, Zhang Y. Feasibility of contrast-enhanced ultrasonography (CEUS) in evaluating renal microvascular perfusion in pediatric patients. BMC Med Imaging 2022; 22:194. [PMID: 36357841 PMCID: PMC9650893 DOI: 10.1186/s12880-022-00925-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/01/2022] [Indexed: 11/12/2022] Open
Abstract
Background Changes in renal microvascular perfusion are involved in several kidney diseases. Contrast-enhanced ultrasonography (CEUS) quantitative analysis can enable the estimation of renal microvascular perfusion non-invasively. However, to date, few pediatric patients with renal disease have been subjected to CEUS quantitative analysis. This study aimed to explore the feasibility of CEUS in evaluating renal microvascular perfusion in pediatric patients and paving its way to clinical practice. Methods Seventeen pediatric patients with chronic kidney disease (CKD) and five children without kidney disease were consecutively examined using CEUS. Quantitative analysis of CEUS images based on time-intensity curve (TIC) fittings was performed using specialized software. Quantitative parameters of wash-in microvascular blood flow, including A, k, B, and TtoPk, were generated from three regions of interest (ROIs) each in the cortex and medulla of each kidney. Results CEUS was performed in all children successfully and safely without the use of sedatives. All parameters (A, B, k, and TtoPk) demonstrated no statistical differences among the three sampling ROIs in the renal cortex and medulla. All parameters (A, B, k, and TtoPk) showed no statistical differences between the left and right sides of kidneys both in cortices and medullas. Comparing with patients with CKD stage 3–5, both control group and patients with CKD stage 1–2 had significantly higher values of parameter A in the renal cortex (p = 0.025 and p = 0.031, respectively). In control group and patients stage 1–2, the values of parameters k in the renal cortices were significantly higher than that in the renal medullas, while in patients with CKD stage 3–5, parameter k showed no statistically significant differences between the renal cortex and medulla (p = 0.173). Conclusion CEUS is safe and practicable in pediatric patients with chronic kidney disease. Renal microvascular perfusion estimated by CEUS could be a robust approach in the evaluation of pediatric renal diseases. Parameters A and k derived from CEUS quantitative analysis can provide great potential in non-invasive assessment of renal microvascular perfusion impairment in pediatric CKD.
Collapse
|
15
|
Edwards A, Kurtcuoglu V. Renal blood flow and oxygenation. Pflugers Arch 2022; 474:759-770. [PMID: 35438336 PMCID: PMC9338895 DOI: 10.1007/s00424-022-02690-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Our kidneys receive about one-fifth of the cardiac output at rest and have a low oxygen extraction ratio, but may sustain, under some conditions, hypoxic injuries that might lead to chronic kidney disease. This is due to large regional variations in renal blood flow and oxygenation, which are the prerequisite for some and the consequence of other kidney functions. The concurrent operation of these functions is reliant on a multitude of neuro-hormonal signaling cascades and feedback loops that also include the regulation of renal blood flow and tissue oxygenation. Starting with open questions on regulatory processes and disease mechanisms, we review herein the literature on renal blood flow and oxygenation. We assess the current understanding of renal blood flow regulation, reasons for disparities in oxygen delivery and consumption, and the consequences of disbalance between O2 delivery, consumption, and removal. We further consider methods for measuring and computing blood velocity, flow rate, oxygen partial pressure, and related parameters and point out how limitations of these methods constitute important hurdles in this area of research. We conclude that to obtain an integrated understanding of the relation between renal function and renal blood flow and oxygenation, combined experimental and computational modeling studies will be needed.
Collapse
Affiliation(s)
- Aurelie Edwards
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Vartan Kurtcuoglu
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- National Center of Competence in Research, Kidney.CH, University of Zurich, Zurich, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
McLarnon SC, Johnson C, Giddens P, O'Connor PM. Hidden in Plain Sight: Does Medullary Red Blood Cell Congestion Provide the Explanation for Ischemic Acute Kidney Injury? Semin Nephrol 2022; 42:151280. [PMID: 36460572 DOI: 10.1016/j.semnephrol.2022.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acute kidney injury (AKI) represents a sudden reduction in renal function and is a major clinical problem with a high mortality rate. Despite decades of research, there are currently no direct therapies for AKI. The failure of therapeutic approaches identified in rodents to translate to human beings has led to questions regarding the appropriateness of these models. Our recent data indicate that there are two distinct processes driving tubular injury in the commonly used rat model of warm bilateral renal ischemia reperfusion injury, which often is used to mimic ischemic AKI. One results from the period of warm ischemia, manifesting as sublethal injury and coagulative necrosis of the proximal tubules in the renal cortex. This is the predominate type of injury observed 24 hours after reperfusion and the most well studied. The other results from red blood cell congestion of the outer medullary vasculature. This type of injury manifests as cell sloughing, along with the later formation of heme casts that fill distal nephron segments. Cell sloughing from congestion is most prominent in the early hours after reperfusion and often is masked by regeneration of the tubular epithelium by 24 hours postischemia. In this review, we argue that injury from outer medullary red blood cell congestion reflects the pathology observed in human kidneys and likely is representative of injury in most cases of ischemic AKI after shock. Greater focus on this congestive injury is likely to lead to improved translation in AKI.
Collapse
Affiliation(s)
- Sarah C McLarnon
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Chloe Johnson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Priya Giddens
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Paul M O'Connor
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| |
Collapse
|
17
|
Lankadeva YR, May CN, Bellomo R, Evans RG. Role of perioperative hypotension in postoperative acute kidney injury: a narrative review. Br J Anaesth 2022; 128:931-948. [DOI: 10.1016/j.bja.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022] Open
|
18
|
McLarnon SR, Wilson K, Patel B, Sun J, Sartain CL, Mejias CD, Musall JB, Sullivan JC, Wei Q, Chen JK, Hyndman KA, Marshall B, Yang H, Fogo AB, O’Connor PM. Lipopolysaccharide Pretreatment Prevents Medullary Vascular Congestion following Renal Ischemia by Limiting Early Reperfusion of the Medullary Circulation. J Am Soc Nephrol 2022; 33:769-785. [PMID: 35115326 PMCID: PMC8970460 DOI: 10.1681/asn.2021081089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/16/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Vascular congestion of the renal medulla-trapped red blood cells in the medullary microvasculature-is a hallmark finding at autopsy in patients with ischemic acute tubular necrosis. Despite this, the pathogenesis of vascular congestion is not well defined. METHODS In this study, to investigate the pathogenesis of vascular congestion and its role in promoting renal injury, we assessed renal vascular congestion and tubular injury after ischemia reperfusion in rats pretreated with low-dose LPS or saline (control). We used laser Doppler flowmetry to determine whether pretreatment with low-dose LPS prevented vascular congestion by altering renal hemodynamics during reperfusion. RESULTS We found that vascular congestion originated during the ischemic period in the renal venous circulation. In control animals, the return of blood flow was followed by the development of congestion in the capillary plexus of the outer medulla and severe tubular injury early in reperfusion. Laser Doppler flowmetry indicated that blood flow returned rapidly to the medulla, several minutes before recovery of full cortical perfusion. In contrast, LPS pretreatment prevented both the formation of medullary congestion and its associated tubular injury. Laser Doppler flowmetry in LPS-pretreated rats suggested that limiting early reperfusion of the medulla facilitated this protective effect, because it allowed cortical perfusion to recover and clear congestion from the large cortical veins, which also drain the medulla. CONCLUSIONS Blockage of the renal venous vessels and a mismatch in the timing of cortical and medullary reperfusion results in congestion of the outer medulla's capillary plexus and promotes early tubular injury after renal ischemia. These findings indicate that hemodynamics during reperfusion contribute to the renal medulla's susceptibility to ischemic injury.
Collapse
Affiliation(s)
- Sarah R. McLarnon
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Katie Wilson
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Bansari Patel
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Jingping Sun
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Christina L. Sartain
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Christopher D. Mejias
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Jacqueline B. Musall
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Jennifer C. Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Qingqing Wei
- Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Jian-Kang Chen
- Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Kelly A. Hyndman
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brendan Marshall
- Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Haichun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Agnes B. Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paul M. O’Connor
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
19
|
Vičič E, Kojc N, Hovelja T, Arnol M, Ključevšek D. Quantitative contrast-enhanced ultrasound for the differentiation of kidney allografts with significant histopathological injury. Microcirculation 2021; 28:e12732. [PMID: 34570404 DOI: 10.1111/micc.12732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To identify specific quantitative contrast-enhanced ultrasound (CEUS) parameters that could distinguish kidney transplants with significant histopathological injury. METHODS Sixty-four patients were enrolled in this prospective observational study. Biopsies were performed following CEUS and blood examination. RESULTS 28 biopsy specimens had minimal changes (MC group), while 36 had significant injury (SI group). Of these, 12 had rejection (RI group) and 24 non-rejection injury (NRI group). In RI and NRI groups, temporal difference in time to peak (TTP) between medulla and cortex (ΔTTPm-c) was significantly shorter compared to the MC group (5.77, 5.92, and 7.94 s, P = 0.048 and 0.026, respectively). Additionally, RI group had significantly shorter medullary TTP compared to the MC group (27.75 vs. 32.26 s; P = 0.03). In a subset of 41 patients with protocol biopsy at 1-year post-transplant, ΔTTPm-c was significantly shorter in the SI compared to the MC group (5.67 vs. 7.67 s; P = 0.024). Area under receiver operating characteristic curves (AUROCs) for ΔTTPm-c was 0.69 in all patients and 0.71 in patients with protocol biopsy. CONCLUSIONS RI and NRI groups had shorter ΔTTPm-c compared to the MC group. AUROCs for both patient groups were good, making ΔTTPm-c a promising CEUS parameter for distinguishing patients with significant histopathological injury.
Collapse
Affiliation(s)
- Eva Vičič
- Department of Radiology, Dr. Franc Derganc General Hospital Nova Gorica, Nova Gorica, Slovenia.,Clinical Institute of Radiology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Nika Kojc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaž Hovelja
- Information Systems Laboratory, Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Arnol
- Department of Nephrology, Center for Kidney Transplantation, University Medical Center Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Ključevšek
- Department of Radiology, University Children's Hospital Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
20
|
Pool MBF, Hamelink TL, van Goor H, van den Heuvel MC, Leuvenink HGD, Moers C. Prolonged ex-vivo normothermic kidney perfusion: The impact of perfusate composition. PLoS One 2021; 16:e0251595. [PMID: 34003874 PMCID: PMC8130974 DOI: 10.1371/journal.pone.0251595] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Normothermic machine perfusion (NMP) of donor kidneys provides the opportunity for improved graft preservation and objective pre-transplant ex-vivo organ assessment. Currently, a multitude of perfusion solutions exist for renal NMP. This study aimed to evaluate four different perfusion solutions side-by-side and determine the influence of different perfusate compositions on measured renal perfusion parameters. Porcine kidneys and blood were obtained from a slaughterhouse. Kidneys underwent NMP at 37°C for 7 hours, with 4 different perfusion solutions (n = 5 per group). Group 1 consisted of red blood cells (RBCs) and a perfusion solution based on Williams’ Medium E. Group 2 consisted of RBCs, albumin and a balanced electrolyte composition. Group 3 contained RBCs and a medium based on a British clinical NMP solution. Group 4 contained RBCs and a medium used in 24-hour perfusion experiments. NMP flow patterns for solutions 1 and 2 were similar, solutions 3 and 4 showed lower but more stable flow rates. Thiobarbituric acid reactive substances were significantly higher in solution 1 and 4 compared to the other groups. Levels of injury marker N-acetyl-β-D glucosaminidase were significantly lower in solution 2 in comparison with solution 3 and 4. This study illustrates that the perfusate composition during NMP significantly impacts the measured perfusion and injury parameters and thus affects the interpretation of potential viability markers. Further research is required to investigate the individual influences of principal perfusate components to determine the most optimal conditions during NMP and eventually develop universal organ assessment criteria.
Collapse
Affiliation(s)
- Merel B. F. Pool
- Department of Surgery–Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Tim L. Hamelink
- Department of Surgery–Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marius C. van den Heuvel
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery–Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery–Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Apelt K, Bijkerk R, Lebrin F, Rabelink TJ. Imaging the Renal Microcirculation in Cell Therapy. Cells 2021; 10:cells10051087. [PMID: 34063200 PMCID: PMC8147454 DOI: 10.3390/cells10051087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Renal microvascular rarefaction plays a pivotal role in progressive kidney disease. Therefore, modalities to visualize the microcirculation of the kidney will increase our understanding of disease mechanisms and consequently may provide new approaches for evaluating cell-based therapy. At the moment, however, clinical practice is lacking non-invasive, safe, and efficient imaging modalities to monitor renal microvascular changes over time in patients suffering from renal disease. To emphasize the importance, we summarize current knowledge of the renal microcirculation and discussed the involvement in progressive kidney disease. Moreover, an overview of available imaging techniques to uncover renal microvascular morphology, function, and behavior is presented with the associated benefits and limitations. Ultimately, the necessity to assess and investigate renal disease based on in vivo readouts with a resolution up to capillary level may provide a paradigm shift for diagnosis and therapy in the field of nephrology.
Collapse
Affiliation(s)
- Katerina Apelt
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (K.A.); (R.B.); (F.L.)
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (K.A.); (R.B.); (F.L.)
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Franck Lebrin
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (K.A.); (R.B.); (F.L.)
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
- Physics for Medicine Paris, Inserm, CNRS, ESPCI Paris, Paris Sciences et Lettres University, 75005 Paris, France
| | - Ton J. Rabelink
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (K.A.); (R.B.); (F.L.)
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
22
|
Abstract
Complex multicellular life in mammals relies on functional cooperation of different organs for the survival of the whole organism. The kidneys play a critical part in this process through the maintenance of fluid volume and composition homeostasis, which enables other organs to fulfil their tasks. The renal endothelium exhibits phenotypic and molecular traits that distinguish it from endothelia of other organs. Moreover, the adult kidney vasculature comprises diverse populations of mostly quiescent, but not metabolically inactive, endothelial cells (ECs) that reside within the kidney glomeruli, cortex and medulla. Each of these populations supports specific functions, for example, in the filtration of blood plasma, the reabsorption and secretion of water and solutes, and the concentration of urine. Transcriptional profiling of these diverse EC populations suggests they have adapted to local microenvironmental conditions (hypoxia, shear stress, hyperosmolarity), enabling them to support kidney functions. Exposure of ECs to microenvironment-derived angiogenic factors affects their metabolism, and sustains kidney development and homeostasis, whereas EC-derived angiocrine factors preserve distinct microenvironment niches. In the context of kidney disease, renal ECs show alteration in their metabolism and phenotype in response to pathological changes in the local microenvironment, further promoting kidney dysfunction. Understanding the diversity and specialization of kidney ECs could provide new avenues for the treatment of kidney diseases and kidney regeneration.
Collapse
|
23
|
Chin K, Cazorla-Bak MP, Liu E, Nghiem L, Zhang Y, Yu J, Wilson DF, Vinogradov SA, Gilbert RE, Connelly KA, Evans RG, Baker AJ, David Mazer C, Hare GMT. Renal microvascular oxygen tension during hyperoxia and acute hemodilution assessed by phosphorescence quenching and excitation with blue and red light. Can J Anaesth 2020; 68:214-225. [PMID: 33174162 DOI: 10.1007/s12630-020-01848-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/05/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The kidney plays a central physiologic role as an oxygen sensor. Nevertheless, the direct mechanism by which this occurs is incompletely understood. We measured renal microvascular partial pressure of oxygen (PkO2) to determine the impact of clinically relevant conditions that acutely change PkO2 including hyperoxia and hemodilution. METHODS We utilized two-wavelength excitation (red and blue spectrum) of the intravascular phosphorescent oxygen sensitive probe Oxyphor PdG4 to measure renal tissue PO2 in anesthetized rats (2% isoflurane, n = 6) under two conditions of altered arterial blood oxygen content (CaO2): 1) hyperoxia (fractional inspired oxygen 21%, 30%, and 50%) and 2) acute hemodilutional anemia (baseline, 25% and 50% acute hemodilution). The mean arterial blood pressure (MAP), rectal temperature, arterial blood gases (ABGs), and chemistry (radiometer) were measured under each condition. Blue and red light enabled measurement of PkO2 in the superficial renal cortex and deeper cortical and medullary tissue, respectively. RESULTS PkO2 was higher in the superficial renal cortex (~ 60 mmHg, blue light) relative to the deeper renal cortex and outer medulla (~ 45 mmHg, red light). Hyperoxia resulted in a proportional increase in PkO2 values while hemodilution decreased microvascular PkO2 in a linear manner in both superficial and deeper regions of the kidney. In both cases (blue and red light), PkO2 correlated with CaO2 but not with MAP. CONCLUSION The observed linear relationship between CaO2 and PkO2 shows the biological function of the kidney as a quantitative sensor of anemic hypoxia and hyperoxia. A better understanding of the impact of changes in PkO2 may inform clinical practices to improve renal oxygen delivery and prevent acute kidney injury.
Collapse
Affiliation(s)
- Kyle Chin
- Department of Anesthesia, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
| | - Melina P Cazorla-Bak
- Department of Anesthesia, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Elaine Liu
- Department of Anesthesia, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
| | - Linda Nghiem
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Yanling Zhang
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Julie Yu
- Deaprtment of Anesthesia and Perioperative Medicine, Western University, London, ON, Canada
| | - David F Wilson
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard E Gilbert
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Division of Endocrinology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Kim A Connelly
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Division of Cardiology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Andrew J Baker
- Department of Anesthesia, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.,Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - C David Mazer
- Department of Anesthesia, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Gregory M T Hare
- Department of Anesthesia, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, Canada. .,Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|
24
|
Iguchi N, Kosaka J, Iguchi Y, Evans RG, Bellomo R, May CN, Lankadeva YR. Systemic haemodynamic, renal perfusion and renal oxygenation responses to changes in inspired oxygen fraction during total intravenous or volatile anaesthesia. Br J Anaesth 2020; 125:192-200. [DOI: 10.1016/j.bja.2020.03.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/03/2023] Open
|
25
|
Hesp AC, Schaub JA, Prasad PV, Vallon V, Laverman GD, Bjornstad P, van Raalte DH. The role of renal hypoxia in the pathogenesis of diabetic kidney disease: a promising target for newer renoprotective agents including SGLT2 inhibitors? Kidney Int 2020; 98:579-589. [PMID: 32739206 DOI: 10.1016/j.kint.2020.02.041] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Abstract
Diabetic kidney disease is the most common cause of end-stage kidney disease and poses a major global health problem. Finding new, safe, and effective strategies to halt this disease has proven to be challenging. In part that is because the underlying mechanisms are complex and not fully understood. However, in recent years, evidence has accumulated suggesting that chronic hypoxia may be the primary pathophysiological pathway driving diabetic kidney disease and chronic kidney disease of other etiologies and was called the chronic hypoxia hypothesis. Hypoxia is the result of a mismatch between oxygen delivery and oxygen demand. The primary determinant of oxygen delivery is renal perfusion (blood flow per tissue mass), whereas the main driver of oxygen demand is active sodium reabsorption. Diabetes mellitus is thought to compromise the oxygen balance by impairing oxygen delivery owing to hyperglycemia-associated microvascular damage and exacerbate oxygen demand owing to increased sodium reabsorption as a result of sodium-glucose cotransporter upregulation and glomerular hyperfiltration. The resultant hypoxic injury creates a vicious cycle of capillary damage, inflammation, deposition of the extracellular matrix, and, ultimately, fibrosis and nephron loss. This review will frame the role of chronic hypoxia in the pathogenesis of diabetic kidney disease and its prospect as a promising therapeutic target. We will outline the cellular mechanisms of hypoxia and evidence for renal hypoxia in animal and human studies. In addition, we will highlight the promise of newer imaging modalities including blood oxygenation level-dependent magnetic resonance imaging and discuss salutary interventions such as sodium-glucose cotransporter 2 inhibition that (may) protect the kidney through amelioration of renal hypoxia.
Collapse
Affiliation(s)
- Anne C Hesp
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, location VUMC, Amsterdam, The Netherlands.
| | - Jennifer A Schaub
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Pottumarthi V Prasad
- Department of Radiology, NorthShore University Health System, Evanston, Illinois, USA; Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Volker Vallon
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Gozewijn D Laverman
- Department of Internal Medicine, Ziekenhuis Groep Twente, Almelo, The Netherlands
| | - Petter Bjornstad
- Department of Medicine, Division of Nephrology, and Section of Endocrinology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Daniël H van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, location VUMC, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Gardiner BS, Smith DW, Lee C, Ngo JP, Evans RG. Renal oxygenation: From data to insight. Acta Physiol (Oxf) 2020; 228:e13450. [PMID: 32012449 DOI: 10.1111/apha.13450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
Abstract
Computational models have made a major contribution to the field of physiology. As the complexity of our understanding of biological systems expands, the need for computational methods only increases. But collaboration between experimental physiologists and computational modellers (ie theoretical physiologists) is not easy. One of the major challenges is to break down the barriers created by differences in vocabulary and approach between the two disciplines. In this review, we have two major aims. Firstly, we wish to contribute to the effort to break down these barriers and so encourage more interdisciplinary collaboration. So, we begin with a "primer" on the ways in which computational models can help us understand physiology and pathophysiology. Second, we aim to provide an update of recent efforts in one specific area of physiology, renal oxygenation. This work is shedding new light on the causes and consequences of renal hypoxia. But as importantly, computational modelling is providing direction for experimental physiologists working in the field of renal oxygenation by: (a) generating new hypotheses that can be tested in experimental studies, (b) allowing experiments that are technically unfeasible to be simulated in silico, or variables that cannot be measured experimentally to be estimated, and (c) providing a means by which the quality of experimental data can be assessed. Critically, based on our experience, we strongly believe that experimental and theoretical physiology should not be seen as separate exercises. Rather, they should be integrated to permit an iterative process between modelling and experimentation.
Collapse
Affiliation(s)
- Bruce S. Gardiner
- College of Science Health, Engineering and Education Murdoch University Perth Australia
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth Australia
| | - David W. Smith
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth Australia
| | - Chang‐Joon Lee
- College of Science Health, Engineering and Education Murdoch University Perth Australia
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth Australia
| | - Jennifer P. Ngo
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Australia
- Department of Cardiac Physiology National Cerebral and Cardiovascular Research Center Osaka Japan
| | - Roger G. Evans
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Australia
| |
Collapse
|
27
|
Porcine models for studying complications and organ crosstalk in diabetes mellitus. Cell Tissue Res 2020; 380:341-378. [PMID: 31932949 DOI: 10.1007/s00441-019-03158-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
The worldwide prevalence of diabetes mellitus and obesity is rapidly increasing not only in adults but also in children and adolescents. Diabetes is associated with macrovascular complications increasing the risk for cardiovascular disease and stroke, as well as microvascular complications leading to diabetic nephropathy, retinopathy and neuropathy. Animal models are essential for studying disease mechanisms and for developing and testing diagnostic procedures and therapeutic strategies. Rodent models are most widely used but have limitations in translational research. Porcine models have the potential to bridge the gap between basic studies and clinical trials in human patients. This article provides an overview of concepts for the development of porcine models for diabetes and obesity research, with a focus on genetically engineered models. Diabetes-associated ocular, cardiovascular and renal alterations observed in diabetic pig models are summarized and their similarities with complications in diabetic patients are discussed. Systematic multi-organ biobanking of porcine models of diabetes and obesity and molecular profiling of representative tissue samples on different levels, e.g., on the transcriptome, proteome, or metabolome level, is proposed as a strategy for discovering tissue-specific pathomechanisms and their molecular key drivers using systems biology tools. This is exemplified by a recent study providing multi-omics insights into functional changes of the liver in a transgenic pig model for insulin-deficient diabetes mellitus. Collectively, these approaches will provide a better understanding of organ crosstalk in diabetes mellitus and eventually reveal new molecular targets for the prevention, early diagnosis and treatment of diabetes mellitus and its associated complications.
Collapse
|
28
|
Non-invasive evaluation of renal structure and function of healthy individuals with multiparametric MRI: Effects of sex and age. Sci Rep 2019; 9:10661. [PMID: 31337796 PMCID: PMC6650480 DOI: 10.1038/s41598-019-46996-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
Clinically, when applying multiparametric magnetic resonance imaging (MRI) examinations in renal diseases, assessment of renal structure and function has to account for age- and sex-related effects. The aim of this study was to investigate the influence of age and sex on multiparametric MRI assessment of renal structure and function in healthy human beings. Studies on 33 healthy volunteers were performed using multiparametric MRI on a 3.0-Tesla MR scanner, including T1-weighted imaging, blood oxygen level-dependent MRI (BOLD MRI), diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI). Our results revealed that the mean renal cortical thickness (RCT), ratio of cortex to parenchyma (CPR), and cortical R2* values were higher in males than in females. The cortical R2* value was higher in older group than in younger group (18.57 ± 0.99 vs 17.53 ± 0.58, p = 0.001); there was no significant difference in medullary R2* between the older and younger groups (38.18 ± 2.96 vs 36.45 ± 2.47, p = 0.077). The parenchymal thickness (PT) and medullary fractional anisotropy (FA) were lower in older group than in younger group (1.547 ± 0.06 vs 1.604 ± 0.05, p = 0.005 and 0.343 ± 0.03 vs 0.371 ± 0.03, p = 0.016, respectively). Pearson's correlation analysis showed that PT and medullary FA were inversely related with age (r = -0.483, p = 0.004; r = -0.446, p = 0.009) while cortical R2* values was positively related (r = 0.511, p = 0.002, respectively). The medullary apparent diffusion coefficient (ADC) value had a significant association with PT (r = 0.359, p = 0.04). This study indicated that multiparametric renal MRI parameters are age and sex dependent.
Collapse
|
29
|
O'Connor PM. Going with the flow: updating old techniques to gain insight into regional kidney hemodynamics. Physiol Rep 2019; 7:e14103. [PMID: 31090164 PMCID: PMC6517335 DOI: 10.14814/phy2.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Paul M. O'Connor
- Department of Physiology Medical College of Georgia Augusta Georgia
| |
Collapse
|
30
|
Affiliation(s)
- Reetu R Singh
- From the Department of Physiology, Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kate M Denton
- From the Department of Physiology, Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
31
|
Vasa recta hyalinosis reflects severe arteriolopathy in renal allografts. Clin Exp Nephrol 2019; 23:799-806. [PMID: 30734165 DOI: 10.1007/s10157-019-01709-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Abstract
AIM We examined the clinicopathologic significance of hyalinosis in the vasa recta in the medulla of allograft kidney biopsies. METHOD We analyzed biopsy specimens from January 2010 to December 2015, obtained from both the cortex and medulla (including the vasa recta) ≥ 1 year after living-donor kidney transplantation. We excluded biopsy specimens from recipients who had undergone transplantation due to diabetic nephropathy or who had diabetes mellitus after transplantation. We evaluated hyaline arteriolopathy in the cortex using the aah score determined by the Banff 2007 classification. RESULT Among 381 biopsy specimens obtained from 248 transplant recipients ≥ 1 year after transplantation, 36 specimens obtained from 34 recipients showed vasa recta hyalinosis (VRH) in the medulla. Among these 36 specimens, 17 had a score of aah3, 16 had a score of aah2, and 3 had a score of aah1. The incidence of VRH was 1.9% at ≥ 1 to < 4 years, 7.1% at ≥ 4 to < 8 years, and 50.0% at ≥ 8 years. The aah scores and the proportion of hyalinosis in the arteriolar media among all muscular arterioles in the cortex were significantly higher in the VRH group at ≥ 8 years in the late-phase biopsy (P < 0.01). The graft survival was worse in the VRH group (P = 0.024), although there was no significant difference in the graft survival between the ≥ aah2 and < aah2 groups at ≥ 8 years in the late-phase biopsy (P = 0.159). CONCLUSION VRH in renal allografts reflects severe arteriolopathy of the cortex. VRH in the late-phase biopsy may be a prognostic factor for graft survival.
Collapse
|
32
|
Ma S, Evans RG, Iguchi N, Tare M, Parkington HC, Bellomo R, May CN, Lankadeva YR. Sepsis-induced acute kidney injury: A disease of the microcirculation. Microcirculation 2018; 26:e12483. [PMID: 29908046 DOI: 10.1111/micc.12483] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
AKI is a common complication of sepsis and is significantly associated with mortality. Sepsis accounts for more than 50% of the cases of AKI, with a mortality rate of up to 40%. The pathogenesis of septic AKI is complex, but there is emerging evidence that, at least in the first 48 hours, the defects may be functional rather than structural in nature. For example, septic AKI is associated with an absence of histopathological changes, but with microvascular abnormalities and tubular stress. In this context, renal medullary hypoxia due to redistribution of intra-renal perfusion is emerging as a critical mediator of septic AKI. Clinically, vasopressor drugs remain the cornerstone of therapy for maintenance of blood pressure and organ perfusion. However, in septic AKI, there is insensitivity to vasopressors such as norepinephrine, leading to persistent hypotension and organ failure. Vasopressin, angiotensin II, and, paradoxically, α2 -adrenergic receptor agonists (clonidine and dexmedetomidine) may be feasible adjunct therapies for catecholamine-resistant vasodilatory shock. In this review, we outline the recent progress made in understanding how these drugs may influence the renal microcirculation, which represents a crucial step toward developing better approaches for the circulatory management of patients with septic AKI.
Collapse
Affiliation(s)
- Shuai Ma
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Naoya Iguchi
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Marianne Tare
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia.,Monash Rural Health, Monash University, Melbourne, VIC, Australia
| | - Helena C Parkington
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Rinaldo Bellomo
- School of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Yugeesh R Lankadeva
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Evans RG, Lankadeva YR, Cochrane AD, Marino B, Iguchi N, Zhu MZL, Hood SG, Smith JA, Bellomo R, Gardiner BS, Lee C, Smith DW, May CN. Renal haemodynamics and oxygenation during and after cardiac surgery and cardiopulmonary bypass. Acta Physiol (Oxf) 2018; 222. [PMID: 29127739 DOI: 10.1111/apha.12995] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
Abstract
Acute kidney injury (AKI) is a common complication following cardiac surgery performed on cardiopulmonary bypass (CPB) and has important implications for prognosis. The aetiology of cardiac surgery-associated AKI is complex, but renal hypoxia, particularly in the medulla, is thought to play at least some role. There is strong evidence from studies in experimental animals, clinical observations and computational models that medullary ischaemia and hypoxia occur during CPB. There are no validated methods to monitor or improve renal oxygenation during CPB, and thus possibly decrease the risk of AKI. Attempts to reduce the incidence of AKI by early transfusion to ameliorate intra-operative anaemia, refinement of protocols for cooling and rewarming on bypass, optimization of pump flow and arterial pressure, or the use of pulsatile flow, have not been successful to date. This may in part reflect the complexity of renal oxygenation, which may limit the effectiveness of individual interventions. We propose a multi-disciplinary pathway for translation comprising three components. Firstly, large-animal models of CPB to continuously monitor both whole kidney and regional kidney perfusion and oxygenation. Secondly, computational models to obtain information that can be used to interpret the data and develop rational interventions. Thirdly, clinically feasible non-invasive methods to continuously monitor renal oxygenation in the operating theatre and to identify patients at risk of AKI. In this review, we outline the recent progress on each of these fronts.
Collapse
Affiliation(s)
- R. G. Evans
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - Y. R. Lankadeva
- Florey Institute of Neuroscience and Mental Health University of Melbourne Melbourne Vic. Australia
| | - A. D. Cochrane
- Department of Cardiothoracic Surgery Monash Health Monash University Melbourne Vic. Australia
- Department of Surgery School of Clinical Sciences at Monash Health Monash University Melbourne Vic. Australia
| | - B. Marino
- Department of Perfusion Services Austin Hospital Heidelberg Vic. Australia
| | - N. Iguchi
- Florey Institute of Neuroscience and Mental Health University of Melbourne Melbourne Vic. Australia
| | - M. Z. L. Zhu
- Department of Cardiothoracic Surgery Monash Health Monash University Melbourne Vic. Australia
- Department of Surgery School of Clinical Sciences at Monash Health Monash University Melbourne Vic. Australia
| | - S. G. Hood
- Florey Institute of Neuroscience and Mental Health University of Melbourne Melbourne Vic. Australia
| | - J. A. Smith
- Department of Cardiothoracic Surgery Monash Health Monash University Melbourne Vic. Australia
- Department of Surgery School of Clinical Sciences at Monash Health Monash University Melbourne Vic. Australia
| | - R. Bellomo
- Department of Intensive Care Austin Hospital Heidelberg Vic. Australia
| | - B. S. Gardiner
- School of Engineering and Information Technology Murdoch University Perth WA Australia
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth WA Australia
| | - C.‐J. Lee
- School of Engineering and Information Technology Murdoch University Perth WA Australia
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth WA Australia
| | - D. W. Smith
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth WA Australia
| | - C. N. May
- Florey Institute of Neuroscience and Mental Health University of Melbourne Melbourne Vic. Australia
| |
Collapse
|
34
|
Zhang Z, Payne K, Pallone TL. Adaptive responses of rat descending vasa recta to ischemia. Am J Physiol Renal Physiol 2018; 314:F373-F380. [PMID: 28814437 DOI: 10.1152/ajprenal.00062.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
tested whether rat descending vasa recta (DVR) undergo regulatory adaptations after the kidney is exposed to ischemia. Left kidneys (LK) were subjected to 30-min renal artery cross clamp. After 48 h, the postischemic LK and contralateral right kidney (RK) were harvested for study. When compared with DVR isolated from either sham-operated LK or the contralateral RK, postischemic LK DVR markedly increased their NO generation. The selective inducible NOS (iNOS) inhibitor 1400W blocked the NO response. Immunoblots from outer medullary homogenates showed a parallel 2.6-fold increase in iNOS expression ( P = 0.01). Microperfused postischemic LK DVR exposed to angiotensin II (ANG II, 10 nM), constricted less than those from the contralateral RK, and constricted more when exposed to 1400W (10 µM). Resting membrane potentials of pericytes from postischemic LK DVR pericytes were hyperpolarized relative to contralateral RK pericytes (62.0 ± 1.6 vs. 51.8 ± 2.2 mV, respectively, P < 0.05) or those from sham-operated LK (54.9 ± 2.1 mV, P < 0.05). Blockade of NO generation with 1400W did not repolarize postischemic pericytes (62.5 ± 1.4 vs. 61.1 ± 3.4 mV); however, control pericytes were hyperpolarized by exposure to NO donation from S-nitroso- N-acetyl- dl-penicillamine (51.5 ± 2.9 to 62.1 ± 1.4 mV, P < 0.05). We conclude that postischemic adaptations intrinsic to the DVR wall occur after ischemia. A rise in 1400W sensitive NO generation and iNOS expression occurs that is associated with diminished contractile responses to ANG II. Pericyte hyperpolarization occurs that is not explained by the rise in ambient NO generation within the DVR wall.
Collapse
Affiliation(s)
- Zhong Zhang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Kristie Payne
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Thomas L Pallone
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland.,Baltimore Veterans Administration Medical Center , Baltimore, Maryland
| |
Collapse
|
35
|
Stock E, Duchateau L, Saunders JH, Volckaert V, Polis I, Vanderperren K. Repeatability of Contrast-Enhanced Ultrasonography of the Kidneys in Healthy Cats. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:426-433. [PMID: 29174044 DOI: 10.1016/j.ultrasmedbio.2017.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Contrast-enhanced ultrasound can be used to image and quantify tissue perfusion. It holds great potential for the use in the diagnosis of various diffuse renal diseases in both human and veterinary medicine. Nevertheless, the technique is known to have an inherent relatively high variability, related to various factors associated with the patient, the contrast agent and machine settings. Therefore, the aim of this study was to assess week-to-week intra- and inter-cat variation of several perfusion parameters obtained with CEUS of both kidneys of 12 healthy cats. Repeatability was determined by calculating the coefficient of variation (CV). The contrast-enhanced ultrasound parameters with the lowest variation for the renal cortex were time-to-peak (CV 6.0%), rise time (CV 13%), fall time (CV 19%) and mean transit time (24%). Intensity-related parameters and parameters related to the slope of the time-intensity curve had a CV of >35%. Lower repeatability was present for perfusion parameters derived from the renal medulla compared with the renal cortex. Normalization to the inter-lobar artery does not cause a reduction in variation. In conclusion, time-related parameters for the cortex show a reasonable repeatability; whereas poor repeatability is present for intensity-related parameters and parameters related to in- and outflow of contrast agent. Poor repeatability is also present for all perfusion parameters for the renal medulla, except for time to peak, which has a good repeatability.
Collapse
Affiliation(s)
- Emmelie Stock
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Luc Duchateau
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jimmy H Saunders
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Veerle Volckaert
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ingeborgh Polis
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katrien Vanderperren
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
36
|
Stock E, Paepe D, Daminet S, Vandermeulen E, Duchateau L, Saunders JH, Vanderperren K. Contrast-Enhanced Ultrasound Examination for the Assessment of Renal Perfusion in Cats with Chronic Kidney Disease. J Vet Intern Med 2017; 32:260-266. [PMID: 29171085 PMCID: PMC5787201 DOI: 10.1111/jvim.14869] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/25/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022] Open
Abstract
Background Contrast‐enhanced ultrasound examination (CEUS) is a functional imaging technique allowing noninvasive assessment of tissue perfusion. Studies in humans show that the technique holds great potential to be used in the diagnosis of chronic kidney disease (CKD). However, data in veterinary medicine are currently lacking. Objectives To evaluate renal perfusion using CEUS in cats with CKD. Animals Fourteen client‐owned cats with CKD and 43 healthy control cats. Methods Prospective case‐controlled clinical trial using CEUS to evaluate renal perfusion in cats with CKD compared to healthy control cats. Time‐intensity curves were created, and perfusion parameters were calculated using off‐line software. A linear mixed model was used to examine differences between perfusion parameters of cats with CKD and healthy cats. Results In cats with CKD, longer time to peak and shorter mean transit times were observed for the renal cortex. In contrast, a shorter time to peak and rise time were seen for the renal medulla. The findings for the renal cortex indicate decreased blood velocity and shorter total duration of enhancement, likely caused by increased vascular resistance in CKD. Increased blood velocity in the renal medulla has not been described before and may be because of a different response to regulatory factors in cortex and medulla. Conclusions and Clinical Importance Contrast‐enhanced ultrasound examination was capable of detecting perfusion changes in cats with CKD. Further research is warranted to assess the diagnostic capabilities of CEUS in early stage of the disease process.
Collapse
Affiliation(s)
- E Stock
- Department of Medical Imaging of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - D Paepe
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - S Daminet
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - E Vandermeulen
- Department of Medical Imaging of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - L Duchateau
- Department of Comparative Physiology and Biometry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - J H Saunders
- Department of Medical Imaging of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - K Vanderperren
- Department of Medical Imaging of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
37
|
O’Carroll AM, Salih S, Griffiths PR, Bijabhai A, Knepper MA, Lolait SJ. Expression and functional implications of the renal apelinergic system in rodents. PLoS One 2017; 12:e0183094. [PMID: 28817612 PMCID: PMC5560558 DOI: 10.1371/journal.pone.0183094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/28/2017] [Indexed: 02/06/2023] Open
Abstract
Apelin binds to the G protein-coupled apelin receptor (APJ; gene name aplnr) to modulate diverse physiological systems including cardiovascular function, and hydromineral and metabolic balance. Recently a second endogenous ligand for APJ, named apela, has been discovered. We confirm that apela activates signal transduction pathways (ERK activation) in cells expressing the cloned rat APJ. Previous studies suggest that exogenous apela is diuretic, attributable wholly or in part to an action on renal APJ. Thus far the cellular distribution of apela in the kidney has not been reported. We have utilized in situ hybridization histochemistry to reveal strong apela labelling in the inner medulla (IM), with lower levels observed in the inner stripe of the outer medulla (ISOM), of rat and mouse kidneys. This contrasts with renal aplnr expression where the converse is apparent, with intense labelling in the ISOM (consistent with vasa recta labelling) and low-moderate hybridization in the IM, in addition to labelling of glomeruli. Apelin is found in sparsely distributed cells amongst more prevalent aplnr-labelled cells in extra-tubular regions of the medulla. This expression profile is supported by RNA-Seq data that shows that apela, but not apelin or aplnr, is highly expressed in microdissected rat kidney tubules. If endogenous tubular apela promotes diuresis in the kidney it could conceivably do this by interacting with APJ in vasculature, or via an unknown receptor in the tubules. The comparative distribution of apela, apelin and aplnr in the rodent kidney lays the foundation for future work on how the renal apelinergic system interacts.
Collapse
Affiliation(s)
- Anne-Marie O’Carroll
- Bristol Medical School, HW-LINE, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Sabrine Salih
- Bristol Medical School, HW-LINE, University of Bristol, Bristol, United Kingdom
| | - Philip R. Griffiths
- Bristol Medical School, HW-LINE, University of Bristol, Bristol, United Kingdom
| | - Aarifah Bijabhai
- Bristol Medical School, HW-LINE, University of Bristol, Bristol, United Kingdom
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen J. Lolait
- Bristol Medical School, HW-LINE, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
38
|
Hsi RS, Ramaswamy K, Ho SP, Stoller ML. The origins of urinary stone disease: upstream mineral formations initiate downstream Randall's plaque. BJU Int 2016; 119:177-184. [PMID: 27306864 DOI: 10.1111/bju.13555] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To describe a new hypothesis for the initial events leading to urinary stones. A biomechanical perspective on Randall's plaque formation through form and function relationships is applied to functional units within the kidney, we have termed the 'medullo-papillary complex' - a dynamic relationship between intratubular and interstitial mineral aggregates. METHODS A complete MEDLINE search was performed to examine the existing literature on the anatomical and physiological relationships in the renal medulla and papilla. Sectioned human renal medulla with papilla from radical nephrectomy specimens were imaged using a high resolution micro X-ray computed tomography. The location, distribution, and density of mineral aggregates within the medullo-papillary complex were identified. RESULTS Mineral aggregates were seen proximally in all specimens within the outer medulla of the medullary complex and were intratubular. Distal interstitial mineralisation at the papillary tip corresponding to Randall's plaque was not seen until a threshold of proximal mineralisation was observed. Mineral density measurements suggest varied chemical compositions between the proximal intratubular (330 mg/cm3 ) and distal interstitial (270 mg/cm3 ) deposits. A review of the literature revealed distinct anatomical compartments and gradients across the medullo-papillary complex that supports the empirical observations that proximal mineralisation triggers distal Randall's plaque formation. CONCLUSION The early stone event is initiated by intratubular mineralisation of the renal medullary tissue leading to the interstitial mineralisation that is observed as Randall's plaque. We base this novel hypothesis on a multiscale biomechanics perspective involving form and function relationships, and empirical observations. Additional studies are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Ryan S Hsi
- Department of Urology, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Krishna Ramaswamy
- Department of Urology, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Sunita P Ho
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Marshall L Stoller
- Department of Urology, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
39
|
Zhang Z, Payne K, Pallone TL. Descending Vasa Recta Endothelial Membrane Potential Response Requires Pericyte Communication. PLoS One 2016; 11:e0154948. [PMID: 27171211 PMCID: PMC4865043 DOI: 10.1371/journal.pone.0154948] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/21/2016] [Indexed: 11/30/2022] Open
Abstract
Using dual-cell electrophysiological recording, we examined the routes for equilibration of membrane potential between the pericytes and endothelia that comprise the descending vasa recta (DVR) wall. We measured equilibration between pericytes in intact vessels, between pericytes and endothelium in intact vessels and between pericytes physically separated from the endothelium. Dual pericyte recording on the abluminal surface of DVR showed that both resting potential and subsequent time-dependent voltage fluctuations after vasoconstrictor stimulation remained closely equilibrated, regardless of the agonist employed (angiotensin II, vasopressin or endothelin 1). When pericytes where removed from the vessel wall but retained physical contact with one another, membrane potential responses were also highly coordinated. In contrast, responses of pericytes varied independently when they were isolated from both the endothelium and from contact with one another. When pericytes and endothelium were in contact, their resting potentials were similar and their temporal responses to stimulation were highly coordinated. After completely isolating pericytes from the endothelium, their mean resting potentials became discordant. Finally, complete endothelial isolation eliminated all membrane potential responses to angiotensin II. We conclude that cell-to-cell transmission through the endothelium is not needed for pericytes to equilibrate their membrane potentials. AngII dependent responses of DVR endothelia may originate from gap junction coupling to pericytes rather than via receptor dependent signaling in the endothelium, per se.
Collapse
Affiliation(s)
- Zhong Zhang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States of America
| | - Kristie Payne
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States of America
| | - Thomas L Pallone
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States of America
| |
Collapse
|
40
|
Lankadeva YR, Kosaka J, Evans RG, Bailey SR, Bellomo R, May CN. Intrarenal and urinary oxygenation during norepinephrine resuscitation in ovine septic acute kidney injury. Kidney Int 2016; 90:100-8. [PMID: 27165831 DOI: 10.1016/j.kint.2016.02.017] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/26/2016] [Accepted: 02/11/2016] [Indexed: 10/21/2022]
Abstract
Norepinephrine is the principal vasopressor used to restore blood pressure in sepsis, but its effects on intrarenal oxygenation are unknown. To clarify this, we examined renal cortical, medullary, and urinary oxygenation in ovine septic acute kidney injury and the response to resuscitation with norepinephrine. A renal artery flow probe and fiberoptic probes were placed in the cortex and medulla of sheep to measure tissue perfusion and oxygenation. A probe in the bladder catheter measured urinary oxygenation. Sepsis was induced in conscious sheep by infusion of Escherichia coli for 32 hours. At 24 to 30 hours of sepsis, either norepinephrine, to restore mean arterial pressure to preseptic levels or vehicle-saline was infused (8 sheep per group). Septic acute kidney injury was characterized by a reduction in blood pressure of ∼12 mm Hg, renal hyperperfusion, and oliguria. Sepsis reduced medullary perfusion (from an average of 1289 to 628 blood perfusion units), medullary oxygenation (from 32 to 16 mm Hg), and urinary oxygenation (from 36 to 24 mm Hg). Restoring blood pressure with norepinephrine further reduced medullary perfusion to an average of 331 blood perfusion units, medullary oxygenation to 8 mm Hg and urinary oxygenation to 18 mm Hg. Cortical perfusion and oxygenation were preserved. Thus, renal medullary hypoxia caused by intrarenal blood flow redistribution may contribute to the development of septic acute kidney injury, and resuscitation of blood pressure with norepinephrine exacerbates medullary hypoxia. The parallel changes in medullary and urinary oxygenation suggest that urinary oxygenation may be a useful real-time biomarker for risk of acute kidney injury.
Collapse
Affiliation(s)
- Yugeesh R Lankadeva
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Junko Kosaka
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Roger G Evans
- Cardiovascular Disease Program, Bioscience Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Simon R Bailey
- Faculty of Veterinary Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care and Department of Medicine, Austin Health, Heidelberg and The Australian and New Zealand Intensive Care Research Centre, Melbourne, Victoria, Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
41
|
Saad A, Herrmann SM, Textor SC. Chronic renal ischemia in humans: can cell therapy repair the kidney in occlusive renovascular disease? Physiology (Bethesda) 2016; 30:175-82. [PMID: 25933818 DOI: 10.1152/physiol.00065.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Occlusive renovascular disease caused by atherosclerotic renal artery stenosis (ARAS) elicits complex biological responses that eventually lead to loss of kidney function. Recent studies indicate a complex interplay of oxidative stress, endothelial dysfunction, and activation of fibrogenic and inflammatory cytokines as a result of atherosclerosis, hypoxia, and renal hypoperfusion in this disorder. Human studies emphasize the limits of the kidney adaptation to reduced blood flow, eventually leading to renal hypoxia with activation of inflammatory and fibrogenic pathways. Several randomized prospective clinical trials show that stent revascularization alone in patients with atherosclerotic renal artery stenosis provides little additional benefit to medical therapy once these processes have developed and solidified. Experimental data now support developing adjunctive cell-based measures to support angiogenesis and anti-inflammatory renal repair mechanisms. These data encourage the study of endothelial progenitor cells and/or mesenchymal stem/stromal cells for the repair of damaged kidney tissue.
Collapse
Affiliation(s)
- Ahmed Saad
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Stephen C Textor
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
42
|
Fu Q, Colgan SP, Shelley CS. Hypoxia: The Force that Drives Chronic Kidney Disease. Clin Med Res 2016; 14:15-39. [PMID: 26847481 PMCID: PMC4851450 DOI: 10.3121/cmr.2015.1282] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022]
Abstract
In the United States the prevalence of end-stage renal disease (ESRD) reached epidemic proportions in 2012 with over 600,000 patients being treated. The rates of ESRD among the elderly are disproportionally high. Consequently, as life expectancy increases and the baby-boom generation reaches retirement age, the already heavy burden imposed by ESRD on the US health care system is set to increase dramatically. ESRD represents the terminal stage of chronic kidney disease (CKD). A large body of evidence indicating that CKD is driven by renal tissue hypoxia has led to the development of therapeutic strategies that increase kidney oxygenation and the contention that chronic hypoxia is the final common pathway to end-stage renal failure. Numerous studies have demonstrated that one of the most potent means by which hypoxic conditions within the kidney produce CKD is by inducing a sustained inflammatory attack by infiltrating leukocytes. Indispensable to this attack is the acquisition by leukocytes of an adhesive phenotype. It was thought that this process resulted exclusively from leukocytes responding to cytokines released from ischemic renal endothelium. However, recently it has been demonstrated that leukocytes also become activated independent of the hypoxic response of endothelial cells. It was found that this endothelium-independent mechanism involves leukocytes directly sensing hypoxia and responding by transcriptional induction of the genes that encode the β2-integrin family of adhesion molecules. This induction likely maintains the long-term inflammation by which hypoxia drives the pathogenesis of CKD. Consequently, targeting these transcriptional mechanisms would appear to represent a promising new therapeutic strategy.
Collapse
Affiliation(s)
- Qiangwei Fu
- Kabara Cancer Research Institute, La Crosse, WI
| | - Sean P Colgan
- Mucosal Inflammation Program and University of Colorado School of Medicine, Aurora, CO
| | - Carl Simon Shelley
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
43
|
Cortical and Medullary Tissue Perfusion and Oxygenation in Experimental Septic Acute Kidney Injury. Crit Care Med 2015; 43:e431-9. [PMID: 26181218 DOI: 10.1097/ccm.0000000000001198] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine whether there is a decrease in renal cortical or medullary perfusion and oxygenation in a conscious large animal model of hyperdynamic septic shock with acute kidney injury. DESIGN Interventional animal study. SETTING University-affiliated research institute. SUBJECTS Eight merino ewes. INTERVENTIONS Sheep were surgically instrumented with pulmonary and renal artery flow probes in the renal cortex and medulla, combination fiber-optic probes comprising a fluorescence optode to measure tissue PO2, and a laser-Doppler probe to assess tissue perfusion. Sepsis was induced by infusion of live Escherichia coli for 24 hours followed by 24-hour recovery. MEASUREMENTS AND MAIN RESULTS In unanesthetized normal sheep, resting levels of cortical and medullary tissue PO2 were 29.5 ± 4.4 and 29.1 ± 4.3 mm Hg, respectively. During infusion of E. coli, hyperdynamic sepsis developed with hypotension, tachycardia, increased cardiac output, increased renal blood flow, oliguria, decreased creatinine clearance, and increased serum creatinine. Renal oxygen delivery increased while renal oxygen consumption was unchanged. During sepsis, cortical tissue PO2 increased from 29.4 ± 4.3 to 36.3 ± 3.5 mm Hg (p < 0.001), whereas medullary oxygenation decreased from 29.6 ± 4.7 to 13.1 ± 2.7 mm Hg (p < 0.001). Cortical perfusion was not significantly changed, but medullary perfusion decreased (671 BPU [500-900 BPU] to 480 BPU [349-661 BPU]; geometric mean [95% CI]; p < 0.001). CONCLUSIONS In a large animal model of hyperdynamic sepsis, renal hyperemia was associated with preserved cortical oxygenation and perfusion, but decreased medullary oxygenation and perfusion. Medullary hypoxia due to intrarenal blood flow redistribution may be one of the factors causing acute kidney injury in sepsis.
Collapse
|
44
|
Calzavacca P, Evans RG, Bailey M, Bellomo R, May CN. Variable responses of regional renal oxygenation and perfusion to vasoactive agents in awake sheep. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1226-33. [DOI: 10.1152/ajpregu.00228.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022]
Abstract
Vasoactive agents are used in critical care to optimize circulatory function, but their effects on renal tissue oxygenation in the absence of anesthesia remain largely unknown. Therefore, we assessed the effects of multiple vasoactive agents on regional kidney oxygenation in awake sheep. Sheep were surgically instrumented with pulmonary and renal artery flow probes, and combination fiber-optic probes, in the renal cortex and medulla, comprising a fluorescence optode to measure tissue Po2 and a laser-Doppler probe to assess tissue perfusion. Carotid arterial and renal venous cannulas enabled measurement of arterial pressure and total renal oxygen delivery and consumption. Norepinephrine (0.1 or 0.8 μg·kg−1·min−1) dose-dependently reduced cortical and medullary laser Doppler flux (LDF) and Po2 without significantly altering renal blood flow (RBF), or renal oxygen delivery or consumption. Angiotensin II (9.8 ± 2.1 μg/h) reduced RBF by 21%, renal oxygen delivery by 28%, oxygen consumption by 18%, and medullary Po2 by 38%, but did not significantly alter cortical Po2 or cortical or medullary LDF. Arginine vasopressin (3.3 ± 0.5 μg/h) caused similar decreases in RBF and renal oxygen delivery, but did not significantly alter renal oxygen consumption or cortical or medullary LDF or Po2. Captopril had no observable effects on cortical or medullary LDF or Po2, at a dose that increased renal oxygen delivery by 24%, but did not significantly alter renal oxygen consumption. We conclude that vasoactive agents have diverse effects on regional kidney oxygenation in awake sheep that are not predictable from their effects on LDF, RBF, or total renal oxygen delivery and consumption.
Collapse
Affiliation(s)
- Paolo Calzavacca
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Anaesthesia and Intensive Care, AO Melegnano, PO Uboldo, Cernusco sul Naviglio, Italy
| | - Roger G. Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Michael Bailey
- Australian and New Zealand Intensive Care Research Center, Monash University, Melbourne, Victoria, Australia; and
| | - Rinaldo Bellomo
- Department of Intensive Care and Department of Medicine, Austin Health, Heidelberg, Victoria, Australia
| | - Clive N. May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
45
|
Osei-Owusu P, Owens EA, Jie L, Reis JS, Forrester SJ, Kawai T, Eguchi S, Singh H, Blumer KJ. Regulation of Renal Hemodynamics and Function by RGS2. PLoS One 2015; 10:e0132594. [PMID: 26193676 PMCID: PMC4508038 DOI: 10.1371/journal.pone.0132594] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 06/16/2015] [Indexed: 12/16/2022] Open
Abstract
Regulator of G protein signaling 2 (RGS2) controls G protein coupled receptor (GPCR) signaling by acting as a GTPase-activating protein for heterotrimeric G proteins. Certain Rgs2 gene mutations have been linked to human hypertension. Renal RGS2 deficiency is sufficient to cause hypertension in mice; however, the pathological mechanisms are unknown. Here we determined how the loss of RGS2 affects renal function. We examined renal hemodynamics and tubular function by monitoring renal blood flow (RBF), glomerular filtration rate (GFR), epithelial sodium channel (ENaC) expression and localization, and pressure natriuresis in wild type (WT) and RGS2 null (RGS2-/-) mice. Pressure natriuresis was determined by stepwise increases in renal perfusion pressure (RPP) and blood flow, or by systemic blockade of nitric oxide synthase with L-NG-Nitroarginine methyl ester (L-NAME). Baseline GFR was markedly decreased in RGS2-/- mice compared to WT controls (5.0 ± 0.8 vs. 2.5 ± 0.1 μl/min/g body weight, p<0.01). RBF was reduced (35.4 ± 3.6 vs. 29.1 ± 2.1 μl/min/g body weight, p=0.08) while renal vascular resistance (RVR; 2.1 ± 0.2 vs. 3.0 ± 0.2 mmHg/μl/min/g body weight, p<0.01) was elevated in RGS2-/- compared to WT mice. RGS2 deficiency caused decreased sensitivity and magnitude of changes in RVR and RBF after a step increase in RPP. The acute pressure–natriuresis curve was shifted rightward in RGS2-/- relative to WT mice. Sodium excretion rate following increased RPP by L-NAME was markedly decreased in RGS2-/- mice and accompanied by increased translocation of ENaC to the luminal wall. We conclude that RGS2 deficiency impairs renal function and autoregulation by increasing renal vascular resistance and reducing renal blood flow. These changes impair renal sodium handling by favoring sodium retention. The findings provide a new line of evidence for renal dysfunction as a primary cause of hypertension.
Collapse
Affiliation(s)
- Patrick Osei-Owusu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, 19102, United States of America
- * E-mail:
| | - Elizabeth A. Owens
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, 19102, United States of America
| | - Li Jie
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, 19102, United States of America
| | - Janaina S. Reis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, 19102, United States of America
| | - Steven J. Forrester
- Cardiovascular Research Center and Department of Physiology, Temple University, Philadelphia, Pennsylvania, 19140, United States of America
| | - Tatsuo Kawai
- Cardiovascular Research Center and Department of Physiology, Temple University, Philadelphia, Pennsylvania, 19140, United States of America
| | - Satoru Eguchi
- Cardiovascular Research Center and Department of Physiology, Temple University, Philadelphia, Pennsylvania, 19140, United States of America
| | - Harpreet Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, 19102, United States of America
| | - Kendall J. Blumer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, 63110, United States of America
| |
Collapse
|
46
|
Ahmeda AF, Alzoghaibi M. Factors regulating the renal circulation in spontaneously hypertensive rats. Saudi J Biol Sci 2015; 23:441-51. [PMID: 27298576 PMCID: PMC4890190 DOI: 10.1016/j.sjbs.2015.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/14/2015] [Accepted: 06/19/2015] [Indexed: 01/17/2023] Open
Abstract
Hypertension is one of the leading causes of health morbidity and mortality which are linked to many life threatening diseases such as stroke heart problems and renal dysfunction. The integrity of renal microcirculation is crucial to maintaining the clearance and the excretory function in the normotensive and hypertensive conditions. Furthermore, any alteration in the renal function is involved in the pathophysiology of hypertension. The aim of this review is to provide a brief discussion of some factors that regulate renal haemodynamics in spontaneously hypertensive rats, an animal model of hypertension, and how these factors are linked to the disease.
Collapse
Affiliation(s)
- Ahmad F Ahmeda
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alzoghaibi
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
47
|
Letts RFR, Rubin DM, Louw RH, Hildebrandt D. Glomerular protein separation as a mechanism for powering renal concentrating processes. Med Hypotheses 2015; 85:120-3. [PMID: 25935399 DOI: 10.1016/j.mehy.2015.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 04/11/2015] [Indexed: 11/30/2022]
Abstract
Various models have been proposed to explain the urine concentrating mechanism in mammals, however uncertainty remains regarding the origin of the energy required for the production of concentrated urine. We propose a novel mechanism for concentrating urine. We postulate that the energy for the concentrating process is derived from the osmotic potentials generated by the separation of afferent blood into protein-rich efferent blood and protein-deplete filtrate. These two streams run in mutual juxtaposition along the length of the nephron and are thus suitably arranged to provide the osmotic potential to concentrate the urine. The proposed model is able to qualitatively explain the production of various urine concentrations under different clinical conditions. An approach to testing the feasibility of the hypothesis is proposed.
Collapse
Affiliation(s)
- Robyn F R Letts
- Biomedical Engineering Research Group in the School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa.
| | - David M Rubin
- Biomedical Engineering Research Group in the School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | | | | |
Collapse
|
48
|
Contrast-enhanced ultrasound identifies reduced overall and regional renal perfusion during global hypoxia in piglets. Invest Radiol 2015; 49:540-6. [PMID: 24637585 DOI: 10.1097/rli.0000000000000053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE It is well known from both clinical experience and animal research that renal hypoxia may lead to temporary or permanent renal failure, the severity being dependent largely on the duration and grade of the hypoxia. The medulla is more susceptible to hypoxic injury than the cortex because approximately 90% of the renal blood flow supplies the cortex. Various methods have been applied to evaluate renal perfusion in both experimental and clinical settings, including magnetic resonance imaging, computed tomography, laser Doppler, and contrast-enhanced ultrasound (CEUS). PURPOSE The aim of this study was to evaluate changes in overall and regional renal perfusion with CEUS in response to global hypoxia. MATERIAL AND METHODS Twelve newborn anesthetized piglets were exposed to general hypoxia with a fraction of inspired oxygen of 8% of 30 minutes duration. Resuscitation was performed with either 100% oxygen (n = 6) or air (21% oxygen) (n = 6) for 30 minutes followed by 7 hours of reoxygenation with air. Before, during, and after hypoxia, the left kidney was examined with CEUS using 0.2 mL IV of SonoVue followed by 2 mL saline flush. Five additional piglets served as controls. The kidney was examined using a 9-MHz linear transducer with low mechanical index (0.21) and pulse inversion contrast program. One region of interest was drawn in the renal cortex and 1 in the medulla to obtain the corresponding time intensity curves (TICs). From these curves, the peak intensity (PI), time to peak (TTP), upslope of the curve, area under the curve, and mean transit time (MTT) were recorded. Also, the renal arteriovenous transit time (AVTT) was registered. The resistance index (RI) was repeatedly measured in the renal artery. Contrast-enhanced ultrasound was repeated at regular intervals until the animals were sacrificed 8 hours after the hypoxic period. RESULTS In the group of 12 piglets subjected to hypoxia, RI increased from 0.69 ± 0.08 at baseline to 0.99 ± 0.09 during hypoxia (P < 0.01), indicating severe general renal vasoconstriction. The AVTT increased from 2.6 ± 0.5 seconds at baseline to 6.7 ± 2.8 seconds during hypoxia (P < 0.001). The PI in the cortex decreased from a mean value of 38.6 ± 6.1 dB at baseline to 30.3 ± 9.7 dB during hypoxia (P < 0.05). In the medulla, only a minor, nonsignificant reduction in PI was observed during hypoxia. In the medulla, TTP and MTT increased from 6.4 ± 1.5 and 9.2 ± 1.7 seconds at baseline to 14.6 ± 8.4 seconds (P < 0.01) and 15.2 ± 5.6 seconds (P < 0.01), respectively, during hypoxia. In the cortex, no statistically significant changes in TTP or MTT were observed during hypoxia. A return to near-baseline values was observed for TTP, PI in both the medulla and cortex, as well as for RI and AVTT within 1 to 3 hours after hypoxia, and they remained relatively constant for the duration of the experiment.Less than 1 hour after the hypoxia, PI both in the cortex and the medulla was significantly higher in the group resuscitated with air than in the group resuscitated with 100% oxygen, 36.0 ± 4.3 versus 27.2 ± 2.2 dB (P < 0.05) and 33.3 ± 8.2 versus 21.1 ± 2.0 dB (P < 0.01), respectively. CONCLUSION Global hypoxia induced changes in overall and regional renal perfusion detectable with CEUS. Cortical and medullary flows were affected differently by hypoxia; a strong increase in medullary TTP and MTT was observed, indicating a reduction in medullary blood flow velocity. In the cortex, a significant reduction in PI was found, probably because of a reduction in cortical blood volume. A faster recovery of both medullary and cortical PI in the group resuscitated with air could indicate that air might be more beneficial for renal perfusion than hyperoxia during resuscitation after renal hypoxia.
Collapse
|
49
|
Ngo JP, Kar S, Kett MM, Gardiner BS, Pearson JT, Smith DW, Ludbrook J, Bertram JF, Evans RG. Vascular geometry and oxygen diffusion in the vicinity of artery-vein pairs in the kidney. Am J Physiol Renal Physiol 2014; 307:F1111-22. [DOI: 10.1152/ajprenal.00382.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal arterial-to-venous (AV) oxygen shunting limits oxygen delivery to renal tissue. To better understand how oxygen in arterial blood can bypass renal tissue, we quantified the radial geometry of AV pairs and how it differs according to arterial diameter and anatomic location. We then estimated diffusion of oxygen in the vicinity of arteries of typical geometry using a computational model. The kidneys of six rats were perfusion fixed, and the vasculature was filled with silicone rubber (Microfil). A single section was chosen from each kidney, and all arteries ( n = 1,628) were identified. Intrarenal arteries were largely divisible into two “types,” characterized by the presence or absence of a close physical relationship with a paired vein. Arteries with a close physical relationship with a paired vein were more likely to have a larger rather than smaller diameter, and more likely to be in the inner-cortex than the mid- or outer cortex. Computational simulations indicated that direct diffusion of oxygen from an artery to a paired vein can only occur when the two vessels have a close physical relationship. However, even in the absence of this close relationship oxygen can diffuse from an artery to periarteriolar capillaries and venules. Thus AV oxygen shunting in the proximal preglomerular circulation is dominated by direct diffusion of oxygen to a paired vein. In the distal preglomerular circulation, it may be sustained by diffusion of oxygen from arteries to capillaries and venules close to the artery wall, which is subsequently transported to renal veins by convection.
Collapse
Affiliation(s)
- Jennifer P. Ngo
- Department of Physiology, Monash University, Melbourne, Australia
| | - Saptarshi Kar
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and
| | - Michelle M. Kett
- Department of Physiology, Monash University, Melbourne, Australia
| | - Bruce S. Gardiner
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and
| | - James T. Pearson
- Department of Physiology, Monash University, Melbourne, Australia
- Monash Biomedical Imaging Facility, Monash University, Melbourne, Australia
| | - David W. Smith
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and
| | | | - John F. Bertram
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Roger G. Evans
- Department of Physiology, Monash University, Melbourne, Australia
| |
Collapse
|
50
|
Juárez-Orozco LE, Szymanski MK, Hillege HL, Kruizinga S, Noordzij W, Koole M, Tio RA, Alexanderson E, Dierckx RAJO, Slart RHJA. Imaging of cardiac and renal perfusion in a rat model with 13N–NH3 micro-PET. Int J Cardiovasc Imaging 2014; 31:213-9. [DOI: 10.1007/s10554-014-0538-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/13/2014] [Indexed: 11/30/2022]
|