1
|
Zhang P, Fang H, Lou C, Ye S, Shen G, Chen S, Amin N, Botchway BOA, Fang M. Enhanced Glial Reaction and Altered Neuronal Nitric Oxide Synthase are Implicated in Attention Deficit Hyperactivity Disorder. Front Cell Dev Biol 2022; 10:901093. [PMID: 35800894 PMCID: PMC9255429 DOI: 10.3389/fcell.2022.901093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) has a complex etiology, and its specific causal factors remain to be elucidated. Aberration of nitric oxide synthase (nNOS) and inflammation, together with astrocytic and microglial cells have been continually associated with several neurological disorders, including ADHD. Using spontaneously hypertensive rat (SHR), we investigated the changes in nNOS, inflammatory, microglial and astrocytic markers in the frontal cortex and hippocampus at three different ages: onset of hypertension stage (i.e., 6 weeks after birth of SHR), established hypertension stage (i.e., 12 weeks after birth of SHR) and senescent stage (i.e., 12 months after birth of SHR), and compared with its age-matched normotensive control, Wistar-Kyoto (WKY) rats. A significant upregulation of Iba-1 expression in the senescent stage of SHR was observed. Further, we observed an upregulated nNOS expression in both onset and established stages of SHR, and a downregulated nNOS in the senescent stage. Our study showed an age-related increment of astrogliosis in the cortex and hippocampi of aged SHR. On the basis of our results, alterations in the nNOS and Iba-1 expressions, as well as age-related astrogliosis, may contribute to ADHD pathogenesis.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Psychiatry, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Huyue Fang
- Department of Psychiatry, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Chengjian Lou
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Shan Ye
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guanghong Shen
- The Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
| | - Shijia Chen
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Nashwa Amin
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | | | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Marong Fang,
| |
Collapse
|
2
|
Costa MA, Matsumoto JPP, Carrettiero DC, Fior-Chadi DR. Adenosine A 1 and A 2a receptors modulate the nitrergic system in cell culture from dorsomedial medulla oblongata. Auton Neurosci 2020; 229:102737. [PMID: 33166836 DOI: 10.1016/j.autneu.2020.102737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022]
Abstract
Adenosine and nitric oxide act on the fine-tuning regulation of neural cardiovascular control in the nucleus tractus solitarius (NTS). Although the interaction between adenosine and NO is well known in the periphery, the mechanisms by which adenosine interferes in the dynamics of nitrergic neurotransmission, related to neural control of circulation, are not completely understood and might be relevant for individuals predisposed to hypertension. In this study we evaluate the interaction between adenosinergic and nitrergic systems in cell culture from the dorsomedial medulla oblongata of Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Using quantification of nitrite levels, RT-PCR analysis and RNA interference we demonstrate that adenosine A1 (A1R) and A2a receptor (A2aR) agonists induce a concentration-dependent decrease and increase of nitrite and nNOS mRNA levels in cultured cells from WKY and SHR, respectively. These effects in nitrite levels are attenuated by the administration of A1R and A2aR selective antagonists, CPT and ZM 241385. Furthermore, knockdown of A1R and A2aR show an increase and decrease of nNOS mRNA levels, respectively. Pretreatment with the nonselective inhibitor of NOS, L-NAME, abolishes nitrite-increased levels triggered by CGS 21680 in WKY and SHR cells. Finally, it is shown that the cAMP-PKA pathway is involved in A1R and A2aR-mediated decrease and increase in nitrite levels in SHR and WKY cells. Our results highlight the influence of adenosine on nitric oxide levels in cultured cells from dorsal medulla oblongata of neonate WKY and SHR rats. In part, the modulatory profile is different in the SHR strain.
Collapse
Affiliation(s)
- M A Costa
- Universidade de Sao Paulo, Department of Physiology, Institute of Biosciences, SP, Brazil
| | - J P P Matsumoto
- Universidade de Sao Paulo, Department of Physiology, Institute of Biosciences, SP, Brazil
| | - D C Carrettiero
- Center of Natural Sciences and Humanities, University of ABC, Santo André, SP, Brazil
| | - D R Fior-Chadi
- Universidade de Sao Paulo, Department of Physiology, Institute of Biosciences, SP, Brazil.
| |
Collapse
|
3
|
Chan JYH, Chan SHH. Differential impacts of brain stem oxidative stress and nitrosative stress on sympathetic vasomotor tone. Pharmacol Ther 2019; 201:120-136. [PMID: 31153955 DOI: 10.1016/j.pharmthera.2019.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Based on work-done in the rostral ventrolateral medulla (RVLM), this review presents four lessons learnt from studying the differential impacts of oxidative stress and nitrosative stress on sympathetic vasomotor tone and their clinical and therapeutic implications. The first lesson is that an increase in sympathetic vasomotor tone because of augmented oxidative stress in the RVLM is responsible for the generation of neurogenic hypertension. On the other hand, a shift from oxidative stress to nitrosative stress in the RVLM underpins the succession of increase to decrease in sympathetic vasomotor tone during the progression towards brain stem death. The second lesson is that, by having different cellular sources, regulatory mechanisms on synthesis and degradation, kinetics of chemical reactions, and downstream signaling pathways, reactive oxygen species and reactive nitrogen species should not be regarded as a singular moiety. The third lesson is that well-defined differential roles of oxidative stress and nitrosative stress with distinct regulatory mechanisms in the RVLM during neurogenic hypertension and brain stem death clearly denote that they are not interchangeable phenomena with unified cellular actions. Special attention must be paid to their beneficial or detrimental roles under a specific disease or a particular time-window of that disease. The fourth lesson is that, to be successful, future antioxidant therapies against neurogenic hypertension must take into consideration the much more complicated picture than that presented in this review on the generation, maintenance, regulation or modulation of the sympathetic vasomotor tone. The identification that the progression towards brain stem death entails a shift from oxidative stress to nitrosative stress in the RVLM may open a new vista for therapeutic intervention to slow down this transition.
Collapse
Affiliation(s)
- Julie Y H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China.
| |
Collapse
|
4
|
The asymmetric dimethylarginine-mediated inhibition of nitric oxide in the rostral ventrolateral medulla contributes to regulation of blood pressure in hypertensive rats. Nitric Oxide 2017; 67:58-67. [PMID: 28392446 DOI: 10.1016/j.niox.2017.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/23/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) contributes to the central control of cardiovascular activity. The rostral ventrolateral medulla (RVLM) has been recognized as a pivotal region for maintaining basal blood pressure (BP) and sympathetic tone. It is reported that asymmetric dimethylarginine (ADMA), characterized as a cardiovascular risk marker, is an endogenous inhibitor of nitric oxide synthesis. The present was designed to determine the role of ADMA in the RVLM in the central control of BP in hypertensive rats. In Sprague Dawley (SD) rats, microinjection of ADMA into the RVLM dose-dependently increased BP, heart rate (HR), and renal sympathetic never activity (RSNA), but also reduced total NO production in the RVLM. In central angiotensin II (Ang II)-induced hypertensive rats and spontaneously hypertensive rat (SHR), the level of ADMA in the RVLM was increased and total NO production was decreased significantly, compared with SD rats treated vehicle infusion and WKY rats, respectively. These hypertensive rats also showed an increased protein level of protein arginine methyltransferases1 (PRMT1, which generates ADMA) and a decreased expression level of dimethylarginine dimethylaminohydrolases 1 (DDAH1, which degrades ADMA) in the RVLM. Furthermore, increased AMDA content and PRMT1 expression, and decreased levels of total NO production and DDAH1 expression in the RVLM in SHR were blunted by intracisternal infusion of the angiotensin II type 1 receptor (AT1R) blocker losartan. The current data indicate that the ADMA-mediated NO inhibition in the RVLM plays a critical role in involving in the central regulation of BP in hypertension, which may be associated with increased Ang II.
Collapse
|
5
|
Santiago FE, Fior-Chadi DR, Carrettiero DC. Alpha2-adrenoceptor and adenosine A1 receptor within the nucleus tractus solitarii in hypertension development. Auton Neurosci 2014; 187:36-44. [PMID: 25466830 DOI: 10.1016/j.autneu.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/21/2014] [Accepted: 11/01/2014] [Indexed: 02/07/2023]
Abstract
Alpha2-adrenoceptor and A1 adenosine receptor systems within the nucleus tractus solitarii (NTS) play an important role in cardiovascular control. Deregulation of these systems may result in an elevated sympathetic tone, one of the root causes of neurogenic hypertension. The dorsomedial/dorsolateral and subpostremal NTS subnuclei of spontaneously hypertensive rats (SHR) show density changes in both receptors, even at 15 days of age, prior to the onset of hypertension. In addition, adenosine A1 receptors have been specifically reported to modulate alpha2-adrenoceptors in several brain regions, including the NTS, via a PLC-dependent pathway involving cross regulation between sympathetic neurons and astrocytes. The physiological cross talk between these receptor systems is also deregulated in SHR suggesting that alpha2-adrenoceptor and A1 adenosine receptor might be germane to the development of hypertension. In this review, we will focus on these systems within the NTS during development, pointing out some interesting modulations in processes, and chemical changes within specific subnuclei of NTS circuitry, that might have implications for neurogenic hypertension.
Collapse
Affiliation(s)
- Fernando E Santiago
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas, Santo André, SP, Brazil
| | - Débora R Fior-Chadi
- Universidade de São Paulo (USP), Departamento de Fisiologia, Instituto de Biociências, São Paulo, SP, Brazil
| | - Daniel C Carrettiero
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas, Santo André, SP, Brazil.
| |
Collapse
|
6
|
Abstract
SIGNIFICANCE There is now compelling evidence to substantiate the notion that by depressing baroreflex regulation of blood pressure and augmenting central sympathetic outflow through their actions on the nucleus tractus solitarii (NTS) and rostral ventrolateral medulla (RVLM), brain stem nitric oxide synthase (NOS) and reactive oxygen species (ROS) are important contributing factors to neural mechanisms of hypertension. This review summarizes our contemporary views on the impact of NOS and ROS in the NTS and RVLM on neurogenic hypertension, and presents potential antihypertensive strategies that target brain stem NOS/ROS signaling. RECENT ADVANCES NO signaling in the brain stem may be pro- or antihypertensive depending on the NOS isoform that generates this gaseous moiety and the site of action. Elevation of the ROS level when its production overbalances its degradation in the NTS and RVLM underlies neurogenic hypertension. Interventional strategies with emphases on alleviating the adverse actions of these molecules on blood pressure regulation have been investigated. CRITICAL ISSUES The pathological roles of NOS in the RVLM and NTS in neural mechanisms of hypertension are highly complex. Likewise, multiple signaling pathways underlie the deleterious roles of brain-stem ROS in neurogenic hypertension. There are recent indications that interactions between brain stem ROS and NOS may play a contributory role. FUTURE DIRECTIONS Given the complicity of action mechanisms of brain-stem NOS and ROS in neural mechanisms of hypertension, additional studies are needed to identify the most crucial therapeutic target that is applicable not only in animal models but also in patients suffering from neurogenic hypertension.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
7
|
Murphy MN, Mizuno M, Downey RM, Squiers JJ, Squiers KE, Smith SA. Neuronal nitric oxide synthase expression is lower in areas of the nucleus tractus solitarius excited by skeletal muscle reflexes in hypertensive rats. Am J Physiol Heart Circ Physiol 2013; 304:H1547-57. [PMID: 23564306 PMCID: PMC3680727 DOI: 10.1152/ajpheart.00235.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 03/08/2013] [Indexed: 11/22/2022]
Abstract
The functions of the skeletal muscle exercise pressor reflex (EPR) and its mechanically sensitive component are augmented in hypertension producing exaggerated increases in blood pressure during exercise. Afferent information from the EPR is processed in the nucleus tractus solitarius (NTS). Within the NT, nitric oxide (NO), produced via L-arginine oxidation by neuronal nitric oxide synthase (nNOS), buffers the pressor response to EPR activation. Therefore, EPR overactivity may manifest as a decrease in NO production due to reductions in nNOS. We hypothesized that nNOS protein expression is lower in the NTS of spontaneously hypertensive (SHR) compared with normotensive Wistar-Kyoto (WKY) rats. Further, we examined whether nNOS is expressed with FOS, a marker of neuronal excitation induced by EPR activation. The EPR and mechanoreflex were intermittently activated for 1 h via hindlimb static contraction or stretch, respectively. These maneuvers produced significantly greater pressor responses in SHR during the first 25 min of stimulation. Within the NTS, nNOS expression was lower from -14.9 to -13.4 bregma in SHR compared with WKY. For example, at -14.5 bregma the number of NTS nNOS-positive cells in SHR (13 ± 1) was significantly less than WKY (23 ± 2). However, the number of FOS-positive cells after muscle contraction in this area was not different (WKY = 82 ± 18; SHR = 75 ± 8). In both groups, FOS-expressing neurons were located within the same areas of the NTS as neurons containing nNOS. These findings demonstrate that nNOS protein expression is lower within NTS areas excited by skeletal muscle reflexes in hypertensive rats.
Collapse
Affiliation(s)
- Megan N Murphy
- Department of Physical Therapy, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Tandai-Hiruma M, Kato K, Kemuriyama T, Ohta H, Tashiro A, Hagisawa K, Nishida Y. High blood pressure enhances brain stem neuronal nitric oxide synthase activity in Dahl salt-sensitive rats. Clin Exp Pharmacol Physiol 2013; 40:197-204. [PMID: 23278407 DOI: 10.1111/1440-1681.12049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/18/2012] [Indexed: 11/30/2022]
Abstract
The aims of the present study were to determine the mechanism underlying enhanced neuronal nitric oxide synthase (nNOS) activity in the brain of hypertensive Dahl salt-sensitive (DSS) rats and the consequences of enhanced nNOS activity. Male DSS rats were fed either a regular (0.4% NaCl) or high-salt (8% NaCl) diet, with or without 0.25% nifedipine, for 4 weeks. The effects of nifedipine, which lowers blood pressure peripherally, on central nNOS were determined by measuring nNOS activity, as well as the number of nNOS-positive neurons in the brain stem and diencephalon. The effects of chronic (12 days) infusion of 7 μg (0.5 μL/h, i.c.v.) S-methyl-L-thiocitrulline (SMTC; a stereoselective competitive nNOS inhibitor) on mean arterial pressure were assessed in conscious DSS rats using a radiotelemetry system. In addition, the number of central nNOS-positive neurons was compared between DSS and salt-insensitive Sprague-Dawley rats. Normalization of blood pressure by nifedipine attenuated the increase in nNOS activity in the brain stem of DSS rats. Chronic i.c.v. infusion of SMTC further enhanced hypertension in DSS rats. Feeding of a high-salt diet increased nNOS-positive neurons in the lateral parabrachial nucleus, rostral ventrolateral medulla and nucleus tractus solitarius of DSS compared with Sprague-Dawley rats, whereas nNOS-positive neurons in the paraventricular nucleus remained downregulated in DSS rats. The results of the present study suggest that hypertension, rather than a high-salt diet, increases central nNOS activity in hypertensive DSS rats to buffer high blood pressure. However, this compensatory response may be insufficient to relieve salt-induced hypertension.
Collapse
Affiliation(s)
- Megumi Tandai-Hiruma
- Department of Physiology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Leal AK, Murphy MN, Iwamoto GA, Mitchell JH, Smith SA. A role for nitric oxide within the nucleus tractus solitarii in the development of muscle mechanoreflex dysfunction in hypertension. Exp Physiol 2012; 97:1292-304. [PMID: 22581746 PMCID: PMC3480555 DOI: 10.1113/expphysiol.2012.065433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Evidence suggests that the muscle mechanoreflex, a circulatory reflex that raises blood pressure and heart rate (HR) upon activation of mechanically sensitive afferent fibres in skeletal muscle, is overactive in hypertension. However, the mechanisms underlying this abnormal reflex function have yet to be identified. Sensory input from the mechanoreflex is processed within the nucleus tractus solitarii (NTS) in the medulla oblongata. Within the NTS, the enzymatic activity of nitric oxide synthase produces nitric oxide (NO). This centrally derived NO has been shown to modulate muscle reflex activity and serves as a viable candidate for mediating the mechanoreflex dysfunction that develops in hypertension. We hypothesized that mechanoreflex dysfunction in hypertension is mediated by abnormal alterations in NO production in the NTS. Mechanically sensitive afferent fibres were stimulated by passively stretching hindlimb muscle before and after blocking the endogenous production of NO within the NTS via microdialysis of the NO synthase inhibitor L-NAME (1 and 5 mM) in normotensive Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs). Changes in HR and mean arterial pressure in response to stretch were significantly larger in SHRs compared with Wistar-Kyoto rats prior to L-NAME dialysis. Attenuating NO production via L-NAME in normotensive rats recapitulated the exaggerated cardiovascular response to stretch observed in SHRs. Dialysing L-NAME in SHRs further accentuated the increases in HR and mean arterial pressure elicited by stretch. These findings support the contention that reductions in NO production within the NTS contribute to the generation of abnormal cardiovascular control by the skeletal muscle mechanoreflex in hypertension.
Collapse
Affiliation(s)
- Anna K. Leal
- Department of Bioengineering, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390-9174
| | - Megan N. Murphy
- Department of Physical Therapy, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390-9174
| | - Gary A. Iwamoto
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390-9174
| | - Jere H. Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390-9174
| | - Scott A. Smith
- Department of Bioengineering, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390-9174
- Department of Physical Therapy, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390-9174
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390-9174
| |
Collapse
|
10
|
Wang G, Coleman CG, Glass MJ, Zhou P, Yu Q, Park L, Anrather J, Pickel VM, Iadecola C. Angiotensin II type 2 receptor-coupled nitric oxide production modulates free radical availability and voltage-gated Ca2+ currents in NTS neurons. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1076-83. [PMID: 22378773 PMCID: PMC3362142 DOI: 10.1152/ajpregu.00571.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 02/25/2012] [Indexed: 02/07/2023]
Abstract
The medial region of the nucleus tractus solitarius (mNTS) is a key brain stem site controlling cardiovascular function, wherein ANG II modulates neuronal L-type Ca(2+) currents via activation of ANG II type 1 receptors (AT(1)R) and production of reactive oxygen species (ROS). ANG II type 2 receptors (AT(2)R) induce production of nitric oxide (NO), which may interact with ROS and modulate AT(1)R signaling. We sought to determine whether AT(2)R-mediated NO production occurs in mNTS neurons and, if so, to elucidate the NO source and the functional interaction with AT(1)R-induced ROS or Ca(2+) influx. Electron microscopic (EM) immunolabeling showed that AT(2)R and neuronal NO synthase (nNOS) are coexpressed in neuronal somata and dendrites receiving synapses in the mNTS. In the presence of the AT(1)R antagonist losartan, ANG II increased NO production in isolated mNTS neurons, an effect blocked by the AT(2)R antagonist PD123319, but not the angiotensin (1-7) antagonist D-Ala. Studies in mNTS neurons of nNOS-null or endothelial NOS (eNOS)-null mice established nNOS as the source of NO. ANG II-induced ROS production was enhanced by PD123319, the NOS inhibitor N(G)-nitro-l-arginine (LNNA), or in nNOS-null mice. Moreover, in the presence of losartan, ANG II reduced voltage-gated L-type Ca(2+) current, an effect blocked by PD123319 or LNNA. We conclude that AT(2)R are closely associated and functionally coupled with nNOS in mNTS neurons. The resulting NO production antagonizes AT(1)R-mediated ROS and dampens L-type Ca(2+) currents. The ensuing signaling changes in the NTS may counteract the deleterious effects of AT(1)R on cardiovascular function.
Collapse
Affiliation(s)
- Gang Wang
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, New York 10065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Northcott CA, Billecke S, Craig T, Hinojosa-Laborde C, Patel KP, Chen AF, D'Alecy LG, Haywood JR. Nitric oxide synthase, ADMA, SDMA, and nitric oxide activity in the paraventricular nucleus throughout the etiology of renal wrap hypertension. Am J Physiol Heart Circ Physiol 2012; 302:H2276-84. [PMID: 22447945 DOI: 10.1152/ajpheart.00562.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Within the paraventricular nucleus (PVN), there is a balance between the excitatory and inhibitory neurotransmitters that regulate blood pressure; in hypertension, the balance shifts to enhanced excitation. Nitric oxide (NO) is an atypical neurotransmitter that elicits inhibitory effects on cardiovascular function. We hypothesized that reduced PVN NO led to elevations in blood pressure during both the onset and sustained phases of hypertension due to decreased NO synthase (NOS) and increased asymmetrical dimethylarginine (ADMA; an endogenous NOS inhibitor) and symmetric dimethylarginine (SDMA). Elevated blood pressure, in response to PVN bilateral microinjections of a NO inhibitor, nitro-L-arginine methyl ester, was blunted in renal wrapped rats during the onset of hypertension (day 7) and sustained renal wrap hypertension (day 28) compared with sham-operated rats. Adenoviruses (Ad) encoding endothelial NOS (eNOS) or LacZ microinjected into the PVN [1 × 10(9) plaque-forming units, bilateral (200 nl/site)] reduced mean arterial pressure compared with control (Day 7, Ad LacZ wrap: 144 ± 7 mmHg and Ad eNOS wrap: 117 ± 5 mmHg, P ≤ 0.05) throughout the study (Day 28, Ad LacZ wrap: 123 ± 1 mmHg and Ad eNOS wrap: 108 ± 4 mmHg, P ≤ 0.05). Western blot analyses of PVN NOS revealed significantly lower PVN neuronal NOS during the onset of hypertension but not in sustained hypertension. Reduced SDMA was found in the PVN during the onset of hypertension; however, no change in ADMA was observed. In conclusion, functional indexes of NO activity indicated an overall downregulation of NO in renal wrap hypertension, but the mechanism by which this occurs likely differs throughout the development of hypertension.
Collapse
Affiliation(s)
- Carrie A Northcott
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Carrettiero DC, Ferrari MF, Fior-Chadi DR. Alpha2-adrenergic receptor distribution and density within the nucleus tractus solitarii of normotensive and hypertensive rats during development. Auton Neurosci 2012; 166:39-46. [DOI: 10.1016/j.autneu.2011.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 09/29/2011] [Accepted: 10/01/2011] [Indexed: 02/07/2023]
|
13
|
Nitric oxide inhibits excitatory vagal afferent input to nucleus tractus solitarius neurons in anaesthetized rats. Neurosci Bull 2010; 25:325-34. [PMID: 19927168 DOI: 10.1007/s12264-009-0624-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE Endogenous nitric oxide (NO) has been implicated in the regulation of neuronal activity which mediates cardiovascular reflexes. However, there is controversy concerning the role of NO in the nucleus tractus solitarius (NTS). The present study aims to elucidate the possible physiological role of endogenous NO in modulating the excitatory vagal afferent input to NTS neurons. METHODS All the experiments in the rat were conducted under anaesthetic conditions. Ionophoresis method was used for the application of NO donor or nitric oxide synthase (NOS) inhibitor, and single unit recording method was employed to detect the effects of these applications on vagal afferent- or cardio-pulmonary C-fibre reflex-evoked neuronal excitation in NTS. RESULTS Ionophoresis applications of L-arginine (L-Arg), a substrate of NOS, and sodium nitroprusside (SNP), a NO donor, both attenuated the vagal afferent-evoked discharge by (51.5+/-7.6)% (n = 17) and (68.3+/-7.1)% (n = 9), respectively. In contrast, application of D-Arg at the same current exerted no overall effect on this input. Also, both L-Arg and SNP inhibited spontaneous firing of most of the recorded neurons. In contrast, ionophoresis application of N(G)-nitro-L-arginine methyl ester (L-NAME) enhanced vagal afferent-evoked excitation by (66.3+/-11.4)% (n = 7). In addition, ionophoresis application of L-Arg and SNP significantly attenuated cardio-pulmonary C-fibre reflex-induced excitation in the tested NTS neurons. CONCLUSION Activation of local NO pathway in the NTS could suppress vagal afferent-evoked excitation, suggesting that NO is an important neuromodulator of visceral sensory input in the NTS.
Collapse
|
14
|
Control of systemic and pulmonary blood pressure by nitric oxide formed through neuronal nitric oxide synthase. J Hypertens 2010; 27:1929-40. [PMID: 19587610 DOI: 10.1097/hjh.0b013e32832e8ddf] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitric oxide formed by neuronal nitric oxide synthase (nNOS) in the brain, autonomic inhibitory (nitrergic) nerves, and heart plays important roles in the control of blood pressure. Activation of nitrergic nerves innervating the systemic vasculature elicits vasodilatation, decreases peripheral resistance, and lowers blood pressure. Impairment of nitrergic nerve function, as well as endothelial dysfunction, results in systemic and pulmonary hypertension and decreased regional blood flow. Blockade of nNOS activity in the brain, particularly the medulla and hypothalamus, causes systemic hypertension. Under hypertensive states, such as those in spontaneously hypertensive and Dahl salt-sensitive rats, the expression of the nNOS gene in the brain is increased; this appears to counteract the activated sympathetic function in the vasomotor center. The present article summarizes information concerning the modulation of systemic and pulmonary hypertension through nNOS-derived nitric oxide produced in the brain and periphery.
Collapse
|
15
|
Transcriptome analysis of nicotine-exposed cells from the brainstem of neonate spontaneously hypertensive and Wistar Kyoto rats. THE PHARMACOGENOMICS JOURNAL 2009; 10:134-60. [DOI: 10.1038/tpj.2009.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Ferrari MFR, Reis EM, Matsumoto JPP, Fior-Chadi DR. Gene expression profiling of cultured cells from brainstem of newborn spontaneously hypertensive and Wistar Kyoto rats. Cell Mol Neurobiol 2009; 29:287-308. [PMID: 18949554 DOI: 10.1007/s10571-008-9321-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 09/26/2008] [Indexed: 02/07/2023]
Abstract
The spontaneously hypertensive rat (SHR) is a good model to study several diseases such as the attention-deficit hyperactivity disorder, cardiopulmonary impairment, nephropathy, as well as hypertension, which is a multifactor disease that possibly involves alterations in gene expression in hypertensive relative to normotensive subjects. In this study, we used high-density oligoarrays to compare gene expression profiles in cultured neurons and glia from brainstem of newborn normotensive Wistar Kyoto (WKY) and SHR rats. We found 376 genes differentially expressed between SHR and WKY brainstem cells that preferentially map to 17 metabolic/signaling pathways. Some of the pathways and regulated genes identified herein are obviously related to cardiovascular regulation; in addition there are several genes differentially expressed in SHR not yet associated to hypertension, which may be attributed to other differences between SHR and WKY strains. This constitute a rich resource for the identification and characterization of novel genes associated to phenotypic differences observed in SHR relative to WKY, including hypertension. In conclusion, this study describes for the first time the gene profiling pattern of brainstem cells from SHR and WKY rats, which opens up new possibilities and strategies of investigation and possible therapeutics to hypertension, as well as for the understanding of the brain contribution to phenotypic differences between SHR and WKY rats.
Collapse
Affiliation(s)
- Merari F R Ferrari
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, n.321 Cidade Universitária, Sao Paulo, SP, 05508-090, Brazil.
| | | | | | | |
Collapse
|
17
|
Carrettiero DC, Almeida RS, Fior-Chadi DR. Adenosine modulates alpha2-adrenergic receptors within specific subnuclei of the nucleus tractus solitarius in normotensive and spontaneously hypertensive rats. Hypertens Res 2009; 31:2177-86. [PMID: 19139607 DOI: 10.1291/hypres.31.2177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Adenosine is known to modulate neuronal activity within the nucleus tractus solitarius (NTS). The modulatory effect of adenosine A1 receptors (A1R) on alpha2-adrenoceptors (Adr2R) was evaluated using quantitative radioautography within NTS subnuclei and using neuronal culture of normotensive (WKY) and spontaneously hypertensive rats (SHR). Radioautography was used in a saturation experiment to measure Adr2R binding parameters (Bmax, Kd) in the presence of 3 different concentrations of N6-cyclopentyladenosine (CPA), an A1R agonist. Neuronal culture confirmed our radioautographic results. [3H]RX821002, an Adr2R antagonist, was used as a ligand for both approaches. The dorsomedial/dorsolateral subnucleus of WKY showed an increase in Bmax values (21%) induced by 10 nmol/L of CPA. However, the subpostremal subnucleus showed a decrease in Kd values (24%) induced by 10 nmol/L of CPA. SHR showed the same pattern of changes as WKY within the same subnuclei; however, the modulatory effect of CPA was induced by 1 nmol/L (increased Bmax, 17%; decreased Kd, 26%). Cell culture confirmed these results, because 10(-5) and 10(-7) mol/L of CPA promoted an increase in [3H]RX821002 binding of WKY (53%) and SHR cells (48%), respectively. DPCPX, an A1R antagonist, was used to block the modulatory effect promoted by CPA with respect to Adr2R binding. In conclusion, our study shows for the first time an interaction between A1R that increases the binding of Adr2R within specific subnuclei of the NTS. This may be important in understanding the complex autonomic response induced by adenosine within the NTS. In addition, changes in interactions between receptors might be relevant to understanding the development of hypertension.
Collapse
Affiliation(s)
- Daniel C Carrettiero
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
18
|
Carrettiero DC, Fior-Chadi DR. Age-dependent changes in adenosine A1 receptor distribution and density within the nucleus tractus solitarii of normotensive and hypertensive rats. J Neural Transm (Vienna) 2008; 115:1109-18. [PMID: 18463780 DOI: 10.1007/s00702-008-0055-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 04/20/2008] [Indexed: 01/22/2023]
Abstract
This study shows the distribution and density of adenosine A1 receptor (A1R) within the nucleus tractus solitarii (NTS) of Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) from birth to adulthood (1, 15, 30 and 90 days old). The NTS shows heterogeneous distribution of A1R in dorsomedial/dorsolateral, subpostremal and medial/intermediate subnuclei. A1R decrease from rostral to caudal within dorsomedial/dorsolateral subnucleus in 15-, 30- and 90-day-old WKY and SHR. A1R increase from rostral to caudal subpostremal subnucleus in 30- and 90-day-old WKY, and in 15-, 30- and 90-day-old SHR. Furthermore, A1Rs are increased in SHR as compared with WKY within dorsomedial/dorsolateral in 30- and 90-day-old and within subpostremal of 15-, 30- and 90-day-old rats. Finally, A1Rs increase from 1- to 30-day-old rats. Medial/intermediate did not show any changes in A1R from rostral to caudal levels, age or strain. In summary, our result highlights the importance of A1 adenosine system regarding the neural control of blood pressure and the development of hypertension.
Collapse
Affiliation(s)
- D C Carrettiero
- Department of Physiology, Institute of Biosciences, University of Sao Paulo, Rua do Matão-Travessa 14, 321, 05508-900, Sao Paulo, SP, Brazil
| | | |
Collapse
|
19
|
Ferrari MFR, Fior-Chadi DR, Chadi G. Effects of bilateral adrenalectomy on systemic kainate-induced activation of the nucleus of the solitary tract. Regulation of blood pressure and local neurotransmitters. J Mol Histol 2008; 39:253-63. [PMID: 18196466 DOI: 10.1007/s10735-008-9161-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 01/04/2008] [Indexed: 02/07/2023]
Abstract
Glutamatergic transmission through metabotropic and ionotropic receptors, including kainate receptors, plays an important role in the nucleus of the solitary tract (NTS) functions. Glutamate system may interact with several other neurotransmitter systems which might also be influenced by steroid hormones. In the present study we analyzed the ability of systemic kainate to stimulate rat NTS neurons, which was evaluated by c-Fos as a marker of neuronal activation, and also to change the levels of NTS neurotransmitters such as GABA, NPY, CGRP, GAL, NT and NO by means of quantitative immunohistichemistry combined with image analysis. The analysis was also performed in adrenalectomized and kainate stimulated rats in order to evaluate a possible role of adrenal hormones on NTS neurotransmission. Male Wistar rats (3 month-old) were used in the present study. A group of 15 rats was submitted either to bilateral adrenalectomy or sham operation. Forty-eight hours after the surgeries, adrenalectomized rats received a single intraperitoneal injection of kainate (12 mg/kg) and the sham-operated rats were injected either with saline or kainate and sacrificed 8 hours later. The same experimental design was applied in a group of rats in order to register the arterial blood pressure. Systemic kainate decreased the basal values of mean arterial blood pressure (35%) and heart rate (22%) of sham-operated rats, reduction that were maintained in adrenalectomized rats. Kainate triggered a marked elevation of c-Fos positive neurons in the NTS which was 54% counteracted by adrenalectomy. The kainate activated NTS showed changes in the immunoreactive levels of GABA (143% of elevation) and NPY (36% of decrease), which were not modified by previous ablation of adrenal glands. Modulation in the levels of CGRP, GAL and NT immunoreactivities were only observed after kainate in the adrenalectomized rats. Treatments did not alter NOS labeling. It is possible that modulatory function among neurotransmitter systems in the NTS might be influenced by steroid hormones and the implications for central regulation of blood pressure or other visceral regulatory mechanisms control should be further investigated.
Collapse
Affiliation(s)
- Merari F R Ferrari
- Department of Physiology, Institute of Biosciences, University of São Paulo, Sao Paulo 05508-900, Brazil.
| | | | | |
Collapse
|
20
|
Hojná S, Kadlecová M, Dobesová Z, Valousková V, Zicha J, Kunes J. The participation of brain NO synthase in blood pressure control of adult spontaneously hypertensive rats. Mol Cell Biochem 2006; 297:21-9. [PMID: 17009099 DOI: 10.1007/s11010-006-9318-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 08/25/2006] [Indexed: 10/24/2022]
Abstract
Increased blood pressure (BP) in genetic hypertension is usually caused by high activity of sympathetic nervous system (SNS) which is enhanced by central angiotensin II but lowered by central nitric oxide (NO). We have therefore evaluated NO synthase (NOS) activity as well as neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS) protein expression in brainstem and midbrain of adult spontaneously hypertensive rats (SHR) characterized by enhanced sympathetic vasoconstriction. We also studied possible participation of brain NO in antihypertensive effects of chronic captopril treatment of adult SHR. NOS activity was increased in midbrain of SHR compared to Wistar-Kyoto (WKY) rats. This could be ascribed to enhanced iNOS expression, whereas nNOS expression was unchanged and eNOS expression was reduced in this brain region. In contrast, no significant changes of NOS activity were found in brainstem of SHR in which nNOS and iNOS expression was unchanged, but eNOS expression was increased. Chronic captopril administration lowered BP of adult SHR mainly by attenuation of sympathetic tone, whereas the reduction of angiotensin II-dependent vasoconstriction and the decrease of residual BP (amelioration of structural remodeling of resistance vessels) were less important. This treatment did not affect significantly either NOS activity or expression of any NOS isoform in the two brain regions. Our data do not support the hypothesis that altered brain NO formation contributes to sympathetic hyperactivity and high BP of adult SHR with established hypertension.
Collapse
Affiliation(s)
- Silvie Hojná
- Institute of Physiology AS CR, Charles University, Videnska 1083, 142 20, Prague 4, Czech Republic
| | | | | | | | | | | |
Collapse
|