1
|
Rauschenberger L, Krenig EM, Stengl A, Knorr S, Harder TH, Steeg F, Friedrich MU, Grundmann-Hauser K, Volkmann J, Ip CW. Peripheral nerve injury elicits microstructural and neurochemical changes in the striatum and substantia nigra of a DYT-TOR1A mouse model with dystonia-like movements. Neurobiol Dis 2023; 179:106056. [PMID: 36863527 DOI: 10.1016/j.nbd.2023.106056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
The relationship between genotype and phenotype in DYT-TOR1A dystonia as well as the associated motor circuit alterations are still insufficiently understood. DYT-TOR1A dystonia has a remarkably reduced penetrance of 20-30%, which has led to the second-hit hypothesis emphasizing an important role of extragenetic factors in the symptomatogenesis of TOR1A mutation carriers. To analyze whether recovery from a peripheral nerve injury can trigger a dystonic phenotype in asymptomatic hΔGAG3 mice, which overexpress human mutated torsinA, a sciatic nerve crush was applied. An observer-based scoring system as well as an unbiased deep-learning based characterization of the phenotype showed that recovery from a sciatic nerve crush leads to significantly more dystonia-like movements in hΔGAG3 animals compared to wildtype control animals, which persisted over the entire monitored period of 12 weeks. In the basal ganglia, the analysis of medium spiny neurons revealed a significantly reduced number of dendrites, dendrite length and number of spines in the naïve and nerve-crushed hΔGAG3 mice compared to both wildtype control groups indicative of an endophenotypical trait. The volume of striatal calretinin+ interneurons showed alterations in hΔGAG3 mice compared to the wt groups. Nerve-injury related changes were found for striatal ChAT+, parvalbumin+ and nNOS+ interneurons in both genotypes. The dopaminergic neurons of the substantia nigra remained unchanged in number across all groups, however, the cell volume was significantly increased in nerve-crushed hΔGAG3 mice compared to naïve hΔGAG3 mice and wildtype littermates. Moreover, in vivo microdialysis showed an increase of dopamine and its metabolites in the striatum comparing nerve-crushed hΔGAG3 mice to all other groups. The induction of a dystonia-like phenotype in genetically predisposed DYT-TOR1A mice highlights the importance of extragenetic factors in the symptomatogenesis of DYT-TOR1A dystonia. Our experimental approach allowed us to dissect microstructural and neurochemical abnormalities in the basal ganglia, which either reflected a genetic predisposition or endophenotype in DYT-TOR1A mice or a correlate of the induced dystonic phenotype. In particular, neurochemical and morphological changes of the nigrostriatal dopaminergic system were correlated with symptomatogenesis.
Collapse
Affiliation(s)
- Lisa Rauschenberger
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Esther-Marie Krenig
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Alea Stengl
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Tristan H Harder
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Felix Steeg
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Maximilian U Friedrich
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Kathrin Grundmann-Hauser
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Germany; Centre for Rare Diseases, University of Tübingen, 72076, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| |
Collapse
|
2
|
Deep brain stimulation in animal models of dystonia. Neurobiol Dis 2022; 175:105912. [DOI: 10.1016/j.nbd.2022.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
|
3
|
Rauschenberger L, Knorr S, Pisani A, Hallett M, Volkmann J, Ip CW. Second hit hypothesis in dystonia: Dysfunctional cross talk between neuroplasticity and environment? Neurobiol Dis 2021; 159:105511. [PMID: 34537328 DOI: 10.1016/j.nbd.2021.105511] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
One of the great mysteries in dystonia pathophysiology is the role of environmental factors in disease onset and development. Progress has been made in defining the genetic components of dystonic syndromes, still the mechanisms behind the discrepant relationship between dystonic genotype and phenotype remain largely unclear. Within this review, the preclinical and clinical evidence for environmental stressors as disease modifiers in dystonia pathogenesis are summarized and critically evaluated. The potential role of extragenetic factors is discussed in monogenic as well as adult-onset isolated dystonia. The available clinical evidence for a "second hit" is analyzed in light of the reduced penetrance of monogenic dystonic syndromes and put into context with evidence from animal and cellular models. The contradictory studies on adult-onset dystonia are discussed in detail and backed up by evidence from animal models. Taken together, there is clear evidence of a gene-environment interaction in dystonia, which should be considered in the continued quest to unravel dystonia pathophysiology.
Collapse
Affiliation(s)
- Lisa Rauschenberger
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| |
Collapse
|
4
|
Bhaduri B, Abhilash PL, Alladi PA. Baseline striatal and nigral interneuronal protein levels in two distinct mice strains differ in accordance with their MPTP susceptibility. J Chem Neuroanat 2018; 91:46-54. [PMID: 29694842 DOI: 10.1016/j.jchemneu.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/15/2018] [Accepted: 04/19/2018] [Indexed: 12/30/2022]
Abstract
Epidemiological studies reveal an ethnicity-based bias in prevalence of Parkinson's disease (PD), deriving from the differences that exist between Caucasians and African or Asian populations. Experimental mice models provide a scope to analyse the cellular mechanisms of differential susceptibility to PD. C57BL/6J mice, for instance, are more susceptible to MPTP-induced Parkinsonism whereas CD-1 mice are resistant. In PD-pathogenesis, interneuronal contribution is also likely, although they comprise only 5-10% of the striatal cells. The interneurons harbour calcium binding proteins, like calretinin (Cal-R) and parvalbumin (PV), which are crucial in Ca2+ homeostasis for preventing calcium-induced excitotoxicity. GAD-67-immunoreactive interneurons are the other prominent set of GABAergic interneurons. In PD, dopamine loss up-regulates GAD-67 expression in striatal projection neurons and other basal ganglia circuit. We studied the possible contribution of interneurons in determining variable susceptibility by assessing the expression of calretinin, PV and GAD-67 in both striatum and substantia nigra pars compacta (SNpc) in two distinct mice strains, i.e. C57BL/6J and CD-1 under normal conditions, using unbiased stereology for quantification of immunoreactive cells and immunoblotting. The vulnerable C57BL/6J had lesser basal parvalbumin expression in both nigra and striatum whereas the calretinin levels were low only in the striatum. GAD-67 expression showed no perceptible differences in the striatum or SNpc of either of the strains. Differential expression of calcium buffering/binding proteins under normal physiological condition proffers a role for interneurons in the differential susceptibility to PD. Thus, even the baseline susceptibility indices i.e. without using the neurotoxin; can provide vital mechanistic insights into PD pathogenesis.
Collapse
Affiliation(s)
- Bidisha Bhaduri
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - P L Abhilash
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
| |
Collapse
|
5
|
Hamann M, Plank J, Richter F, Bode C, Smiljanic S, Creed M, Nobrega JN, Richter A. Alterations of M1 and M4 acetylcholine receptors in the genetically dystonic (dt sz) hamster and moderate antidystonic efficacy of M1 and M4 anticholinergics. Neuroscience 2017; 357:84-98. [PMID: 28596119 DOI: 10.1016/j.neuroscience.2017.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/28/2017] [Accepted: 05/29/2017] [Indexed: 11/30/2022]
Abstract
Striatal cholinergic dysfunction has been suggested to play a critical role in the pathophysiology of dystonia. In the dtsz hamster, a phenotypic model of paroxysmal dystonia, M1 antagonists exerted moderate antidystonic efficacy after acute systemic administration. In the present study, we examined the effects of the M4 preferring antagonist tropicamid and whether long-term systemic or acute intrastriatal injections of the M1 preferring antagonist trihexyphenidyl are more effective in mutant hamsters. Furthermore, M1 and M4 receptors were analyzed by autoradiography and immunohistochemistry. Tropicamide retarded the onset of dystonic attacks, as previously observed after acute systemic administration of trihexyphenidyl. Combined systemic administration of trihexyphenidyl (30mg/kg) and tropicamide (15mg/kg) reduced the severity in acute trials and delayed the onset of dystonia during long-term treatment. In contrast, acute striatal microinjections of trihexyphenidyl, tropicamid or the positive allosteric M4 receptor modulator VU0152100 did not exert significant effects. Receptor analyses revealed changes of M1 receptors in the dorsomedial striatum, suggesting that the cholinergic system is involved in abnormal striatal plasticity in dtsz hamsters, but the pharmacological data argue against a crucial role on the phenotype in this animal model. However, antidystonic effects of tropicamide after systemic administration point to a novel therapeutic potential of M4 preferring anticholinergics for the treatment of dystonia.
Collapse
Affiliation(s)
- Melanie Hamann
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstrasse 81, BFS, 35392 Giessen, Germany.
| | - Jagoda Plank
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | - Franziska Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, Leipzig, Germany
| | - Christoph Bode
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, Leipzig, Germany
| | - Sinisa Smiljanic
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | - Meaghan Creed
- Neuroimaging Research Section, Centre for Addiction and Mental Health, Toronto, Canada
| | - José N Nobrega
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, Leipzig, Germany.
| |
Collapse
|
6
|
Bode C, Richter F, Spröte C, Brigadski T, Bauer A, Fietz S, Fritschy JM, Richter A. Altered postnatal maturation of striatal GABAergic interneurons in a phenotypic animal model of dystonia. Exp Neurol 2017; 287:44-53. [PMID: 27780732 DOI: 10.1016/j.expneurol.2016.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/30/2016] [Accepted: 10/21/2016] [Indexed: 01/05/2023]
Abstract
GABAergic disinhibition has been suggested to play a critical role in the pathophysiology of several basal ganglia disorders, including dystonia, a common movement disorder. Previous studies have shown a deficit of striatal GABAergic interneurons (IN) in the dtsz mutant hamster, one of the few phenotypic animal models of dystonia. However, mechanisms underlying this deficit are largely unknown. In the present study, we investigated the migration and maturation of striatal IN during postnatal development (18days of age) and at age of highest severity of dystonia (33days of age) in this hamster model. In line with previous findings, the density of GAD67-positive IN and the level of parvalbumin mRNA, a marker for fast spiking GABAergic IN, were lower in the dtsz mutant than in control hamsters. However, an unaltered density of Nkx2.1 labeled cells and Nkx2.1 mRNA level suggested that the migration of GABAergic IN into the striatum was not retarded. Therefore, different factors that indicate maturation of GABAergic IN were determined. While mRNA of the KCC2 cation/chloride transporters and the cytosolic carboanhydrase VII, used as markers for the so called GABA switch, as well as BDNF were unaltered, we found a reduced number of IN expressing the alpha1 subunit of the GABAA-receptor (37.5%) in dtsz hamsters at an age of 33days, but not after spontaneous remission of dystonia at an age of 90days. Since IN shift expression from alpha2 to alpha1 subunits during postnatal maturation, this result together with a decreased parvalbumin mRNA expression suggest a delayed maturation of striatal GABAergic IN in this animal model, which might underlie abnormal neuronal activity and striatal plasticity.
Collapse
Affiliation(s)
- Christoph Bode
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Franziska Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany.
| | - Christine Spröte
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Tanja Brigadski
- Institute for Physiology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; Center of Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
| | - Anne Bauer
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Simone Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich 8057, Switzerland
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
7
|
Spröte C, Richter F, Bauer A, Gerstenberger J, Richter A. The α2β3γ2 GABAA receptor preferring agonist NS11394 aggravates dystonia in the phenotypic dt model. Eur J Pharmacol 2016; 791:655-658. [DOI: 10.1016/j.ejphar.2016.09.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 01/13/2023]
|
8
|
Genetic animal models of dystonia: common features and diversities. Prog Neurobiol 2014; 121:91-113. [PMID: 25034123 DOI: 10.1016/j.pneurobio.2014.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/06/2014] [Accepted: 07/03/2014] [Indexed: 01/13/2023]
Abstract
Animal models are pivotal for studies of pathogenesis and treatment of disorders of the central nervous system which in its complexity cannot yet be modeled in vitro or using computer simulations. The choice of a specific model to test novel therapeutic strategies for a human disease should be based on validity of the model for the approach: does the model reflect symptoms, pathogenesis and treatment response present in human patients? In the movement disorder dystonia, prior to the availability of genetically engineered mice, spontaneous mutants were chosen based on expression of dystonic features, including abnormal muscle contraction, movements and postures. Recent discovery of a number of genes and gene products involved in dystonia initiated research on pathogenesis of the disorder, and the creation of novel models based on gene mutations. Here we present a review of current models of dystonia, with a focus on genetic rodent models, which will likely be first choice in the future either for pathophysiological or for preclinical drug testing or both. In order to help selection of a model depending on expression of a specific feature of dystonia, this review is organized by symptoms and current knowledge of pathogenesis of dystonia. We conclude that albeit there is increasing need for research on pathogenesis of the disease and development of improved models, current models do replicate features of dystonia and are useful tools to develop urgently demanded treatment for this debilitating disorder.
Collapse
|
9
|
Avchalumov Y, Volkmann C, Rückborn K, Hamann M, Kirschstein T, Richter A, Köhling R. Persistent changes of corticostriatal plasticity in dtsz mutant hamsters after age-dependent remission of dystonia. Neuroscience 2013; 250:60-9. [DOI: 10.1016/j.neuroscience.2013.06.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 06/01/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
|
10
|
Pons R, Cuenca-León E, Miravet E, Pons M, Xaidara A, Youroukos S, Macaya A. Paroxysmal non-kinesigenic dyskinesia due to a PNKD recurrent mutation: report of two Southern European families. Eur J Paediatr Neurol 2012; 16:86-9. [PMID: 21962874 DOI: 10.1016/j.ejpn.2011.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 09/08/2010] [Accepted: 09/27/2010] [Indexed: 10/17/2022]
Abstract
Paroxysmal non-kinesigenic dyskinesia (PNKD) is an autosomal dominant disorder characterized by attacks of dystonic or choreathetotic movements precipitated by stress, fatigue, coffee, alcohol or menstruation. In this report we present two families with PNKD of Southern European origin carrying a PNKD recurrent mutation. Incomplete penetrance and intrafamilial variability was detected in both families. Treatment with valproic acid and levetiracetam provided favorable response.
Collapse
Affiliation(s)
- Roser Pons
- First Department of Pediatrics, Agia Sofia Hospital, University of Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
11
|
Clément C, Lalonde R, Strazielle C. Acetylcholinesterase activity in the brain of dystonia musculorum (Dst(dt-J)) mutant mice. Neurosci Res 2011; 72:79-86. [PMID: 21978551 DOI: 10.1016/j.neures.2011.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 08/22/2011] [Accepted: 09/09/2011] [Indexed: 02/03/2023]
Abstract
The dystonia musculorum (Dst(dt-J)) mutant mouse suffers from severe motor coordination deficits, characterized, among various symptoms, by a spastic ataxia and dystonic movements, indicating central defects in motor structures in addition to dystrophy of peripheral sensory tracts and partial degeneration of spinocerebellar tracts. Neurochemical alterations, notably in dopaminergic and noradrenergic systems, were previously observed in basal ganglia and cerebellum. A quantitative histochemical cartography of brain acetylcholinesterase activity in Dst(dt-J) mutants, in comparison with controls, revealed increases in the neostriatum, the habenula-interpeduncular pathway, the cholinergic pedunculopontine nucleus and its target structures, the thalamus, major regions of the basal ganglia, such as substantia nigra, ventral tegmental area, globus pallidum, and subthalamic nucleus, as well as in associated extrapyramidal regions, such as red nucleus, brainstem reticular formation, and superior colliculus. These acetylcholinesterase changes may play a role in motor deficits, particularly the dystonic symptomatology observed in the mutation.
Collapse
Affiliation(s)
- C Clément
- Inserm U954, Facultés de Médecine et d'Odontologie, Université de Nancy, Nancy 54500, France
| | | | | |
Collapse
|
12
|
Kreil A, Hamann M, Sander SE, Richter A. Changes in dynorphin immunoreactivity but unaltered density of enkephalin immunoreactive neurons in basal ganglia nuclei of genetically dystonic hamsters. Synapse 2011; 65:1196-203. [PMID: 21638337 DOI: 10.1002/syn.20959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 05/21/2011] [Accepted: 05/24/2011] [Indexed: 12/12/2022]
Abstract
Dystonia is regarded as a basal ganglia disorder. In the dt(sz) hamster, a genetic animal model of paroxysmal dystonia, previous studies demonstrated a reduced density of striatal GABAergic interneurons which inhibit striatal GABAergic projection neurons. Although the disinhibition of striatal GABAergic projection neurons was evidenced in the dt(sz) hamster, alterations in their density have not been elucidated so far. Therefore, in the present study, the density of striatal methionin-(met-) enkephalin (ENK) immunoreactive GABAergic neurons, which project to the globus pallidus (indirect pathway), was determined in dt(sz) and control hamsters to clarify a possible role of an altered ratio between striatal interneurons and projection neurons. Furthermore, the immunoreactivity of dynorphin A (DYN), which is expressed in entopeduncular fibers of striatal neurons of the direct pathway, was verified by gray level measurements to illuminate the functional relevance of an enhanced striato-entopeduncular neuronal activity previously found in dt(sz) hamsters. While the density of striatal ENK immunoreactive (ENK(+) ) neurons did not significantly differ between mutant and control hamsters, there was a significantly enhanced ratio between the DYN immunoreactive area and the whole area of the EPN in dt(sz) hamsters compared to controls. These results support the hypothesis that a disbalance between a reduced density of striatal interneurons and an unchanged density of striatal projection neurons causes imbalances in the basal ganglia network. The consequentially enhanced striato-entopeduncular inhibition leads to an already evidenced reduced activity and an altered firing pattern of entopeduncular neurons in the dt(sz) hamster.
Collapse
Affiliation(s)
- Annette Kreil
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
13
|
Effects of pharmacological entopeduncular manipulations on idiopathic dystonia in the dt sz mutant hamster. J Neural Transm (Vienna) 2010; 117:747-57. [DOI: 10.1007/s00702-010-0410-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 04/18/2010] [Indexed: 10/19/2022]
|
14
|
Reese R, Charron G, Nadjar A, Aubert I, Thiolat ML, Hamann M, Richter A, Bezard E, Meissner WG. High frequency stimulation of the entopeduncular nucleus sets the cortico-basal ganglia network to a new functional state in the dystonic hamster. Neurobiol Dis 2009; 35:399-405. [DOI: 10.1016/j.nbd.2009.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Revised: 05/28/2009] [Accepted: 05/30/2009] [Indexed: 11/30/2022] Open
|
15
|
Sander S, Richter F, Raymond R, Diwan M, Lange N, Nobrega J, Richter A. Pharmacological and autoradiographic studies on the pathophysiological role of GABAB receptors in the dystonic hamster: pronounced antidystonic effects of baclofen after striatal injections. Neuroscience 2009; 162:423-30. [DOI: 10.1016/j.neuroscience.2009.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 05/04/2009] [Accepted: 05/04/2009] [Indexed: 12/18/2022]
|
16
|
Hamann M, Richter A, Fink H, Rex A. Altered nicotinamide adenine dinucleotide (NADH) fluorescence in dt sz mutant hamsters reflects differences in striatal metabolism between severe and mild dystonia. J Neurosci Res 2009; 87:776-83. [PMID: 18831004 DOI: 10.1002/jnr.21891] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dt(sz) mutant hamster represents a unique rodent model of idiopathic paroxysmal dystonia. Previous data, collected post-mortem or in anesthetized hamsters under basal conditions, indicated the critical involvement of enhanced striatal neuronal activity. To assess the importance of an enhanced striatal neuronal activity directly during a dystonic episode, continuous monitoring of changes in brain metabolism and therefore neuronal activity indirectly in awake, freely moving animals is necessary. Determination of CNS metabolism by NADH measurement by laser-induced fluorescence spectroscopy in conscious dt(sz) and nondystonic control hamsters revealed reversible decreased NADH fluorescence during dystonic episodes. The degree of change corresponded to the severity of dystonia. This study represents the first application of this innovative method in freely moving animals exhibiting a movement disorder. Our data clearly confirm that the expression of paroxysmal dystonia in dt(sz) mutant hamsters is associated with enhanced striatal neuronal activity and further underscore the versatile application of NADH fluorescence measurements in neuroscience.
Collapse
Affiliation(s)
- Melanie Hamann
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
17
|
Hamann M, Sohr R, Morgenstern R, Richter A. Extracellular amino acid levels in the striatum of the dt(sz) mutant, a model of paroxysmal dystonia. Neuroscience 2008; 157:188-95. [PMID: 18824218 DOI: 10.1016/j.neuroscience.2008.08.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 08/27/2008] [Accepted: 08/31/2008] [Indexed: 10/21/2022]
Abstract
The pathophysiology of idiopathic dystonia is still unknown, but it is regarded as a basal ganglia disorder. Previous studies indicated an involvement of a striatal GABAergic disinhibition and a cortico-striatal glutamatergic overactivity in the manifestation of stress-inducible dystonic episodes in the dt(sz) hamster, a model of idiopathic paroxysmal dystonia. These investigations were carried out postmortem or in anesthetized animals. In the present study, in vivo microdialysis in conscious, freely-moving dt(sz) and non-dystonic control hamsters was used to examine the levels of GABA, aspartate, glutamate, glutamine, glycine and taurine in each animal during following conditions: (1) at baseline in the absence of dystonia, (2) during an episode of paroxysmal dystonia precipitated by stressful stimuli, (3) during a recovery period and (4) at baseline after complete recovery. In comparison to non-dystonic controls, which were treated in the same manner as the dystonic animals, no differences could be detected under basal conditions. The induction of a dystonic episode in mutant hamsters led to higher contents of glycine in these animals in comparison to stressed but non-dystonic controls. Significant changes of glycine levels within the animal groups were not detected. The levels of the excitatory amino acids glutamate, glutamine and aspartate as well as the levels of the inhibitory amino acids GABA and taurine did not differ between the animal groups or between the periods of measurement. The higher levels of glycine might contribute to the manifestation of paroxysmal dystonia in dt(sz) hamsters, although unaltered glutamate, glutamine and aspartate levels do not support the hypothesis of a critical involvement of a cortico-striatal overactivity. It seems that a deficiency of GABAergic interneurons, found by previous immunohistochemical examinations, does not lead to reduced extracellular GABA levels in the striatum.
Collapse
Affiliation(s)
- M Hamann
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
18
|
Hamann M, Richter F, Richter A. Acute effects of neurosteroids in a rodent model of primary paroxysmal dystonia. Horm Behav 2007; 52:220-7. [PMID: 17553499 DOI: 10.1016/j.yhbeh.2007.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 03/23/2007] [Accepted: 04/16/2007] [Indexed: 11/25/2022]
Abstract
The pathophysiology of various types of dyskinesias, including dystonias, is poorly understood. Clinical and epidemiological studies in humans revealed that the severity of dyskinesias and the frequency of paroxysmal forms of the disease are altered by factors such as the onset of puberty, pregnancy, cyclical changes and stress, indicating an underlying hormonal component. The dystonic phenotype in the dt(sz) hamster, a genetic animal model of paroxysmal dystonia, has been suggested to be based on a deficit of striatal gamma-aminobutyric acid (GABA)ergic interneurons and changes in the GABA(A) receptor complex. In this animal model, hormonal influences seem to be also involved in the pathophysiology, but an influence of peripheral sex hormones has already been excluded. Possibly, neurosteroids as endogenous regulators of the GABA(A) receptor may be critically involved in the pathophysiology of dystonia in this animal model. Therefore, in the present study, the effects of the neurosteroids allopregnanolone acetate and allotetrahydrodeoxycorticosterone (THDOC), representing positive modulators of the GABA(A) receptor, as well as of the negative GABA(A) receptor modulators pregnenolone sulfate and dehydroepiandrosterone (DHEA), on severity of dystonia were examined in dt(sz) hamsters after acute intraperitoneal injections. Allopregnanolone acetate and THDOC exerted a moderate reduction of dystonia, whereas pregnenolone sulfate and DHEA had no significant effects. Although the effects of allopregnanolone acetate and THDOC were moderate and short-lasting, the present results suggest that changes in neurosteroid levels might be involved in the initiation of dystonic episodes. Future studies have to include measurements of brain neurosteroid levels as well as of chronic neurosteroid administrations to clarify the pathophysiological role and therapeutic potential of neurosteroids in dystonia.
Collapse
Affiliation(s)
- Melanie Hamann
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany.
| | | | | |
Collapse
|
19
|
Sander SE, Richter A. Effects of intrastriatal injections of glutamate receptor antagonists on the severity of paroxysmal dystonia in the dtsz mutant. Eur J Pharmacol 2007; 563:102-8. [PMID: 17349621 DOI: 10.1016/j.ejphar.2007.01.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 01/17/2007] [Accepted: 01/23/2007] [Indexed: 11/28/2022]
Abstract
Imbalances of the glutamatergic system are implicated in the pathophysiology of various basal ganglia disorders, but few is known about their role in dystonia, a common neurological syndrome in which involuntary muscle co-contractions lead to twisting movements and abnormal postures. Previous systemic administrations of glutamate receptor antagonists in dtsz hamsters, an animal model of primary paroxysmal dystonia, exerted antidystonic effects and electrophysiological experiments pointed to an enhanced corticostriatal glutamatergic activity. In order to examine the pathophysiological relevance of these findings, we performed striatal microinjections of the alpha-amino-2,3-dihydro-5-methyl-3-oxo-4-isoxazolepropanoic acid (AMPA) receptor antagonist 2,3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX) and the N-methyl-D-aspartate (NMDA) receptor antagonists D(-)-2-amino-5-phosphopentanoic acid (AP-5), (R)-(+)-3-amino-1-hydroxypyrrolidin-2-one (HA-966) and dizocilpine (MK-801). The striatal application of NBQX reduced the severity and increased the latency to onset of dystonia significantly only at a dosage of 0.08 microg per hemisphere, lower (0.03 microg) and higher dosages (0.16 microg and 0.32 microg) failed to exert comparable effects on the severity. None of the striatal injected NMDA receptor antagonists influenced the severity of the dystonic attacks in the mutant hamster. The combined application of NBQX (0.08 microg) with AP-5 (1.0 microg) failed to exert synergistic antidystonic effects, but the beneficial effect on the severity of dystonia of the single application of NBQX was reproduced. Therefore, corticostriatal glutamatergic overactivity mediated by AMPA receptors, but not by NMDA receptors, is possibly important for the manifestation of dystonic attacks in the dtsz hamster mutant.
Collapse
Affiliation(s)
- Svenja Esther Sander
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany.
| | | |
Collapse
|
20
|
Hamann M, Richter A, Meillasson FV, Nitsch C, Ebert U. Age-related changes in parvalbumin-positive interneurons in the striatum, but not in the sensorimotor cortex in dystonic brains of the dt mutant hamster. Brain Res 2007; 1150:190-9. [PMID: 17391652 DOI: 10.1016/j.brainres.2007.02.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 10/23/2022]
Abstract
In the dt(sz) hamster, a model of paroxysmal dystonia, an age-dependent increase in the activity of striatal projection neurons has been hypothesized to be based on a deficit of striatal parvalbumin-immunoreactive (PV(+)) interneurons at an age of most marked expression of dystonia (30-40 days of life). In the present study, the spontaneous age-dependent remission of paroxysmal dystonia in older dt(sz) hamsters (age>90 days) was found to coincide with a normalization of the density of striatal PV(+) interneurons. Furthermore, the arborization of these interneurons was lower in 31 day old dt(sz) hamsters, but was even higher in dt(sz) mutant at an age of >90 days than in control animals. Double-labeling with bromodeoxyuridine failed to show a retarded proliferation, while the number of interneurons with strong expression of PV mRNA was lower in young mutant hamsters. As shown by unaltered density of PV(+) interneurons in sensorimotor cortex of 31 day old dt(sz) hamsters, PV containing interneurons are not reduced throughout the whole brain at the sensitive age. The present data suggest that a retarded postnatal maturation of striatal PV(+) interneurons plays a critical role in paroxysmal dystonia.
Collapse
Affiliation(s)
- Melanie Hamann
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin (FU), Koserstr. 20, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
21
|
Richter F, Hamann M, Richter A. Chronic rotenone treatment induces behavioral effects but no pathological signs of parkinsonism in mice. J Neurosci Res 2007; 85:681-91. [PMID: 17171705 DOI: 10.1002/jnr.21159] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been hypothesized that exposures to neurotoxic pesticides together with aging and genetic factors increase the risk for developing Parkinson's disease (PD) which is characterized by a progressive degeneration of the nigrostriatal dopaminergic pathway. Chronic treatment with the pesticide rotenone has been reported to induce parkinsonism in rats. Although transgenic mice (but not transgenic rats) are available to investigate the importance of environmental factors in genetically predisposed animals, the effects of chronic rotenone exposure have so far not been examined in intact mice. Therefore, we investigated the effects of chronic exposure to rotenone (2.5 or 4.0-5.0 mg/kg s.c. for 30-45 days) in mice aged 2.5, 5, or 12 months. During the treatment period, the effects on vitality and motor behavior were investigated. Furthermore, the toxicity of rotenone on dopaminergic nigrostriatal neurons and peripheral tissues was examined. In comparison with control mice, rotenone-treated mice had a decreased spontaneous motor activity, but the density of nigral dopaminergic neurons failed to show any significant changes, except for a tendency to decrease in old mice treated with 4 mg/kg. At the tested doses, rotenone caused a moderate hepatic fatty degeneration. The data indicate that rotenone is not able to cause the neuropathological characteristics of PD in mice under these testing paradigms, which were similar to those of the rotenone rat model. Further studies will have to clarify whether genetic mouse models of PD might be more sensitive to the neurotoxic effects of rotenone.
Collapse
Affiliation(s)
- Franziska Richter
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | | |
Collapse
|
22
|
Richter A, Sander SE, Rundfeldt C. Antidystonic effects of Kv7 (KCNQ) channel openers in the dt sz mutant, an animal model of primary paroxysmal dystonia. Br J Pharmacol 2006; 149:747-53. [PMID: 17016514 PMCID: PMC2014660 DOI: 10.1038/sj.bjp.0706878] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Mutations in neuronal Kv7 (KCNQ) potassium channels can cause episodic neurological disorders. Paroxysmal dyskinesias with dystonia are a group of movement disorders which are regarded as ion channelopathies, but the role of Kv7 channels in the pathogenesis and as targets for the treatment have so far not been examined. EXPERIMENTAL APPROACH In the present study, we therefore examined the effects of the activators of neuronal Kv7.2/7.3 channels retigabine (5, 7.5, 10 mg kg(-1) i.p. and 10, 20 mg kg(-1) p.o.) and flupirtine (10, 20 mg kg(-1) i.p.) and of the channel blocker 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone (XE-991, 3 and 6 mg kg(-1) i.p.) in the dt sz mutant hamster, a model of paroxysmal dyskinesia in which dystonic episodes occur in response to stress. KEY RESULTS Retigabine (10 mg kg(-1) i.p., 20 mg kg(-1) p.o.) and flupirtine (20 mg kg(-1) i.p.) significantly improved dystonia, while XE-991 caused a significant aggravation in the dt sz mutant. The antidystonic effect of retigabine (10 mg kg(-1) i.p.) was counteracted by XE-991 (3 mg kg(-1) i.p.). CONCLUSIONS AND IMPLICATIONS These data indicate that dysfunctions of neuronal Kv7 channels deserve attention in dyskinesias. Since retigabine and flupirtine are well tolerated in humans, the present finding of pronounced antidystonic efficacy in the dt sz mutant suggests that neuronal Kv7 channel activators are interesting candidates for the treatment of dystonia-associated dyskinesias and probably of other types of dystonias. The established analgesic effects of Kv7 channel openers might contribute to improvement of these disorders which are often accompanied by painful muscle spasms.
Collapse
Affiliation(s)
- A Richter
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | | | | |
Collapse
|
23
|
Hamann M, Raymond R, Varughesi S, Nobrega JN, Richter A. Acetylcholine receptor binding and cholinergic interneuron density are unaltered in a genetic animal model of primary paroxysmal dystonia. Brain Res 2006; 1099:176-82. [PMID: 16764832 DOI: 10.1016/j.brainres.2006.04.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 04/25/2006] [Accepted: 04/27/2006] [Indexed: 10/24/2022]
Abstract
The underlying pathophysiological mechanisms of hereditary types of paroxysmal dyskinesias are still unknown, but basal ganglia dysfunctions seem to play a critical role. In fact, numerous pharmacological, neurochemical, immunohistochemical and electrophysiological investigations in the dt(sz) hamsters, a unique rodent model of age-dependent primary paroxysmal dystonia, revealed alterations within the basal ganglia, particularly of the GABAergic and dopaminergic neurotransmitter systems. A deficit in several types of striatal GABAergic interneurons in dt(sz) mutant hamsters seems to play a crucial pathophysiological role, but deficits in other types of striatal interneurons cannot be excluded by previous studies. In view of ameliorating effects of anti-cholinergic drugs in dystonic patients, we therefore investigated the density of striatal cholinergic interneurons in the present study. These interneurons were marked specifically by the enzyme choline acetyltransferase and counted by using a stereological counting method in a blinded fashion. Additionally, acetylcholine receptor binding was determined in mutant and nondystonic control hamsters by autoradiographic analyses with the nonselective muscarinic ligand [(3)H]-quinuclidinyl benzilate (QNB) in 11 brain (sub)regions. There were no significant differences in the density of striatal cholinergic interneurons between dt(sz) mutant hamsters (789 +/- 39 interneurons/mm(3)) and nondystonic controls (807 +/- 36 interneurons/mm(3)). [(3)H]QNB binding was also comparable between mutant and control hamsters. These results point to an unaltered striatal cholinergic neurotransmitter system in dt(sz) hamsters under basal conditions.
Collapse
Affiliation(s)
- Melanie Hamann
- Freie Universität Berlin, School of Veterinary Medicine, Department of Pharmacology and Toxicology, Berlin, Germany.
| | | | | | | | | |
Collapse
|
24
|
Sander SE, Richter A. Striatal microinjections of nitric oxide synthase inhibitors and l-arginine fail to exert effects on paroxysmal dystonia in the dtsz mutant. Neurosci Lett 2006; 398:97-101. [PMID: 16423462 DOI: 10.1016/j.neulet.2005.12.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/24/2005] [Accepted: 12/22/2005] [Indexed: 11/16/2022]
Abstract
Primary dystonia is a common movement disorder with an unknown pathophysiology, but basal ganglia dysfunctions seem to play a critical role. Previous studies in the dtsz mutant hamster, an animal model of primary paroxysmal dystonia, demonstrated a deficit of striatal gamma-amino-butyric acid (GABA) containing interneurons, which normalized at the age of the spontaneous remission of the symptoms. Whereas the reduction of striatal parvalbumin-reactive interneurons is thought to be critically involved in the pathogenesis of dystonia in the hamster mutant, the impact of a reduced density of nitric oxide synthase (NOS) reactive interneurons within the striatum is still unclear. Beside GABA, these interneurons contain somatostatin, neuropeptide Y, nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) and neuronal NOS, an enzyme which produces NO after the activation of the interneurons. In order to clarify if the reduced density of NOS-reactive interneurons contributes by an altered striatal production of nitric oxide (NO) to the occurrence of dystonic attacks in the hamster mutant, we performed microinjections of the NOS inhibitors 7-nitroindazole (7-NI) and Nomega-propyl-L-arginine (NPLA) and of the precursor of NO, L-arginine, into the striata of dtsz hamsters. Neither 7-NI (0.1 and 0.4 microg per hemisphere) and NPLA (2.5, 5 and 7.5 microg per hemisphere) nor L-arginine (9 and 18 microg per hemisphere) exerted any effects on the severity of dystonic movements in the dtsz mutant. Therefore, a critical involvement of striatal changes of NO in the pathophysiology of dystonic attacks in the dtsz hamster cannot be confirmed by the results of these pharmacological examinations. In view of the ontogenetic reduction of the other types of GABAergic interneurons, the deficit of NOS-reactive interneurons is possibly due to the same underlying unknown mechanism, but is less important for the pathophysiology of primary paroxysmal dystonia in the dtsz hamster mutant.
Collapse
Affiliation(s)
- Svenja Esther Sander
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität (FU) Berlin, Koserstr. 20, 14195 Berlin, Germany.
| | | |
Collapse
|
25
|
Sander SE, Hamann M, Richter A. Age-related changes in striatal nitric oxide synthase-immunoreactive interneurones in the dystonic dt sz mutant hamster. Neuropathol Appl Neurobiol 2006; 32:74-82. [PMID: 16409555 DOI: 10.1111/j.1365-2990.2005.00703.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dt(sz) mutant hamster represents a model of paroxysmal dyskinesia in which dystonic episodes can be age-dependently induced by stress. GABAergic interneurones which co-express calcium binding proteins were found to be reduced in the striatum of the dt(sz) mutant. Other types of striatal interneurones have so far not been examined. In the present study, we therefore determined the density of nitric oxide synthase (NOS)-immunoreactive interneurones in the striatum of the dt(sz) mutant in comparison with nondystonic control hamsters. At the age of most marked expression of dystonia (30-40 days of life), the density of NOS-positive interneurones was decreased in the striatum of dt(sz) hamsters (-21%) in comparison with age-matched nondystonic control hamsters. Spontaneous remission of dystonia (age >90 days) coincided with a normalization of the density of NOS-reactive interneurones within the whole striatum of dt(sz) hamsters, but there remained a reduced density in distinct subregions. Together with previous findings the present data indicate that the development of striatal interneurones is retarded in mutant hamsters. The age-related deficit of NOS-reactive interneurones may at least in part contribute to an abnormal activity of striatal GABAergic projection neurones and thereby to the age-dependent dystonic syndrome in the dt(sz) mutant.
Collapse
Affiliation(s)
- S E Sander
- Institute of Pharmacology and Toxicology and Pharmacy, School of Veterinary Medicine, Freie Universität, FU, Berlin, Germany
| | | | | |
Collapse
|