1
|
Pullmannová P, Čuříková-Kindlová BA, Ondrejčeková V, Kováčik A, Dvořáková K, Dulanská L, Georgii R, Majcher A, Maixner J, Kučerka N, Zbytovská J, Vávrová K. Polymorphism, Nanostructures, and Barrier Properties of Ceramide-Based Lipid Films. ACS OMEGA 2023; 8:422-435. [PMID: 36643519 PMCID: PMC9835644 DOI: 10.1021/acsomega.2c04924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Ceramides belong to sphingolipids, an important group of cellular and extracellular lipids. Their physiological functions range from cell signaling to participation in the formation of barriers against water evaporation. In the skin, they are essential for the permeability barrier, together with free fatty acids and cholesterol. We examined the periodical structure and permeability of lipid films composed of ceramides (Cer; namely, N-lignoceroyl 6-hydroxysphingosine, CerNH24, and N-lignoceroyl sphingosine, CerNS24), lignoceric acid (LIG; 24:0), and cholesterol (Chol). X-ray diffraction experiments showed that the CerNH24-based samples form either a short lamellar phase (SLP, d ∼ 5.4 nm) or a medium lamellar phase (MLP, d = 10.63-10.78 nm) depending on the annealing conditions. The proposed molecular arrangement of the MLP based on extended Cer molecules also agreed with the relative neutron scattering length density profiles obtained from the neutron diffraction data. The presence of MLP increased the lipid film permeability to the lipophilic model permeant (indomethacin) relative to the CerNS24-based control samples and the samples that had the same lipid composition but formed an SLP. Thus, the arrangement of lipids in various nanostructures is responsive to external conditions during sample preparation. This polymorphic behavior directly affects the barrier properties, which could also be (patho)physiologically relevant.
Collapse
Affiliation(s)
- Petra Pullmannová
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Barbora A. Čuříková-Kindlová
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Veronika Ondrejčeková
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Andrej Kováčik
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Kristýna Dvořáková
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Lucia Dulanská
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Robert Georgii
- Heinz
Maier-Leibnitz Zentrum (MLZ), Technische
Universität München, Lichtenbergstr. 1, 85748Garching, Germany
| | - Adam Majcher
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Jaroslav Maixner
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Norbert Kučerka
- Faculty
of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32Bratislava, Slovakia
- Frank
Laboratory of Neutron Physics, Joint Institute
for Nuclear Research, Joliot-Curie 6, 141980Dubna, Russia
| | - Jarmila Zbytovská
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Kateřina Vávrová
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Baumann A, Denninger AR, Domin M, Demé B, Kirschner DA. Metabolically-incorporated deuterium in myelin localized by neutron diffraction and identified by mass spectrometry. Curr Res Struct Biol 2022; 4:231-245. [PMID: 35941866 PMCID: PMC9356250 DOI: 10.1016/j.crstbi.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
Myelin is a natural and dynamic multilamellar membrane structure that continues to be of significant biological and neurological interest, especially with respect to its biosynthesis and assembly during its normal formation, maintenance, and pathological breakdown. To explore the usefulness of neutron diffraction in the structural analysis of myelin, we investigated the use of in vivo labeling by metabolically incorporating non-toxic levels of deuterium (2H; D) via drinking water into a pregnant dam (D-dam) and her developing embryos. All of the mice were sacrificed when the pups (D-pups) were 55 days old. Myelinated sciatic nerves were dissected, fixed in glutaraldehyde and examined by neutron diffraction. Parallel samples that were unfixed (trigeminal nerves) were frozen for mass spectrometry (MS). The diffraction patterns of the nerves from deuterium-fed mice (D-mice) vs. the controls (H-mice) had major differences in the intensities of the Bragg peaks but no appreciable differences in myelin periodicity. Neutron scattering density profiles showed an appreciable increase in density at the center of the lipid-rich membrane bilayer. This increase was greater in D-pups than in D-dam, and its localization was consistent with deuteration of lipid hydrocarbon, which predominates over transmembrane protein in myelin. MS analysis of the lipids isolated from the trigeminal nerves demonstrated that in the pups the percentage of lipids that had one or more deuterium atoms was uniformly high across lipid species (97.6% ± 2.0%), whereas in the mother the lipids were substantially less deuterated (60.6% ± 26.4%) with levels varying among lipid species and subspecies. The mass distribution pattern of deuterium-containing isotopologues indicated the fraction (in %) of each lipid (sub-)species having one or more deuteriums incorporated: in the D-pups, the pattern was always bell-shaped, and the average number of D atoms ranged from a low of ∼4 in fatty acid to a high of ∼9 in cerebroside. By contrast, in D-dam most lipids had more complex, overlapping distributions that were weighted toward a lower average number of deuteriums, which ranged from a low of ∼3–4 in fatty acid and in one species of sulfatide to a high of 6–7 in cerebroside and sphingomyelin. The consistently high level of deuteration in D-pups can be attributed to their de novo lipogenesis during gestation and rapid, postnatal myelination. The widely varying levels of deuteration in D-dam, by contrast, likely depends on the relative metabolic stability of the particular lipid species during myelin maintenance. Our current findings demonstrate that stably-incorporated D label can be detected and localized using neutron diffraction in a complex tissue such as myelin; and moreover, that MS can be used to screen a broad range of deuterated lipid species to monitor differential rates of lipid turnover. In addition to helping to develop a comprehensive understanding of the de novo synthesis and turnover of specific lipids in normal and abnormal myelin, our results also suggest application to studies on myelin proteins (which constitute only 20–30% by dry mass of the myelin, vs. 70–80% for lipid), as well as more broadly to the molecular constituents of other biological tissues. Deuterium metabolically assimilated into gestating mouse pups via drinking water. Neutron diffraction localized deuterium to middle of myelin membrane bilayers. Mass spectrometry identified 26 deuterated lipid species as myelinic. Myelin of pups substantially more deuterated than that of their dam. Deuterium differentially distributed among lipid species and subspecies. De novo lipid biogenesis vs. steady-state maintenance readily distinguished. Novel paradigm suggests application to animal models of human myelinopathies.
Collapse
|
3
|
Maiti S, Frielinghaus H, Gräßel D, Dulle M, Axer M, Förster S. Distribution and orientation of nerve fibers and myelin assembly in a brain section retrieved by small-angle neutron scattering. Sci Rep 2021; 11:17306. [PMID: 34453063 PMCID: PMC8397781 DOI: 10.1038/s41598-021-92995-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
The structural connectivity of the brain has been addressed by various imaging techniques such as diffusion weighted magnetic resonance imaging (DWMRI) or specific microscopic approaches based on histological staining or label-free using polarized light (e.g., three-dimensional Polarized Light Imaging (3D-PLI), Optical Coherence Tomography (OCT)). These methods are sensitive to different properties of the fiber enwrapping myelin sheaths i.e. the distribution of myelin basic protein (histology), the apparent diffusion coefficient of water molecules restricted in their movements by the myelin sheath (DWMRI), and the birefringence of the oriented myelin lipid bilayers (3D-PLI, OCT). We show that the orientation and distribution of nerve fibers as well as myelin in thin brain sections can be determined using scanning small angle neutron scattering (sSANS). Neutrons are scattered from the fiber assembly causing anisotropic diffuse small-angle scattering and Bragg peaks related to the highly ordered periodic myelin multilayer structure. The scattering anisotropy, intensity, and angular position of the Bragg peaks can be mapped across the entire brain section. This enables mapping of the fiber and myelin distribution and their orientation in a thin brain section, which was validated by 3D-PLI. The experiments became possible by optimizing the neutron beam collimation to highest flux and enhancing the myelin contrast by deuteration. This method is very sensitive to small microstructures of biological tissue and can directly extract information on the average fiber orientation and even myelin membrane thickness. The present results pave the way toward bio-imaging for detecting structural aberrations causing neurological diseases in future.
Collapse
Affiliation(s)
- Santanu Maiti
- Jülich Centre of Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum (JCNS-MLZ), Forschungszentrum Jülich GmbH, 85748, Garching, Germany
| | - David Gräßel
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Martin Dulle
- Jülich Centre of Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Stephan Förster
- Jülich Centre of Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Institute of Physical Chemistry, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
4
|
Visigalli D, Capodivento G, Basit A, Fernández R, Hamid Z, Pencová B, Gemelli C, Marubbi D, Pastorino C, Luoma AM, Riekel C, Kirschner DA, Schenone A, Fernández JA, Armirotti A, Nobbio L. Exploiting Sphingo- and Glycerophospholipid Impairment to Select Effective Drugs and Biomarkers for CMT1A. Front Neurol 2020; 11:903. [PMID: 32982928 PMCID: PMC7477391 DOI: 10.3389/fneur.2020.00903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/14/2020] [Indexed: 01/12/2023] Open
Abstract
In Charcot-Marie-Tooth type 1A (CMT1A), Schwann cells exhibit a preponderant transcriptional deficiency of genes involved in lipid biosynthesis. This perturbed lipid metabolism affects the peripheral nerve physiology and the structure of peripheral myelin. Nevertheless, the identification and functional characterization of the lipid species mainly responsible for CMT1A myelin impairment currently lack. This is critical in the pathogenesis of the neuropathy since lipids are many and complex molecules which play essential roles in the cell, including the structural components of cellular membranes, cell signaling, and membrane trafficking. Moreover, lipids themselves are able to modify gene transcription, thereby affecting the genotype-phenotype correlation of well-defined inherited diseases, including CMT1A. Here we report for the first time a comprehensive lipid profiling in experimental and human CMT1A, demonstrating a previously unknown specific alteration of sphingolipid (SP) and glycerophospholipid (GP) metabolism. Notably, SP, and GP changes even emerge in biological fluids of CMT1A rat and human patients, implying a systemic metabolic dysfunction for these specific lipid classes. Actually, SP and GP are not merely reduced; their expression is instead aberrant, contributing to the ultrastructural abnormalities that we detailed by X-ray diffraction in rat and human internode myelin. The modulation of SP and GP pathways in myelinating dorsal root ganglia cultures clearly sustains this issue. In fact, just selected molecules interacting with these pathways are able to modify the altered geometric parameters of CMT1A myelinated fibers. Overall, we propose to exploit the present SP and GP metabolism impairment to select effective drugs and validate a set of reliable biomarkers, which remain a challenge in CMT1A neuropathy.
Collapse
Affiliation(s)
- Davide Visigalli
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Giovanna Capodivento
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Abdul Basit
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Roberto Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Zeeshan Hamid
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Barbora Pencová
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Chiara Gemelli
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Daniela Marubbi
- DIMES, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Oncologia Cellulare Genoa, Genoa, Italy
| | - Cecilia Pastorino
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Adrienne M Luoma
- Department of Biology, Boston College, Boston, MA, United States
| | | | | | - Angelo Schenone
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Lucilla Nobbio
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| |
Collapse
|
5
|
Correlated Disorder in Myelinated Axons Orientational Geometry and Structure. CONDENSED MATTER 2017. [DOI: 10.3390/condmat2030029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Myelin structure in unfixed, single nerve fibers: Scanning X-ray microdiffraction with a beam size of 200nm. J Struct Biol 2017; 200:229-243. [PMID: 28698109 DOI: 10.1016/j.jsb.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/27/2017] [Accepted: 07/07/2017] [Indexed: 11/21/2022]
Abstract
Previous raster-scanning with a 1μm X-ray beam of individual, myelinated fibers from glutaraldehyde-fixed rat sciatic nerve revealed a spatially-dependent variation in the diffraction patterns from single fibers. Analysis indicated differences in the myelin periodicity, membrane separations, distribution of proteins, and orientation of membrane lamellae. As chemical fixation is known to produce structural artifacts, we sought to determine in the current study whether the structural heterogeneity is intrinsic to unfixed myelin. Using a 200nm-beam that was about five-fold smaller than before, we raster-scanned individual myelinated fibers from both the peripheral (PNS; mouse and rat sciatic nerves) and central (CNS; rat corpus callosum) nervous systems. As expected, the membrane stacking in the internodal region was nearly parallel to the fiber axis and in the paranodal region it was perpendicular to the axis. A myelin lattice was also frequently observed when the incident beam was injected en face to the sheath. Myelin periodicity and diffracted intensity varied with axial position along the fiber, as did the calculated membrane profiles. Raster-scanning with an X-ray beam at sub-micron resolution revealed for the first time that the individual myelin sheaths in unfixed nerve are heterogeneous in both membrane structure and packing.
Collapse
|
7
|
Denninger AR, Breglio A, Maheras KJ, LeDuc G, Cristiglio V, Demé B, Gow A, Kirschner DA. Claudin-11 Tight Junctions in Myelin Are a Barrier to Diffusion and Lack Strong Adhesive Properties. Biophys J 2016; 109:1387-97. [PMID: 26445439 DOI: 10.1016/j.bpj.2015.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/20/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022] Open
Abstract
The radial component is a network of interlamellar tight junctions (TJs) unique to central nervous system myelin. Ablation of claudin-11, a TJ protein, results in the absence of the radial component and compromises the passive electrical properties of myelin. Although TJs are known to regulate paracellular diffusion, this barrier function has not been directly demonstrated for the radial component, and some evidence suggests that the radial component may also mediate adhesion between myelin membranes. To investigate the physical properties of claudin-11 TJs, we compared fresh, unfixed Claudin 11-null and control nerves using x-ray and neutron diffraction. In Claudin 11-null tissue, we detected no changes in myelin structure, stability, or membrane interactions, which argues against the notion that myelin TJs exhibit significant adhesive properties. Moreover, our osmotic stressing and D2O-H2O exchange experiments demonstrate that myelin lacking claudin-11 is more permeable to water and small osmolytes. Thus, our data indicate that the radial component serves primarily as a diffusion barrier and elucidate the mechanism by which TJs govern myelin function.
Collapse
Affiliation(s)
| | - Andrew Breglio
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Kathleen J Maheras
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan
| | | | | | - Bruno Demé
- Institut Laue-Langevin, Grenoble, France
| | - Alexander Gow
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan; Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan; Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan
| | | |
Collapse
|
8
|
Ahmed SS, Schattgen SA, Frakes AE, Sikoglu EM, Su Q, Li J, Hampton TG, Denninger AR, Kirschner DA, Kaspar B, Matalon R, Gao G. rAAV Gene Therapy in a Canavan's Disease Mouse Model Reveals Immune Impairments and an Extended Pathology Beyond the Central Nervous System. Mol Ther 2016; 24:1030-1041. [PMID: 27039844 PMCID: PMC4923332 DOI: 10.1038/mt.2016.68] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/25/2016] [Indexed: 02/07/2023] Open
Abstract
Aspartoacylase (AspA) gene mutations cause the pediatric lethal neurodegenerative Canavan disease (CD). There is emerging promise of successful gene therapy for CD using recombinant adeno-associated viruses (rAAVs). Here, we report an intracerebroventricularly delivered AspA gene therapy regime using three serotypes of rAAVs at a 20-fold reduced dose than previously described in AspA(-/-) mice, a bona-fide mouse model of CD. Interestingly, central nervous system (CNS)-restricted therapy prolonged survival over systemic therapy in CD mice but failed to sustain motor functions seen in systemically treated mice. Importantly, we reveal through histological and functional examination of untreated CD mice that AspA deficiency in peripheral tissues causes morphological and functional abnormalities in this heretofore CNS-defined disorder. We demonstrate for the first time that AspA deficiency, possibly through excessive N-acetyl aspartic acid accumulation, elicits both a peripheral and CNS immune response in CD mice. Our data establish a role for peripheral tissues in CD pathology and serve to aid the development of more efficacious and sustained gene therapy for this disease.
Collapse
Affiliation(s)
- Seemin Seher Ahmed
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Stefan A Schattgen
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ashley E Frakes
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Elif M Sikoglu
- The Center for Comparative Neuroimaging, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jia Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | - Brian Kaspar
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Reuben Matalon
- Department of Pediatrics, Biochemical and Molecular Genetics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
9
|
Byun SH, Lee SM, Han SM, Ryu T, Jung JY, Kim BIL. The effect of nerve preservation methods on rat sciatic nerve structures studied with Synchrotron small-angle X-ray scattering (SAXS). Anesth Pain Med (Seoul) 2016. [DOI: 10.17085/apm.2016.11.2.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Sung Hye Byun
- Department of Anesthesiology and Pain Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Seung-mi Lee
- Department of Anesthesiology and Pain Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Sung-Mi Han
- Department of Anatomy, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Taeha Ryu
- Department of Anesthesiology and Pain Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Jin-Yong Jung
- Department of Anesthesiology and Pain Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Bong-IL Kim
- Department of Anesthesiology and Pain Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
10
|
Inouye H, Kirschner DA. Evolution of myelin ultrastructure and the major structural myelin proteins. Brain Res 2015; 1641:43-63. [PMID: 26519753 DOI: 10.1016/j.brainres.2015.10.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 01/16/2023]
Abstract
Myelin sheaths, as the specialized tissue wrapping the nerve fibers in the central and peripheral nervous systems (CNS and PNS), are responsible for rapid conduction of electrical signals in these fibers. We compare the nerve myelin sheaths of different phylogenetic origins-including mammal, rodent, bird, reptile, amphibian, lungfish, teleost, and elasmobranch-with respect to periodicities and inter-membrane separations at their cytoplasmic and extracellular appositions, and correlate these structural parameters with biochemical composition. P0 glycoprotein and P0-like proteins are present in PNS of terrestrial species or land vertebrates (Tetrapod) and in CNS and PNS of aquatic species. Proteolipid protein (PLP) is a major component only in the CNS myelin of terrestrial species and is involved in compaction of the extracellular apposition. The myelin structures of aquatic garfish and lungfish, which contain P0-like protein both in CNS and PNS, are similar to those of terrestrial species, indicating that they may be transitional organisms between water and land species. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Hideyo Inouye
- Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Daniel A Kirschner
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA.
| |
Collapse
|
11
|
Luoma AM, Kuo F, Cakici O, Crowther MN, Denninger AR, Avila RL, Brites P, Kirschner DA. Plasmalogen phospholipids protect internodal myelin from oxidative damage. Free Radic Biol Med 2015; 84:296-310. [PMID: 25801291 DOI: 10.1016/j.freeradbiomed.2015.03.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 02/25/2015] [Accepted: 03/12/2015] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) are implicated in a range of degenerative conditions, including aging, neurodegenerative diseases, and neurological disorders. Myelin is a lipid-rich multilamellar sheath that facilitates rapid nerve conduction in vertebrates. Given the high energetic demands and low antioxidant capacity of the cells that elaborate the sheaths, myelin is considered intrinsically vulnerable to oxidative damage, raising the question whether additional mechanisms prevent structural damage. We characterized the structural and biochemical basis of ROS-mediated myelin damage in murine tissues from both central nervous system (CNS) and peripheral nervous system (PNS). To determine whether ROS can cause structural damage to the internodal myelin, whole sciatic and optic nerves were incubated ex vivo with a hydroxyl radical-generating system consisting of copper (Cu), hydrogen peroxide (HP), and ortho-phenanthroline (OP). Quantitative assessment of unfixed tissue by X-ray diffraction revealed irreversible compaction of myelin membrane stacking in both sciatic and optic nerves. Incubation in the presence of the hydroxyl radical scavenger sodium formate prevented this damage, implicating hydroxyl radical species. Myelin membranes are particularly enriched in plasmalogens, a class of ether-linked phospholipids proposed to have antioxidant properties. Myelin in sciatic nerve from plasmalogen-deficient (Pex7 knockout) mice was significantly more vulnerable to Cu/OP/HP-mediated ROS-induced compaction than myelin from WT mice. Our results directly support the role of plasmalogens as endogenous antioxidants providing a defense that protects ROS-vulnerable myelin.
Collapse
Affiliation(s)
- Adrienne M Luoma
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | - Fonghsu Kuo
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | - Ozgur Cakici
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | - Michelle N Crowther
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | - Andrew R Denninger
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | - Robin L Avila
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | - Pedro Brites
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Daniel A Kirschner
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA.
| |
Collapse
|
12
|
Heinecke KA, Luoma A, d'Azzo A, Kirschner DA, Seyfried TN. Myelin abnormalities in the optic and sciatic nerves in mice with GM1-gangliosidosis. ASN Neuro 2015; 7:7/1/1759091415568913. [PMID: 25694553 PMCID: PMC4342369 DOI: 10.1177/1759091415568913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
GM1-gangliosidosis is a glycosphingolipid lysosomal storage disease involving accumulation of GM1 and its asialo form (GA1) primarily in the brain. Thin-layer chromatography and X-ray diffraction were used to analyze the lipid content/composition and the myelin structure of the optic and sciatic nerves from 7- and 10-month old β-galactosidase (β-gal) +/? and β-gal −/− mice, a model of GM1gangliosidosis. Optic nerve weight was lower in the β-gal −/− mice than in unaffected β-gal +/? mice, but no difference was seen in sciatic nerve weight. The levels of GM1 and GA1 were significantly increased in both the optic nerve and sciatic nerve of the β-gal −/− mice. The content of myelin-enriched cerebrosides, sulfatides, and plasmalogen ethanolamines was significantly lower in optic nerve of β-gal −/− mice than in β-gal +/? mice; however, cholesteryl esters were enriched in the β-gal −/− mice. No major abnormalities in these lipids were detected in the sciatic nerve of the β-gal −/− mice. The abnormalities in GM1 and myelin lipids in optic nerve of β-gal −/− mice correlated with a reduction in the relative amount of myelin and periodicity in fresh nerve. By contrast, the relative amount of myelin and periodicity in the sciatic nerves from control and β-gal −/− mice were indistinguishable, suggesting minimal pathological involvement in sciatic nerve. Our results indicate that the greater neurochemical pathology observed in the optic nerve than in the sciatic nerve of β-gal −/− mice is likely due to the greater glycolipid storage in optic nerve.
Collapse
Affiliation(s)
| | - Adrienne Luoma
- Department of Biology, Boston College, Chestnut Hill, MA, USA Department of Biochemistry and Molecular Biology, Committee on Immunology, University of Chicago, IL, USA
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | |
Collapse
|
13
|
Denninger AR, Demé B, Cristiglio V, LeDuc G, Feller WB, Kirschner DA. Neutron scattering from myelin revisited: bilayer asymmetry and water-exchange kinetics. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:3198-211. [PMID: 25478838 PMCID: PMC4257619 DOI: 10.1107/s1399004714023815] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/28/2014] [Indexed: 11/18/2022]
Abstract
Rapid nerve conduction in the central and peripheral nervous systems (CNS and PNS, respectively) of higher vertebrates is brought about by the ensheathment of axons with myelin, a lipid-rich, multilamellar assembly of membranes. The ability of myelin to electrically insulate depends on the regular stacking of these plasma membranes and on the presence of a number of specialized membrane-protein assemblies in the sheath, including the radial component, Schmidt-Lanterman incisures and the axo-glial junctions of the paranodal loops. The disruption of this fine-structure is the basis for many demyelinating neuropathies in the CNS and PNS. Understanding the processes that govern myelin biogenesis, maintenance and destabilization requires knowledge of myelin structure; however, the tight packing of internodal myelin and the complexity of its junctional specializations make myelin a challenging target for comprehensive structural analysis. This paper describes an examination of myelin from the CNS and PNS using neutron diffraction. This investigation revealed the dimensions of the bilayers and aqueous spaces of myelin, asymmetry between the cytoplasmic and extracellular leaflets of the membrane, and the distribution of water and exchangeable hydrogen in internodal multilamellar myelin. It also uncovered differences between CNS and PNS myelin in their water-exchange kinetics.
Collapse
Affiliation(s)
| | - Bruno Demé
- Institut Laue–Langevin (ILL), CS 20156, F-38042 Grenoble CEDEX 9, France
| | - Viviana Cristiglio
- Institut Laue–Langevin (ILL), CS 20156, F-38042 Grenoble CEDEX 9, France
| | - Géraldine LeDuc
- European Synchrotron Radiation Facility (ESRF), CS 40220, F-38043 Grenoble CEDEX 9, France
| | | | | |
Collapse
|
14
|
Inouye H, Liu J, Makowski L, Palmisano M, Burghammer M, Riekel C, Kirschner DA. Myelin organization in the nodal, paranodal, and juxtaparanodal regions revealed by scanning x-ray microdiffraction. PLoS One 2014; 9:e100592. [PMID: 24984037 PMCID: PMC4077703 DOI: 10.1371/journal.pone.0100592] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/09/2014] [Indexed: 12/03/2022] Open
Abstract
X-ray diffraction has provided extensive information about the arrangement of lipids and proteins in multilamellar myelin. This information has been limited to the abundant inter-nodal regions of the sheath because these regions dominate the scattering when x-ray beams of 100 µm diameter or more are used. Here, we used a 1 µm beam, raster-scanned across a single nerve fiber, to obtain detailed information about the molecular architecture in the nodal, paranodal, and juxtaparanodal regions. Orientation of the lamellar membrane stacks and membrane periodicity varied spatially. In the juxtaparanode-internode, 198–202 Å-period membrane arrays oriented normal to the nerve fiber axis predominated, whereas in the paranode-node, 205–208 Å-period arrays oriented along the fiber direction predominated. In parts of the sheath distal to the node, multiple sets of lamellar reflections were observed at angles to one another, suggesting that the myelin multilayers are deformed at the Schmidt-Lanterman incisures. The calculated electron density of myelin in the different regions exhibited membrane bilayer profiles with varied electron densities at the polar head groups, likely due to different amounts of major myelin proteins (P0 glycoprotein and myelin basic protein). Scattering from the center of the nerve fibers, where the x-rays are incident en face (perpendicular) to the membrane planes, provided information about the lateral distribution of protein. By underscoring the heterogeneity of membrane packing, microdiffraction analysis suggests a powerful new strategy for understanding the underlying molecular foundation of a broad spectrum of myelinopathies dependent on local specializations of myelin structure in both the PNS and CNS.
Collapse
Affiliation(s)
- Hideyo Inouye
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Jiliang Liu
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Lee Makowski
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Marilena Palmisano
- Division of Cell Biology & Genetics, Università Vita-Salute San Raffaele, Milano, Italy
| | | | | | - Daniel A. Kirschner
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Changes of statistical structural fluctuations unveils an early compacted degraded stage of PNS myelin. Sci Rep 2014; 4:5430. [PMID: 24962806 PMCID: PMC4069690 DOI: 10.1038/srep05430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/05/2014] [Indexed: 12/15/2022] Open
Abstract
Degradation of the myelin sheath is a common pathology underlying demyelinating neurological diseases from Multiple Sclerosis to Leukodistrophies. Although large malformations of myelin ultrastructure in the advanced stages of Wallerian degradation is known, its subtle structural variations at early stages of demyelination remains poorly characterized. This is partly due to the lack of suitable and non-invasive experimental probes possessing sufficient resolution to detect the degradation. Here we report the feasibility of the application of an innovative non-invasive local structure experimental approach for imaging the changes of statistical structural fluctuations in the first stage of myelin degeneration. Scanning micro X-ray diffraction, using advances in synchrotron x-ray beam focusing, fast data collection, paired with spatial statistical analysis, has been used to unveil temporal changes in the myelin structure of dissected nerves following extraction of the Xenopus laevis sciatic nerve. The early myelin degeneration is a specific ordered compacted phase preceding the swollen myelin phase of Wallerian degradation. Our demonstration of the feasibility of the statistical analysis of SµXRD measurements using biological tissue paves the way for further structural investigations of degradation and death of neurons and other cells and tissues in diverse pathological states where nanoscale structural changes may be uncovered.
Collapse
|
16
|
da Silva TF, Eira J, Lopes AT, Malheiro AR, Sousa V, Luoma A, Avila RL, Wanders RJA, Just WW, Kirschner DA, Sousa MM, Brites P. Peripheral nervous system plasmalogens regulate Schwann cell differentiation and myelination. J Clin Invest 2014; 124:2560-70. [PMID: 24762439 DOI: 10.1172/jci72063] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rhizomelic chondrodysplasia punctata (RCDP) is a developmental disorder characterized by hypotonia, cataracts, abnormal ossification, impaired motor development, and intellectual disability. The underlying etiology of RCDP is a deficiency in the biosynthesis of ether phospholipids, of which plasmalogens are the most abundant form in nervous tissue and myelin; however, the role of plasmalogens in the peripheral nervous system is poorly defined. Here, we used mouse models of RCDP and analyzed the consequence of plasmalogen deficiency in peripheral nerves. We determined that plasmalogens are crucial for Schwann cell development and differentiation and that plasmalogen defects impaired radial sorting, myelination, and myelin structure. Plasmalogen insufficiency resulted in defective protein kinase B (AKT) phosphorylation and subsequent signaling, causing overt activation of glycogen synthase kinase 3β (GSK3β) in nerves of mutant mice. Treatment with GSK3β inhibitors, lithium, or 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) restored Schwann cell defects, effectively bypassing plasmalogen deficiency. Our results demonstrate the requirement of plasmalogens for the correct and timely differentiation of Schwann cells and for the process of myelination. In addition, these studies identify a mechanism by which the lack of a membrane phospholipid causes neuropathology, implicating plasmalogens as regulators of membrane and cell signaling.
Collapse
|
17
|
Ahmed SS, Li H, Cao C, Sikoglu EM, Denninger AR, Su Q, Eaton S, Liso Navarro AA, Xie J, Szucs S, Zhang H, Moore C, Kirschner DA, Seyfried TN, Flotte TR, Matalon R, Gao G. A single intravenous rAAV injection as late as P20 achieves efficacious and sustained CNS Gene therapy in Canavan mice. Mol Ther 2013; 21:2136-47. [PMID: 23817205 DOI: 10.1038/mt.2013.138] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/29/2013] [Indexed: 11/09/2022] Open
Abstract
Canavan's disease (CD) is a fatal pediatric leukodystrophy caused by mutations in aspartoacylase (AspA) gene. Currently, there is no effective treatment for CD; however, gene therapy is an attractive approach to ameliorate the disease. Here, we studied progressive neuropathology and gene therapy in short-lived (≤ 1 month) AspA(-/-) mice, a bona-fide animal model for the severest form of CD. Single intravenous (IV) injections of several primate-derived recombinant adeno-associated viruses (rAAVs) as late as postnatal day 20 (P20) completely rescued their early lethality and alleviated the major disease symptoms, extending survival in P0-injected rAAV9 and rAAVrh8 groups to as long as 2 years thus far. We successfully used microRNA (miRNA)-mediated post-transcriptional detargeting for the first time to restrict therapeutic rAAV expression in the central nervous system (CNS) and minimize potentially deleterious effects of transgene overexpression in peripheral tissues. rAAV treatment globally improved CNS myelination, although some abnormalities persisted in the content and distribution of myelin-specific and -enriched lipids. We demonstrate that systemically delivered and CNS-restricted rAAVs can serve as efficacious and sustained gene therapeutics in a model of a severe neurodegenerative disorder even when administered as late as P20.
Collapse
Affiliation(s)
- Seemin Seher Ahmed
- 1] Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA [2] Department of Microbiology & Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ravera S, Nobbio L, Visigalli D, Bartolucci M, Calzia D, Fiorese F, Mancardi G, Schenone A, Morelli A, Panfoli I. Oxydative phosphorylation in sciatic nerve myelin and its impairment in a model of dysmyelinating peripheral neuropathy. J Neurochem 2013; 126:82-92. [PMID: 23578247 DOI: 10.1111/jnc.12253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 11/30/2022]
Abstract
Myelin sheath is the proteolipid membrane wrapping the axons of CNS and PNS. We have shown data suggesting that CNS myelin conducts oxidative phosphorylation (OXPHOS), challenging its role in limiting the axonal energy expenditure. Here, we focused on PNS myelin. Samples were: (i) isolated myelin vesicles (IMV) from sciatic nerves, (ii) mitochondria from primary Schwann cell cultures, and (iii) sciatic nerve sections, from wild type or Charcot-Marie-Tooth type 1A (CMT1A) rats. The latter used as a model of dys-demyelination. O₂ consumption and activity of OXPHOS proteins from wild type (Wt) or CMT1A sciatic nerves showed some differences. In particular, O₂ consumption by IMV from Wt and CMT1A 1-month-old rats was comparable, while it was severely impaired in IMV from adult affected animals. Mitochondria extracted from CMT1A Schwann cell did not show any dysfunction. Transmission electron microscopy studies demonstrated an increased mitochondrial density in dys-demyelinated axons, as to compensate for the loss of respiration by myelin. Confocal immunohistochemistry showed the expression of OXPHOS proteins in the myelin sheath, both in Wt and dys-demyelinated nerves. These revealed an abnormal morphology. Taken together these results support the idea that also PNS myelin conducts OXPHOS to sustain axonal function.
Collapse
|
19
|
Wilhelm MJ, Ong HH, Wehrli SL, Li C, Tsai PH, Hackney DB, Wehrli FW. Direct magnetic resonance detection of myelin and prospects for quantitative imaging of myelin density. Proc Natl Acad Sci U S A 2012; 109:9605-10. [PMID: 22628562 PMCID: PMC3386098 DOI: 10.1073/pnas.1115107109] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Magnetic resonance imaging has previously demonstrated its potential for indirectly mapping myelin density, either by relaxometric detection of myelin water or magnetization transfer. Here, we investigated whether myelin can be detected and possibly quantified directly. We identified the spectrum of myelin in the spinal cord in situ as well as in myelin lipids extracted via a sucrose gradient method, and investigated its spectral properties. High-resolution solution NMR spectroscopy showed the extract composition to be in agreement with myelin's known chemical make-up. The 400-MHz (1)H spectrum of the myelin extract, at 20 °C (room temperature) and 37 °C, consists of a narrow water resonance superimposed on a broad envelope shifted ∼3.5 ppm upfield, suggestive of long-chain methylene protons. Superimposed on this signal are narrow components resulting from functional groups matching the chemical shifts of the constituents making up myelin lipids. The spectrum could be modeled as a sum of super-Lorentzians with a T(2)* distribution covering a wide range of values (0.008-26 ms). Overall, there was a high degree of similarity between the spectral properties of extracted myelin lipids and those found in neural tissue. The normalized difference spectrum had the hallmarks of membrane proteins, not present in the myelin extract. Using 3D radially ramp-sampled proton MRI, with a combination of adiabatic inversion and echo subtraction, the feasibility of direct myelin imaging in situ is demonstrated. Last, the integrated signal from myelin suspensions is shown, both spectroscopically and by imaging, to scale with concentration, suggesting the potential for quantitative determination of myelin density.
Collapse
Affiliation(s)
- Michael J. Wilhelm
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Henry H. Ong
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Suzanne L. Wehrli
- NMR Core Facility, Joseph Stokes Jr. Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA 19104; and
| | - Cheng Li
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Ping-Huei Tsai
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - David B. Hackney
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Felix W. Wehrli
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
20
|
Saporta MAC, Shy BR, Patzko A, Bai Y, Pennuto M, Ferri C, Tinelli E, Saveri P, Kirschner D, Crowther M, Southwood C, Wu X, Gow A, Feltri ML, Wrabetz L, Shy ME. MpzR98C arrests Schwann cell development in a mouse model of early-onset Charcot-Marie-Tooth disease type 1B. ACTA ACUST UNITED AC 2012; 135:2032-47. [PMID: 22689911 DOI: 10.1093/brain/aws140] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations in myelin protein zero (MPZ) cause Charcot-Marie-Tooth disease type 1B. Many dominant MPZ mutations, including R98C, present as infantile onset dysmyelinating neuropathies. We have generated an R98C 'knock-in' mouse model of Charcot-Marie-Tooth type 1B, where a mutation encoding R98C was targeted to the mouse Mpz gene. Both heterozygous (R98C/+) and homozygous (R98C/R98C) mice develop weakness, abnormal nerve conduction velocities and morphologically abnormal myelin; R98C/R98C mice are more severely affected. MpzR98C is retained in the endoplasmic reticulum of Schwann cells and provokes a transitory, canonical unfolded protein response. Ablation of Chop, a mediator of the protein kinase RNA-like endoplasmic reticulum kinase unfolded protein response pathway restores compound muscle action potential amplitudes of R98C/+ mice but does not alter the reduced conduction velocities, reduced axonal diameters or clinical behaviour of these animals. R98C/R98C Schwann cells are developmentally arrested in the promyelinating stage, whereas development is delayed in R98C/+ mice. The proportion of cells expressing c-Jun, an inhibitor of myelination, is elevated in mutant nerves, whereas the proportion of cells expressing the promyelinating transcription factor Krox-20 is decreased, particularly in R98C/R98C mice. Our results provide a potential link between the accumulation of MpzR98C in the endoplasmic reticulum and a developmental delay in myelination. These mice provide a model by which we can begin to understand the early onset dysmyelination seen in patients with R98C and similar mutations.
Collapse
Affiliation(s)
- Mario A C Saporta
- Department of Neurology, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
BACKGROUND Charcot-Marie-Tooth disease (CMT) is the most common inherited disorder of the peripheral nervous system. The frequency of different CMT genotypes has been estimated in clinic populations, but prevalence data from the general population is lacking. Point mutations in the mitofusin 2 (MFN2) gene has been identified exclusively in Charcot-Marie-Tooth disease type 2 (CMT2), and in a single family with intermediate CMT. MFN2 point mutations are probably the most common cause of CMT2. The CMT phenotype caused by mutation in the myelin protein zero (MPZ) gene varies considerably, from early onset and severe forms to late onset and milder forms. The mechanism is not well understood. The myelin protein zero (P(0) ) mediates adhesion in the spiral wraps of the Schwann cell's myelin sheath. X-linked Charcot-Marie Tooth disease (CMTX) is caused by mutations in the connexin32 (cx32) gene that encodes a polypeptide which is arranged in hexameric array and form gap junctions. AIMS Estimate prevalence of CMT. Estimate frequency of Peripheral Myelin Protein 22 (PMP22) duplication and point mutations, insertions and deletions in Cx32, Early growth response 2 (EGR2), MFN2, MPZ, PMP22 and Small integral membrane protein of lysosome/late endosome (SIMPLE) genes. Description of novel mutations in Cx32, MFN2 and MPZ. Description of de novo mutations in MFN2. MATERIAL AND METHODS Our population based genetic epidemiological survey included persons with CMT residing in eastern Akershus County, Norway. The participants were interviewed and examined by one geneticist/neurologist, and classified clinically, neurophysiologically and genetically. Two-hundred and thirty-two consecutive unselected and unrelated CMT families with available DNA from all regions in Norway were included in the MFN2 study. We screened for point mutations in the MFN2 gene. We describe four novel mutations, two in the connexin32 gene and two in the MPZ gene. RESULTS A total of 245 affected from 116 CMT families from the general population of eastern Akershus county were included in the genetic epidemiological survey. In the general population 1 per 1214 persons (95% CI 1062-1366) has CMT. Charcot-Marie-Tooth disease type 1 (CMT1), CMT2 and intermediate CMT were found in 48.2%, 49.4% and 2.4% of the families, respectively. A mutation in the investigated genes was found in 27.2% of the CMT families and in 28.6% of the affected. The prevalence of the PMP22 duplication and mutations in the Cx32, MPZ and MFN2 genes was found in 13.6%, 6.2%, 1.2%, 6.2% of the families, and in 19.6%, 4.8%, 1.1%, 3.2% of the affected, respectively. None of the families had point mutations, insertions or deletions in the EGR2, PMP22 or SIMPLE genes. Four known and three novel mitofusin 2 (MFN2) point mutations in 8 unrelated Norwegian CMT families were identified. The novel point mutations were not found in 100 healthy controls. This corresponds to 3.4% (8/232) of CMT families having point mutations in MFN2. The phenotypes were compatible with CMT1 in two families, CMT2 in four families, intermediate CMT in one family and distal hereditary motor neuronopathy (dHMN) in one family. A point mutation in the MFN2 gene was found in 2.3% of CMT1, 5.5% of CMT2, 12.5% of intermediate CMT and 6.7% of dHMN families. Two novel missense mutations in the MPZ gene were identified. Family 1 had a c.368G>A (Gly123Asp) transition while family 2 and 3 had a c.103G>A (Asp35Asn) transition. The affected in family 1 had early onset and severe symptoms compatible with Dejerine-Sottas syndrome (DSS), while affected in family 2 and 3 had late onset, milder symptoms and axonal neuropathy compatible with CMT2. Two novel connexin32 mutations that cause early onset X-linked CMT were identified. Family 1 had a deletion c.225delG (R75fsX83) which causes a frameshift and premature stop codon at position 247 while family 2 had a c.536G>A (Cys179Tyr) transition which causes a change of the highly conserved cysteine residue, i.e. disruption of at least one of three disulfide bridges. The mean age at onset was in the first decade and the nerve conduction velocities were in the intermediate range. DISCUSSION Charcot-Marie-Tooth disease is the most common inherited neuropathy. At present 47 hereditary neuropathy genes are known, and an examination of all known genes would probably only identify mutations in approximately 50% of those with CMT. Thus, it is likely that at least 30-50 CMT genes are yet to be identified. The identified known and novel point mutations in the MFN2 gene expand the clinical spectrum from CMT2 and intermediate CMT to also include possibly CMT1 and the dHMN phenotypes. Thus, genetic analyses of the MFN2 gene should not be restricted to persons with CMT2. The phenotypic variation caused by different missense mutations in the MPZ gene is likely caused by different conformational changes of the MPZ protein which affects the functional tetramers. Severe changes of the MPZ protein cause dysfunctional tetramers and predominantly uncompacted myelin, i.e. the severe phenotypes congenital hypomyelinating neuropathy and DSS, while milder changes cause the phenotypes CMT1 and CMT2. The two novel mutations in the connexin32 gene are more severe than the majority of previously described mutations possibly due to the severe structural change of the gap junction they encode. CONCLUSION Charcot-Marie-Tooth disease is the most common inherited disorder of the peripheral nervous system with an estimated prevalence of 1 in 1214. CMT1 and CMT2 are equally frequent in the general population. The prevalence of PMP22 duplication and of mutations in Cx32, MPZ and MFN2 is 19.6%, 4.8%, 1.1% and 3.2%, respectively. The ratio of probable de novo mutations in CMT families was estimated to be 22.7%. Genotype- phenotype correlations for seven novel mutations in the genes Cx32 (2), MFN2 (3) and MPZ (2) are described. Two novel phenotypes were ascribed to the MFN2 gene, however further studies are needed to confirm that MFN2 mutations can cause CMT1 and dHMN.
Collapse
Affiliation(s)
- G J Braathen
- Head and Neck Research Group, Research Centre, Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
22
|
Myelin structure is unaltered in chemotherapy-induced peripheral neuropathy. Neurotoxicology 2012; 33:1-7. [DOI: 10.1016/j.neuro.2011.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 09/06/2011] [Accepted: 10/26/2011] [Indexed: 01/26/2023]
|
23
|
Lack of collagen XV impairs peripheral nerve maturation and, when combined with laminin-411 deficiency, leads to basement membrane abnormalities and sensorimotor dysfunction. J Neurosci 2010; 30:14490-501. [PMID: 20980607 DOI: 10.1523/jneurosci.2644-10.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the Schwann cell basement membrane (BM) is required for normal Schwann cell terminal differentiation, the role of BM-associated collagens in peripheral nerve maturation is poorly understood. Collagen XV is a BM zone component strongly expressed in peripheral nerves, and we show that its absence in mice leads to loosely packed axons in C-fibers and polyaxonal myelination. The simultaneous lack of collagen XV and another peripheral nerve component affecting myelination, laminin α4, leads to severely impaired radial sorting and myelination, and the maturation of the nerve is permanently compromised, contrasting with the slow repair observed in Lama4-/- single knock-out mice. Moreover, the Col15a1-/-;Lama4-/- double knock-out (DKO) mice initially lack C-fibers and, even over 1 year of age have only a few, abnormal C-fibers. The Lama4-/- knock-out results in motor and tactile sensory impairment, which is exacerbated by a simultaneous Col15a1-/- knock-out, whereas sensitivity to heat-induced pain is increased in the DKO mice. Lack of collagen XV results in slower sensory nerve conduction, whereas the Lama4-/- and DKO mice exhibit increased sensory nerve action potentials and decreased compound muscle action potentials; x-ray diffraction revealed less mature myelin in the sciatic nerves of the latter than in controls. Ultrastructural analyses revealed changes in the Schwann cell BM in all three mutants, ranging from severe (DKO) to nearly normal (Col15a1-/-). Collagen XV thus contributes to peripheral nerve maturation and C-fiber formation, and its simultaneous deletion from neural BM zones with laminin α4 leads to a DKO phenotype distinct from those of both single knock-outs.
Collapse
|
24
|
Velumian AA, Samoilova M, Fehlings MG. Visualization of cytoplasmic diffusion within living myelin sheaths of CNS white matter axons using microinjection of the fluorescent dye Lucifer Yellow. Neuroimage 2010; 56:27-34. [PMID: 21073961 DOI: 10.1016/j.neuroimage.2010.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 08/10/2010] [Accepted: 11/04/2010] [Indexed: 01/16/2023] Open
Abstract
The compactness of myelin allows for efficient insulation defining rapid propagation of action potentials, but also raises questions about how cytoplasmic access to its membranes is achieved, which is critical for physiological activity. Understanding the organization of cytoplasmic ('water') spaces of myelin is also important for diffusion MRI studies of CNS white matter. Using longitudinal slices of mature rat spinal cord, we monitored the diffusion of the water-soluble fluorescent dye Lucifer Yellow injected into individual oligodendrocytes or internodal myelin. We show that living myelin sheaths on CNS axons are fenestrated by a network of diffusionally interconnected cytoplasmic 'pockets' (1.9 ± 0.2 pockets per 10μm sheath length, n=58) that included Schmidt-Lanterman clefts (SLCs) and numerous smaller compartments. 3-D reconstructions of these cytoplasmic networks show that the outer cytoplasmic layer of CNS myelin is cylindrically 'encuffing', which differs from EM studies using fixed tissue. SLCs were found in different 'open states' and remained stable within a 1-2hour observation period. Unlike the peripheral nervous system, where similarly small (<500Da) molecules diffuse along the whole myelin segment within a few minutes, in mature CNS this takes more than one hour. The slower cytoplasmic diffusion in CNS myelin possibly contributes to its known vulnerability to injury and limited capacity for repair. Our findings point to an elaborate cytoplasmic access to compact CNS myelin. These results could be of relevance to MRI studies of CNS white matter and to CNS repair/regeneration strategies.
Collapse
Affiliation(s)
- Alexander A Velumian
- Division of Genetics and Development, Toronto Western Research Institute, Canada.
| | | | | |
Collapse
|
25
|
Avila RL, D'Antonio M, Bachi A, Inouye H, Feltri ML, Wrabetz L, Kirschner DA. P0 (protein zero) mutation S34C underlies instability of internodal myelin in S63C mice. J Biol Chem 2010; 285:42001-12. [PMID: 20937820 DOI: 10.1074/jbc.m110.166967] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
P0 constitutes 50-60% of protein in peripheral nerve myelin and is essential for its structure and stability. Mutations within the P0 gene (MPZ) underlie a variety of hereditary neuropathies. MpzS63C transgenic mice encode a P0 with a serine to cysteine substitution at position 34 in the extracellular domain of mature P0 (P0S34C), associated with the hypomyelinating Déjérine-Sottas syndrome in human. S63C mice develop a dysmyelinating neuropathy, with packing defects in peripheral myelin. Here, we used x-ray diffraction to examine time-dependent packing defects in unfixed myelin. At ∼7 h post-dissection, WT and S63C(+/+) myelin showed native periods (175 Å) with the latter developing at most a few percent swollen myelin, whereas up to ∼50% of S63C(+/-) (mutant P0 on heterozygous P0 null background) or P0(+/-) myelin swelled to periods of ∼205 Å. In the same time frame, S63C(-/-) myelin was stable, remaining swollen at ∼210 Å. Surprisingly, treatment of whole S63C(-/-) nerves with a reducing agent completely reverted swollen arrays to native spacing and also normalized the swollen arrays that had formed in S63C(+/-) myelin, the genotype most closely related to the human disorder. Western blot revealed P0-positive bands at ∼27 and ∼50 kDa, and MALDI-TOF mass spectrometry showed these bands consisted of Ser(34)-containing peptides or P0 dimers having oxidized Cys(34) residues. We propose that P0S34C forms ectopic disulfide bonds in trans between apposed Cys(34) side chains that retard wrapping during myelin formation causing hypomyelination. Moreover, the new bonds create a packing defect by stabilizing swollen membrane arrays that leads to demyelination.
Collapse
Affiliation(s)
- Robin L Avila
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467-3811, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Wang C, Popescu DC, Wu C, Zhu J, Macklin W, Wang Y. In situ fluorescence imaging of myelination. J Histochem Cytochem 2010; 58:611-21. [PMID: 20354147 PMCID: PMC2889403 DOI: 10.1369/jhc.2010.954842] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We describe a novel fluorescent dye, 3-(4-aminophenyl)-2H-chromen-2-one (termed case myelin compound or CMC), that can be used for in situ fluorescent imaging of myelin in the vertebrate nervous system. When administered via intravenous injection into the tail vein, CMC selectively stained large bundles of myelinated fibers in both the central nervous system (CNS) and the peripheral nervous system (PNS). In the CNS, CMC readily entered the brain and selectively localized in myelinated regions such as the corpus callosum and cerebellum. CMC also selectively stained myelinated nerves in the PNS. The staining patterns of CMC in a hypermyelinated mouse model were consistent with immunohistochemical staining. Similar to immunohistochemical staining, CMC selectively bound to myelin sheaths present in the white matter tracts. Unlike CMC, conventional antibody staining for myelin basic protein also stained oligodendrocyte cytoplasm in the striatum as well as granule layers in the cerebellum. In vivo application of CMC was also demonstrated by fluorescence imaging of myelinated nerves in the PNS.
Collapse
Affiliation(s)
- Changning Wang
- Case Center for Imaging Research, Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Myelination requires a massive increase in glial cell membrane synthesis. Here, we demonstrate that the acute phase of myelin lipid synthesis is regulated by sterol regulatory element-binding protein (SREBP) cleavage activation protein (SCAP), an activator of SREBPs. Deletion of SCAP in Schwann cells led to a loss of SREBP-mediated gene expression involving cholesterol and fatty acid synthesis. Schwann cell SCAP mutant mice show congenital hypomyelination and abnormal gait. Interestingly, aging SCAP mutant mice showed partial regain of function; they exhibited improved gait and produced small amounts of myelin indicating a slow SCAP-independent uptake of external lipids. Accordingly, extracellular lipoproteins partially rescued myelination by SCAP mutant Schwann cells. However, SCAP mutant myelin never reached normal thickness and had biophysical abnormalities concordant with abnormal lipid composition. These data demonstrate that SCAP-mediated regulation of glial lipogenesis is key to the proper synthesis of myelin membrane, and provide insight into abnormal Schwann cell function under conditions affecting lipid metabolism.
Collapse
|
28
|
Kirschner DA, Avila RL, Gamez Sazo RE, Luoma A, Enzmann GU, Agrawal D, Inouye H, Bunge MB, Kocsis J, Peters A, Whittemore SR. Rapid assessment of internodal myelin integrity in central nervous system tissue. J Neurosci Res 2009; 88:712-21. [PMID: 19795370 DOI: 10.1002/jnr.22241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Monitoring pathology/regeneration in experimental models of de-/remyelination requires an accurate measure not only of functional changes but also of the amount of myelin. We tested whether X-ray diffraction (XRD), which measures periodicity in unfixed myelin, can assess the structural integrity of myelin in fixed tissue. From laboratories involved in spinal cord injury research and in studying the aging primate brain, we solicited "blind" samples and used an electronic detector to record rapidly the diffraction patterns (30 min each pattern) from them. We assessed myelin integrity by measuring its periodicity and relative amount. Fixation of tissue itself introduced +/-10% variation in periodicity and +/-40% variation in relative amount of myelin. For samples having the most native-like periods, the relative amounts of myelin detected allowed distinctions to be made between normal and demyelinating segments, between motor and sensory tracts within the spinal cord, and between aged and young primate CNS. Different periodicities also allowed distinctions to be made between samples from spinal cord and nerve roots and between well-fixed and poorly fixed samples. Our findings suggest that, in addition to evaluating the effectiveness of different fixatives, XRD could also be used as a robust and rapid technique for quantitating the relative amount of myelin among spinal cords and other CNS tissue samples from experimental models of de- and remyelination.
Collapse
|
29
|
Abstract
To analyze myelin structure and the composition of myelinated tissue in the African lungfish(Protopterus dolloi), we used a combination of ultrastructural and biochemical techniques. Electron microscopy showed typical multilamellar myelin: CNS sheaths abutted one another, and PNS sheaths were separated by endoneurial collagen. The radial component, prominent in CNS myelin of higher vertebrates, was suggested by the pattern of staining but was poorly organized. The lipid and myelin protein compositions of lungfish tissues more closely resembled those of teleost than those of higher vertebrates (frog, mouse). Of particular note, for example, lungfish glycolipids lacked hydroxy fatty acids. Native myelin periodicities from unfixed nerves were in the range of those for higher vertebrates rather than for teleost fish. Lungfish PNS myelin had wider inter-membrane spaces compared with other vertebrates, and lungfish CNS myelin had spaces that were closer in value to those in mammalian than to amphibian or teleost myelins. The membrane lipid bilayer was narrower in lungfish PNS myelin compared to other vertebrates, whereas in the CNS myelin the bilayer was in the typical range. Lungfish PNS myelin showed typical compaction and swelling responses to incubation in acidic or alkaline hypotonic saline. The CNS myelin, by contrast, did not compact in acidic saline but did swell in the alkaline solution. This lability was more similar to that for the higher vertebrates than for teleost.
Collapse
|
30
|
Fasano A, Amoresano A, Rossano R, Carlone G, Carpentieri A, Liuzzi GM, Pucci P, Riccio P. The different forms of PNS myelin P0 protein within and outside lipid rafts. J Neurochem 2008; 107:291-301. [DOI: 10.1111/j.1471-4159.2008.05598.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
De Felici M, Felici R, Ferrero C, Tartari A, Gambaccini M, Finet S. Structural characterization of the human cerebral myelin sheath by small angle x-ray scattering. Phys Med Biol 2008; 53:5675-88. [PMID: 18812651 DOI: 10.1088/0031-9155/53/20/007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Myelin is a multi-lamellar membrane surrounding neuronal axons and increasing their conduction velocity. When investigated by small-angle x-ray scattering (SAXS), the lamellar quasi-periodical arrangement of the myelin sheath gives rise to distinct peaks, which allow the determination of its molecular organization and the dimensions of its substructures. In this study we report on the myelin sheath structural determination carried out on a set of human brain tissue samples coming from surgical biopsies of two patients: a man around 60 and a woman nearly 90 years old. The samples were extracted either from white or grey cerebral matter and did not undergo any manipulation or chemical-physical treatment, which could possibly have altered their structure, except dipping them into a formalin solution for their conservation. Analysis of the scattered intensity from white matter of intact human cerebral tissue allowed the evaluation not only of the myelin sheath periodicity but also of its electronic charge density profile. In particular, the thicknesses of the cytoplasm and extracellular regions were established, as well as those of the hydrophilic polar heads and hydrophobic tails of the lipid bilayer. SAXS patterns were measured at several locations on each sample in order to establish the statistical variations of the structural parameters within a single sample and among different samples. This work demonstrates that a detailed structural analysis of the myelin sheath can also be carried out in randomly oriented samples of intact human white matter, which is of importance for studying the aetiology and evolution of the central nervous system pathologies inducing myelin degeneration.
Collapse
Affiliation(s)
- M De Felici
- European Synchrotron Radiation Facility, Grenoble, France
| | | | | | | | | | | |
Collapse
|
32
|
Li J. Hypothesis of double polarization. J Neurol Sci 2008; 275:33-6. [PMID: 18706661 DOI: 10.1016/j.jns.2008.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/23/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
Abstract
Mutations in a large number of genes that encode ubiquitously expressed proteins have been found to selectively or predominantly cause neurological disorders. Speculation has been that impaired intra-axonal transport along the long-extended axons is responsible for this tissue specificity. However this hypothesis may be insufficient in that it does not account for the potential role of the glial cells that interact with axons. Both Schwann cells and oligodendrocytes are also long and polarized cells with extended membranes that concentrically wrap around the axon to form myelin. The resultant myelin is largely compacted, which prevents the transport of many intracellular materials or organelles from one end of the membrane to the other. However patent, non-compacted spaces in the myelin, such as Schmidt-Lanterman incisures or paranodal loops, are also long-extended cytoplasmic channels that extend from the cell body to the distal membranes and may also be subject to transport problems. The nervous system therefore distinguishes itself by having a double long-polarized cellular system. Both neurons and myelinating glia must transport materials long distances, making them vulnerable to a variety of insults; and both must interact with each other. Thus, vulnerability of the nervous system may derive from additive impairments not only in axonal transport, but also in glial transport and neuronal-glial interactions.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurology, John D. Dingell VA Medical Center, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| |
Collapse
|
33
|
Flores AI, Narayanan SP, Morse EN, Shick HE, Yin X, Kidd G, Avila RL, Kirschner DA, Macklin WB. Constitutively active Akt induces enhanced myelination in the CNS. J Neurosci 2008; 28:7174-83. [PMID: 18614687 PMCID: PMC4395496 DOI: 10.1523/jneurosci.0150-08.2008] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The serine/threonine kinase Akt regulates multiple cellular functions. The current studies identify a new role for Akt in CNS myelination. In earlier studies on cultured oligodendrocytes, we showed that neuregulin signals through phosphatidylinositol-3'-OH kinase and Akt to enhance survival of oligodendrocytes. However, when transgenic animals were generated that overexpressed constitutively active Akt in oligodendrocytes and their progenitor cells, no enhanced survival of oligodendrocytes or progenitors was found. No alteration in the proliferation or death of progenitors was noted. In contrast, the major impact of Akt overexpression in oligodendrocytes was enhanced myelination. Most interestingly, oligodendrocytes in these mice continued actively myelinating throughout life. Thus, expression of constitutively active Akt in oligodendrocytes and their progenitor cells generated no more oligodendrocytes, but dramatically more myelin. The increased myelination continued as these mice aged, resulting in enlarged optic nerves and white matter areas. In older animals with enlarged white matter areas, the density of oligodendrocytes was reduced, but because of the increased area, the total number of oligodendrocytes remained comparable with wild-type controls. Interestingly, in these animals, overexpression of Akt in Schwann cells did not impact myelination. Thus, in vivo, constitutively active Akt enhances CNS myelination but not PNS myelination and has no impact developmentally on oligodendrocyte number. Understanding the unique aspects of Akt signal transduction in oligodendrocytes that lead to myelination rather than uncontrolled proliferation of oligodendrocyte progenitor cells may have important implications for understanding remyelination in the adult nervous system.
Collapse
Affiliation(s)
- Ana I. Flores
- 1Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio 44195, and
| | | | - Emily N. Morse
- 1Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio 44195, and
| | - H. Elizabeth Shick
- 1Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Xinghua Yin
- 1Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Grahame Kidd
- 1Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Robin L. Avila
- 2Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467
| | | | - Wendy B. Macklin
- 1Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio 44195, and
| |
Collapse
|
34
|
Luo X, Cerullo J, Dawli T, Priest C, Haddadin Z, Kim A, Inouye H, Suffoletto BP, Avila RL, Lees JPB, Sharma D, Xie B, Costello CE, Kirschner DA. Peripheral myelin of Xenopus laevis: role of electrostatic and hydrophobic interactions in membrane compaction. J Struct Biol 2007; 162:170-83. [PMID: 18065238 DOI: 10.1016/j.jsb.2007.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/26/2007] [Accepted: 10/26/2007] [Indexed: 11/29/2022]
Abstract
P0 glycoprotein is the major structural protein of peripheral nerve myelin where it is thought to modulate inter-membrane adhesion at both the extracellular apposition, which is labile upon changes in pH and ionic strength, and the cytoplasmic apposition, which is resistant to such changes. Most studies on P0 have focused on structure-function correlates in higher vertebrates. Here, we focused on its role in the structure and interactions of frog (Xenopus laevis) myelin, where it exists primarily in a dimeric form. As part of our study, we deduced the full sequence of X. laevis P0 (xP0) from its cDNA. The xP0 sequence was found to be similar to P0 sequences of higher vertebrates, suggesting that a common mechanism of PNS myelin compaction via P0 interaction might have emerged through evolution. As previously reported for mouse PNS myelin, a similar change of extracellular apposition in frog PNS myelin as a function of pH and ionic strength was observed, which can be explained by a conformational change of P0 due to protonation-deprotonation of His52 at P0's putative adhesive interface. On the other hand, the cytoplasmic apposition in frog PNS myelin, like that in the mouse, remained unchanged at different pH and ionic strength. The contribution of hydrophobic interactions to stabilizing the cytoplasmic apposition was tested by incubating sciatic nerves with detergents. Dramatic expansion at the cytoplasmic apposition was observed for both frog and mouse, indicating a common hydrophobic nature at this apposition. Urea also expanded the cytoplasmic apposition of frog myelin likely owing to denaturation of P0. Removal of the fatty acids that attached to the single Cys residue in the cytoplasmic domain of P0 did not change PNS myelin structure of either frog or mouse, suggesting that the P0-attached fatty acyl chain does not play a significant role in PNS myelin compaction and stability. These results help clarify the present understanding of P0's adhesion role and the role of its acylation in compact PNS myelin.
Collapse
Affiliation(s)
- XiaoYang Luo
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Luo X, Inouye H, Gross AAR, Hidalgo MM, Sharma D, Lee D, Avila RL, Salmona M, Kirschner DA. Cytoplasmic domain of zebrafish myelin protein zero: adhesive role depends on beta-conformation. Biophys J 2007; 93:3515-28. [PMID: 17693467 PMCID: PMC2072062 DOI: 10.1529/biophysj.107.112771] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Solution spectroscopy studies on the cytoplasmic domain of human myelin protein zero (P0) (hP0-cyt) suggest that H-bonding between beta-strands from apposed molecules is likely responsible for the tight cytoplasmic apposition in compact myelin. As a follow-up to these findings, in the current study we used circular dichroism and x-ray diffraction to analyze the same type of model membranes previously used for hP0-cyt to investigate the molecular mechanism underlying the zebrafish cytoplasmic apposition. This space is significantly narrower in teleosts compared with that in higher vertebrates, and can be accounted for in part by the much shorter cytoplasmic domain in the zebrafish protein (zP0-cyt). Circular dichroism measurements on zP0-cyt showed similar structural characteristics to those of hP0-cyt, i.e., the protein underwent a beta-->alpha structural transition at lipid/protein (L/P) molar ratios >50, and adopted a beta-conformation at lower L/P molar ratios. X-ray diffraction was carried out on lipid vesicle solutions with zP0-cyt before and after dehydration to study the effect of protein on membrane lipid packing. Solution diffraction revealed the electron-density profile of a single membrane bilayer. Diffraction patterns of dried samples suggested a multilamellar structure with the beta-folded P0-cyt located at the intermembrane space. Our findings support the idea that the adhesive role of P0 at the cytoplasmic apposition in compact myelin depends on the cytoplasmic domain of P0 being in the beta-conformation.
Collapse
Affiliation(s)
- XiaoYang Luo
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
McNally MA, Baek RC, Avila RL, Seyfried TN, Strichartz GR, Kirschner DA. Peripheral nervous system manifestations in a Sandhoff disease mouse model: nerve conduction, myelin structure, lipid analysis. J Negat Results Biomed 2007; 6:8. [PMID: 17623103 PMCID: PMC1976615 DOI: 10.1186/1477-5751-6-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 07/10/2007] [Indexed: 01/25/2023] Open
Abstract
Background Sandhoff disease is an inherited lysosomal storage disease caused by a mutation in the gene for the β-subunit (Hexb gene) of β-hexosaminidase A (αβ) and B (ββ). The β-subunit together with the GM2 activator protein catabolize ganglioside GM2. This enzyme deficiency results in GM2 accumulation primarily in the central nervous system. To investigate how abnormal GM2 catabolism affects the peripheral nervous system in a mouse model of Sandhoff disease (Hexb-/-), we examined the electrophysiology of dissected sciatic nerves, structure of central and peripheral myelin, and lipid composition of the peripheral nervous system. Results We detected no significant difference in signal impulse conduction velocity or any consistent change in the frequency-dependent conduction slowing and failure between freshly dissected sciatic nerves from the Hexb+/- and Hexb-/- mice. The low-angle x-ray diffraction patterns from freshly dissected sciatic and optic nerves of Hexb+/- and Hexb-/- mice showed normal myelin periods; however, Hexb-/- mice displayed a ~10% decrease in the relative amount of compact optic nerve myelin, which is consistent with the previously established reduction in myelin-enriched lipids (cerebrosides and sulfatides) in brains of Hexb-/- mice. Finally, analysis of lipid composition revealed that GM2 content was present in the sciatic nerve of the Hexb-/- mice (undetectable in Hexb+/-). Conclusion Our findings demonstrate the absence of significant functional, structural, or compositional abnormalities in the peripheral nervous system of the murine model for Sandhoff disease, but do show the potential value of integrating multiple techniques to evaluate myelin structure and function in nervous system disorders.
Collapse
Affiliation(s)
- Melanie A McNally
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Rena C Baek
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Robin L Avila
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Gary R Strichartz
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Daniel A Kirschner
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| |
Collapse
|
37
|
Abstract
This study explores subtle defects in the myelin of proteolipid protein (PLP)-null mice that could potentially underlie the functional losses and axon damage known to occur in this mutant and in myelin diseases including multiple sclerosis. We have compared PLP-null central nervous system (CNS) myelin with normal myelin using ultrastructural methods designed to emphasize fine differences. In the PLP-null CNS, axons large enough to be myelinated often lack myelin entirely or are surrounded by abnormally thin sheaths. Short stretches of cytoplasm persist in many myelin lamellae. Most strikingly, compaction is incomplete in this mutant as shown by the widespread presence of patent interlamellar spaces of variable width that can be labeled with ferricyanide, acting as an aqueous extracellular tracer. In thinly myelinated fibers, interlamellar spaces are filled across the full width of the sheaths. In thick myelin sheaths, they appear filled irregularly but diffusely. These patent spaces constitute a spiral pathway through which ions and other extracellular agents may penetrate gradually, possibly contributing to the axon damage known to occur in this mutant, especially in thinly myelinated fibers, where the spiral path length is shortest and most consistently labeled. We show also that the "radial component" of myelin is distorted in the mutant ("diagonal component"), extending across the sheaths at 45 degrees instead of 90 degrees. These observations indicate a direct or indirect role for PLP in maintaining myelin compaction along the external surfaces of the lamellae and to a limited extent, along the cytoplasmic surfaces as well and also in maintaining the normal alignment of the radial component.
Collapse
Affiliation(s)
- Jack Rosenbluth
- Department of Physiology and Neuroscience, New York University School of Medicine, New York 10016, USA.
| | | | | | | |
Collapse
|
38
|
Avila RL, Tevlin BR, Lees JPB, Inouye H, Kirschner DA. Myelin Structure and Composition in Zebrafish. Neurochem Res 2006; 32:197-209. [PMID: 16951904 DOI: 10.1007/s11064-006-9136-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2006] [Indexed: 10/24/2022]
Abstract
To establish a standard for genotype/phenotype studies on the myelin of zebrafish (Danio rerio), an organism increasingly popular as a model system for vertebrates, we have initiated a detailed characterization of the structure and biochemical composition of its myelinated central and peripheral nervous system (CNS; PNS) tissues. Myelin periods, determined by X-ray diffraction from whole, unfixed optic and lateral line nerves, were approximately 153 and approximately 162 Angstrom, respectively. In contrast with the lability of PNS myelin in higher vertebrates, zebrafish lateral line nerve myelin exhibited structural stability when exposed to substantial changes in pH and ionic strength. Neither optic nor lateral line nerves showed swelling at the cytoplasmic apposition in CaCl(2)-containing Ringer's solution, in contrast with nerves from other teleost and elasmobranch fishes. Zebrafish optic nerve showed greater stability against changes in NaCl and CaCl(2) than lateral line nerve. The nerves from zebrafish having mutations in the gene for myelin basic protein (mbpAla2Thr and mbpAsp25Val) showed similar myelin periods as the wildtype (WT), but gave approximately 20% less compact myelin. Analysis of proteins by SDS-PAGE and Western blotting identified in both CNS and PNS of WT zebrafish two orthologues of myelin P0 glycoprotein that have been characterized extensively in trout--intermediate protein 1 (24 kDa) and intermediate protein 2 (28 kDa). Treatment with endoglycosidase-F demonstrated a carbohydrate moiety of approximately 7 kDa, which is nearly threefold larger than for higher vertebrates. Thin-layer chromatography for lipids revealed a similar composition as for other teleosts. Taken together, these data will serve as a baseline for detecting changes in the structure and/or amount of myelin resulting from mutations in myelin-related genes or from exogenous, potentially cytotoxic compounds that could affect myelin formation or stability.
Collapse
Affiliation(s)
- Robin L Avila
- Biology Department, Boston College, Chestnut Hill, MA 02467-3811, USA
| | | | | | | | | |
Collapse
|
39
|
Yin X, Baek RC, Kirschner DA, Peterson A, Fujii Y, Nave KA, Macklin WB, Trapp BD. Evolution of a neuroprotective function of central nervous system myelin. ACTA ACUST UNITED AC 2006; 172:469-78. [PMID: 16449196 PMCID: PMC2063655 DOI: 10.1083/jcb.200509174] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The central nervous system (CNS) of terrestrial vertebrates underwent a prominent molecular change when a tetraspan membrane protein, myelin proteolipid protein (PLP), replaced the type I integral membrane protein, P0, as the major protein of myelin. To investigate possible reasons for this molecular switch, we genetically engineered mice to express P0 instead of PLP in CNS myelin. In the absence of PLP, the ancestral P0 provided a periodicity to mouse compact CNS myelin that was identical to mouse PNS myelin, where P0 is the major structural protein today. The PLP–P0 shift resulted in reduced myelin internode length, degeneration of myelinated axons, severe neurological disability, and a 50% reduction in lifespan. Mice with equal amounts of P0 and PLP in CNS myelin had a normal lifespan and no axonal degeneration. These data support the hypothesis that the P0–PLP shift during vertebrate evolution provided a vital neuroprotective function to myelin-forming CNS glia.
Collapse
Affiliation(s)
- Xinghua Yin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Wrabetz L, D'Antonio M, Pennuto M, Dati G, Tinelli E, Fratta P, Previtali S, Imperiale D, Zielasek J, Toyka K, Avila RL, Kirschner DA, Messing A, Feltri ML, Quattrini A. Different intracellular pathomechanisms produce diverse Myelin Protein Zero neuropathies in transgenic mice. J Neurosci 2006; 26:2358-68. [PMID: 16495463 PMCID: PMC6674823 DOI: 10.1523/jneurosci.3819-05.2006] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Missense mutations in 22 genes account for one-quarter of Charcot-Marie-Tooth (CMT) hereditary neuropathies. Myelin Protein Zero (MPZ, P0) mutations produce phenotypes ranging from adult demyelinating (CMT1B) to early onset [Déjérine-Sottas syndrome (DSS) or congenital hypomyelination] to predominantly axonal neuropathy, suggesting gain of function mechanisms. To test this directly, we produced mice in which either the MpzS63C (DSS) or MpzS63del (CMT1B) transgene was inserted randomly, so that the endogenous Mpz alleles could compensate for any loss of mutant P0 function. We show that either mutant allele produces demyelinating neuropathy that mimics the corresponding human disease. However, P0S63C creates a packing defect in the myelin sheath, whereas P0S63del does not arrive to the myelin sheath and is instead retained in the endoplasmic reticulum, where it elicits an unfolded protein response (UPR). This is the first evidence for UPR in association with neuropathy and provides a model to determine whether and how mutant proteins can provoke demyelination from outside of myelin.
Collapse
|
41
|
Berger P, Niemann A, Suter U. Schwann cells and the pathogenesis of inherited motor and sensory neuropathies (Charcot-Marie-Tooth disease). Glia 2006; 54:243-57. [PMID: 16856148 DOI: 10.1002/glia.20386] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Over the last 15 years, a number of mutations in a variety of genes have been identified that lead to inherited motor and sensory neuropathies (HMSN), also called Charcot-Marie-Tooth disease (CMT). In this review we will focus on the molecular and cellular mechanisms that cause the Schwann cell pathologies observed in dysmyelinating and demyelinating forms of CMT. In most instances, the underlying gene defects alter primarily myelinating Schwann cells followed by secondary axonal degeneration. The first set of proteins affected by disease-causing mutations includes the myelin components PMP22, P0/MPZ, Cx32/GJB1, and periaxin. A second group contains the regulators of myelin gene transcription EGR2/Krox20 and SOX10. A third group is composed of intracellular Schwann cells proteins that are likely to be involved in the synthesis, transport and degradation of myelin components. These include the myotubularin-related lipid phosphatase MTMR2 and its regulatory binding partner MTMR13/SBF2, SIMPLE, and potentially also dynamin 2. Mutations affecting the mitochondrial fission factor GDAP1 may indicate an important contribution of mitochondria in myelination or myelin maintenance, whereas the functions of other identified genes, including NDRG1, KIAA1985, and the tyrosyl-tRNA synthase YARS, are not yet clear. Mutations in GDAP1, YARS, and the pleckstrin homology domain of dynamin 2 lead to an intermediate form of CMT that is characterized by moderately reduced nerve conduction velocity consistent with minor myelin deficits. Whether these phenotypes originate in Schwann cells or in neurons, or whether both cell types are directly affected, remains a challenging question. However, based on the advances in systematic gene identification in CMT and the analyses of the function and dysfunction of the affected proteins, crucially interconnected pathways in Schwann cells in health and disease have started to emerge. These networks include the control of myelin formation and stability, membrane trafficking, intracellular protein sorting and quality control, and may extend to mitochondrial dynamics and basic protein biosynthesis.
Collapse
Affiliation(s)
- Philipp Berger
- Institute of Cell Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | | |
Collapse
|