1
|
Mobbili G, Romaldi B, Sabbatini G, Amici A, Marcaccio M, Galeazzi R, Laudadio E, Armeni T, Minnelli C. Identification of Flavone Derivative Displaying a 4'-Aminophenoxy Moiety as Potential Selective Anticancer Agent in NSCLC Tumor Cells. Molecules 2023; 28:molecules28073239. [PMID: 37050002 PMCID: PMC10096842 DOI: 10.3390/molecules28073239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Five heterocyclic derivatives were synthesized by functionalization of a flavone nucleus with an aminophenoxy moiety. Their cytotoxicity was investigated in vitro in two models of human non-small cell lung cancer (NSCLC) cells (A549 and NCI-H1975) by using MTT assay and the results compared to those obtained in healthy fibroblasts as a non-malignant cell model. One of the aminophenoxy flavone derivatives (APF-1) was found to be effective at low micromolar concentrations in both lung cancer cell lines with a higher selective index (SI). Flow cytometric analyses showed that APF-1 induced apoptosis and cell cycle arrest in the G2/M phase through the up-regulation of p21 expression. Therefore, the aminophenoxy flavone-based compounds may be promising cancer-selective agents and could serve as a base for further research into the design of flavone-based anticancer drugs.
Collapse
Affiliation(s)
- Giovanna Mobbili
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Brenda Romaldi
- Department of Specialist Clinical Sciences, School of Medicine, Marche Polytechnic University, 60131 Ancona, Italy
| | - Giulia Sabbatini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Adolfo Amici
- Department of Specialist Clinical Sciences, School of Medicine, Marche Polytechnic University, 60131 Ancona, Italy
| | - Massimo Marcaccio
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Emiliano Laudadio
- Department of Science and Engineering of Matter, Environment and Urban Planning, Marche Polytechnic University, 60131 Ancona, Italy
| | - Tatiana Armeni
- Department of Specialist Clinical Sciences, School of Medicine, Marche Polytechnic University, 60131 Ancona, Italy
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| |
Collapse
|
2
|
Singh RD, Avadhesh A, Sharma G, Dholariya S, Shah RB, Goyal B, Gupta SC. Potential of cytochrome P450, a family of xenobiotic metabolizing enzymes, in cancer therapy. Antioxid Redox Signal 2022; 38:853-876. [PMID: 36242099 DOI: 10.1089/ars.2022.0116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Targeted cancer therapy with minimal off-target consequences has shown promise for some cancer types. Although cytochrome P450 (CYP) consists of 18 families, CYP1-4 families play key role in metabolizing xenobiotics and cancer drugs. This eventually affects the process of carcinogenesis, treatment outcome, and cancer drug resistance. Differential overexpression of CYPs in transformed cells, together with phenotypic alterations in tumors, presents a potential for therapeutic intervention. RECENT ADVANCES Recent advances in molecular tools and information technology have helped utilize CYPs as cancer targets. The precise expression in various tumors, X-ray crystal structures, improved understanding of the structure-activity relationship, and new approaches in the development of prodrugs have supported the ongoing efforts to develop CYPs-based drugs with a better therapeutic index. CRITICAL ISSUES Narrow therapeutic index, off-target effects, drug resistance, and tumor heterogeneity limit the benefits of CYP-based conventional cancer therapies. In this review, we address the CYP1-4 families as druggable targets in cancer. An emphasis is given to the CYP expression, function, and the possible mechanisms that drive expression and activity in normal and transformed tissues. The strategies that inhibit or activate CYPs for therapeutic benefits are also discussed. FUTURE DIRECTIONS Efforts are needed to develop more selective tools that will help comprehend molecular and metabolic alterations in tumor tissues with biological end-points in relation to CYPs. This will eventually translate to developing more specific CYP inhibitors/inducers.
Collapse
Affiliation(s)
- Ragini D Singh
- AIIMS Rajkot, 618032, Biochemistry, Rajkot, Gujarat, India;
| | - Avadhesh Avadhesh
- Institute of Science, Banaras Hindu University, Biochemistry, Varanasi, Uttar Pradesh, India;
| | - Gaurav Sharma
- AIIMS Rajkot, 618032, Physiology, Rajkot, Gujarat, India;
| | | | - Rima B Shah
- AIIMS Rajkot, 618032, Pharmacology, Rajkot, Gujarat, India;
| | - Bela Goyal
- AIIMS Rishikesh, 442339, Biochemistry, Rishikesh, Uttarakhand, India;
| | - Subash Chandra Gupta
- Institute of Science, Banaras Hindu University, Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India, 221005;
| |
Collapse
|
3
|
Itkin B, Breen A, Turyanska L, Sandes EO, Bradshaw TD, Loaiza-Perez AI. New Treatments in Renal Cancer: The AhR Ligands. Int J Mol Sci 2020; 21:E3551. [PMID: 32443455 PMCID: PMC7279047 DOI: 10.3390/ijms21103551] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/27/2022] Open
Abstract
Kidney cancer rapidly acquires resistance to antiangiogenic agents, such as sunitinib, developing an aggressive migratory phenotype (facilitated by c-Metsignal transduction). The Aryl hydrocarbon receptor (AhR) has recently been postulated as a molecular target for cancer treatment. Currently, there are two antitumor agent AhR ligands, with activity against renal cancer, that have been tested clinically: aminoflavone (AFP 464, NSC710464) and the benzothiazole (5F 203) prodrug Phortress. Our studies investigated the action of AFP 464, the aminoflavone pro-drug currently used in clinical trials, and 5F 203 on renal cancer cells, specifically examining their effects on cell cycle progression, apoptosis and cell migration. Both compounds caused cell cycle arrest and apoptosis but only 5F 203 potently inhibited the migration of TK-10, Caki-1 and SN12C cells as well as the migration signal transduction cascade, involving c-Met signaling, in TK-10 cells. Current investigations are focused on the development of nano-delivery vehicles, apoferritin-encapsulated benzothiazoles 5F 203 and GW610, for the treatment of renal cancer. These compounds have shown improved antitumor effects against TK-10 cells in vitro at lower concentrations compared with a naked agent.
Collapse
Affiliation(s)
- Boris Itkin
- Department of Oncology, Hospital General de Agudos Juan Fernandez, C1425 CABA Buenos Aires, Argentina;
| | - Alastair Breen
- School of Pharmacy, Centre for Biomolecular Sciences, The University of Nottingham, University Park, Nottingham NG72RD, Nottinghamshire, UK; (A.B.); (T.D.B.)
| | - Lyudmila Turyanska
- Faculty of Engineering, University of Nottingham, University Park, Nottingham NG72RD, Nottinghamshire, UK;
| | - Eduardo Omar Sandes
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Área Investigación, Av. San Martin 5481, C1417 DTB Buenos Aires, Argentina;
| | - Tracey D. Bradshaw
- School of Pharmacy, Centre for Biomolecular Sciences, The University of Nottingham, University Park, Nottingham NG72RD, Nottinghamshire, UK; (A.B.); (T.D.B.)
| | - Andrea Irene Loaiza-Perez
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Área Investigación, Av. San Martin 5481, C1417 DTB Buenos Aires, Argentina;
| |
Collapse
|
4
|
Baker JR, Sakoff JA, McCluskey A. The aryl hydrocarbon receptor (AhR) as a breast cancer drug target. Med Res Rev 2019; 40:972-1001. [PMID: 31721255 DOI: 10.1002/med.21645] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/04/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022]
Abstract
Breast cancer is the most common cancer in women, with more than 1.7 million diagnoses worldwide per annum. Metastatic breast cancer remains incurable, and the presence of triple-negative phenotypes makes targeted treatment impossible. The aryl hydrocarbon receptor (AhR), most commonly associated with the metabolism of xenobiotic ligands, has emerged as a promising biological target for the treatment of this deadly disease. Ligands for the AhR can be classed as exogenous or endogenous and may have agonistic or antagonistic activity. It has been well reported that agonistic ligands may have potent and selective growth inhibition activity in a number of oncogenic cell lines, and one (aminoflavone) has progressed to phase I clinical trials for breast cancer sufferers. In this study, we examine the current state of the literature in this area and elucidate the promising advances that are being made in hijacking the cytosolic-to-nuclear pathway of the AhR for the possible future treatment of breast cancer.
Collapse
Affiliation(s)
- Jennifer R Baker
- Chemistry, School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, Australia
| | - Jennette A Sakoff
- Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
5
|
Chen G, Wang Y, Xie R, Gong S. A review on core-shell structured unimolecular nanoparticles for biomedical applications. Adv Drug Deliv Rev 2018; 130:58-72. [PMID: 30009887 PMCID: PMC6149214 DOI: 10.1016/j.addr.2018.07.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Polymeric unimolecular nanoparticles (NPs) exhibiting a core-shell structure and formed by a single multi-arm molecule containing only covalent bonds have attracted increasing attention for numerous biomedical applications. This unique single-molecular architecture provides the unimolecular NP with superior stability both in vitro and in vivo, a high drug loading capacity, as well as versatile surface chemistry, thereby making it a desirable nanoplatform for therapeutic and diagnostic applications. In this review, we surveyed the architecture of various types of polymeric unimolecular NPs, including water-dispersible unimolecular micelles and water-soluble unimolecular NPs used for the delivery of hydrophobic and hydrophilic agents, respectively, as well as their diverse biomedical applications. Future opportunities and challenges of unimolecular NPs were also briefly discussed.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Yuyuan Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ruosen Xie
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
6
|
Yu JS, Leng PF, Li YF, Wang YQ, Wang Y, An RH, Qi JP. Aryl Hydrocarbon Receptor Suppresses the Prostate Cancer LNCaP Cell Growth and Invasion by Promoting DNA Damage Response Under Oxidative Stress. DNA Cell Biol 2017; 36:1010-1017. [PMID: 28972393 DOI: 10.1089/dna.2017.3783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jing-Song Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng-Fei Leng
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi-Fu Li
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong-Quan Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui-Hua An
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ji-Ping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Luzzani GA, Callero MA, Kuruppu AI, Trapani V, Flumian C, Todaro L, Bradshaw TD, Loaiza Perez AI. In Vitro Antitumor Effects of AHR Ligands Aminoflavone (AFP 464) and Benzothiazole (5F 203) in Human Renal Carcinoma Cells. J Cell Biochem 2017; 118:4526-4535. [PMID: 28471540 DOI: 10.1002/jcb.26114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/03/2017] [Indexed: 02/05/2023]
Abstract
We investigated activity and mechanism of action of two AhR ligand antitumor agents, AFP 464 and 5F 203 on human renal cancer cells, specifically examining their effects on cell cycle progression, apoptosis, and migration. TK-10, SN12C, Caki-1, and ACHN human renal cancer cell lines were treated with AFP 464 and 5F 203. We evaluated cytotoxicity by MTS assays, cell cycle arrest, and apoptosis by flow cytometry and corroborated a mechanism of action involving AhR signal transduction activation. Changes in migration properties by wound healing assays were investigated: 5F 203-sensitive cells show decreased migration after treatment, therefore, we measured c-Met phosphorylation by Western blot in these cells. A 5F 203 induced a decrease in cell viability which was more marked than AFP 464. This cytotoxicity was reduced after treatment with the AhR inhibitor α-NF for both compounds indicating AhR signaling activation plays a role in the mechanism of action. A 5F 203 is sequestered by TK-10 cells and induces CYP1A1 expression; 5F 203 potently inhibited migration of TK-10, Caki-1, and SN12C cells, and inhibited c-Met receptor phosphorylation in TK-10 cells. AhR ligand antitumor agents AFP 464 and 5F 203 represent potential new candidates for the treatment of renal cancer. A 5F 203 only inhibited migration of sensitive cells and c-Met receptor phosphorylation in TK-10 cells. c-Met receptor signal transduction is important in migration and metastasis. Therefore, we consider that 5F 203 offers potential for the treatment of metastatic renal carcinoma. J. Cell. Biochem. 118: 4526-4535, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gabriela A Luzzani
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área Investigaciones, Ciudad de Buenos Aires, Argentina
| | - Mariana A Callero
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área Investigaciones, Ciudad de Buenos Aires, Argentina.,National Scientific Council (CONICET), Ciudad de Buenos Aires, Argentina
| | | | - Valentina Trapani
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Carolina Flumian
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área Investigaciones, Ciudad de Buenos Aires, Argentina
| | - Laura Todaro
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área Investigaciones, Ciudad de Buenos Aires, Argentina.,National Scientific Council (CONICET), Ciudad de Buenos Aires, Argentina
| | | | - Andrea I Loaiza Perez
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área Investigaciones, Ciudad de Buenos Aires, Argentina.,National Scientific Council (CONICET), Ciudad de Buenos Aires, Argentina
| |
Collapse
|
8
|
Callero MA, Rodriguez CE, Sólimo A, Bal de Kier Joffé E, Loaiza Perez AI. The Immune System As a New Possible Cell Target for AFP 464 in a Spontaneous Mammary Cancer Mouse Model. J Cell Biochem 2017; 118:2841-2849. [DOI: 10.1002/jcb.25934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/15/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Mariana A. Callero
- Universidad de Buenos Aires; Instituto de Oncología “Ángel H. Roffo”; Área Investigaciones; Ciudad de Buenos Aires; Argentina
- National Scientific Council (CONICET); CABA; CABA Argentina
| | - Cristina E. Rodriguez
- Universidad de Buenos Aires; Instituto de Oncología “Ángel H. Roffo”; Área Investigaciones; Ciudad de Buenos Aires; Argentina
- National Scientific Council (CONICET); CABA; CABA Argentina
| | - Aldana Sólimo
- Universidad de Buenos Aires; Instituto de Oncología “Ángel H. Roffo”; Área Investigaciones; Ciudad de Buenos Aires; Argentina
| | - Elisa Bal de Kier Joffé
- Universidad de Buenos Aires; Instituto de Oncología “Ángel H. Roffo”; Área Investigaciones; Ciudad de Buenos Aires; Argentina
- National Scientific Council (CONICET); CABA; CABA Argentina
| | - Andrea I. Loaiza Perez
- Universidad de Buenos Aires; Instituto de Oncología “Ángel H. Roffo”; Área Investigaciones; Ciudad de Buenos Aires; Argentina
- National Scientific Council (CONICET); CABA; CABA Argentina
| |
Collapse
|
9
|
Das DN, Panda PK, Naik PP, Mukhopadhyay S, Sinha N, Bhutia SK. Phytotherapeutic approach: a new hope for polycyclic aromatic hydrocarbons induced cellular disorders, autophagic and apoptotic cell death. Toxicol Mech Methods 2017; 27:1-17. [PMID: 27919191 DOI: 10.1080/15376516.2016.1268228] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) comprise the major class of cancer-causing chemicals and are ranked ninth among the chemical compounds threatening to humans. Moreover, interest in PAHs has been mainly due to their genotoxic, teratogenic, mutagenic and carcinogenic property. Polymorphism in cytochrome P450 (CYP450) and aryl hydrocarbon receptor (AhR) has the capacity to convert procarcinogens into carcinogens, which is an imperative factor contributing to individual susceptibility to cancer development. The carcinogenicity potential of PAHs is related to their ability to bind to DNA, thereby enhances DNA cross-linking, causing a series of disruptive effects which can result in tumor initiation. They induce cellular toxicity by regulating the generation of reactive oxygen species (ROS), which arbitrate apoptosis. Additionally, cellular toxicity-mediated apoptotic and autophagic cell death and immune suppression by industrial pollutants PAH, provide fertile ground for the proliferation of mutated cells, which results in cancer growth and progression. PAHs play a foremost role in angiogenesis necessary for tumor metastasization by promoting the upregulation of metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF) and hypoxia inducible factor (HIF) in human cancer cells. This review sheds light on the molecular mechanisms of PAHs induced cancer development as well as autophagic and apoptotic cell death. Besides that authors have unraveled how phytotherapeutics is an alternate potential therapeutics acting as a savior from the toxic effects of PAHs for safer and cost effective perspectives.
Collapse
Affiliation(s)
- Durgesh Nandini Das
- a Department of Life Sciences , National Institute of Technology , Rourkela , India
| | | | - Prajna Paramita Naik
- a Department of Life Sciences , National Institute of Technology , Rourkela , India
| | | | - Niharika Sinha
- a Department of Life Sciences , National Institute of Technology , Rourkela , India
| | - Sujit K Bhutia
- a Department of Life Sciences , National Institute of Technology , Rourkela , India
| |
Collapse
|
10
|
Brinkman AM, Chen G, Wang Y, Hedman CJ, Sherer NM, Havighurst TC, Gong S, Xu W. Aminoflavone-loaded EGFR-targeted unimolecular micelle nanoparticles exhibit anti-cancer effects in triple negative breast cancer. Biomaterials 2016; 101:20-31. [PMID: 27267625 DOI: 10.1016/j.biomaterials.2016.05.041] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/16/2016] [Accepted: 05/24/2016] [Indexed: 12/14/2022]
Abstract
Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer for which there is no available targeted therapy. TNBC cases contribute disproportionately to breast cancer-related mortality, thus the need for novel and effective therapeutic methods is urgent. We have previously shown that a National Cancer Institute (NCI) investigational drug aminoflavone (AF) exhibits strong growth inhibitory effects in TNBC cells. However, in vivo pulmonary toxicity resulted in withdrawal or termination of several human clinical trials for AF. Herein we report the in vivo efficacy of a nanoformulation of AF that enhances the therapeutic index of AF in TNBC. We engineered a unique unimolecular micelle nanoparticle (NP) loaded with AF and conjugated with GE11, a 12 amino acid peptide targeting epidermal growth factor receptor (EGFR), since EGFR amplification is frequently observed in TNBC tumors. These unimolecular micelles possessed excellent stability and preferentially released drug payload at endosomal pH levels rather than blood pH levels. Use of the GE11 targeting peptide resulted in enhanced cellular uptake and strong growth inhibitory effects in TNBC cells. Further, AF-loaded, GE11-conjugated (targeted) unimolecular micelle NPs significantly inhibit orthotopic TNBC tumor growth in a xenograft model, compared to treatment with AF-loaded, GE11-lacking (non-targeted) unimolecular micelle NPs or free AF. Interestingly, the animals treated with AF-loaded, targeted NPs had the highest plasma and tumor level of AF among different treatment groups yet exhibited no increase in plasma aspartate aminotransferase (AST) activity level or observable tissue damage at the time of sacrifice. Together, these results highlight AF-loaded, EGFR-targeted unimolecular micelle NPs as an effective therapeutic option for EGFR-overexpressing TNBC.
Collapse
Affiliation(s)
- Ashley M Brinkman
- McArdle Laboratory for Cancer Research, University of Wisconsin - Madison, Madison, WI, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin - Madison, Madison, WI, USA
| | - Guojun Chen
- Department of Materials Science and Engineering, University of Wisconsin - Madison, Madison, WI, USA.,Wisconsin Institutes for Discovery, University of Wisconsin - Madison, Madison, WI, USA
| | - Yidan Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin - Madison, Madison, WI, USA
| | | | - Nathan M Sherer
- McArdle Laboratory for Cancer Research, University of Wisconsin - Madison, Madison, WI, USA
| | - Thomas C Havighurst
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, USA
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin - Madison, Madison, WI, USA.,Wisconsin Institutes for Discovery, University of Wisconsin - Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin - Madison, Madison, WI, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
11
|
Chandrasekaran S, Enoch IV. Host–guest interaction of flavanone and 7-aminoflavone with C-Hexylpyrogallol[4]arene. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.07.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Brinkman AM, Wu J, Ersland K, Xu W. Estrogen receptor α and aryl hydrocarbon receptor independent growth inhibitory effects of aminoflavone in breast cancer cells. BMC Cancer 2014; 14:344. [PMID: 24885022 PMCID: PMC4037283 DOI: 10.1186/1471-2407-14-344] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/23/2014] [Indexed: 11/13/2022] Open
Abstract
Background Numerous studies have implicated the aryl hydrocarbon receptor (AhR) as a potential therapeutic target for several human diseases, including estrogen receptor alpha (ERα) positive breast cancer. Aminoflavone (AF), an activator of AhR signaling, is currently undergoing clinical evaluation for the treatment of solid tumors. Of particular interest is the potential treatment of triple negative breast cancers (TNBC), which are typically more aggressive and characterized by poorer outcomes. Here, we examined AF’s effects on two TNBC cell lines and the role of AhR signaling in AF sensitivity in these model cell lines. Methods AF sensitivity in MDA-MB-468 and Cal51 was examined using cell counting assays to determine growth inhibition (GI50) values. Luciferase assays and qPCR of AhR target genes cytochrome P450 (CYP) 1A1 and 1B1 were used to confirm AF-mediated AhR signaling. The requirement of endogenous levels of AhR and AhR signaling for AF sensitivity was examined in MDA-MB-468 and Cal51 cells stably harboring inducible shRNA for AhR. The mechanism of AF-mediated growth inhibition was explored using flow cytometry for markers of DNA damage and apoptosis, cell cycle analysis, and β-galactosidase staining for senescence. Luciferase data was analyzed using Student’s T test. Three-parameter nonlinear regression was performed for cell counting assays. Results Here, we report that ERα-negative TNBC cell lines MDA-MB-468 and Cal51 are sensitive to AF. Further, we presented evidence suggesting that neither endogenous AhR expression levels nor downstream induction of AhR target genes CYP1A1 and CYP1B1 is required for AF-mediated growth inhibition in these cells. Between these two ERα negative cell lines, we showed that the mechanism of AF action differs slightly. Low dose AF mediated DNA damage, S-phase arrest and apoptosis in MDA-MB-468 cells, while it resulted in DNA damage, S-phase arrest and cellular senescence in Cal51 cells. Conclusions Overall, this work provides evidence against the simplified view of AF sensitivity, and suggests that AF could mediate growth inhibitory effects in ERα-positive and negative breast cancer cells, as well as cells with impaired AhR expression and signaling. While AF could have therapeutic effects on broader subtypes of breast cancer, the mechanism of cytotoxicity is complex, and likely, cell line- and tumor-specific.
Collapse
Affiliation(s)
| | | | | | - Wei Xu
- Molecular and Environmental Toxicology Center, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Costa A, Sarmento B, Seabra V. An evaluation of the latestin vitrotools for drug metabolism studies. Expert Opin Drug Metab Toxicol 2013; 10:103-19. [DOI: 10.1517/17425255.2014.857402] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Reactivation of estrogen receptor α by vorinostat sensitizes mesenchymal-like triple-negative breast cancer to aminoflavone, a ligand of the aryl hydrocarbon receptor. PLoS One 2013; 8:e74525. [PMID: 24058584 PMCID: PMC3772827 DOI: 10.1371/journal.pone.0074525] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 08/05/2013] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Aminoflavone (AF) acts as a ligand of the aryl hydrocarbon receptor (AhR). Expression of estrogen receptor α (ERα) and AhR-mediated transcriptional induction of CYP1A1 can sensitize breast cancer cells to AF. The objective of this study was to investigate the combined antitumor effect of AF and the histone deacetylase inhibitor vorinostat for treating mesenchymal-like triple-negative breast cancer (TNBC) as well as the underlying mechanisms of such treatment. METHODS In vitro antiproliferative activity of AFP464 (AF prodrug) in breast cancer cell lines was evaluated by MTS assay. In vitro, the combined effect of AFP464 and vorinostat on cell proliferation was assessed by the Chou-Talalay method. In vivo, antitumor activity of AFP464, given alone and in combination with vorinostat, was studied using TNBC xenograft models. Knockdown of ERα was performed using specific, small-interfering RNA. Western blot, quantitative RT-PCR, immunofluorescence, and immunohistochemical staining were performed to study the mechanisms underlying the combined antitumor effect. RESULTS Luminal and basal A subtype breast cancer cell lines were sensitive to AFP464, whereas basal B subtype or mesenchymal-like TNBC cells were resistant. Vorinostat sensitized mesenchymal-like TNBC MDA-MB-231 and Hs578T cells to AFP464. It also potentiated the antitumor activity of AFP464 in a xenograft model using MDA-MB-231 cells. In vitro and in vivo mechanistic studies suggested that vorinostat reactivated ERα expression and restored AhR-mediated transcriptional induction of CYP1A1. CONCLUSION The response of breast cancer cells to AF or AFP464 was associated with their gene expression profile. Vorinostat sensitized mesenchymal-like TNBC to AF, at least in part, by reactivating ERα expression and restoring the responsiveness of AhR to AF.
Collapse
|
15
|
Erdogdu Y, Dereli Ö, Sajan D, Joseph L, Unsalan O, Gulluoglu MT. Vibrational (FT-IR and FT-Raman) spectral investigations of 7-aminoflavone with density functional theoretical simulations. MOLECULAR SIMULATION 2012. [DOI: 10.1080/08927022.2011.632416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
|
17
|
Callero MA, Loaiza-Pérez AI. The role of aryl hydrocarbon receptor and crosstalk with estrogen receptor in response of breast cancer cells to the novel antitumor agents benzothiazoles and aminoflavone. Int J Breast Cancer 2011; 2011:923250. [PMID: 22295239 PMCID: PMC3262585 DOI: 10.4061/2011/923250] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 06/14/2011] [Indexed: 12/03/2022] Open
Abstract
Many estrogen-receptor- (ER-) expressing breast cancers become refractory to ER-based therapies. New antitumor drugs like aminoflavone (AF) and benzothiazoles (Bzs) have been developed and have exquisite antitumor activity in ER+MCF-7 and T47D cells and in a MCF-7 nude mouse model. ER(−) breast cancer cells like MDA-MB-231 are less susceptible. We previously found in MCF-7 cells that these drugs activate the aryl hydrocarbon receptor (AhR) via translocation to the nucleus, induction of AhR-specific DNA binding activity, and expression of CYP1A1, whose transcription is controlled by the AhR-ARNT transcription factor. CYP1A1 metabolizes AF and Bz to a species which directly or after further metabolism damages DNA. In contrast an AhR-deficient variant of MCF-7 or cells with predominantly nuclear AhR expression, such as MDA-MB 231, are resistant. Thus, these drugs, unlike other neoplastic agents, require AhR-mediated signaling to cause DNA damage. This is a new treatment strategy for breast cancers with intact AhR signaling.
Collapse
Affiliation(s)
- Mariana A Callero
- Research Area, Institute of Oncology "Ángel H. Roffo", University of Buenos Aires, Avenue San Martín 5481, C1417DTB Ciudad de Buenos Aires, Argentina
| | | |
Collapse
|
18
|
Erdogdu Y, Unsalan O, Amalanathan M, Hubert Joe I. Infrared and Raman spectra, vibrational assignment, NBO analysis and DFT calculations of 6-aminoflavone. J Mol Struct 2010. [DOI: 10.1016/j.molstruc.2010.06.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Zheng Q, Sha X, Liu J, Heath E, Lorusso P, Li J. Association of human cytochrome P450 1A1 (CYP1A1) and sulfotransferase 1A1 (SULT1A1) polymorphisms with differential metabolism and cytotoxicity of aminoflavone. Mol Cancer Ther 2010; 9:2803-13. [PMID: 20713530 DOI: 10.1158/1535-7163.mct-10-0597] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aminoflavone (AF), a clinically investigational novel anticancer agent, requires sequential metabolic activation by CYP1A1 and SULT1A1 to exert its antitumor activities. The purpose of this study was to determine the functional significance of common polymorphisms of human CYP1A1 and SULT1A1 on the metabolism and cytotoxicity of AF. To this end, Chinese Hamster V79 cells were genetically engineered to stably express human CYP1A1*1 (wild-type), CYP1A1*2C (I462V), or CYP1A1*4 (T461N) and coexpress human CYP1A1*1 with human SULT1A1*1 (wild-type), SULT1A1*2 (R213H), or SULT1A1*3 (M223V). The metabolism and cytotoxicity of AF were evaluated in these cellular models. All common variants of CYP1A1 and SULT1A1 were actively involved in the metabolic activation of AF, but with a varying degree of activity. Whereas CYP1A1 I462V variant exhibited a superior activity (mainly caused by a significantly higher V(max)) for hydroxylations of AF, expression of different CYP1A1 variants did not confer cell differential sensitivity to AF. The cells coexpressing CYP1A1*1 with SULT1A1*1, SULT1A1*2, or SULT1A1*3 displayed SULT1A1 allele-specific sensitivity to AF: SULT1A1*3 exhibited the highest sensitivity (IC(50), 0.01 μmol/L), followed by SULT1A1*1 (IC(50), 0.5 μmol/L), and SULT1A1*2 showed the lowest sensitivity (IC(50), 4.4 μmol/L). These data suggest that the presence of low-activity SULT1A1*2 may predict poor response to AF, whereas the presence of high-activity CYP1A1/SULT1A1 alleles, especially combination of CYP1A1*2C and SULT1A1*3 or SULT1A1*1, may be beneficial to patients receiving AF. The present study provides a foundation for future clinical investigations of potential genetic biomarkers that may enable selection of patients for the greatest potential benefit from AF treatment.
Collapse
Affiliation(s)
- Qiang Zheng
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
20
|
Meng LH, Shankavaram U, Chen C, Agama K, Fu HQ, Gonzalez FJ, Weinstein J, Pommier Y. Activation of aminoflavone (NSC 686288) by a sulfotransferase is required for the antiproliferative effect of the drug and for induction of histone gamma-H2AX. Cancer Res 2007; 66:9656-64. [PMID: 17018623 DOI: 10.1158/0008-5472.can-06-0796] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aminoflavone (AF) is entering clinical trials. We recently reported that AF induces DNA-protein cross-links (DPC) and gamma-H2AX in MCF-7 human breast cancer cells. To elucidate the mechanism of action of AF and provide biomarkers indicative of AF activity, we correlated AF activity profile (GI(50)) with gene expression patterns in the NCI-60 cell lines. Sulfotransferases (SULT) showed the highest positive correlation coefficients among approximately 14,000 probe sets analyzed (r = 0.537, P < 0.001). Stable transfection of SULT1A1 into AF-resistant MDA-MB-231 cells sensitized these cells to AF. AF produced DPCs, gamma-H2AX foci, and S-phase arrest in the SULT1A1-transfected but not in the parent MDA-MB-231 cells. Conversely, cells in which SULT1A1 was knocked down by small interfering RNA failed to induce gamma-H2AX. Inhibition of SULTs and cytochrome P450 (CYP) enzymes by natural flavonoids blocked the antiproliferative activity of AF and the formation of AF-DNA adducts. AF also induces SULT1A1 and CYP expression in MCF-7 cells, suggesting the existence of an aryl hydrocarbon receptor-mediated positive feedback for AF activation by CYP and SULT1A1. Metabolism studies showed that AF can be oxidized by CYP at two amino groups to form N-hydroxyl metabolites that are substrates for bioactivation by SULTs. We propose that both N-sulfoxy-groups can be further converted to nitrenium ions that form adducts with DNA and proteins. The results reported here show the importance of SULT1A1 and CYP for AF activation and anticancer activity. They also suggest using SULT1A1 and gamma-H2AX as biomarkers for prediction of AF activity during patient selection and monitoring of clinical trials.
Collapse
Affiliation(s)
- Ling-hua Meng
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Weiland C, Ahr HJ, Vohr HW, Ellinger-Ziegelbauer H. Characterization of primary rat proximal tubular cells by gene expression analysis. Toxicol In Vitro 2006; 21:466-91. [PMID: 17134868 DOI: 10.1016/j.tiv.2006.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 09/27/2006] [Accepted: 10/15/2006] [Indexed: 11/29/2022]
Abstract
The kidney plays a major role in excretory and reabsorptive processes. The kidney cortex consists primarily of proximal tubular cells, which are epithelial cells that are often involved in the induction and progression of various kidney diseases. Therefore primary proximal tubular cells are widely used as a renal cell model. To further characterize this kidney in vitro model different time points in culture after isolation of the cells were compared to the cortex in vivo using gene expression analysis based on microarrays. This study revealed that many metabolic pathways and some kidney-specific functions are lacking in the in vitro model. Furthermore genes involved in RNA and protein synthesis, intracellular transport, extracellular matrix and cytoskeletal organization were upregulated in culture compared to in vivo, indicating proliferation of the cells and differentiation into a cell culture phenotype. The data represented here may help to evaluate the in vivo relevance of results obtained with this in vitro model.
Collapse
Affiliation(s)
- C Weiland
- Molecular and Special Toxicology, Bayer HealthCare AG, Aprather Weg 18a, D-42096 Wuppertal, Germany.
| | | | | | | |
Collapse
|
22
|
Wang J, Wang X, Jiang S, Yuan S, Lin P, Zhang J, Lu Y, Wang Q, Xiong Z, Wu Y, Ren J, Yang H. Growth inhibition and induction of apoptosis and differentiation of tanshinone IIA in human glioma cells. J Neurooncol 2006; 82:11-21. [PMID: 16955220 DOI: 10.1007/s11060-006-9242-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 08/09/2006] [Indexed: 11/28/2022]
Abstract
Tanshinone IIA is a derivative of phenanthrene-quinone isolated from Danshen, a widely used Chinese herbal medicine. It has antioxidant properties, cytotoxic activities against multiple human cancer cells, inducing apoptosis and differentiation of some human cancer cells. The purpose of this study is to confirm its anticancer activity on human glioma cells, and to elucidate mechanism of its activity. Human glioma cells were tested in vitro for cytotoxicity, colony formation inhibition, BrdU incorporation after treatment with tanshinone IIA. Its effect of apoptosis induction was detected through EB/AO staining, cell cycle analysis and the expressions of ADPRTL1 and CYP1A1 genes, the differentiation induction effect was investigated through morphology, mRNA and protein expressions of GFAP and nestin genes by RT-PCR and immunocytochemistry. Tanshinone IIA demonstrated a dose- and time-dependent inhibitory effect on cell growth, IC(50) was 100 ng/ml, and it significantly inhibited colony formation and BrdU incorporation of human glioma cells. After treatment with 25-100 ng/ml of tanshinone IIA, the apoptotic cells increased significantly (P < 0.01), the cells in G(0)/G(1) phase increased (P < 0.01), and decreased in S phase, ADPRTL1 and CYP1A1 mRNA expression increased 1-2 folds. The cells treated with 100 ng/ml tanshinone IIA demonstrated astrocytes or neuron-like morphology, GFAP mRNA and protein expressions increased, nestin mRNA and protein expressions decreased significantly. The findings in this study suggested that tanshinone IIA exhibited strong effects on growth inhibition and induction of apoptosis and differentiation in human glioma cells. It might serve as a novel promising differentiation-inducing and/or therapeutic agent for human gliomas, and need to be investigated further.
Collapse
Affiliation(s)
- Jing Wang
- Division of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen C, Meng L, Ma X, Krausz KW, Pommier Y, Idle JR, Gonzalez FJ. Urinary metabolite profiling reveals CYP1A2-mediated metabolism of NSC686288 (aminoflavone). J Pharmacol Exp Ther 2006; 318:1330-42. [PMID: 16775196 PMCID: PMC1551906 DOI: 10.1124/jpet.106.105213] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
NSC686288 [aminoflavone (AF)], a candidate chemotherapeutic agent, possesses a unique antiproliferative profile against tumor cells. Metabolic bioactivation of AF by drug-metabolizing enzymes, especially CYP1A monooxygenases, has been implicated as an underlying mechanism for its selective cytotoxicity in several cell culture-based studies. However, in vivo metabolism of AF has not been investigated in detail. In this study, the structural identities of 13 AF metabolites (12 of which are novel) in mouse urine or from microsomal incubations, including three monohydroxy-AFs, two dihydroxy-AFs and their sulfate and glucuronide conjugates, as well as one N-glucuronide, were determined by accurate mass measurements and liquid chromatography-tandem mass spectrometry fragmentation patterns, and a comprehensive map of the AF metabolic pathways was constructed. Significant differences between wild-type and Cyp1a2-null mice, within the relative composition of urinary metabolites of AF, demonstrated that CYP1A2-mediated regioselective oxidation was a major contributor to the metabolism of AF. Comparisons between wild-type and CYP1A2-humanized mice further revealed interspecies differences in CYP1A2-mediated catalytic activity. Incubation of AF with liver microsomes from all three mouse lines and with pooled human liver microsomes confirmed the observations from urinary metabolite profiling. Results from enzyme kinetic analysis further indicated that in addition to CYP1A P450s, CYP2C P450s may also play some role in the metabolism of AF.
Collapse
Affiliation(s)
- Chi Chen
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Meng LH, Kohlhagen G, Liao ZY, Antony S, Sausville E, Pommier Y. DNA-protein cross-links and replication-dependent histone H2AX phosphorylation induced by aminoflavone (NSC 686288), a novel anticancer agent active against human breast cancer cells. Cancer Res 2005; 65:5337-43. [PMID: 15958581 DOI: 10.1158/0008-5472.can-05-0003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aminoflavone (5-amino-2,3-fluorophenyl)-6,8-difluoro-7-methyl-4H-1-benzopyran-4-one) (NSC 686288) is a candidate for possible advancement to phase I clinical trial. Aminoflavone has a unique activity profile in the NCI 60 cell lines (COMPARE analysis; http://www.dtp.nci.nih.gov/docs/dtp_search.html), and exhibits potent cellular and animal antitumor activity. To elucidate the mechanism of action of aminoflavone, we studied DNA damage in MCF-7 cells. Aminoflavone induced DNA-protein cross-links (DPC) and DNA single-strand breaks (SSB). Aminoflavone induced high levels of DPC and much lower level of SSB than camptothecin, which induces equal levels of DPC and SSB due to the trapping topoisomerase I-DNA complexes. Accordingly, neither topoisomerase I nor topoisomerase II were detectable in the aminoflavone-induced DPC. Aminoflavone also induced dose- and time-dependent histone H2AX phosphorylation (gamma-H2AX). Gamma-H2AX foci occurred with DPC formation, and like DPC, persisted after aminoflavone removal. Aphidicolin prevented gamma-H2AX formation, suggesting that gamma-H2AX foci correspond to replication-associated DNA double-strand breaks. Accordingly, no gamma-H2AX foci were found in proliferating cell nuclear antigen-negative or in mitotic cells. Bromodeoxyuridine incorporation and fluorescence-activated cell sorting analyses showed DNA synthesis inhibition uniformly throughout the S phase after exposure to aminoflavone. Aminoflavone also induced RPA2 and p53 phosphorylation, and induced p21(Waf1/Cip1) and MDM2, demonstrating S-phase checkpoint activation. These studies suggest that aminoflavone produces replication-dependent DNA lesions and S-phase checkpoint activation following DPC formation. Gamma-H2AX may be a useful clinical marker for monitoring the efficacy of aminoflavone in tumor therapies.
Collapse
Affiliation(s)
- Ling-hua Meng
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | |
Collapse
|