1
|
Bharadwaj R, Jaiswal S, Silverman N. Cytosolic delivery of innate immune agonists. Trends Immunol 2024; 45:1001-1014. [PMID: 39567309 PMCID: PMC11624987 DOI: 10.1016/j.it.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
Solute carrier proteins (SLCs) are pivotal for maintaining cellular homeostasis by transporting small molecules across cellular membranes. Recent discoveries have uncovered their involvement in modulating innate immunity, particularly within the cytosol. We review emerging evidence that links SLC transporters to cytosolic innate immune recognition and highlight their role in regulating inflammation. We explore how SLC transporters influence the activation of endosomal Toll-like receptors, cytosolic NODs, and STING sensors. Understanding the contribution of SLCs to innate immune recognition provides insight into their fundamental biological functions and opens new avenues to develop possible therapeutic interventions for autoimmune and inflammatory diseases. This review aims to discuss current knowledge and identify key gaps in this rapidly evolving field.
Collapse
Affiliation(s)
- Ravi Bharadwaj
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Swati Jaiswal
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
2
|
Olivo-Martínez Y, Martínez-Ruiz S, Cordero C, Badia J, Baldoma L. Extracellular Vesicles of the Probiotic Escherichia coli Nissle 1917 Reduce PepT1 Levels in IL-1β-Treated Caco-2 Cells via Upregulation of miR-193a-3p. Nutrients 2024; 16:2719. [PMID: 39203856 PMCID: PMC11356789 DOI: 10.3390/nu16162719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
PepT1, a proton-coupled oligopeptide transporter, is crucial for intestinal homeostasis. It is mainly expressed in small intestine enterocytes, facilitating the absorption of di/tri-peptides from dietary proteins. In the colon, PepT1 expression is minimal to prevent excessive responses to proinflammatory peptides from the gut microbiota. However, increased colonic PepT1 is linked to chronic inflammatory diseases and colitis-associated cancer. Despite promising results from animal studies on the benefits of extracellular vesicles (EVs) from beneficial gut commensals in treating IBD, applying probiotic EVs as a postbiotic strategy in humans requires a thorough understanding of their mechanisms. Here, we investigate the potential of EVs of the probiotic Nissle 1917 (EcN) and the commensal EcoR12 in preventing altered PepT1 expression under inflammatory conditions, using an interleukin (IL)-1-induced inflammation model in Caco-2 cells. The effects are evaluated by analyzing the expression of PepT1 (mRNA and protein) and miR-193a-3p and miR-92b, which regulate, respectively, PepT1 mRNA translation and degradation. The influence of microbiota EVs on PepT1 expression is also analyzed in the presence of bacterial peptides that are natural substrates of colonic PepT1 to clarify how the regulatory mechanisms function under both physiological and pathological conditions. The main finding is that EcN EVs significantly decreases PepT1 protein via upregulation of miR-193a-3p. Importantly, this regulatory effect is strain-specific and only activates in cells exposed to IL-1β, suggesting that EcN EVs does not control PepT1 expression under basal conditions but can play a pivotal role in response to inflammation as a stressor. By this mechanism, EcN EVs may reduce inflammation in response to microbiota in chronic intestinal disorders by limiting the uptake of bacterial proinflammatory peptides.
Collapse
Affiliation(s)
- Yenifer Olivo-Martínez
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (Y.O.-M.); (S.M.-R.)
- Biochemistry and Diseases Research Group, Facultad de Medicina, Universidad de Cartagena, Cartagena 130015, Colombia
- Institut de Biomedicina de la Universitat de Barcelona(IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Sergio Martínez-Ruiz
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (Y.O.-M.); (S.M.-R.)
- Institut de Biomedicina de la Universitat de Barcelona(IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Cecilia Cordero
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (Y.O.-M.); (S.M.-R.)
- Institut de Biomedicina de la Universitat de Barcelona(IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Josefa Badia
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (Y.O.-M.); (S.M.-R.)
- Institut de Biomedicina de la Universitat de Barcelona(IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Laura Baldoma
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (Y.O.-M.); (S.M.-R.)
- Institut de Biomedicina de la Universitat de Barcelona(IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| |
Collapse
|
3
|
Song F, Zhang Z, Liu W, Xu T, Hu X, Wang Q, Zhang W, Ge L, Zhang C, Hu Q, Qin H, Zhang S, Ren X, Fan W, Zhang Y, Huang P. Peptide Transporter 1-Mediated Dipeptide Transport Promotes Hepatocellular Carcinoma Metastasis by Activating MAP4K4/G3BP2 Signaling Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306671. [PMID: 38639383 PMCID: PMC11200092 DOI: 10.1002/advs.202306671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/18/2024] [Indexed: 04/20/2024]
Abstract
Cancer metastasis is the leading cause of mortality in patients with hepatocellular carcinoma (HCC). To meet the rapid malignant growth and transformation, tumor cells dramatically increase the consumption of nutrients, such as amino acids. Peptide transporter 1 (PEPT1), a key transporter for small peptides, has been found to be an effective and energy-saving intracellular source of amino acids that are required for the growth of tumor cells. Here, the role of PEPT1 in HCC metastasis and its underlying mechanisms is explored. PEPT1 is upregulated in HCC cells and tissues, and high PEPT1 expression is associated with poor prognosis in patients with HCC. PEPT1 overexpression dramatically promoted HCC cell migration, invasion, and lung metastasis, whereas its knockdown abolished these effects both in vitro and in vivo. Mechanistic analysis revealed that high PEPT1 expression increased cellular dipeptides in HCC cells that are responsible for activating the MAP4K4/G3BP2 signaling pathway, ultimately facilitating the phosphorylation of G3BP2 at Thr227 and enhancing HCC metastasis. Taken together, these findings suggest that PEPT1 acts as an oncogene in promoting HCC metastasis through dipeptide-induced MAP4K4/G3BP2 signaling and that the PEPT1/MAP4K4/G3BP2 axis can serve as a promising therapeutic target for metastatic HCC.
Collapse
Affiliation(s)
- Feifeng Song
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhou310014China
- Zhejiang Provincial Clinical Research Center for malignant tumorHangzhou310014China
| | - Zhentao Zhang
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Weifeng Liu
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou310009China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhou310014China
- Zhejiang Provincial Clinical Research Center for malignant tumorHangzhou310014China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Qiyue Wang
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Wanli Zhang
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Luqi Ge
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Chengwu Zhang
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasion SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Qing Hu
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Hui Qin
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Song Zhang
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhou310014China
- Zhejiang Provincial Clinical Research Center for malignant tumorHangzhou310014China
| | - Xinxin Ren
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Weijiao Fan
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhou310014China
- Zhejiang Provincial Clinical Research Center for malignant tumorHangzhou310014China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer CenterDepartment of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhou310014China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhou310014China
- Zhejiang Provincial Clinical Research Center for malignant tumorHangzhou310014China
| |
Collapse
|
4
|
Orsini Delgado ML, Gamelas Magalhaes J, Morra R, Cultrone A. Muropeptides and muropeptide transporters impact on host immune response. Gut Microbes 2024; 16:2418412. [PMID: 39439228 PMCID: PMC11509177 DOI: 10.1080/19490976.2024.2418412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
In bacteria, the cell envelope is the key element surrounding and protecting the bacterial content from mechanical or osmotic damages. It allows the selective interchanges of solutes, ions, cellular debris, and drugs between the cellular compartments and the external environment, thanks to the presence of transmembrane proteins called transporters. The major component of the cell envelope is the peptidoglycan, consisting of long linear glycan strands cross-linked by short peptide stems. During cell growth or under stress conditions, peptidoglycan fragments, the muropeptides, are released by bacteria and recognized by the host Pattern Recognition Receptor, promoting the activation of their innate defense mechanisms. The review sums up the salient aspects of microbiota-host interaction with a focus on the NOD-dependent immune response to bacterial peptidoglycan and on the accountability of muropeptide transporters in the crosstalk with the host and in antibiotic resistance. Furthermore, it retraces the discoveries and applications of microorganisms-derived components such as vaccines or vaccine adjuvants.
Collapse
|
5
|
Daniel H. Gut physiology meets microbiome science. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 4:e1. [PMID: 39295899 PMCID: PMC11406389 DOI: 10.1017/gmb.2022.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 09/21/2024]
Abstract
Research on the gut microbiome has gained high popularity and almost every disease has meanwhile been linked to alterations in microbiome composition. Typically assessed via stool samples, the microbiome displays a huge diversity with a multitude of environmental parameters already identified as contributing to its character. Despite impressive scientific progress, normal microbiome diversity remains largely unexplained and it is tempting to speculate some of the yet unexplained variance is hidden in normal gut physiology. Although a few genome/phenome-wide associations studies have recently highlighted physiological parameters such as stool frequency, known as contributing to microbiome diversity, there is a large knowledge base from decades of basic research on gut functions that can be explored for possible links to stool features and microbiome characteristics. And, when extrapolating findings from faecal samples to the biology in the intestinal lumen or the mucosal microenvironment, gut anatomy and physiology features need to be considered. Similarly, differences in anatomy and physiology between rodents and humans need attention when discussing findings in animals in relation to human physiology and nutrition.
Collapse
Affiliation(s)
- Hannelore Daniel
- ex. School of Life Sciences, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| |
Collapse
|
6
|
Aslam MN, McClintock SD, Attili D, Pandya S, Rehman H, Nadeem DM, Jawad-Makki MAH, Rizvi AH, Berner MM, Dame MK, Turgeon DK, Varani J. Ulcerative Colitis-Derived Colonoid Culture: A Multi-Mineral-Approach to Improve Barrier Protein Expression. Front Cell Dev Biol 2020; 8:577221. [PMID: 33330453 PMCID: PMC7719760 DOI: 10.3389/fcell.2020.577221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recent studies demonstrated that Aquamin®, a calcium-, magnesium-rich, multi-mineral natural product, improves barrier structure and function in colonoids obtained from the tissue of healthy subjects. The goal of the present study was to determine if the colonic barrier could be improved in tissue from subjects with ulcerative colitis (UC). METHODS Colonoid cultures were established with colon biopsies from 9 individuals with UC. The colonoids were then incubated for a 2-week period under control conditions (in culture medium with a final calcium concentration of 0.25 mM) or in the same medium supplemented with Aquamin® to provide 1.5 - 4.5 mM calcium. Effects on differentiation and barrier protein expression were determined using several approaches: phase-contrast and scanning electron microscopy, quantitative histology and immunohistology, mass spectrometry-based proteome assessment and transmission electron microscopy. RESULTS Although there were no gross changes in colonoid appearance, there was an increase in lumen diameter and wall thickness on histology and greater expression of cytokeratin 20 (CK20) along with reduced expression of Ki67 by quantitative immunohistology observed with intervention. In parallel, upregulation of several differentiation-related proteins was seen in a proteomic screen with the intervention. Aquamin®-treated colonoids demonstrated a modest up-regulation of tight junctional proteins but stronger induction of adherens junction and desmosomal proteins. Increased desmosomes were seen at the ultrastructural level. Proteomic analysis demonstrated increased expression of several basement membrane proteins and hemidesmosomal components. Proteins expressed at the apical surface (mucins and trefoils) were also increased as were several additional proteins with anti-microbial activity or that modulate inflammation. Finally, several transporter proteins that affect electrolyte balance (and, thereby affect water resorption) were increased. At the same time, growth and cell cycle regulatory proteins (Ki67, nucleophosmin, and stathmin) were significantly down-regulated. Laminin interactions, matrix formation and extracellular matrix organization were the top three up-regulated pathways with the intervention. CONCLUSION A majority of individuals including patients with UC do not reach the recommended daily intake for calcium and other minerals. To the extent that such deficiencies might contribute to the weakening of the colonic barrier, the findings employing UC tissue-derived colonoids here suggest that adequate mineral intake might improve the colonic barrier.
Collapse
Affiliation(s)
- Muhammad N. Aslam
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Shannon D. McClintock
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Durga Attili
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Shailja Pandya
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Humza Rehman
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Daniyal M. Nadeem
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Areeba H. Rizvi
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maliha M. Berner
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Michael K. Dame
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Danielle Kim Turgeon
- Department of Internal Medicine (The Division of Gastroenterology), The University of Michigan Medical School, Ann Arbor, MI, United States
| | - James Varani
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
7
|
|
8
|
Silva I, Pinto R, Mateus V. Preclinical Study in Vivo for New Pharmacological Approaches in Inflammatory Bowel Disease: A Systematic Review of Chronic Model of TNBS-Induced Colitis. J Clin Med 2019; 8:jcm8101574. [PMID: 31581545 PMCID: PMC6832474 DOI: 10.3390/jcm8101574] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
The preclinical studies in vivo provide means of characterizing physiologic interactions when our understanding of such processes is insufficient to allow replacement with in vitro systems and play a pivotal role in the development of a novel therapeutic drug cure. Chemically induced colitis models are relatively easy and rapid to develop. The 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis model is one of the main models in the experimental studies of inflammatory bowel disease (IBD) since inflammation induced by TNBS mimics several features of Crohn’s disease. This review aims to summarize the existing literature and discuss different protocols for the induction of chronic model of TNBS-induced colitis. We searched MEDLINE via Pubmed platform for studies published through December 2018, using MeSH terms (Crohn Disease.kw) OR (Inflammatory Bowel Diseases.kw) OR (Colitis, Ulcerative.kw) AND (trinitrobenzenesulfonic acid.kw) AND (disease models, animal.kw) AND (mice.all). The inclusion criteria were original articles, preclinical studies in vivo using mice, chronic model of colitis, and TNBS as the inducer of colitis and articles published in English. Chronic TNBS-induced colitis is made with multiple TNBS intrarectal administrations in an average dose of 1.2 mg using a volume lower than 150 μL in 50% ethanol. The strains mostly used are Balb/c and C57BL/6 with 5–6 weeks. To characterize the preclinical model the parameters more used include body weight, stool consistency and morbidity, inflammatory biomarkers like interferon (IFN)-γ, myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10, presence of ulcers, thickness or hyperemia in the colon, and histological evaluation of the inflammation. Experimental chronic colitis is induced by multiple rectal instillations of TNBS increasing doses in ethanol using Balb/c and C57BL/6 mice.
Collapse
Affiliation(s)
- Inês Silva
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal;
| | - Rui Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal;
- JCS, Dr. Joaquim Chaves, Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Vanessa Mateus
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal;
- Correspondence: ; Tel.: +351-218-980-400; Fax: +351-218-980-460
| |
Collapse
|
9
|
Han MK, Baker M, Zhang Y, Yang C, Zhang M, Garg P, Viennois E, Merlin D. Overexpression of CD98 in intestinal epithelium dysregulates miRNAs and their targeted proteins along the ileal villus-crypt axis. Sci Rep 2018; 8:16220. [PMID: 30385787 PMCID: PMC6212412 DOI: 10.1038/s41598-018-34474-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/07/2018] [Indexed: 01/19/2023] Open
Abstract
CD98 has been implicated in the experimental model of inflammatory bowel disease. We have previously shown that IEC-specific overexpression of CD98 mediates intestinal inflammation and intestinal epithelial barrier dysfunction. Mice overexpressing CD98 exhibited severe colitis and a greater susceptibility to CAC. Here we demonstrated CD98 overexpression to dysregulate homeostatic gradient profile of miRNA and protein expression along the ileal villus-crypt axis. Using miRNA-target gene prediction module, we observed differentially expressed miRNAs to target proteins of villus and crypt profoundly affected by CD98 overexpression. We have utilized online bioinformatics as methods to further scrutinize the biological meanings of miRNA-target data. We identified significant interactions among the differentially regulated proteins targeted by altered miRNAs in Tg mice. The biological processes affected by the predicted targets of miRNAs deviate from the homeostatic functions of the miRNA-gene-protein axis of the wildtype mice. Our results emphasize a dynamic perturbation of miRNA and protein expression in villus-crypt axis contributing to potential biological consequences of altering CD98 expression. Our findings also suggest the need for a consideration of arrays of interacting biological entities (i.e. miRNAs-mRNAs, protein-protein interaction) or a combination comparison for a better understanding of the disease pathology which is necessary for an effective therapeutic target development.
Collapse
Affiliation(s)
- Moon K Han
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA.
| | - Mark Baker
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA
| | - Yuchen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA
| | - Chunhua Yang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA
| | - Mingzhen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA
| | - Pallavi Garg
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA
| | - Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA.,Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| |
Collapse
|
10
|
Rasmussen RN, Christensen KV, Holm R, Nielsen CU. Transcriptome analysis identifies activated signaling pathways and regulated ABC transporters and solute carriers after hyperosmotic stress in renal MDCK I cells. Genomics 2018; 111:1557-1565. [PMID: 30389539 DOI: 10.1016/j.ygeno.2018.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/01/2022]
Abstract
Hyperosmolality is found under physiological conditions in the kidneys, whereas hyperosmolality in other tissues may be associated with pathological conditions. In such tissues an association between inflammation and hyperosmolality has been suggested. During hyperosmotic stress, an important phenomenon is upregulation of solute carriers (SLCs). We hypothesize that hyperosmolality affects the expression of many SLCs as well as ABC transporters. Through RNA-sequencing and topological pathway analysis, the cell cycle, the cytokine-cytokine receptor interaction pathway, and the chemokine-signaling pathway were significantly activated in MDCK I cells after hyperosmotic treatment (Δ200 mOsm) with raffinose or NaCl. 9065, 8052 and 5018 genes were significantly regulated by raffinose, NaCl or urea supplementation (500 mOsm), respectively, compared to control (300 mOsm). Cytokines, that have not previously been associated with hyperosmolality, were identified. We further provide an overview of transport proteins that could be of relevance in tissues exposed to hyperosmolality. Especially Slc5a8 was found highly up-regulated.
Collapse
Affiliation(s)
- Rune Nørgaard Rasmussen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark..
| | | | - René Holm
- Drug Product Development, Janssens Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
11
|
Miyake M, Fujishima M, Nakai D. Inhibitory Potency of Marketed Drugs for Ulcerative Colitis and Crohn's Disease on PEPT1. Biol Pharm Bull 2018; 40:1572-1575. [PMID: 28867741 DOI: 10.1248/bpb.b17-00181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigate the inhibitory effect of marketed drugs for treatment of inflammatory bowel disease (IBD) such as ulcerative colitis (UC) and Crohn's disease (CD) on the uptake transporters of peptide transporter 1 (PEPT1), which are up-regulated under the inflamed condition. The uptake transport of glycylsarcosine, a typical substrate for PEPT1, was reduced to 60% only by 5-aminosalicylate at the clinically relevant concentration among tested marketed drugs in PEPT1 transfected HEK293 cell lines. These findings suggest that the inhibition of PEPT1, which were up-regulated in inflamed or non-inflamed site on UC and CD patients, contribute to the clinical effect of commercially available drugs for IBD patients through the inhibition of uptake of antigenic proinflammatory oligopeptides such as formyl-methionine (Met)-leucine (Leu)-phenylalanine (Phe) via PEPT1.
Collapse
Affiliation(s)
- Masateru Miyake
- Department of Pharmacy, Uppsala University.,BA Project, Formulation Research Institute, Otsuka Pharmaceutical Co., Ltd
| | | | | |
Collapse
|
12
|
Hu Y, Song F, Jiang H, Nuñez G, Smith DE. SLC15A2 and SLC15A4 Mediate the Transport of Bacterially Derived Di/Tripeptides To Enhance the Nucleotide-Binding Oligomerization Domain-Dependent Immune Response in Mouse Bone Marrow-Derived Macrophages. THE JOURNAL OF IMMUNOLOGY 2018; 201:652-662. [PMID: 29784761 DOI: 10.4049/jimmunol.1800210] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/02/2018] [Indexed: 11/19/2022]
Abstract
There is increasing evidence that proton-coupled oligopeptide transporters (POTs) can transport bacterially derived chemotactic peptides and therefore reside at the critical interface of innate immune responses and regulation. However, there is substantial contention regarding how these bacterial peptides access the cytosol to exert their effects and which POTs are involved in facilitating this process. Thus, the current study proposed to determine the (sub)cellular expression and functional activity of POTs in macrophages derived from mouse bone marrow and to evaluate the effect of specific POT deletion on the production of inflammatory cytokines in wild-type, Pept2 knockout and Pht1 knockout mice. We found that PEPT2 and PHT1 were highly expressed and functionally active in mouse macrophages, but PEPT1 was absent. The fluorescent imaging of muramyl dipeptide-rhodamine clearly demonstrated that PEPT2 was expressed on the plasma membrane of macrophages, whereas PHT1 was expressed on endosomal membranes. Moreover, both transporters could significantly influence the effect of bacterially derived peptide ligands on cytokine stimulation, as shown by the reduced responses in Pept2 knockout and Pht1 knockout mice as compared with wild-type animals. Taken as a whole, our results point to PEPT2 (at plasma membranes) and PHT1 (at endosomal membranes) working in concert to optimize the uptake of bacterial ligands into the cytosol of macrophages, thereby enhancing the production of proinflammatory cytokines. This new paradigm offers significant insight into potential drug development strategies along with transporter-targeted therapies for endocrine, inflammatory, and autoimmune diseases.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109
| | - Feifeng Song
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109.,Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China 310058; and
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China 310058; and
| | - Gabriel Nuñez
- Department of Pathology, School of Medicine, University of Michigan, Ann Arbor, MI 48109
| | - David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
13
|
Wizenty J, Ashraf MI, Rohwer N, Stockmann M, Weiss S, Biebl M, Pratschke J, Aigner F, Wuensch T. Autofluorescence: A potential pitfall in immunofluorescence-based inflammation grading. J Immunol Methods 2018; 456:28-37. [DOI: 10.1016/j.jim.2018.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/14/2018] [Indexed: 10/18/2022]
|
14
|
Spanier B, Rohm F. Proton Coupled Oligopeptide Transporter 1 (PepT1) Function, Regulation, and Influence on the Intestinal Homeostasis. Compr Physiol 2018; 8:843-869. [PMID: 29687907 DOI: 10.1002/cphy.c170038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Viennois E, Pujada A, Zen J, Merlin D. Function, Regulation, and Pathophysiological Relevance of the POT Superfamily, Specifically PepT1 in Inflammatory Bowel Disease. Compr Physiol 2018; 8:731-760. [PMID: 29687900 DOI: 10.1002/cphy.c170032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammalian members of the proton-coupled oligopeptide transporter family are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs and couple substrate translocation to the movement of H+ , with the transmembrane electrochemical proton gradient providing the driving force. Peptide transporters are responsible for the (re)absorption of dietary and/or bacterial di- and tripeptides in the intestine and kidney and maintaining homeostasis of neuropeptides in the brain. These proteins additionally contribute to absorption of a number of pharmacologically important compounds. In this overview article, we have provided updated information on the structure, function, expression, localization, and activities of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4), and PhT2 (SLC15A3). Peptide transporters, in particular, PepT1 are discussed as drug-delivery systems in addition to their implications in health and disease. Particular emphasis has been placed on the involvement of PepT1 in the physiopathology of the gastrointestinal tract, specifically, its role in inflammatory bowel diseases. © 2018 American Physiological Society. Compr Physiol 8:731-760, 2018.
Collapse
Affiliation(s)
- Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Adani Pujada
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jane Zen
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.,Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
16
|
Wang Y, Hu Y, Li P, Weng Y, Kamada N, Jiang H, Smith DE. Expression and regulation of proton-coupled oligopeptide transporters in colonic tissue and immune cells of mice. Biochem Pharmacol 2018; 148:163-173. [PMID: 29305856 PMCID: PMC5801143 DOI: 10.1016/j.bcp.2017.12.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/29/2017] [Indexed: 02/06/2023]
Abstract
A number of studies have implicated proton-coupled oligopeptide transporters (POTs) in the initiation and/or progression of inflammatory bowel disease and immune cell signaling. With this in mind, the aim of this study was to delineate the expression of POTs in mouse colonic tissues and immune cells, and characterize the potential role of these transporters in nucleotide-binding oligomerization domain (NOD) signaling. Using a dextran sodium sulfate (DSS)-induced colitis mouse model, we found that DSS down regulated Pht1 gene expression and up regulated Pht2 gene expression in colonic tissue and immune cells. In contrast, PEPT1 protein was absent from the colonic tissue and immune cells of normal and DSS-treated mice. NOD ligands, muramyl dipeptide (MDP) and l-Ala-γ-d-Glu-meso-diaminopimelic acid (tri-DAP), were shown to be substrates of PHT2 in MDCK-hPHT219,20AA cells. Subsequent studies revealed that the immune response of lamina propia mononuclear cells may be regulated by PHT1 and PHT2, and that PHT2 facilitated the NOD-dependent immune response in RAW264.7 macrophages. These results clarified the expression of POTs in mouse colonic segments, cells and subtypes, and the role of increased Pht2 expression during chemically-induced colitis in facilitating NOD-dependent immune response. The findings further suggest that intestinal PHT2 may serve as a therapeutic target for IBD therapy.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yongjun Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Ping Li
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yayun Weng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Nobuhiko Kamada
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Wang CY, Liu S, Xie XN, Luo ZY, Yang L, Tan ZR. Association between polymorphisms in SLC15A1 and PLA2G16 genes and development of obesity in Chinese subjects. Diabetes Metab Syndr Obes 2018; 11:439-446. [PMID: 30174451 PMCID: PMC6110659 DOI: 10.2147/dmso.s161808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION The small peptide transporter 1 (PepT-1) and adipose phospholipase A2 (AdPLA) play a key role in the development of obesity. However, there are no data assessing the impact of PepT-1 (SLC15A1) and AdPLA (PLA2G16) variants on obesity susceptibility. Therefore, we assessed the contribution of 9 single-nucleotide polymorphisms (SNPs) between these two genes on obesity susceptibility in Chinese subjects. MATERIALS AND METHODS A total of 611 participants were enrolled in the study, and 9 SNPs in the SLC15A1 and PLA2G16 genes were selected. Blood samples were collected for genotyping. Overweight and obesity were established by body mass index. Regression analyses were performed to test for any association of genetic polymorphisms with weight abnormality. RESULTS The genotype frequencies (P=0.04 for rs9557029, P=0.027 for rs1289389) were significantly different between obese or overweight subjects and healthy controls. However, no significant difference in allele was found between these three groups (P>0.05). Further logistic regression analyses adjusted for age and sex also failed to reveal significant associations between overweight, obesity, and the selected SNPs (P>0.05). CONCLUSION Data indicate that the selected 9 SNPs in SLC15A1 and PLA2G16 genes were not related to obesity susceptibility in the Han Chinese population.
Collapse
Affiliation(s)
- Chun-Yang Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China, ;
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China, ;
| | - Shu Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China, ;
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China, ;
| | - Xiao-Nv Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China, ;
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China, ;
| | - Zhi-Ying Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China, ;
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China, ;
| | - Li Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China, ;
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China, ;
| | - Zhi-Rong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China, ;
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China, ;
| |
Collapse
|
18
|
Wang CY, Liu S, Xie XN, Tan ZR. Regulation profile of the intestinal peptide transporter 1 (PepT1). DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3511-3517. [PMID: 29263649 PMCID: PMC5726373 DOI: 10.2147/dddt.s151725] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The intestinal peptide transporter 1 (PepT1) was first identified in 1994. It plays a crucial role in the absorption of small peptides including not only >400 different dipeptides and 8,000 tripeptides digested from dietary proteins but also a repertoire of structurally related compounds and drugs. Owing to its critical role in the bioavailability of peptide-like drugs, such as the anti-cancer agents and anti-virus drug, PepT1 is increasingly becoming a striking prodrug-designing target. Therefore, the understanding of PepT1 gene regulation is of great importance both for dietary adaptation and for clinical drug treatment. After decades of research, it has been recognized that PepT1 could be regulated at the transcriptional and post-transcriptional levels by numerous factors. Therefore, the present review intends to summarize the progress made in the regulation of PepT1 and provide insights into the PepT1's potential in clinical aspects of nutritional and drug therapies.
Collapse
Affiliation(s)
- Chun-Yang Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Xiangya School of Medicine, Central South University.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, People's Republic of China
| | - Shu Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Xiangya School of Medicine, Central South University.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiao-Nv Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Xiangya School of Medicine, Central South University.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhi-Rong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Xiangya School of Medicine, Central South University.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
19
|
Pérez-Torras S, Iglesias I, Llopis M, Lozano JJ, Antolín M, Guarner F, Pastor-Anglada M. Transportome Profiling Identifies Profound Alterations in Crohn's Disease Partially Restored by Commensal Bacteria. J Crohns Colitis 2016; 10:850-9. [PMID: 26874350 DOI: 10.1093/ecco-jcc/jjw042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Several transport alterations have been described in intestinal inflammatory diseases. This is relevant because the primary function of the intestine is nutrient and mineral absorption. However, analysis of the transportome as a whole and the effect of commensal bacteria on it have not been addressed so far. METHODS Five healthy and 6 Crohn's disease (CD) samples were hybridized to human HT-12 V4 Illumina GeneChip. Results were validated by reverse transcription-polymerase chain reaction (RT-PCR) analysis and with additional array data. Organ culture assays were performed from mucosa ileal wall specimens collected at surgery. Samples were incubated with or without commensal bacteria for 4 hours. Finally, RNA was isolated for microarray processing. RESULTS The analysis of CD versus healthy ileal mucosa demonstrated upregulation of previously described genes involved in immunity and the inflammatory response in this disease. Interestingly, whole transcriptional analysis revealed profound alterations in the transportome profile. Sixty-two solute carrier (SLC) transporters displayed different expression patterns, most of them being downregulated. Changes were confirmed by RT-PCR in a randomly chosen subset of SLCs. A large number of amino acid transporters and most members of the enteric purinome were found to be altered. Most of these proteins were found at the apical membrane of the enterocyte, which could impair both amino acid absorption and purinergic signalling. Treatment of ileum specimen explants with commensal bacteria restored almost all CD transportome alterations. CONCLUSIONS These results describe the altered transportome profile in CD and open the possibility of restoring transportome complications with commensal bacteria.
Collapse
Affiliation(s)
- Sandra Pérez-Torras
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Barcelona, Spain Oncology Program, CIBERehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Ingrid Iglesias
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Barcelona, Spain Oncology Program, CIBERehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Marta Llopis
- Digestive System Research Unit, University Hospital Vall d'Hebron, CIBEREHD, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain
| | | | - María Antolín
- Digestive System Research Unit, University Hospital Vall d'Hebron, CIBEREHD, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain
| | - Francisco Guarner
- Digestive System Research Unit, University Hospital Vall d'Hebron, CIBEREHD, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain
| | - Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Barcelona, Spain Oncology Program, CIBERehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
20
|
Zietek T, Rath E. Inflammation Meets Metabolic Disease: Gut Feeling Mediated by GLP-1. Front Immunol 2016; 7:154. [PMID: 27148273 PMCID: PMC4840214 DOI: 10.3389/fimmu.2016.00154] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/08/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic diseases, such as obesity and diabetes, cardiovascular, and inflammatory bowel diseases (IBD) share common features in their pathology. Metabolic disorders exhibit strong inflammatory underpinnings and vice versa, inflammation is associated with metabolic alterations. Next to cytokines and cellular stress pathways, such as the unfolded protein response (UPR), alterations in the enteroendocrine system are intersections of various pathologies. Enteroendocrine cells (EEC) have been studied extensively for their ability to regulate gastrointestinal motility, secretion, and insulin release by release of peptide hormones. In particular, the L-cell-derived incretin hormone glucagon-like peptide 1 (GLP-1) has gained enormous attention due to its insulinotropic action and relevance in the treatment of type 2 diabetes (T2D). Yet, accumulating data indicate a critical role for EEC and in particular for GLP-1 in metabolic adaptation and in orchestrating immune responses beyond blood glucose control. EEC sense the lamina propria and luminal environment, including the microbiota via receptors and transporters. Subsequently, mediating signals by secreting hormones and cytokines, EEC can be considered as integrators of metabolic and inflammatory signaling. This review focuses on L cell and GLP-1 functions in the context of metabolic and inflammatory diseases. The effects of incretin-based therapies on metabolism and immune system are discussed and the interrelation and common features of metabolic and immune-mediated disorders are highlighted. Moreover, it presents data on the impact of inflammation, in particular of IBD on EEC and discusses the potential role of the microbiota as link between nutrients, metabolism, immunity, and disease.
Collapse
Affiliation(s)
- Tamara Zietek
- Department of Nutritional Physiology, Technische Universität München , Freising , Germany
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München , Freising , Germany
| |
Collapse
|
21
|
de la Ballina LR, Cano-Crespo S, González-Muñoz E, Bial S, Estrach S, Cailleteau L, Tissot F, Daniel H, Zorzano A, Ginsberg MH, Palacín M, Féral CC. Amino Acid Transport Associated to Cluster of Differentiation 98 Heavy Chain (CD98hc) Is at the Cross-road of Oxidative Stress and Amino Acid Availability. J Biol Chem 2016; 291:9700-11. [PMID: 26945935 DOI: 10.1074/jbc.m115.704254] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 01/08/2023] Open
Abstract
CD98hc functions as an amino acid (AA) transporter (together with another subunit) and integrin signaling enhancer. It is overexpressed in highly proliferative cells in both physiological and pathological conditions. CD98hc deletion induces strong impairment of cell proliferation in vivo and in vitro Here, we investigate CD98hc-associated AA transport in cell survival and proliferation. By using chimeric versions of CD98hc, the two functions of the protein can be uncoupled. Although recovering the CD98hc AA transport capacity restores the in vivo and in vitro proliferation of CD98hc-null cells, reconstitution of the integrin signaling function of CD98hc is unable to restore in vitro proliferation of those cells. CD98hc-associated transporters (i.e. xCT, LAT1, and y(+)LAT2 in wild-type cells) are crucial to control reactive oxygen species and intracellular AA levels, thus sustaining cell survival and proliferation. Moreover, in CD98hc-null cells the deficiency of CD98hc/xCT cannot be compensated, leading to cell death by ferroptosis. Supplementation of culture media with β-mercaptoethanol rescues CD98hc-deficient cell survival. Under such conditions null cells show oxidative stress and intracellular AA imbalance and, consequently, limited proliferation. CD98hc-null cells also present reduced intracellular levels of branched-chain and aromatic amino acids (BCAAs and ARO AAs, respectively) and induced expression of peptide transporter 1 (PEPT1). Interestingly, external supply of dipeptides containing BCAAs and ARO AAs rescues cell proliferation and compensates for impaired uptake of CD98hc/LAT1 and CD98hc/y(+)LAT2. Our data establish CD98hc as a master protective gene at the cross-road of redox control and AA availability, making it a relevant therapeutic target in cancer.
Collapse
Affiliation(s)
- Laura R de la Ballina
- From the Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain and Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain, INSERM, U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR 7284, 06107 Nice, France,
| | - Sara Cano-Crespo
- From the Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain and Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain, Spanish Biomedical Research Network in Rare Diseases (CIBERER U-731), 08028 Barcelona, Spain
| | - Elena González-Muñoz
- From the Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain and Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain, The Andalusian Cellular Reprogramming Laboratory (LARCEL), Fundación Progreso y Salud, 41092 Seville, Spain
| | - Susanna Bial
- From the Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain and Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain, Spanish Biomedical Research Network in Rare Diseases (CIBERER U-731), 08028 Barcelona, Spain
| | - Soline Estrach
- INSERM, U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR 7284, 06107 Nice, France
| | - Laurence Cailleteau
- INSERM, U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR 7284, 06107 Nice, France
| | - Floriane Tissot
- INSERM, U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR 7284, 06107 Nice, France
| | - Hannelore Daniel
- ZIEL Research Center of Nutrition and Food Sciences, Molecular Nutrition and Biochemistry Unit, Technische Universität München, Gregor-Mendel-Strasse 2, 85350 Freising, Germany
| | - Antonio Zorzano
- From the Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain and Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Diseases (CIBERDEM), 08028 Barcelona, Spain, and
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Manuel Palacín
- From the Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain and Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain, Spanish Biomedical Research Network in Rare Diseases (CIBERER U-731), 08028 Barcelona, Spain,
| | - Chloé C Féral
- INSERM, U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR 7284, 06107 Nice, France,
| |
Collapse
|
22
|
Buttó LF, Schaubeck M, Haller D. Mechanisms of Microbe-Host Interaction in Crohn's Disease: Dysbiosis vs. Pathobiont Selection. Front Immunol 2015; 6:555. [PMID: 26635787 PMCID: PMC4652232 DOI: 10.3389/fimmu.2015.00555] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
Crohn’s disease (CD) is a systemic chronic inflammatory condition mainly characterized by discontinuous transmural pathology of the gastrointestinal tract and frequent extraintestinal manifestations with intermittent episodes of remission and relapse. Genome-wide association studies identified a number of risk loci that, catalyzed by environmental triggers, result in the loss of tolerance toward commensal bacteria based on dysregulated innate effector functions and antimicrobial defense, leading to exacerbated adaptive immune responses responsible for chronic immune-mediated tissue damage. In this review, we discuss the inter-related role of changes in the intestinal microbiota, epithelial barrier integrity, and immune cell functions on the pathogenesis of CD, describing the current approaches available to investigate the molecular mechanisms underlying the disease. Substantial effort has been dedicated to define disease-associated changes in the intestinal microbiota (dysbiosis) and to link pathobionts to the etiology of inflammatory bowel diseases. A cogent definition of dysbiosis is lacking, as well as an agreement of whether pathobionts or complex shifts in the microbiota trigger inflammation in the host. Among the rarely available animal models, SAMP/Yit and TNFdeltaARE mice are the best known displaying a transmural CD-like phenotype. New hypothesis-driven mouse models, e.g., epithelial-specific Caspase8−/−, ATG16L1−/−, and XBP1−/− mice, validate pathway-focused function of specific CD-associated risk genes highlighting the role of Paneth cells in antimicrobial defense. To study the causal role of bacteria in initiating inflammation in the host, the use of germ-free mouse models is indispensable. Unraveling the interactions of genes, immune cells and microbes constitute a criterion for the development of safe, reliable, and effective treatment options for CD.
Collapse
Affiliation(s)
- Ludovica F Buttó
- Chair of Nutrition and Immunology, Technische Universität München , Freising-Weihenstephan , Germany
| | - Monika Schaubeck
- Chair of Nutrition and Immunology, Technische Universität München , Freising-Weihenstephan , Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technische Universität München , Freising-Weihenstephan , Germany
| |
Collapse
|