1
|
Halliez C, Ibrahim H, Otonkoski T, Mallone R. In vitro beta-cell killing models using immune cells and human pluripotent stem cell-derived islets: Challenges and opportunities. Front Endocrinol (Lausanne) 2023; 13:1076683. [PMID: 36726462 PMCID: PMC9885197 DOI: 10.3389/fendo.2022.1076683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Type 1 diabetes (T1D) is a disease of both autoimmunity and β-cells. The β-cells play an active role in their own demise by mounting defense mechanisms that are insufficient at best, and that can become even deleterious in the long term. This complex crosstalk is important to understanding the physiological defense mechanisms at play in healthy conditions, their alterations in the T1D setting, and therapeutic agents that may boost such mechanisms. Robust protocols to develop stem-cell-derived islets (SC-islets) from human pluripotent stem cells (hPSCs), and islet-reactive cytotoxic CD8+ T-cells from peripheral blood mononuclear cells offer unprecedented opportunities to study this crosstalk. Challenges to develop in vitro β-cell killing models include the cluster morphology of SC-islets, the relatively weak cytotoxicity of most autoimmune T-cells and the variable behavior of in vitro expanded CD8+ T-cells. These challenges may however be highly rewarding in light of the opportunities offered by such models. Herein, we discuss these opportunities including: the β-cell/immune crosstalk in an islet microenvironment; the features that make β-cells more sensitive to autoimmunity; therapeutic agents that may modulate β-cell vulnerability; and the possibility to perform analyses in an autologous setting, i.e., by generating T-cell effectors and SC-islets from the same donor.
Collapse
Affiliation(s)
- Clémentine Halliez
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
2
|
Henquin JC. Influence of organ donor attributes and preparation characteristics on the dynamics of insulin secretion in isolated human islets. Physiol Rep 2019. [PMID: 29536672 PMCID: PMC5849575 DOI: 10.14814/phy2.13646] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In vitro studies of human pancreatic islets are critical for understanding normal insulin secretion and its perturbations in diabetic β-cells, but the influence of islet preparation characteristics and organ donor attributes in such experiments is poorly documented. Preparations from normal donors were tested with a standardized protocol evaluating dynamic insulin secretion induced by glucose, tolbutamide, and cAMP (forskolin). Secretion rates, normalized to insulin content (fractional insulin secretion), were analyzed as a function of preparation and donor characteristics. Low purity (25-45%) of the preparation (n = 8) blunted the first phase of insulin secretion induced by glucose or tolbutamide and increased basal secretion, resulting in threefold lower stimulation index than in more pure (55-95%) preparations (n = 43). In these more pure preparations, cold ischemia time (1-13 h) before pancreas digestion did not impact insulin secretion. Islet size (estimated by the islet size index) did not influence the dynamics of secretion, but fractional insulin secretion rates were greater in large than small islets, and positively correlated with islet size. Age of the donors (20-68 years) had no influence on islet size and insulin content or on dynamics and amplitude of insulin secretion, which were also similar in islets from male and female donors. In contrast, islet size and islet insulin content (normalized for size), and basal or stimulated insulin secretion positively correlated with Body-Mass Index (19-33). These results contradict previous reports on the impact of donor age and islet size and point to possible confounding effects of donor BMI in insulin secretion studies with isolated human islets.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
| |
Collapse
|
3
|
|
4
|
Henquin JC, Dufrane D, Gmyr V, Kerr-Conte J, Nenquin M. Pharmacological approach to understanding the control of insulin secretion in human islets. Diabetes Obes Metab 2017; 19:1061-1070. [PMID: 28116849 DOI: 10.1111/dom.12887] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 11/29/2022]
Abstract
AIMS To understand better the control of insulin secretion by human β cells and to identify similarities to and differences from rodent models. METHODS Dynamic insulin secretion was measured in perifused human islets treated with pharmacological agents of known modes of action. RESULTS Glucokinase activation (Ro28-1675) lowered the glucose threshold for stimulation of insulin secretion to 1 mmol/L (G1), augmented the response to G3-G5 but not to G8-G15, whereas tolbutamide remained active in G20, which indicates that not all KATP channels were closed by high glucose concentrations. An almost 2-fold greater response to G15 than to supramaximal tolbutamide in G3 or to KCl+diazoxide in G15 vs G3 quantified the contribution of metabolic amplification to insulin secretion. Both disruption (latrunculin-B) and stabilization (jasplakinolide) of microfilaments augmented insulin secretion without affecting metabolic amplification. Tolbutamide-induced insulin secretion was consistently greater in G10 than G3, with a threshold at 1 and maximum at 10 µmol/L tolbutamide in G10, vs 10 and 25 µmol/L in G3. Sulphonylurea effects were thus clearly glucose-dependent. Insulin secretion was also increased by inhibiting K channels other than KATP channels: Kv or BK channels (tetraethylammonium), TASK-1 channels (ML-365) and SK4 channels (TRAM-34). Opening KATP channels with diazoxide inhibited glucose-induced insulin secretion with half maximum inhibitory concentrations of 9.6 and 24 µmol/L at G7 and G15. Blockade of L-type Ca channels (nimodipine) abolished insulin secretion, whereas a blocker of T-type Ca channels (NNC-55-0396) was ineffective at specific concentrations. Blockade of Na channels (tetrodotoxin) did not affect glucose-induced insulin secretion. CONCLUSIONS In addition to sharing a KATP channel-dependent triggering pathway and a metabolic amplifying pathway, human and rodent β cells were found to display more similarities than differences in the control of insulin secretion.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
| | - Denis Dufrane
- Endocrine Cell Therapy Unit, University Clinics Saint-Luc, University of Louvain, Brussels, Belgium
| | - Valery Gmyr
- Institut National de la Santé et de la Recherche Médicale U1190, Translational Research for Diabetes, and European Genomic Institute for Diabetes, University of Lille, Lille, France
| | - Julie Kerr-Conte
- Institut National de la Santé et de la Recherche Médicale U1190, Translational Research for Diabetes, and European Genomic Institute for Diabetes, University of Lille, Lille, France
| | - Myriam Nenquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
| |
Collapse
|
5
|
Henquin JC, Dufrane D, Kerr-Conte J, Nenquin M. Dynamics of glucose-induced insulin secretion in normal human islets. Am J Physiol Endocrinol Metab 2015; 309:E640-50. [PMID: 26264556 DOI: 10.1152/ajpendo.00251.2015] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/10/2015] [Indexed: 11/22/2022]
Abstract
The biphasic pattern of glucose-induced insulin secretion is altered in type 2 diabetes. Impairment of the first phase is an early sign of β-cell dysfunction, but the underlying mechanisms are still unknown. Their identification through in vitro comparisons of islets from diabetic and control subjects requires characterization and quantification of the dynamics of insulin secretion by normal islets. When perifused normal human islets were stimulated with 15 mmol/l glucose (G15), the proinsulin/insulin ratio in secretory products rapidly and reversibly decreased (∼50%) and did not reaugment with time. Switching from prestimulatory G3 to G6-G30 induced biphasic insulin secretion with flat but sustained (2 h) second phases. Stimulation index reached 6.7- and 3.6-fold for the first and second phases induced by G10. Concentration dependency was similar for both phases, with half-maximal and maximal responses at G6.5 and G15, respectively. First-phase response to G15-G30 was diminished by short (30-60 min) prestimulation in G6 (vs. G3) and abolished by prestimulation in G8, whereas the second phase was unaffected. After 1-2 days of culture in G8 (instead of G5), islets were virtually unresponsive to G15. In both settings, a brief return to G3-G5 or transient omission of CaCl2 restored biphasic insulin secretion. Strikingly, tolbutamide and arginine evoked immediate insulin secretion in islets refractory to glucose. In conclusion, we quantitatively characterized the dynamics of glucose-induced insulin secretion in normal human islets and showed that slight elevation of prestimulatory glucose reversibly impairs the first phase, which supports the view that the similar impairment in type 2 diabetic patients might partially be a secondary phenomenon.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium;
| | - Denis Dufrane
- Endocrine Cell Therapy Unit, University Clinics Saint-Luc, University of Louvain, Brussels, Belgium
| | - Julie Kerr-Conte
- Institut National de la Santé et de la Recherche Médicale U1190, Translational Research for Diabetes, and European Genomic Institute for Diabetes, University of Lille, Lille, France
| | - Myriam Nenquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Hilling DE, Bouwman E, Terpstra OT, Marang-Van De Mheen PJ. Effects of Donor-, Pancreas-, and Isolation-Related Variables on Human Islet Isolation Outcome: A Systematic Review. Cell Transplant 2014; 23:921-8. [DOI: 10.3727/096368913x666412] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Different factors have been reported to influence islet isolation outcome, but their importance varies between studies and are hampered by the small sample sizes in most studies. The purpose of this study was to perform a systematic review to assess the impact of donor-, pancreas-, and isolation-related variables on successful human islet isolation outcome. PubMed, Embase, and Web of Science were searched electronically in April 2009. All studies reporting on donor-, pancreas-, and isolation-related factors relating to prepurification and postpurification islet isolation yield and proportion of successful islet isolations were selected. Seventy-four retrospective studies had sufficient data and were included in the analyses. Higher pre- and postpurification islet yields and a higher proportion of successful islet isolations were obtained when pancreata were preserved with the two-layer method rather than University of Wisconsin solution in donors with shorter cold ischemia times (CITs) [1 h longer CIT resulted in an average decline of prepurification and postpurification yields and proportion of successful isolations of 59 islet equivalents (IEQs)/g, 54 IEQs/g, and 21%, respectively]. Higher prepurification yields and higher percentage of successful islet isolations were found in younger donors with higher body mass index. Lower yields were found in donation after brain death donors compared to donation after cardiac death donors. Higher postpurification yields were found for isolation with Serva collagenase. This review identified donor-, pancreas-, and isolation-related factors that influence islet isolation yield. Standardized reports of these factors in all future studies may improve the power and identify additional factors and thereby contribute to improving islet isolation yield.
Collapse
Affiliation(s)
- Denise E. Hilling
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Eelco Bouwman
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Onno T. Terpstra
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
7
|
Vériter S, Aouassar N, Beaurin G, Goebbels RM, Gianello P, Dufrane D. Improvement of pig islet function by in vivo pancreatic tissue remodeling: a "human-like" pig islet structure with streptozotocin treatment. Cell Transplant 2012; 22:2161-73. [PMID: 23051152 DOI: 10.3727/096368912x657864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pig islets demonstrate significantly lower insulin secretion after glucose stimulation than human islets (stimulation index of ∼12 vs. 2 for glucose 1 and 15 mM, respectively) due to a major difference in β- and α-cell composition in islets (60% and 25% in humans and 90% and 8% in pigs, respectively). This leads to a lower rise in 3',5'-cyclic adenosine monophosphate (cAMP) in pig β-cells. Since glucagon is the major hormonal effector of cAMP in β-cells, we modified pig islet structure in vivo to increase the proportion of α-cells per islet and to improve insulin secretion. Selected doses (0, 30, 50, 75, and 100 mg/kg) of streptozotocin (STZ) were intravenously injected in 32 young pigs to assess pancreatic (insulin and glucagon) hormone levels, islet remodeling (histomorphometry for α- and β-cell proportions), and insulin and glucagon secretion in isolated islets. Endocrine structure and hormonal content of pig islets were compared with those of human islets. The dose of STZ was significantly correlated with reductions in pancreatic insulin content (p< 0.05, r(2) = 0.77) and the proportion of β-cells (p < 0.05, r(2) = 0.88). A maximum of 50 mg/kg STZ was required for optimal structure remodeling, with an increased proportion of α-cells per islet (26% vs. 48% α-cells per islet for STZ <50 mg/kg vs. >75 mg/kg; p < 0.05) without β-cell dysfunction. Three months after STZ treatment (30/50 mg/kg STZ), pig islets were isolated and compared with isolated control islets (0 mg/kg STZ). Isolated islets from STZ-treated (30/50 mg/kg) pigs had a higher proportion of α-cells than those from control animals (32.0% vs. 9.6%, respectively, p < 0.05). After in vitro stimulation, isolated islets from STZ-treated pigs demonstrated significantly higher glucagon content (65.4 vs. 21.0 ng/ml, p < 0.05) and insulin release (144 µU/ml) than nontreated islets (59 µU/ml, p < 0.05), respectively. Low-dose STZ (<50 mg/kg) can modify the structure of pig islets in vivo and improve insulin secretion after isolation.
Collapse
Affiliation(s)
- Sophie Vériter
- Pôle de Chirurgie Expérimentale et Transplantation, Laboratory of Experimental Surgery, Université Catholique de Louvain, Secteur des Sciences de la Santé, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
8
|
Dufrane D, Gianello P. Pig islet for xenotransplantation in human: structural and physiological compatibility for human clinical application. Transplant Rev (Orlando) 2012; 26:183-8. [DOI: 10.1016/j.trre.2011.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/28/2011] [Accepted: 07/05/2011] [Indexed: 11/25/2022]
|
9
|
Basic techniques for pancreatic research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010. [PMID: 20700840 DOI: 10.1007/978-90-481-9060-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
10
|
Abstract
OBJECTIVES Although the stimulation index (SI) is widely used as a parameter that reflects the insulin releasing function of isolated islets, comparison between the outcomes of different institutions is problematic. This basic study was conducted for 2 objectives as we aimed to determine the optimal high glucose level for rat islets and clarify the available evidence in this field. METHODS We isolated islets of 3 rat strains (Lewis, Sprague-Dawley, and Wistar--n = 5 per strain) and measured the viability of the islets. We measured the amount of insulin released after high and low glucose stimulation. The SI was calculated as a ratio of the insulin value after high glucose stimulation divided by insulin value after low glucose stimulation. We examined the correlation between SI and viability at the high glucose levels. RESULTS Isolated islets released insulin corresponding to the changes of high glucose level. The highest correlation coefficient between SI and viability was seen at a glucose level of 16.5 mmol/L (R2 = 0.546, correlation coefficient = 0.154) followed by 19.3 mmol/L (R2 = 0.541, correlation coefficient = 0.169). CONCLUSIONS We could optimize the high glucose level at 16.5 to 19.3 mmol/L (300-350 mg/dL) for isolated rat islets, with evidence acquired from correlation studies between SI and viability.
Collapse
|
11
|
Dufrane D, Nenquin M, Henquin JC. Nutrient control of insulin secretion in perifused adult pig islets. DIABETES & METABOLISM 2007; 33:430-8. [PMID: 17584514 DOI: 10.1016/j.diabet.2007.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 04/24/2007] [Accepted: 05/03/2007] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Xenotransplantation of pig islets is a potential solution to the shortage of human islets, but our knowledge of how these islets secrete insulin in response to nutrients is still fragmentary. This was the question addressed in the present study. METHODS After 24 h culture adult pig islets were perifused to characterize the dynamics of insulin secretion. Some responses were compared to those in human islets. RESULTS Increasing glucose from 1 to 15 mM weakly (approximately 2x) stimulated insulin secretion, which was potentiated (approximately 12x) by the cAMP-producing agent, forskolin. The effect of glucose was concentration-dependent (threshold at 3-5 mM and maximum at approximately 10 mM). The pattern of secretion was biphasic with a small first phase and an ascending second phase, and a paradoxical increase when the glucose concentration was abruptly lowered. Diazoxide abolished glucose-induced insulin secretion and tolbutamide reversed the inhibition. Glucose also increased secretion when islets were depolarized with tolbutamide or KCl. Insulin secretion was increased by leucine+glutamine, arginine, alanine or a mixture of amino acids, but their effect was significant only in the presence of forskolin. Upon stimulation by glucose alone, human islets secreted approximately 10x more insulin than pig islets, and the kinetics was characterized by a large first phase, a flat second phase, and rapid reversibility. CONCLUSIONS Compared with human islets, in vitro insulin secretion by adult pig islets is characterized by a different kinetics and a major quantitative deficiency that can be corrected by cAMP.
Collapse
Affiliation(s)
- D Dufrane
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, UCL 55.30, avenue Hippocrate 55, 1200 Brussels, Belgium
| | | | | |
Collapse
|
12
|
Abstract
Pancreatic islets were isolated from 16 nondiabetic organ donors and, after culture for approximately 2 days in 5 mmol/l glucose, were perifused to characterize nutrient-induced insulin secretion in human islets. Stepwise increases from 0 to 30 mmol/l glucose (eight 30-min steps) evoked concentration-dependent insulin secretion with a threshold at 3-4 mmol/l glucose, K(m) at 6.5 mmol/l glucose, and V(max) at 15 mmol/l glucose. An increase from 1 to 15 mmol/l glucose induced biphasic insulin secretion with a prominent first phase (peak increase of approximately 18-fold) and a sustained, flat second phase ( approximately 10-fold increase), which were both potentiated by forskolin. The central role of ATP-sensitive K(+) channels in the response to glucose was established by abrogation of insulin secretion by diazoxide and reversible restoration by tolbutamide. Depolarization with tolbutamide or KCl (plus diazoxide) triggered rapid insulin secretion in 1 mmol/l glucose. Subsequent application of 15 mmol/l glucose further increased insulin secretion, showing that the amplifying pathway is operative. In control medium, glutamine alone was ineffective, but its combination with leucine or nonmetabolized 2-amino-bicyclo [2,2,1]-heptane-2-carboxylic acid (BCH) evoked rapid insulin secretion. The effect of BCH was larger in low glucose than in high glucose. In contrast, the insulin secretion response to arginine or a mixture of four amino acids was potentiated by glucose or tolbutamide. Palmitate slightly augmented insulin secretion only at the supraphysiological palmitate-to-albumin ratio of 5. Inosine and membrane-permeant analogs of pyruvate, glutamate, or succinate increased insulin secretion in 3 and 10 mmol/l glucose, whereas lactate and pyruvate had no effect. In conclusion, nutrient-induced insulin secretion in normal human islets is larger than often reported. Its characteristics are globally similar to those of insulin secretion by rodent islets, with both triggering and amplifying pathways. The pattern of the biphasic response to glucose is superimposable on that in mouse islets, but the concentration-response curve is shifted to the left, and various nutrients, in particular amino acids, influence insulin secretion within the physiological range of glucose concentrations.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unité d'Endocrinologie et Métabolisme, UCL 55.30, Ave. Hippocrate 55, B-1200 Brussels, Belgium.
| | | | | |
Collapse
|
13
|
Dufrane D, D'hoore W, Goebbels RM, Saliez A, Guiot Y, Gianello P. Parameters favouring successful adult pig islet isolations for xenotransplantation in pig-to-primate models. Xenotransplantation 2006; 13:204-14. [PMID: 16756563 DOI: 10.1111/j.1399-3089.2006.00275.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND In the near future, adult porcine islets of Langerhans appear as an unlimited source of insulin-producing cells which could play a major role for treating diabetes mellitus. There is, however, an obvious lack of pre-clinical results and data in the pig-to-primate model. One of the main hurdles of this model is certainly related to the difficulty of reproducing regularly successful porcine islet isolation. This experimental work was designed to provide guidelines applicable in pig pancreas procurement and islet isolation for successful islet xenotransplantation into primates. METHODS Pancreases were harvested from adult Belgium Landrace pigs (n = 79) in a single centre. The impact on islet yield of (1) pancreas procurement (blood exsanguination and warm ischaemia time (WIT)), (2) cold storage solutions (classic UW and modified UW (without hydroxyethyl starch and inverse K+/Na+ concentration)), (3) a dynamic or static method of pancreas digestion, and (4) the endotoxin content and enzymatic activity from five different batches of Liberase PI was studied. In addition, pancreatic biopsies (n = 18), performed before isolation, were retrospectively analyzed to study the impact of histomorphometry on porcine islet yield. Finally, two diabetic cynomolgus monkeys were transplanted without immunosuppression with 15,000 pig islet equivalents/kg body weight of recipient to assess in vivo the function of freshly isolated islets. Univariate and multivariate analyses were performed. RESULTS By multiple linear regression, the most significant variables that significantly improved islet yield were, firstly, the presence of <30 EU (endotoxin units) of endotoxin in Liberase batches, followed by a WIT under 10 min and the use of blood exsanguination before pancreas harvesting (P < 0.005). In contrast, isolation method (dynamic vs. static) and the solution used for storage (short-term) (UW vs. modified UW) did not significantly influence islet yield. The correlation of retrospective histomorphometry analysis of native pancreas and extemporaneous biopsy before isolation clearly determined a positive relationship between isolated islet number and the number of islets/cm2 (r = 0.708, P < 0.01) or with the percentage of large islets (r = 0.680, P < 0.01) found in pancreas biopsies. Pig pancreases containing more than 82 islets/cm2 and more than 42% of large islets (>100 microm) thus enabled more than 120,000 islet equivalents to be obtained in 90% of the cases, which is an ideal amount of islets to transplant into a primate of 4 to 5 kg. In vivo, a reduction of blood glucose (<200 mg/dl), associated with porcine C-peptide production, was observed in two primates after transplantation with adult pig islets. At day 7 post-transplantation, however, loss of islet function was associated with graft destruction and immune reaction. CONCLUSIONS Morphological screening of the pig pancreas before isolation, optimal blood exsanguination, WIT <10 min, and an endotoxin content <30 EU/mg in Liberase PI batches determine successful pig islet isolation for xenotransplantation in primates.
Collapse
Affiliation(s)
- Denis Dufrane
- Laboratory of Experimental Surgery, Université Catholique de Louvain, Faculty of Medicine, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Henquin JC, Nenquin M, Stiernet P, Ahren B. In vivo and in vitro glucose-induced biphasic insulin secretion in the mouse: pattern and role of cytoplasmic Ca2+ and amplification signals in beta-cells. Diabetes 2006; 55:441-51. [PMID: 16443779 DOI: 10.2337/diabetes.55.02.06.db05-1051] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mechanisms underlying biphasic insulin secretion have not been completely elucidated. We compared the pattern of plasma insulin changes during hyperglycemic clamps in mice to that of glucose-induced insulin secretion and cytosolic calcium concentration ([Ca(2+)](c)) changes in perifused mouse islets. Anesthetized mice were infused with glucose to clamp blood glucose at 8.5 (baseline), 11.1, 16.7, or 30 mmol/l. A first-phase insulin response consistently peaked at 1 min, and a slowly ascending second phase occurred at 16.7 and 30 mmol/l glucose. Glucose-induced insulin secretion in vivo is thus biphasic, with a similarly increasing second phase in the mouse as in humans. In vitro, square-wave stimulation from a baseline of 3 mmol/l glucose induced similar biphasic insulin secretion and [Ca(2+)](c) increases, with sustained and flat second phases. The glucose dependency (3-30 mmol/l) of both changes was sigmoidal with, however, a shift to the right of the relation for insulin secretion compared with that for [Ca(2+)](c). The maximum [Ca(2+)](c) increase was achieved by glucose concentrations, causing half-maximum insulin secretion. Because this was true for both phases, we propose that contrary to current concepts, amplifying signals are also implicated in first-phase glucose-induced insulin secretion. To mimic in vivo conditions, islets were stimulated with high glucose after being initially perifused with 8.5 instead of 3.0 mmol/l glucose. First-phase insulin secretion induced by glucose at 11.1, 16.7, and 30 mmol/l was decreased by approximately 50%, an inhibition that could not be explained by commensurate decreases in [Ca(2+)](c) or in the pool of readily releasable granules. Also unexpected was the gradually ascending pattern of the second phase, now similar to that in vivo. These observations indicated that variations in prestimulatory glucose can secondarily affect the magnitude and pattern of subsequent glucose-induced insulin secretion.
Collapse
|