1
|
Wang L, Ren Y, Xu T, Geng J, Yang N, Wang R. Triglycerides: A Sensitizer but Not a Trigger for Hypertriglyceridemic Acute Pancreatitis. Dig Dis Sci 2024; 69:2123-2131. [PMID: 38609542 DOI: 10.1007/s10620-024-08412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND The incidence of hypertriglyceridemic acute pancreatitis (HTG-AP) is increasing. Although the guideline defines the diagnostic criteria as triglyceride (TG) greater than 11.3 mmol/L, there is actually no specific threshold. Many people with hypertriglyceridemia (HTG) or obvious chyloid blood do not develop acute pancreatitis (AP). AIMS To explore the role of HTG in the pathogenesis of AP. METHODS Thirty-six male SD rats were randomly assigned into normal control, AP, HTG, HTG-AP, low-dose fenofibrate and high-dose fenofibrate groups. Serum indices and cytokine levels in serum, and pathological changes in pancreatic tissues were observed. The expression levels of TLR4 and NF-κBp65 in pancreatic tissues were detected by immunohistochemistry and Western blot. RESULTS In normal rats, HTG alone did not induce AP. However, after establishing the HTG-AP model with Poloxam 407 and L-arginine, serum-free fatty acid and TG levels were positively correlated with the levels of lipase, amylase, IL-1β, IL-6, pancreatic inflammation scores, and the expressions of TLR4 and NF-κBp65 (all P < 0.001). Expressions of TLR4 and NF-κBp65 were significantly increased in the pancreatic tissues of HTG-AP rats. Fenofibrate effectively decreased TG levels in HTG-AP rats and reduced the expression of TLR4 and NF-κBp65 (all P < 0.001). CONCLUSIONS HTG does not directly cause AP, but rather increases the susceptibility to AP or aggravates the inflammatory response. It is more like a sensitizer of inflammation rather than an activator.
Collapse
Affiliation(s)
- Lu Wang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, P. R. China
| | - Yutang Ren
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Beijing, 102218, P. R. China
| | - Ting Xu
- Department of Gastroenterology, Daqing Oilfield Central Hospital, No. 9 Zhongkang Road, Daqing, 163000, Heilongjiang, P. R. China
| | - Jinting Geng
- Gastrointestinal Interal Medicine and Digestive Endoscopy Center, Second Affiliated Hospital, Jilin University, No. 4026 Yatai Street, Changchun, 130000, Jilin, P. R. China
| | - Ning Yang
- Department of Gastroenterology, Heilongjiang Provincial Hospital, 82 Zhongshan Road, Harbin, 150000, Heilongjiang, P. R. China
| | - Ruifeng Wang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Beijing, 102218, P. R. China.
| |
Collapse
|
2
|
Zhou Y, Huang X, Jin Y, Qiu M, Ambe PC, Basharat Z, Hong W. The role of mitochondrial damage-associated molecular patterns in acute pancreatitis. Biomed Pharmacother 2024; 175:116690. [PMID: 38718519 DOI: 10.1016/j.biopha.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal tract diseases with significant morbidity and mortality. Current treatments remain unspecific and supportive due to the severity and clinical course of AP, which can fluctuate rapidly and unpredictably. Mitochondria, cellular power plant to produce energy, are involved in a variety of physiological or pathological activities in human body. There is a growing evidence indicating that mitochondria damage-associated molecular patterns (mtDAMPs) play an important role in pathogenesis and progression of AP. With the pro-inflammatory properties, released mtDAMPs may damage pancreatic cells by binding with receptors, activating downstream molecules and releasing inflammatory factors. This review focuses on the possible interaction between AP and mtDAMPs, which include cytochrome c (Cyt c), mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), cardiolipin (CL), adenosine triphosphate (ATP) and succinate, with focus on experimental research and potential therapeutic targets in clinical practice. Preventing or diminishing the release of mtDAMPs or targeting the mtDAMPs receptors might have a role in AP progression.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyi Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinglu Jin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Peter C Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20-24, Bensberg 51429, Germany
| | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Mattke J, Darden CM, Lawrence MC, Kuncha J, Shah YA, Kane RR, Naziruddin B. Toll-like receptor 4 in pancreatic damage and immune infiltration in acute pancreatitis. Front Immunol 2024; 15:1362727. [PMID: 38585277 PMCID: PMC10995222 DOI: 10.3389/fimmu.2024.1362727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Acute pancreatitis is a complex inflammatory disease resulting in extreme pain and can result in significant morbidity and mortality. It can be caused by several factors ranging from genetics, alcohol use, gall stones, and ductal obstruction caused by calcification or neutrophil extracellular traps. Acute pancreatitis is also characterized by immune cell infiltration of neutrophils and M1 macrophages. Toll-like receptor 4 (TLR4) is a pattern recognition receptor that has been noted to respond to endogenous ligands such as high mobility group box 1 (HMGB1) protein and or exogenous ligands such as lipopolysaccharide both of which can be present during the progression of acute pancreatitis. This receptor can be found on a variety of cell types from endothelial cells to resident and infiltrating immune cells leading to production of pro-inflammatory cytokines as well as immune cell activation and maturation resulting in the furthering of pancreatic damage during acute pancreatitis. In this review we will address the various mechanisms mediated by TLR4 in the advancement of acute pancreatitis and how targeting this receptor could lead to improved outcomes for patients suffering from this condition.
Collapse
Affiliation(s)
- Jordan Mattke
- Baylor University, Institute of Biomedical Studies, Waco, TX, United States
| | - Carly M. Darden
- Baylor University Medical Center, Annette C. and Harold C. Simmons Transplant Institute, Dallas, TX, United States
| | - Michael C. Lawrence
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Jayachandra Kuncha
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Yumna Ali Shah
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Robert R. Kane
- Baylor University, Institute of Biomedical Studies, Waco, TX, United States
| | - Bashoo Naziruddin
- Baylor University Medical Center, Annette C. and Harold C. Simmons Transplant Institute, Dallas, TX, United States
| |
Collapse
|
4
|
Yang G, Zhang X. Trimethylamine N-oxide promotes hyperlipidemia acute pancreatitis via inflammatory response. Can J Physiol Pharmacol 2022; 100:61-67. [PMID: 34793682 DOI: 10.1139/cjpp-2021-0421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Trimethylamine N-oxide (TMAO), a metabolite of gut microbiota, is involved in the regulation of lipid metabolism and inflammatory response; however, the role of TMAO in hyperlipidemia acute pancreatitis (HAP) is not clear. In this study, HAP mice were used as an animal model to explore the effects and possible mechanism of TMAO on HAP, which may provide new ideas for the treatment of HAP. Results found that the levels of triglycerides, total cholesterol, low-density lipoprotein cholesterol, nonestesterified fatty acid, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, α-amylase, TMAO, and flavin-containing monooxygenase 3 were significantly increased, the levels of high-density lipoprotein cholesterol and insulin were significantly decreased, and there was an obvious pancreatic injury and inflammatory response in the model group. The choline analogue 3,3-dimethyl-1-butanol (DMB) treatment reversed the changes of serum biochemical parameters, alleviated the pancreatic tissue injury, and reduced the levels of inflammatory cytokines. Further studies of toll-like receptor (TLR)/p-glycoprotein 65 (p65) pathway found that the expressions of TLR2, TLR4, and p-p65/p65 in the model group were significantly increased, which was more obvious after Escherichia coli (Migula) Castellani & Chalmers treatment, while activation of the TLR/p65 pathway was inhibited by DMB. The results indicated that TMAO promotes HAP by promoting inflammatory response through TLR/p65 signaling pathway, suggesting that TMAO may be a potential target of HAP.
Collapse
Affiliation(s)
- Guodong Yang
- Department of Gastroenterology and Hepatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Xiaoying Zhang
- School of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| |
Collapse
|
5
|
Abdelmageed ME, Nader MA, Zaghloul MS. Targeting HMGB1/TLR4/NF-κB signaling pathway by protocatechuic acid protects against l-arginine induced acute pancreatitis and multiple organs injury in rats. Eur J Pharmacol 2021; 906:174279. [PMID: 34197778 DOI: 10.1016/j.ejphar.2021.174279] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022]
Abstract
Acute pancreatitis (AP) is a common pancreatic inflammation associated with substantial morbidity and mortality. AP may be mild or severe which can spread systemically causing multiple organs failure (MOF) and even death. In the current study, protocatechuic acid (PCA), a natural phenolic acid, was investigated for its possible protective potential against L-arginine induced AP and multiple organs injury (MOI) in rats. AP was induced by L-arginine (500 mg/100 g, ip). Two dose levels of PCA were tested (50 and 100 mg/kg, oral, 10 days before L-arginine injection). PCA successfully protected against L-arginine induced AP and MOI that was manifested by normalizing pancreatic, hepatic, pulmonary, and renal tissue architecture and restoring the normal values of pancreatic enzymes (amylase and lipase), serum total protein, liver enzymes (alanine transaminase (ALT) and aspartate transaminase (AST)) and kidney function biomarkers (blood urea nitrogen (BUN) and serum creatinine (Cr)) that were significantly elevated upon L-arginine administration. Additionally, PCA restored balanced oxidant/antioxidants status that was disrupted by L-arginine and normalized pancreatic levels of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) content. Moreover, PCA significantly decreased L-arginine induced elevation in pancreatic high motility group box protein 1 (HMGB1), toll like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear factor kappa B (NF-κB), tumor necrosis factor- α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) expression. PCA significantly ameliorated L-arginine-induced AP and MOI through its anti-inflammatory and antioxidant effects. HMGB1/TLR4/NF-κB was the major pathway involved in the observed protective potential.
Collapse
Affiliation(s)
- Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
6
|
Tao X, Xiang H, Pan Y, Shang D, Guo J, Gao G, Xiao GG. Pancreatitis initiated pancreatic ductal adenocarcinoma: Pathophysiology explaining clinical evidence. Pharmacol Res 2021; 168:105595. [PMID: 33823219 DOI: 10.1016/j.phrs.2021.105595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant lethal disease due to its asymptomatic at its early lesion of the disease and drug resistance. Target therapy associated with molecular pathways so far seems not to produce reasonable outcomes. Understanding of the molecular mechanisms underlying inflammation-initiated tumorigenesis may be helpful for development of an effective therapy of the disease. A line of studies showed that pancreatic tumorigenesis was resulted from pancreatitis, which was caused synergistically by various pancreatic cells. This review focuses on those players and their possible clinic implications, such as exocrine acinar cells, ductal cells, and various stromal cells, including pancreatic stellate cells (PSCs), macrophages, lymphocytes, neutrophils, mast cells, adipocytes and endothelial cells, working together with each other in an inflammation-mediated microenvironment governed by a myriad of cellular signaling networks towards PDAC.
Collapse
Affiliation(s)
- Xufeng Tao
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Hong Xiang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Pan
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junchao Guo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ge Gao
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Gary Guishan Xiao
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China; The UCLA Agi Hirshberg Center for Pancreatic Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Functional Genomics and Proteomics Laboratory, Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE, United States.
| |
Collapse
|
7
|
The Role of TLR-4 and Galectin-3 Interaction in Acute Pancreatitis. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020. [DOI: 10.2478/sjecr-2019-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Toll-like receptor-4 (TLR-4) is a member of evolutionarily conserved type I transmembrane proteins that can initiate sterile inflammatory cascade in the pancreas. Expression of TLR-4 is up-regulated in pancreatic tissue, as well as, on peripheral blood innate immune cells in human and experimental models of acute pancreatitis. TLR-4 plays important pro-inflammatory roles during development of acute pancreatitis: it recognize alarmins released from injured acinar cells and promotes activation and infiltration of innate immune cells after the premature and intraacinar activation of tripsinogen. Galectin-3 is β-galactoside-binding lectin that plays pro-inflammatory roles in a variety autoimmune diseases, acute bacterial infections and during tumorigenesis. It is reported that Galectin-3 is alarmin in experimental models of neuroinflammation and binds to TLR-4 promoting the pro-inflammatory phenotype of microglia. Also, in experimental model of acute pancreatitis Galectin-3 is colocalized with TLR-4 on innate inflammatory cells resulted in enhanced production of inflammatory cytokines, TNF-α and IL-1β, increased infiltration of pro-inflammatory N1 neutrophils, macrophages and dendritic cells and increased damage of pancreatic tissue. This review paper discusses the role of TLR-4/Gal-3 axis in the pathogenesis of acute pancreatitis.
Collapse
|
8
|
Seo JY, Pandey RP, Lee J, Sohng JK, Namkung W, Park YI. Quercetin 3-O-xyloside ameliorates acute pancreatitis in vitro via the reduction of ER stress and enhancement of apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:40-49. [PMID: 30668442 DOI: 10.1016/j.phymed.2018.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/01/2018] [Accepted: 07/16/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND PURPOSE Glycosylation of phenolic compounds has been reported to increase water-solubility, reduce toxicity, and sometimes give improved or novel pharmacological activities. Present study was aimed to evaluate and compare the beneficial effects of quercetin aglycone (Quer) and its glycosylated derivative, quercetin 3-O-xyloside (Quer-Xyl), against acute pancreatitis (AP). METHODS The cellular acute pancreatitis model was established by treating the rat pancreatic acinar cells (AR42J) with lipopolysaccharide (10 µg/ml) and cerulein (10-7 M). The cytotoxicity of Quer or Quer-Xyl on AR42J cells was assessed by MTT assay. Calcium and ROS levels were fluorometrically determined. The ER stress levels (PERK, GRP78), expression levels of amylase and lipase, and apoptotic markers (caspase-3 and -9) were measured by RT-PCR, western blotting, or fluorometric assay. RESULTS While Quer increased the mRNA expressions of AP marker enzymes, amylase and lipase, Quer-Xyl dose-dependently reversed their expressions. Quer-Xyl suppressed intracellular ROS production and both mRNA and protein levels of GRP78 and PERK, which were significantly elevated in cerulein and LPS-treated AR42J cells. Further, RT-PCR and fluorescence assay revealed that Quer-Xyl dose-dependently augmented the mRNA expressions and activities of caspase-3 and -9. CONCLUSION These results showed that Quer-Xyl, but not Quer, has a significant anti-pancreatitis activity through attenuating intracellular ROS production and ER stress response and enhancing apoptotic cell death, suggesting that it might be useful as a potent functional ingredient in health-beneficial foods or as a therapeutic agent to prevent or treat AP.
Collapse
Affiliation(s)
- Jeong Yeon Seo
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asan, Chungnam 31460, Republic of Korea
| | - Jisun Lee
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Jae Kyung Sohng
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asan, Chungnam 31460, Republic of Korea
| | - Wan Namkung
- Department of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 21983, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
9
|
Moin ASM, Cory M, Choi J, Ong A, Dhawan S, Dry SM, Butler PC, Rizza RA, Butler AE. Increased Chromogranin A-Positive Hormone-Negative Cells in Chronic Pancreatitis. J Clin Endocrinol Metab 2018; 103:2126-2135. [PMID: 29659906 PMCID: PMC6456995 DOI: 10.1210/jc.2017-01562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 03/30/2018] [Indexed: 01/09/2023]
Abstract
CONTEXT Chronic pancreatitis (CP) is characterized by inflammation, fibrosis, and a loss of pancreatic acinar cells, which can result in exocrine and eventually endocrine deficiency. Pancreatitis has been reported to induce formation of new endocrine cells (neogenesis) in mice. Our recent data have implicated chromogranin A-positive hormone-negative (CPHN) cells as potential evidence of neogenesis in humans. OBJECTIVE We sought to establish if CPHN cells were more abundant in CP in humans. DESIGN, SETTING, AND PARTICIPANTS We investigated the frequency and distribution of CPHN cells and the expression of the chemokine C-X-C motif ligand 10 (CXCL10) and its receptor chemokine C-X-C motif receptor 3 in pancreas of nondiabetic subjects with CP. RESULTS CPHN cell frequency in islets was increased sevenfold in CP [2.1% ± 0.67% vs 0.35% ± 0.09% CPHN cells in islets, CP vs nonpancreatitis (NP), P < 0.01], as were the CPHN cells found as scattered cells in the exocrine areas (17.4 ± 2.9 vs 4.2 ± 0.6, CP vs NP, P < 0.001). Polyhormonal endocrine cells were also increased in CP (2.7 ± 1.2 vs 0.1 ± 0.04, CP vs NP, % of polyhormonal cells of total endocrine cells, P < 0.01), as was expression of CXCL10 in α and β cells. CONCLUSION There is increased islet endogenous expression of the inflammation marker CXCL10 in islets in the setting of nondiabetic CP and an increase in polyhormonal (insulin-glucagon expressing) cells. The increase in CPHN cells in CP, often in a lobular distribution, may indicate foci of attempted endocrine cell regeneration.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, California
| | - Megan Cory
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jennifer Choi
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Allison Ong
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Sangeeta Dhawan
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, California
| | - Sarah M Dry
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Peter C Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Robert A Rizza
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Alexandra E Butler
- Anti Doping Laboratory Qatar, Doha, Qatar
- Correspondence and Reprint Requests: Alexandra E. Butler, MBBS, Anti-Doping Laboratory Qatar, PO Box 27775, Doha, Qatar. E-mail:
| |
Collapse
|
10
|
Pan LF, Yu L, Wang LM, He JT, Sun JL, Wang XB, Wang H, Bai ZH, Feng H, Pei HH. Augmenter of liver regeneration (ALR) regulates acute pancreatitis via inhibiting HMGB1/TLR4/NF-κB signaling pathway. Am J Transl Res 2018; 10:402-410. [PMID: 29511434 PMCID: PMC5835805 DOI: pmid/29511434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/17/2018] [Indexed: 02/08/2023]
Abstract
This research aimed to explore the effect of augmenter of liver regeneration (ALR) in acute pancreatitis (AP) of mice and the underlying mechanism. Caerulein were given to mice to get AP models. AP mice were given saline, ALR plasmids or negative control plasmids. Then, pancreas tissues were fixed and stained for histological examination. The levels of serum amylase, serum lipase, MPO, HMGB1, TNF-α, IL-1β as well as MCP-1 were detected by ELISA assay. The mRNA levels of TLR4, p65, IκBα, iNOS, COX-2 and GAPDH were examined by RT-qPCR. The protein levels of HMGB1, TLR4, MD2, MyD88, IκBα and GAPDH were detected by western blotting. ALR decreased serum amylase as well as lipase levels and alleviated the histopathological alterations of the pancreas in AP mice. ALR decreased the MPO activity of pancreas in AP Mice. ALR decreased the HMGB1/TLR4 signaling pathway in AP Mice. ALR decreased pancreas IL-1β and MCP-1 in AP mice, and also decreased plasma TNF-α and IL-1β in AP mice. ALR attenuated the cerulein-caused increase in p65 mRNA and protein levels, but had no effects on mRNA and protein levels of IκBα. The AP mice significantly promoted the mRNA levels of iNOS and COX-2 that was inhibited by ALR. HNE formation was also increased in AP mice, but it was decreased by ALR. ALR alleviates acute pancreatitis by inhibiting HMGB1/TLR4/NF-κB signaling pathway. It is promising to alleviate the syndromes of patients with acute via targeting ALR.
Collapse
Affiliation(s)
- Long-Fei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'an 710004, Shaanxi, China
| | - Lei Yu
- Xi'an Medical CollegeXi'an 710021, Shaanxi, China
| | - Li-Ming Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'an 710004, Shaanxi, China
| | - Jun-Tao He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'an 710004, Shaanxi, China
| | - Jiang-Li Sun
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'an 710004, Shaanxi, China
| | - Xiao-Bo Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'an 710004, Shaanxi, China
| | - Hai Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'an 710004, Shaanxi, China
| | - Zheng-Hai Bai
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'an 710004, Shaanxi, China
| | - Hui Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'an 710004, Shaanxi, China
| | - Hong-Hong Pei
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'an 710004, Shaanxi, China
| |
Collapse
|
11
|
Effect of Endotoxemia in Suckling Rats on Pancreatic Integrity and Exocrine Function in Adults: A Review Report. Gastroenterol Res Pract 2018; 2018:6915059. [PMID: 29576768 PMCID: PMC5821989 DOI: 10.1155/2018/6915059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 02/07/2023] Open
Abstract
Background. Endotoxin (LPS), the component of Gram-negative bacteria, is responsible for sepsis and neonatal mortality, but low concentrations of LPS produced tissue protection in experimental studies. The effects of LPS applied to the suckling rats on the pancreas of adult animals have not been previously explored. We present the impact of neonatal endotoxemia on the pancreatic exocrine function and on the acute pancreatitis which has been investigated in the adult animals. Endotoxemia was induced in suckling rats by intraperitoneal application of LPS from Escherichia coli or Salmonella typhi. In the adult rats, pretreated in the early period of life with LPS, histological manifestations of acute pancreatitis have been reduced. Pancreatic weight and plasma lipase activity were decreased, and SOD concentration was reversed and accompanied by a significant reduction of lipid peroxidation products (MDA + 4 HNE) in the pancreatic tissue. In the pancreatic acini, the significant increases in protein signals for toll-like receptor 4 and for heat shock protein 60 were found. Signal for the CCK1 receptor was reduced and pancreatic secretory responses to caerulein were diminished, whereas basal enzyme secretion was unaffected. These pioneer studies have shown that exposition of suckling rats to endotoxin has an impact on the pancreas in the adult organism.
Collapse
|
12
|
Lu M, Zhang Q, Chen K, Xu W, Xiang X, Xia S. The regulatory effect of oxymatrine on the TLR4/MyD88/NF-κB signaling pathway in lipopolysaccharide-induced MS1 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:153-159. [PMID: 29157809 DOI: 10.1016/j.phymed.2017.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/25/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Oxymatrine (OM), a major quinolizidine alkaloid extracted from the roots of Sophora flavescens, has been proved to regulate a variety of signaling pathways to produce a wide range of pharmacological effects. OBJECTIVES The regulatory effects of OM on the TLR4/MyD88/NF-κB signaling pathway under the stimulation of lipopolysaccharide (LPS) in MS1 cells were explored to illuminate the potential anti-inflammatory mechanism of OM for pancreatitis treatment. METHODS The signaling molecules related to the TLR4/MyD88/NF-κB pathway in MS1 cells were detected by Western blotting under different conditions, including OM pretreatment and LPS stimulation. The mRNA expression levels of TLR4, MyD88, NF-κB p65 and IκBα were detected by real-time PCR. The NF-κB p65 nuclear translocation in MS1 cells was measured by immunofluorescence, and the pro-inflammatory cytokine of IL-1β was detected by ELISA. RESULTS Increased levels of TLR4, MyD88 and NF-κB p65, induced by LPS stimulation, were significantly inhibited by OM pretreatment in MS1 cells. The decreased protein, but not mRNA, level of IκBα induced by LPS stimulation was increased by OM pretreatment. Meanwhile, LPS induced NF-κB p65 protein translocation to the nucleus as well as LPS increased expression of IL-1β were also inhibited by OM pretreatment. CONCLUSION Inhibitory effects of OM on molecules related to the TLR4/MyD88/NF-κB signaling pathway in pancreatic microvascular endothelial cells can alleviate inflammatory responses.
Collapse
Affiliation(s)
- Meili Lu
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China; Postgraduate Training Base in Affiliated Hospital of Logistics University of People's Armed Police Forces, Jinzhou Medical University, Jinzhou, 121000, China
| | - Qing Zhang
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China
| | - Kai Chen
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China
| | - Wei Xu
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China
| | - Xiaohui Xiang
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China.
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China; Postgraduate Training Base in Affiliated Hospital of Logistics University of People's Armed Police Forces, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
13
|
Pan LF, Yu L, Wang LM, He JT, Sun JL, Wang XB, Bai ZH, Wang H, Yan TL, Pei HH. The Toll-like receptor 4 antagonist TAK-242 protects against chronic pancreatitis in rats. Mol Med Rep 2017; 16:3863-3868. [PMID: 28765897 PMCID: PMC5646963 DOI: 10.3892/mmr.2017.7105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/04/2017] [Indexed: 02/05/2023] Open
Abstract
Chronic pancreatitis is a progressive disease characterized by irreversible morphological changes to the pancreas, typically causing pain and permanent loss of function. It is a poorly understood disease with the pathogenesis remaining unclear. The authors' previous data demonstrated that the inhibition of Toll‑like receptor 4 (TLR4) using TLR4 antagonist kinase (TAK)‑242 attenuates taurocholate‑induced oxidative stress via the regulation of mitochondrial function in the pancreatic acinar cells of mice. In the present study, the effect of TAK‑242 on trinitrobenzene sulfonic acid (TNBS)‑induced chronic pancreatitis was investigated in rats. The results revealed that TAK‑242 attenuated the severity of chronic pancreatic injury, and regulated extracellular matrix secretion and cellular immunity. In addition, TAK‑242 treatment significantly decreased cell apoptosis, as evidenced by the reduction in Terminal deoxynucleotidyl transferase dUTP nick end labeling‑positive cells in pancreas tissue sections, and also promoted cell proliferation in TNBS‑treated animals. Furthermore, the results of the calibrated von Frey filament assay demonstrated that TAK‑242 could prevent the pancreatitis‑induced referred abdominal hypersensitivity. In summary, TAK‑242 exhibits protective effects against TNBS‑induced chronic pancreatitis and may be a potential therapeutic strategy for the treatment of patients with chronic pancreatitis.
Collapse
Affiliation(s)
- Long-Fei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lei Yu
- Department of Basic Medicine, Xi'an Medical College, Xi'an, Shaanxi 710021, P.R. China
| | - Li-Ming Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jun-Tao He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiang-Li Sun
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiao-Bo Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zheng-Hai Bai
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hai Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ting-Lin Yan
- Department of Forensic Medicine, Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hong-Hong Pei
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
14
|
NAD + augmentation ameliorates acute pancreatitis through regulation of inflammasome signalling. Sci Rep 2017; 7:3006. [PMID: 28592850 PMCID: PMC5462749 DOI: 10.1038/s41598-017-03418-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP) is a complicated disease without specific drug therapy. The cofactor nicotinamide adenine dinucleotide (NAD+) is an important regulator of cellular metabolism and homeostasis. However, it remains unclear whether modulation of NAD+ levels has an impact on caerulein-induced AP. Therefore, in this study, we investigated the effect of increased cellular NAD+ levels on caerulein-induced AP. We demonstrated for the first time that the activities and expression of SIRT1 were suppressed by reduction of intracellular NAD+ levels and the p53-microRNA-34a pathway in caerulein-induced AP. Moreover, we confirmed that the increase of cellular NAD+ by NQO1 enzymatic action using the substrate β-Lapachone suppressed caerulein-induced AP with down-regulating TLR4-mediated inflammasome signalling, and thereby reducing the inflammatory responses and pancreatic cell death. These results suggest that pharmacological stimulation of NQO1 could be a promising therapeutic strategy to protect against pathological tissue damage in AP.
Collapse
|
15
|
Dysregulation of signaling pathways associated with innate antibacterial immunity in patients with pancreatic cancer. Cent Eur J Immunol 2017; 41:404-418. [PMID: 28450804 PMCID: PMC5382886 DOI: 10.5114/ceji.2016.65140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023] Open
Abstract
Disorders of innate antibacterial response are of fundamental importance in the development of gastrointestinal cancers, including pancreatic cancer. Multi-regulatory properties of the Toll-like receptors (TLRs) (e.g., regulation of proliferation, the activity of NF-κB, gene transcription of apoptosis proteins, regulation of angiogenesis, HIF-1α protein expression) are used in experimental studies to better understand the pathogenesis of pancreatic cancer, for early diagnosis, and for more effective therapeutic intervention. There are known numerous examples of TLR agonists (e.g., TLR2/5 ligands, TLR6, TLR9) of antitumor effect. The direction of these studies is promising, but a small number of them does not allow for an accurate assessment of the impact of TLR expression disorders, proteins of these signaling pathways, or attempts to block or stimulate them, on the results of treatment of pancreatic cancer patients. It is known, however, that the expression disorders of proteins of innate antibacterial response signaling pathways occur not only in tumor tissue but also in peripheral blood leukocytes of pancreatic cancer patients (e.g., increased expression of TLR4, NOD1, TRAF6), which is one of the most important factors facilitating further tumor development. This review mainly focuses on the genetic aspects of signaling pathway disorders associated with innate antibacterial response in the pathogenesis and diagnosis of pancreatic cancer.
Collapse
|
16
|
Wang X, Ge QM, Bian F, Dong Y, Huang CM. Inhibition of TLR4 protects rat islets against lipopolysaccharide-induced dysfunction. Mol Med Rep 2016; 15:805-812. [PMID: 28101570 DOI: 10.3892/mmr.2016.6097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/07/2016] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress leads to dysfunction in pancreatic cells, causing a reduction in insulin secretion following exposure to glucose. Toll-like receptor 4 (TLR4) may be activated by exposure to lipopolysaccharide (LPS) stress. TLR4 may mediate the initiation of inflammatory and immune defense responses; however, the importance of the LPS/TLR4 interaction in apoptosis induced by oxidative stress in pancreatic β cells remains to be elucidated. The present study aimed to investigate the importance of TLR4 during LPS‑induced oxidative stress, apoptosis and dysfunction of insulin secretion in isolated islets of rats. LPS‑induced stimulation of TLR4 increased the production of reactive oxygen species and promoted apoptosis by upregulating the expression levels of caspase‑3, poly ADP ribose polymerase and altering the expression ratio of B‑cell lymphoma‑2 (Bcl‑2)/Bcl‑2 associated X protein. Additionally, the insulin secretion of islets cells was reduced. Anti‑TLR4 antibody and a knockdown of TLR4 by TLR4‑short hairpin RNA were used to inhibit TLR4 activity, which may reverse LPS‑induced events. The present study determined that in islets exposed to LPS oxidative stress, dysfunction may be partly mediated via the TLR4 pathway. Inhibition of TLR4 may prevent dysfunction of rat islets due to oxidative stress. The present study revealed that targeting the LPS/TLR4 signaling pathway and antioxidant therapy may be a novel treatment for the severely septic patients with hyperglycemia stress.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Qin Min Ge
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Fan Bian
- Department of Nephrology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yan Dong
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Chun Mei Huang
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
17
|
Pan LF, Yu L, Wang LM, He JT, Sun JL, Wang XB, Bai ZH, Su LJ, Pei HH. The toll-like receptor 4 antagonist transforming growth factor-β-activated kinase(TAK)-242 attenuates taurocholate-induced oxidative stress through regulating mitochondrial function in mice pancreatic acinar cells. J Surg Res 2016; 206:298-306. [PMID: 27884323 DOI: 10.1016/j.jss.2016.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/27/2016] [Accepted: 08/02/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Acute pancreatitis (AP) is a commonly occurring and potentially life-threatening disease. Recently, toll-like receptor 4 (TLR4) has been considered as a new clue for studying the pathogenesis of AP due to its important role in inflammatory response cascade. MATERIALS AND METHODS The aim of this study was to investigate the potential protective effect of transforming growth factor-β-activated kinase (TAK)-242, a novel TLR4 antagonist, in taurocholate-treated mice pancreatic acinar cells. The protective effects were measured by cell viability, lactate dehydrogenase release and apoptosis, and oxidative stress was assayed by lipid peroxidation and oxidative enzyme activities. To determine the potential underlying mechanisms, mitochondrial cytochrome c release, swelling, and calcium buffering capacity were measured in isolated mitochondria, and mitochondrial biogenesis and expression of mitochondrial dynamic proteins were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. RESULTS Treatment with 6-mM taurocholate significantly increased the expression of TLR4 at both mRNA and protein levels. TAK-242 markedly increased cell viability, decreased lactate dehydrogenase release, and inhibited apoptotic cell death as measured by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining in pancreatic acinar cells. These protective effects were accompanied by the suppressed lipid peroxidation and enhanced endogenous antioxidative enzyme activity. Using isolated and purified mitochondria from pancreatic acinar cells, we found that TAK-242 treatment also inhibited cytochrome c release into the cytoplasm, mitochondrial swelling, and decrease in mitochondrial Ca2+ buffering capacity after taurocholate exposure. In addition, TAK-242 significantly promoted mitochondrial biogenesis, as evidenced by increased mtDNA and upregulated mitochondrial transcription factors. The results of Western blot analysis showed that TAK-242 also differently regulated the expression of mitochondrial fusion and fission proteins. CONCLUSIONS All these data strongly indicated that blocking TLR4 activity via TAK-242 exerts protective effects in an in vitro AP model, and it could be a possible strategy to improve clinical outcome in AP patients.
Collapse
Affiliation(s)
- Long-Fei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lei Yu
- Department of Clinical Laboratory, Xi'an Medical College, Xi'an, Shaanxi, China
| | - Li-Ming Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jun-Tao He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiang-Li Sun
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiao-Bo Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zheng-Hai Bai
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Li-Juan Su
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hong-Hong Pei
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
18
|
Knockdown of Myeloid Differentiation Factor 88 Attenuates Lipopolysaccharide-Induced Inflammatory Response in Pancreatic Ductal Cells. Pancreas 2016; 45:755-60. [PMID: 26684858 DOI: 10.1097/mpa.0000000000000565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The aim of the study was to explore the potential role of myeloid differentiation factor 88 (MyD88), which acts as an adaptor in the TLR4 signalling pathway, in immune responses of the pancreatic duct during acute pancreatitis. METHODS Primary cultures of pancreatic duct epithelial cells from Wistar rats and cultures of the pancreatic ductal ARIP cell line were treated with lipopolysaccharide (LPS), and expression of toll-like receptor 4 mRNA was determined using real-time PCR, expression of MyD88 protein using Western blot, and levels of inflammatory cytokines using enzyme-linked immunosorbent assay. These experiments were repeated using ARIP cells in which MyD88 expression was stably knocked down. RESULTS Toll-like receptor 4 and MyD88 expression were similar between pancreatic duct epithelial cells and ARIP cells after LPS stimulation. Myeloid differentiation factor 88 knockdown led to significantly lower levels of inflammatory cytokines after LPS induction in ARIP cells. CONCLUSIONS Myeloid differentiation factor 88 knockdown attenuates LPS-induced inflammatory responses in pancreatic ductal cells, suggesting that the MyD88 pathway plays a critical role in their immune defense activity.
Collapse
|
19
|
Xu M, Wang KN, Wu K, Wang XP. Pyrrolidine Dithiocarbamate Inhibits Nuclear Factor κB and Toll-Like Receptor 4 Expression in Rats with Acute Necrotizing Pancreatitis. Gut Liver 2016; 9:411-6. [PMID: 25287011 PMCID: PMC4413976 DOI: 10.5009/gnl14050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background/Aims To investigate the expression of Toll-like receptor 4 (TLR4) in the pancreases of rats with acute necrotizing pancreatitis (ANP) and any changes upon treatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of nuclear factor κB (NF-κB), as well as to determine the relationship between TLR4 and NF-κB in ANP pathogenesis. Methods A total of 72 SD rats were randomly divided into three groups, namely, the control (sham-operation), ANP, and ANP with PDTC pretreatment groups. The PDTC-pretreated group was intraperitoneally injected with PDTC at a dose of 100 mg/kg 1 hour before the induction of ANP. The expressions of TLR4 and NF-κB in pancreatic tissue were evaluated by immunohistochemistry and Western blot analysis. The mRNA levels of cytokines tumor necrosis factor α, interleukin (IL)-1β, and IL-6 were measured by reverse transcription polymerase chain reaction. Results The expressions of TLR4, NF-κB, and cytokine (NF-κB target) genes in the pancreatic tissue increased more significantly in the ANP groups than in the sham-operation group at 3, 6, and 12 hours. Pretreatment with PDTC alleviated the inflammatory activation in the pancreas with ANP, causing a significant decrease in the expressions of TLR4, NF-κB, and cytokine genes in the pancreatic tissue. Conclusions The expressions of TLR4 and NF-κB were increased in the pancreases of rats with ANP. PDTC not only inhibits NF-κB but also suppresses the expression of TLR4 and downregulates the expression of the related cytokine genes.
Collapse
Affiliation(s)
- Min Xu
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Kun-Ning Wang
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Kai Wu
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Xing-Peng Wang
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
20
|
Mateu A, Ramudo L, Manso M, De Dios I. Cross-talk between TLR4 and PPARγ pathways in the arachidonic acid-induced inflammatory response in pancreatic acini. Int J Biochem Cell Biol 2015; 69:132-41. [DOI: 10.1016/j.biocel.2015.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/21/2015] [Accepted: 10/22/2015] [Indexed: 12/16/2022]
|
21
|
Li G, Wu X, Yang L, He Y, Liu Y, Jin X, Yuan H. TLR4-mediated NF-κB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis. Int J Mol Med 2015; 37:99-107. [PMID: 26719855 PMCID: PMC4687439 DOI: 10.3892/ijmm.2015.2410] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 11/11/2015] [Indexed: 12/21/2022] Open
Abstract
Severe acute pancreatitis (SAP) is an extremely dangerous acute abdominal disorder which causes multiple complications and has a high mortality rate. Previous research has suggested that high-mobility group box 1 (HMGB1) plays an important role in the pathogenesis of SAP; however, the mechanisms underlying this strong correlation remain unclear. In this study, to further investigate whether HMGB1 acts as a stimulating factor, and whether Toll-like receptor 4 (TLR4) acts as its major mediator in the development of pancreatic injury during SAP, recombinant human HMGB1 (rhHMGB1) and TLR4-deficient mice were used. We found that HMGB1 and TLR4 were highly expressed, and nuclear factor-κB (NF-κB) was activated in our mouse model of SAP. We noted that the rhHMGB1 pancreas-targeted injection activated the TLR4-mediated NF-κB signaling pathway and induced pancreatic injury in wild-type mice. In TLR4-deficient mice, the rhHMGB1-induced activation of NF-κB and pathological changes in the pancreas were less evident than in wild-type mice. Therefore, this study provides evidence that HMGB1 promotes the pathogenesis of pancreatitis, and its downstream TLR4-mediated NF-κB signaling pathway is a potential important mediator in the development of this form of pancreatic injury.
Collapse
Affiliation(s)
- Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Le Yang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuxiang He
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yang Liu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hai Yuan
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
22
|
Li G, Wu X, Yang L, He Y, Liu Y, Jin X, Yuan H. TLR4-mediated NF-κB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis. Int J Mol Med 2015; 38:1313. [PMID: 27573568 PMCID: PMC5029970 DOI: 10.3892/ijmm.2016.2707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 11/11/2015] [Indexed: 12/17/2022] Open
Affiliation(s)
- Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Le Yang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuxiang He
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yang Liu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hai Yuan
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
23
|
The effect of lornoxicam on TLR2 and TLR4 messenger RNA expression and tumor necrosis factor-α, interleukin-6, and interleukin-8 secretion in patients with systemic complications of acute pancreatitis. Pancreas 2015; 44:824-30. [PMID: 25872171 DOI: 10.1097/mpa.0000000000000344] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To assess the effects of the cyclooxygenase-1/cyclooxygenase-2 inhibitor lornoxicam on systemic complications in patients with acute pancreatitis, Toll-like receptor (TLR)2 and TLR4 messenger RNA expression, and cytokine secretion (IL-6, IL-8, tumor necrosis factor-α). METHODS Adult patients with acute pancreatitis were randomized to standard therapy or standard therapy plus lornoxicam. Standard therapy included analgesics, spasmolytics, octreotide, pantoprazole, and intravenous fluids. The TLR2 and TLR4 expression levels and TLR2- and TLR4-mediated cytokine production in peripheral blood mononuclear cells were assessed in patients with severe complications and in healthy volunteers (n = 15). RESULTS A total of 334 patients received standard therapy (n = 246) or standard therapy plus lornoxicam (n = 88), 172 (51.5%) of whom developed systemic complications. Occurrence of complications was higher with standard therapy compared with lornoxicam (57.3% versus 35.2%; P = 0.00034), as was mortality (19.1% versus 6.8%; P = 0.006). The TLR2 and TLR4 expression and TLR2 and TLR4-mediated cytokine production were significantly higher in patients with systemic complications of acute pancreatitis compared with healthy volunteers. Relative TLR2 expression and cytokine production were significantly reduced in patients receiving lornoxicam versus standard therapy. CONCLUSIONS The use of lornoxicam at the onset of acute pancreatitis decreased TLR2 and TLR4 expression and the production of proinflammatory cytokines, thereby reducing the risk of systemic complications and mortality.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Acute pancreatitis is associated with alcohol abuse, gallstones and bacterial infection. Its basic cause is tissue destruction accompanied by an innate immune response, which induces epithelial stress pathways. Recent studies have focused on some of the integral cellular pathways shared between multiple pancreatitis models that also suggest new approaches to detection and treatment. RECENT FINDINGS Several models of pancreatitis have been associated with stress responses, such as endoplasmic reticulum and oxidative stress together with the induction of a defective autophagic pathway. Recent evidence reinforces the critical role of these cellular processes in pancreatitis. A member of the toll-like receptor family, toll-like receptor 4, which is known to contribute to disease pathology in many models of experimental pancreatitis, has been found to be a promising target for treatment of pancreatitis. Interestingly, a direct activator of toll-like receptor 4, the bacterial cell wall component in gram-negative bacteria lipopolysaccharide, contributes to the onset and severity of disease when combined with additional stressors, such as chronic alcohol feeding; however, recent studies have shown that acute infection of mice with live bacteria is alone sufficient to induce acute pancreatitis. SUMMARY In the last several months, the convergent roles of acinar cell stress, autophagy and proinflammatory signaling initiated by the toll-like receptors have been emphatically reinforced in the onset of acute pancreatitis.
Collapse
|
25
|
Bhattacharya S, Katlinski KV, Reichert M, Takano S, Brice A, Zhao B, Yu Q, Zheng H, Carbone CJ, Katlinskaya YV, Leu NA, McCorkell KA, Srinivasan S, Girondo M, Rui H, May MJ, Avadhani NG, Rustgi AK, Fuchs SY. Triggering ubiquitination of IFNAR1 protects tissues from inflammatory injury. EMBO Mol Med 2014; 6:384-97. [PMID: 24480543 PMCID: PMC3958312 DOI: 10.1002/emmm.201303236] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Type 1 interferons (IFN) protect the host against viruses by engaging a cognate receptor (consisting of IFNAR1/IFNAR2 chains) and inducing downstream signaling and gene expression. However, inflammatory stimuli can trigger IFNAR1 ubiquitination and downregulation thereby attenuating IFN effects in vitro. The significance of this paradoxical regulation is unknown. Presented here results demonstrate that inability to stimulate IFNAR1 ubiquitination in the Ifnar1(SA) knock-in mice renders them highly susceptible to numerous inflammatory syndromes including acute and chronic pancreatitis, and autoimmune and toxic hepatitis. Ifnar1(SA) mice (or their bone marrow-receiving wild type animals) display persistent immune infiltration of inflamed tissues, extensive damage and gravely inadequate tissue regeneration. Pharmacologic stimulation of IFNAR1 ubiquitination is protective against from toxic hepatitis and fulminant generalized inflammation in wild type but not Ifnar1(SA) mice. These results suggest that endogenous mechanisms that trigger IFNAR1 ubiquitination for limiting the inflammation-induced tissue damage can be purposely mimicked for therapeutic benefits.
Collapse
Affiliation(s)
- Sabyasachi Bhattacharya
- Department of Animal Biology, School of Veterinary Medicine University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Acquired immunity plays an important role in the development of murine experimental pancreatitis induced by alcohol and lipopolysaccharide. Pancreas 2014; 43:28-36. [PMID: 24201778 DOI: 10.1097/mpa.0b013e3182a7c76b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Although chronic alcohol ingestion is the major cause of chronic pancreatitis, less than 10% of alcohol abusers develop this disease. To address this issue, we created a murine model of pancreatitis induced by alcohol and lipopolysaccharide (LPS) and analyzed its immune responses. METHODS C57BL/6 mice were administered 20% ethanol (AL) in their drinking water and then injected intraperitoneally with LPS twice weekly for 4 weeks. Severe combined immunodeficient mice were reconstituted with splenocytes, CD4 cells, or CD8 T cells isolated from wild-type mice and then treated similarly. The severity of pancreatitis was graded histologically, and serum cytokine levels were measured. RESULTS Ethanol alone did not cause pancreatitis. However, the administration of AL+LPS or LPS alone induced pancreatitis. The histological scores were higher in the mice treated with AL+LPS than in those treated with LPS. Serum levels of interleukin 1β, interferon-γ, and tumor necrosis factor α were elevated in the AL+LPS-treated mice. The severe combined immunodeficient mice developed pancreatitis only after their reconstitution with splenocytes, CD4 cells, or CD8 T cells. CONCLUSIONS Repeated stimulation of the innate immune system is necessary, but not sufficient, to cause pancreatitis. The participation of the acquired immune response is essential for the development of the disease.
Collapse
|
27
|
Xue J, Habtezion A. Carbon monoxide-based therapy ameliorates acute pancreatitis via TLR4 inhibition. J Clin Invest 2013; 124:437-47. [PMID: 24334457 DOI: 10.1172/jci71362] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/11/2013] [Indexed: 12/14/2022] Open
Abstract
The protective role of hemeoxygenase-1 (HO-1) in various inflammatory conditions is mediated in part by its products, carbon monoxide (CO) and biliverdin. Here we investigated a therapeutic role for CO and CO-primed cells in acute pancreatitis (AP). In a mouse model of AP, treatment with CO-releasing molecule-2 (CORM-2) decreased mortality, pancreatic damage, and lung injury. CORM-2 decreased systemic inflammatory cytokines, suppressed systemic and pancreatic macrophage TNF-α secretion, and inhibited macrophage TLR4 receptor complex expression. In both human and mouse cells, CORM-2 inhibited endogenous and exogenous ligand-dependent TLR4 activation, which indicates that CORM-2 could be therapeutic for both early and late stages of AP, which involve sterile- and endotoxin-mediated inflammation, respectively. Mice engrafted with TLR4-deficient hematopoietic cells were protected against caerulein-induced AP. In the absence of leukocyte TLR4 expression, CORM-2 did not confer additional protection, which indicates that CORM-2-dependent effects are mediated via suppression of macrophage TLR4 activation. We determined that CO was directly responsible for the protective effects of CORM-2 in AP, as inactive forms of CORM-2 were ineffective. Importantly, adoptive transfer of CORM-2-primed cells reduced AP. Such a therapeutic approach would translate the beneficial effects of CO-based therapies, avoiding CO- or CO-RM-mediated toxicities in AP and a wide range of diseases.
Collapse
|
28
|
Vaz J, Akbarshahi H, Andersson R. Controversial role of toll-like receptors in acute pancreatitis. World J Gastroenterol 2013; 19:616-630. [PMID: 23431068 PMCID: PMC3574587 DOI: 10.3748/wjg.v19.i5.616] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/12/2013] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is a common clinical condition with an incidence of about 300 or more patients per million annually. About 10%-15% of patients will develop severe acute pancreatitis (SAP) and of those, 10%-30% may die due to SAP-associated complications. Despite the improvements done in the diagnosis and management of AP, the mortality rate has not significantly declined during the last decades. Toll-like receptors (TLRs) are pattern-recognition receptors that seem to play a major role in the development of numerous diseases, which make these molecules attractive as potential therapeutic targets. TLRs are involved in the development of the systemic inflammatory response syndrome, a potentially lethal complication in SAP. In the present review, we explore the current knowledge about the role of different TLRs that have been described associated with AP. The main candidate for targeting seems to be TLR4, which recognizes numerous damage-associated molecular patterns related to AP. TLR2 has also been linked with AP, but there are only limited studies that exclusively studied its role in AP. There is also data suggesting that TLR9 may play a role in AP.
Collapse
|
29
|
Attenuation of acute pancreatitis by peroxisome proliferator-activated receptor-α in rats: the effect on Toll-like receptor signaling pathways. Pancreas 2013; 42:114-22. [PMID: 22722259 DOI: 10.1097/mpa.0b013e3182550cc4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The peroxisome proliferator-activated receptor-α (PPAR-α) has attracted considerable attention for its anti-inflammatory properties; however, Toll-like receptor (TLR) pathways have an essential proinflammatory role in acute pancreatitis (AP). This study aimed to evaluate the attenuation of inflammation by PPAR-α and to investigate the interaction between PPAR-α and TLR pathways in AP. METHODS Acute pancreatitis was induced in rats by administration of cerulein. The PPAR-α agonist WY14643 and/or antagonist MK886 was administered. The severity of AP was determined by measuring serum amylase, lipase, Ca(2+), pathological changes, myeloperoxidase activity, serum levels of interleukin (IL)-6, and intercellular adhesion molecule-1 (ICAM-1). The TLR2 and TLR4 messenger RNA (mRNA) and proteins were determined by real-time reverse transcriptase polymerase chain reaction and Western blotting, respectively. The mRNA expressions of target molecules of TLR pathways, including IL-6, IL-10, ICAM-1, and tumor necrosis factor α were also measured. RESULTS Treatment with WY14643 significantly decreased amylase, lipase, myeloperoxidase activity, pathological scores, IL-6, and ICAM-1 levels. The TLR2 and TLR4 mRNA and proteins were markedly decreased after treatment with WY14643, along with IL-6, ICAM-1, and tumor necrosis factor α mRNA levels. However, these effects were completely reversed by the coadministration of MK886. CONCLUSIONS Activation of PPAR-α played a protective role in AP, partially mediated by modulation of TLR pathways.
Collapse
|
30
|
Komatsu H, Shimose A, Shimizu T, Mukai Y, Kobayashi J, Ohama T, Sato K. Trypsin inhibits lipopolysaccharide signaling in macrophages via toll-like receptor 4 accessory molecules. Life Sci 2012; 91:143-50. [PMID: 22771700 DOI: 10.1016/j.lfs.2012.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/23/2012] [Indexed: 12/21/2022]
Abstract
AIMS To examine the role of trypsin in the immune response of macrophages and to determine whether protease-activated receptors (PARs) are involved in the effects of trypsin. MAIN METHODS We used RAW264.7 cells and peritoneal macrophages isolated from C57BL/6 wild-type mice, PAR2 knockout mice, and ddY mice. Macrophages were stimulated with lipopolysaccharide (LPS) in the presence or absence of trypsin, thrombin, and PAR subtype-specific agonists (PARs-AP). Activation of macrophages was quantified by nitric oxide production and expression of inflammatory mediators, such as inducible nitric oxide synthase, interleukin-1β, and interleukin-6. To clarify the effect of trypsin on LPS receptors, we also investigated the expression of toll-like receptor 4 (TLR4), soluble MD-2 (sMD-2), membrane-bound MD-2 (mMD-2), soluble CD14 (sCD14), and membrane-bound CD14 (mCD14). To directly investigate the effect of trypsin on CD14 protein, we expressed recombinant CD14 protein. KEY FINDINGS Trypsin inhibited LPS-induced nitric oxide production and expression of inducible nitric oxide synthase, interleukin-1β, and interleukin-6. The same inhibitory effects of trypsin were observed in wild-type macrophages and in PAR2 knockout macrophages. Furthermore, the other PAR agonists, thrombin, PAR1-AP, PAR2-AP, and PAR4-AP, did not mimic the effect of trypsin. Although trypsin did not affect TLR4 or mMD-2 expression, sCD14, mCD14, and sMD-2 expressions were decreased by trypsin. Furthermore, trypsin also degraded recombinant CD14 protein. SIGNIFICANCE Trypsin inhibited LPS signaling PAR-independently via degradation of TLR4 accessory molecules. This observation provides a better understanding of the complicated immune response in acute pancreatitis.
Collapse
Affiliation(s)
- Hiroyuki Komatsu
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Long-lasting effect of infant rats endotoxemia on heat shock protein 60 in the pancreatic acinar cells: involvement of toll-like receptor 4. Int J Inflam 2012; 2012:354904. [PMID: 22685683 PMCID: PMC3364569 DOI: 10.1155/2012/354904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/10/2012] [Accepted: 03/14/2012] [Indexed: 01/22/2023] Open
Abstract
Introduction. Lipopolysaccharide endotoxin (LPS) is responsible for septic shock and multiorgan failure, but pretreatment of rats with low doses of LPS reduced pancreatic acute damage. Aim. We investigated the effects of the endotoxemia induced in the early period of life on Toll-like receptor 4 (TLR4), heat shock protein 60 (HSP60) and proapoptotic Bax, caspase-9 and -3 or antiapoptotic Bcl-2 protein expression in the pancreatic acinar cells of adult animals. Material and Methods. Newborn rats (25 g) were injected with endotoxin (Escherichia coli) for 5 consecutive days. Two months later, pancreatic acinar cells were isolated from all groups of animals and subjected to caerulein stimulation (10−8 M). Protein expression was assessed employing Western blot. For detection of apoptosis we have employed DNA fragmentation ladder assay. Results. Preconditioning of newborn rats with LPS increased TLR4, Caspase-9 and -3 levels, but failed to affect basal expression of HSP60, Bax, and Bcl-2. Subsequent caerulein stimulation increased TLR4, Bcl-2, and caspases, but diminished HSP60 and Bax proteins in pancreatic acinar cells. Endotoxemia dose-dependently increased TLR4, Bax, HSP60, and both caspases protein signals in the pancreatic acini, further inhibiting antiapoptotic Bcl-2. Conclusions. Endotoxemia promoted the induction of HSP60 via TLR4 in the infant rats and participated in the LPS-dependent pancreatic tissue protection against acute damage.
Collapse
|
32
|
Abstract
The initial injury in acute pancreatitis is characteristically sterile and results in acinar cells necrosis. Intracellular contents released from damaged cells into the extracellular space serve as damage-associated molecular patterns (DAMPs) that trigger inflammation. There is increasing evidence that this sterile inflammatory response mediated through DAMPs released from necrotic acinar cells is a key determinant of further pancreatic injury, remote organ injury, and disease resolution in experimental models. A number of DAMPS, including high-mobility group box protein 1, DNA, adenosine triphosphate and heat shock protein 70, have been shown to have a role in experimental pancreatitis. Many of these DAMPs are also detectable in the human pancreatitis. Genetic deletion and pharmacologic antagonism demonstrate that specific DAMP receptors, including Toll-like receptor (TLR) 4, TLR9, and P2X7, are also required for inflammation in experimental acute pancreatitis. Downstream DAMP-sensing components include nod-like receptor protein 3, caspase 1, interleukin-1β (IL-1), IL-18, and IL-1 receptor, and also are required for full experimental pancreatitis. These DAMP-mediated pathways provide novel therapeutic targets using antagonists of TLRs and other receptors.
Collapse
Affiliation(s)
- Rafaz Hoque
- Section of Digestive Diseases, Yale University, New Haven, CT, USA
| | - Ahsan Malik
- Section of Digestive Diseases, Yale University, New Haven, CT, USA
| | - Fred Gorelick
- Section of Digestive Diseases, Yale University, New Haven, CT, USA
| | - Wajahat Mehal
- Section of Digestive Diseases, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
| |
Collapse
|
33
|
Tamizhselvi R, Shrivastava P, Koh YH, Zhang H, Bhatia M. Preprotachykinin-A gene deletion regulates hydrogen sulfide-induced toll-like receptor 4 signaling pathway in cerulein-treated pancreatic acinar cells. Pancreas 2011; 40:444-452. [PMID: 21289528 DOI: 10.1097/mpa.0b013e31820720e6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study aimed to determine the effect of hydrogen sulfide (H2S) on Toll-like receptor 4 (TLR4)-mediated innate immune signaling in acute pancreatitis (AP) via substance P. METHODS Male Swiss mice were treated with hourly intraperitoneal injections of cerulein (50 μg/kg) for 10 hours. dl-propargylglycine ([PAG] 100 mg/kg, intraperitoneally), an inhibitor of H2S formation, was administered 1 hour after the induction of AP. Pancreatic acinar cells from male preprotachykinin-A gene-knockout mice (PPTA) and their wild-type counterparts were incubated with or without cerulein (10 M for 60 minutes). To better understand the effect of H2S in inflammation, acinar cells were stimulated with cerulein after addition of H2S donor, sodium hydrosulfide. In addition, cerulein-treated pancreatic acinar cells were pretreated with PAG (30 μM) for 1 hour. RESULTS The H2S inhibitor PAG eliminated TLR4, interleukin 1 receptor-associated kinase 4, tumor necrosis factor receptor-associated factor 6, and nuclear factor-κB (NF-κB) levels in in vitro and in vivo models of cerulein-induced AP. PPTA gene deletion reduced TLR4, myeloid differentiation factor 88, interleukin 1 receptor-associated kinase 4, tumor necrosis factor receptor-associated factor 6, and NF-κB in cerulein-treated pancreatic acinar cells, whereas administration of sodium hydrosulfide resulted in a further rise in TLR4 and NF-κB levels in cerulein-treated pancreatic acinar cells. CONCLUSION The present findings show for the first time that in AP, H2S may up-regulate the TLR4 pathway and NF-κB via substance P.
Collapse
|
34
|
Abstract
Because the mechanism underlying the development of acute pancreatitis (AP) has not yet been fully clarified, it has been a hot but difficult topic in basic and clinical research for a long time. Currently, the dominant hypothesis for the pathogenesis of AP is that it is a disease of self-digestive acute chemical inflammation induced by trypsin activation. As proteins to trigger the inflammatory response cascade, Toll-like receptors (TLRs), especially TLR4, provide a new clue for studying the pathogenesis of AP from the source. Some studies have found that when TLR4 is activated by certain factors, it can amplify an inflammatory effect and aggravate the body's inflammatory response through a series of signal transduction. Toll-like receptor 4 may play an important role in the synthesis and release of proinflammatory cytokines, and the up-regulation of the TLR4 gene may be related with the development and progression of multiple organ injury during AP. As the "gate" of inflammatory response, TLR4 may be closely associated with the development and progression of multiple organ injury during AP. Understanding the roles of TLR4 in AP will help to further clarify the pathogenesis of AP and to search a new target for the treatment of AP.
Collapse
|
35
|
Axelsson JB, Akbarshahi H, Said K, Malmström A, Andersson R. Proposed protective mechanism of the pancreas in the rat. JOURNAL OF INFLAMMATION-LONDON 2010; 7:24. [PMID: 20482799 PMCID: PMC2887862 DOI: 10.1186/1476-9255-7-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 05/18/2010] [Indexed: 01/05/2023]
Abstract
Background Heparan sulphate is known to have various functions in the animal body, including surveillance of tissue integrity. Administered intraperitoneally, it induces a systemic inflammatory response syndrome and when given locally in the pancreas it initiates a protective inflammatory response. The aim of the present study was to investigate the underlying mechanisms behind cell recruitment following intra-ductal infusion of heparan sulphate. Methods Rats were subjected to intraductal-infusion of heparan sulphate, lipopolysaccharide and phosphate buffered saline into the pancreas. Pancreatic tissue was harvested 1, 3, 6, 9 or 48 hours after infusion and stained immunohistochemically for myeloperoxidase, ED-1, CINC-1 and MCP-1, as well as using eosin hematoxylin staining. Furthermore, MPO activity and MCP-1 and CINC-1 concentrations of tissue homogenates were measured. All differences were analyzed statistically using the Mann-Whitney U-test. Results During HS infusion, a rapid influx of macrophages/monocytes, as visualized as ED-1 positive cells, was seen reaching a maximum at 6 hours. After 48 hours, the same levels of ED-1 positive cells were noted in the pancreatic tissue, but with different location and morphology. Increased neutrophil numbers of heparan sulphate treated animals compared to control could be detected only 9 hours after infusion. The number of neutrophils was lower than the number of ED-1 positive cells. On the contrary, LPS infusion caused increased neutrophil numbers to a larger extent than heparan sulphate. Furthermore, this accumulation of neutrophils preceded the infiltration of ED-1 positive cells. Chemokine expression correlates very well to the cell infiltrate. MCP-1 was evident in the ductal cells of both groups early on. MCP-1 preceded monocyte infiltration in both groups, while the CINC-1 increase was only noticeable in the LPS group. Conclusions Our data suggest that heparan and LPS both induce host defense reactions, though by using different mechanisms of cell-recruitment. This implies that the etiology of pancreatic inflammation may influence how the subsequent events will develop.
Collapse
Affiliation(s)
- Jakob Bf Axelsson
- Department of Clinical Sciences Lund, Lund University, BMC, D12, SE-221 84 Lund, Sweden.
| | | | | | | | | |
Collapse
|
36
|
Zhou XY, Zhou ZG, Ding JL, Wang L, Wang R, Zhou B, Gu J, Sun XF, Li Y. TRAF6 as the key adaptor of TLR4 signaling pathway is involved in acute pancreatitis. Pancreas 2010; 39:359-66. [PMID: 19823099 DOI: 10.1097/mpa.0b013e3181bb9073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To study the potential role of tumor necrosis factor receptor-associated factor 6 (TRAF6) as the key adaptor of the toll-like receptor 4 (TLR4) signaling pathway in acute pancreatitis (AP) in mice. METHODS Acute pancreatitis was induced by 7 intraperitoneal injections of cerulein in TLR4-deficient (TLR4-Def) and TLR4 wild-type (TLR4-WT) mice. Inflammatory severity was scored and evaluated based on pathological study. TRAF6 expression was determined by reverse transcriptase polymerase chain reaction, Western blot, and immunohistochemistry. RESULTS Acute pancreatitis was successfully induced in both mice strains, but the inflammatory progression was different. In TLR4-Def mice, pancreatic inflammation was blunt and mild first, then became increasingly intensive and peaked at the later stage, whereas in the TLR4-WT mice, the response was fast initiated and peaked at the early stage of AP, then alleviated gradually. TRAF6 expression in TLR4-Def mice was significantly higher than that in the TLR4-WT mice. Immunohistochemistry located TRAF6 expressed mainly in the pancreatic acinar cells. CONCLUSIONS The TLR4-TRAF6 signaling pathway is critically involved in AP. Other signaling pathways beyond TLR4 may participate in the pancreatic inflammatory process via TRAF6. As a convergence point of the TLR4-dependent and the TLR4-independent signaling pathways, TRAF6 plays an important role in AP.
Collapse
Affiliation(s)
- Xiang-Yu Zhou
- Department of General Surgery, Institute of Digestive Surgery, West China Hospital, Sichuan University, Sichuan, 610041 People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Park SG, Kim JH, Oh JH, Lee HN, Park HS, Chung SS, Lee YJ, Lee YY, Jung HS, Park KS. Polymyxin B, scavenger of endotoxin, enhances isolation yield andin vivofunction of islets. Transpl Int 2010; 23:325-32. [DOI: 10.1111/j.1432-2277.2009.00987.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Zou J, Qiao X, Ye H, Zhang Y, Xian J, Zhao H, Liu S. Inhibition of ataxia-telangiectasia mutated by antisense oligonucleotide nanoparticles induces radiosensitization of head and neck squamous-cell carcinoma in mice. Cancer Biother Radiopharm 2009; 24:339-46. [PMID: 19435407 DOI: 10.1089/cbr.2008.0557] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ataxia-telangiectasia-mutated (ATM) is a radiosensitization gene. In the present study, we investigated the efficacy of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles containing ATM antisense oligonucleotides (ASOs) for the radiosensitization of head and neck squamous-cell carcinoma in mice, using the SCCVII cell line. Nanoparticles containing ATM ASOs were prepared with PLGA by using a double-emulsion solvent evaporation method. The results showed that the nanoparticles were suitable for intracellular uptake, and ATM ASOs inhibited ATM expression when delivered by using nanoparticles or lipofectin, but not in their free form. Meanwhile, we found that ATM reduction sensitized SCCVII cells in vitro and tumors in vivo to irradiation. In conclusion, biodegradable PLGA nanoparticles, used as a delivery carrier, enhanced intracellular uptake of ATM ASOs into SCCVII cells and the inhibitory effect of ATM ASOs. These results demonstrated that antisense ATM therapy, using PLGA nanoparticles, might provide a therapeutic benefit to patients undergoing radiation therapy for head and neck squamous-cell carcinoma.
Collapse
Affiliation(s)
- Jian Zou
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
39
|
An improved primary culture system of pancreatic duct epithelial cells from Wistar rats. Cytotechnology 2009; 60:23. [PMID: 19633996 DOI: 10.1007/s10616-009-9204-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 06/07/2009] [Indexed: 10/20/2022] Open
Abstract
Pancreatic duct epithelial cells (PDEC) are involved in most common pancreatic diseases. Primary cultivation of PDEC is a prerequisite for in vitro studies, in which in vivo situations can be simulated and molecular mechanisms investigated better than in cultured cell lines. However, some problems still exist regarding rat PDEC primary cultivation. In this study, an improved primary culture system of rat PDEC is presented. Some modifications, especially regarding specimen chosen, digestive control and epithelium purification, were made to simplify the procedure, increase cell yield, and improve epithelium purification. Cultures were identified as PDEC by morphological characteristics, reverse transcription-polymerase chain reaction and immunocytochemistry staining with cytokeratin 19. In addition, growth characteristics of rat PDEC are described in detail. This improved technique, which is more efficient and cost-effective, will be useful for in vitro pancreatic studies.
Collapse
|
40
|
Liu H, Li Y, Wang L, Chen H, Guan J, Zhou Z. Aggravation of acute pancreatitis by heparan sulfate in mice. Scand J Gastroenterol 2009; 44:626-32. [PMID: 19194821 DOI: 10.1080/00365520902745047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Systemic inflammatory response syndrome (SIRS) is responsible for pancreatitis-associated mortality, but its initiating events are poorly understood. Possible candidates may be endogenous substances, which have previously been shown to mediate inflammatory responses. The aim of this study was to investigate whether SIRS could be exaggerated by heparan sulfate (HS) in acute pancreatitis (AP). MATERIAL AND METHODS AP was induced in mice by cerulein injection and HS was administered one hour after the final cerulein injection. The severity of pancreatitis was assessed by serum amylase activity, pancreatic edema, and pancreatic myeloperoxidase (MPO) activity. Systemic inflammation was evaluated by assessing lung injury and by measuring serum levels of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6. Cytokine levels were also measured in pancreas and lung tissues. RESULTS HS did not worsen the pancreatic injury induced by cerulein. In contrast, HS exacerbated the systemic inflammation as measured by augmented lung MPO activity, increased lung TNF-alpha and IL-6 levels, and elevated serum IL-6 levels. CONCLUSIONS Our results indicate a potential role for HS in propagating pancreatic inflammation from a local process to a systemic response and thus suggest the possibility that blockade of HS might improve the outcome of SIRS in AP.
Collapse
Affiliation(s)
- Hongxiang Liu
- Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
41
|
Ding JL, Li Y, Zhou XY, Wang L, Zhou B, Wang R, Liu HX, Zhou ZG. Potential role of the TLR4/IRAK-4 signaling pathway in the pathophysiology of acute pancreatitis in mice. Inflamm Res 2009; 58:783-90. [PMID: 19434478 DOI: 10.1007/s00011-009-0048-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 04/08/2009] [Accepted: 04/16/2009] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE AND DESIGN Toll-like receptor 4 (TLR4) is potentially associated with acute pancreatitis (AP), but its exact role remains controversial. IL-1 receptor-associated kinase 4 (IRAK-4) is a common mediator of Toll-like receptors pathways, with an essential role in transducing downstream signals. This study investigates the potential role of the TLR4 pathway, in particular IRAK-4, in a murine model of AP. METHODS Acute pancreatitis was induced in wild-type and TLR4-deficient mice by intraperitoneal injections of caerulein (50 microg/kg). Pancreatic pathological scores and myeloperoxidase activity were dynamically measured, along with pancreatic TLR4 and IRAK-4 mRNA and protein. RESULTS In wild-type mice, pathological scores and myeloperoxidase activity were rapidly increased at 1, 2 and 4 h, followed by alleviation at 12 and 24 h. In TLR4-deficient mice, they were slightly increased within 2 h, but became more severe at 12 and 24 h. IRAK-4 mRNA and protein were significantly down-regulated at 1, 2 and 4 h in wild-type mice. Unexpectedly, TLR4-deficient mice showed more profound reductions of IRAK-4 mRNA and protein at the same time. CONCLUSIONS TLR4 deficiency delayed the initiation of pancreatitis, implying a potential role for TLR4 during AP. IRAK-4 might function during AP, but independently of TLR4.
Collapse
Affiliation(s)
- Jun-Li Ding
- State Key Laboratory of Biotherapy, Institute of Digestive Surgery, West China Hospital, Sichuan University, Sichuan, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Chan YC, Leung PS. Involvement of Redox-Sensitive Extracellular-Regulated Kinases in Angiotensin II-Induced Interleukin-6 Expression in Pancreatic Acinar Cells. J Pharmacol Exp Ther 2009; 329:450-8. [DOI: 10.1124/jpet.108.148353] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
43
|
Li J, Guo M, Hu B, Liu R, Wang R, Tang C. Does chronic ethanol intake cause chronic pancreatitis?: evidence and mechanism. Pancreas 2008; 37:189-95. [PMID: 18665082 DOI: 10.1097/mpa.0b013e31816459b7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To demonstrate the relationship between prolonged alcohol intake and chronic pancreatitis. METHODS Wistar rats were fed diet containing 25% concentration (vol/vol) of ethanol for 6 months. Cholecystokinin (CCK) was quantified by radioimmunoassay. Immunohistochemistry was used to detect alpha-smooth muscle actin, cyclooxygenase 2, and toll-like receptor 4 in rat pancreas. Western-blot was used to quantitatively determine the expression of nuclear factor kappaB and the above inflammatory markers. Pancreatic collagen content was quantified by measuring OH-proline. Superoxide dismutase was measured by colorimetric method. RESULTS In contrast to the control group, there was little histological change in pancreatic tissue but obvious ultrastructural changes in acinar cells of the ethanol group. Cholecystokinin, amylase, and lipase were found reduced in the ethanol group. Chronic ethanol intake did not elicit any change in the expression of alpha-smooth muscle actin, cyclooxygenase 2, toll-like receptor 4, nuclear factor kappaB, pancreatic collagen, and superoxide dismutase. CONCLUSIONS Long-term alcohol consumption did not cause chronic pancreatitis but impaired exocrine pancreatic function. The mechanism behind it could be associated with decreased output of intestinal CCK and lower concentration of pancreatic CCK. Furthermore, the nonoxidative pathway of ethanol metabolism was probably involved in it.
Collapse
Affiliation(s)
- Jing Li
- Department of Gastroenterology, State Key Laboratory of Biotherapy of Human Diseases, West China Hospital, Sichuan University, Chengdu, PR China
| | | | | | | | | | | |
Collapse
|
44
|
Axelsson J, Norrman G, Malmström A, Weström B, Andersson R. Initiation of acute pancreatitis by heparan sulphate in the rat. Scand J Gastroenterol 2008; 43:480-9. [PMID: 18365914 DOI: 10.1080/00365520701733814] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The initiating events in the onset of pancreatitis are poorly understood. Possible candidates may be endogenous ligands, acting on receptors within ductal, acinar or stellate cells, which have previously been shown to cause a systemic inflammatory response syndrome. The aim of this study was to investigate whether acute pancreatitis could be induced by heparan sulphate (HS)infused into the pancreatic ducts in the rat. MATERIAL AND METHODS Retrograde biliary-pancreatic infusion of heparan sulphate of different structures, taurodeoxycholate (TDC) or phosphate buffered saline (PBS) was performed. Local pancreatic inflammation was evaluated after 6 h by means of morphological evaluation, neutrophil and macrophage infiltration and levels of plasma amylase. Systemic inflammation was evaluated by measuring plasma IL-6, MCP-1 and CINC-1 concentrations. RESULTS Heparan sulphate induced a local inflammatory response visualized as a rapid infiltration of neutrophils and macrophages into the pancreas. Heparan sulphate induced inflammation and oedema without causing damage to acinar cells, as measured by morphological changes and plasma amylase concentrations. Furthermore, an increase in serum concentrations of CINC-1 and IL-6 was seen. The positive control (TDC) had increased levels of all variables analysed and the negative control (heparan sulphate administered intraperitoneally) was without effects. CONCLUSIONS Our findings suggest a receptor-mediated innate immune response of the pancreatic cells induced by heparan sulphate. This finding may be helpful in elucidating some of the mechanisms involved during the initiation of pancreatitis, as well as in the search for a potential future therapeutic application.
Collapse
Affiliation(s)
- Jakob Axelsson
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Li Z, Xia X, Zhang S, Zhang A, Bo W, Zhou R. Up-regulation of Toll-like receptor 4 was suppressed by emodin and baicalin in the setting of acute pancreatitis. Biomed Pharmacother 2008; 63:120-8. [PMID: 18343629 DOI: 10.1016/j.biopha.2008.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Accepted: 01/16/2008] [Indexed: 12/14/2022] Open
Abstract
Acute pancreatitis (AP) activates the systemic inflammatory response and is potentially lethal. Recent studies demonstrated that pancreatic enzymes could induce cytokine expression via Toll-like receptor 4 (TLR4) signal pathway, indicating a possible role of TLR4 in local pancreatic injury and systemic inflammatory response. Emodin, an anthraquinone derivative from Radix et Rhizoma Rhei, and baicalin, a flavone from Scutellaria baicalensis Georgi, both have been reported to possess anti-inflammatory activities. In present study, we investigated the combined effect of emodin and baicalin on pancreatic damage and pancreatitis associated lung injury, as well as tissue TLR4 expression in the setting of AP. The results showed that combination of emodin and baicalin significantly reduced serum amylase, tumor necrosis factor-alpha and interleukin-6, attenuated pancreatic and pulmonary damage, also suppressed TLR4 expression in pancreas and lung. It could be speculated that amelioration of pancreatic and pulmonary damage by emodin and baicalin might contribute, in part at least, to the suppression of TLR4 expression. The present study provides beneficial evidence as to simultaneous treatment for AP, and also suggests an important role of TLR4 in pathophysiology of AP.
Collapse
Affiliation(s)
- Zongfang Li
- Department of General Surgery, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, Shaanxi Province 710004, PR China.
| | | | | | | | | | | |
Collapse
|
47
|
Sawa H, Ueda T, Takeyama Y, Yasuda T, Shinzeki M, Nakajima T, Kuroda Y. Role of toll-like receptor 4 in the pathophysiology of severe acute pancreatitis in mice. Surg Today 2007; 37:867-73. [PMID: 17879036 DOI: 10.1007/s00595-007-3520-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 02/02/2007] [Indexed: 02/03/2023]
Abstract
PURPOSE Multiple organ dysfunction and infection are major contributors to the high mortality associated with severe acute pancreatitis (SAP). Toll-like receptor 4 (TLR4) recognizes the lipopolysaccharide of gram-negative bacilli and is involved in inflammatory response and host defense. We examined the effects of TLR4-deficiency in SAP in mice. METHODS Closed duodenal loop-induced pancreatitis was induced in C3H/HeN (wild-type) and C3H/HeJ (TLR4-deficient) mice. We compared the severity of pancreatitis, liver and kidney dysfunction, and bacterial translocation to the pancreas between the two types of mice 12 h after the induction of SAP. RESULTS The severity of pancreatitis was similar in the two types of mice. The TLR4-deficient mice had significantly lower serum levels of aspartate aminotransferase, alanine aminotransferase, blood urea nitrogen, and creatinine; significantly lower serum levels of interleukin-1 and tumor necrosis factor; reduced apoptosis of the liver and kidney; and a significantly higher rate of positive gram-negative bacterial cultures of the pancreas. TLR4 protein expression in the liver, kidney, and small intestine was increased 4 h after the induction of SAP, and decreased 12 h after the induction of SAP. CONCLUSIONS TLR4 is implicated in the mechanism of organ dysfunction and bacterial translocation in SAP, and TLR4 may trigger the inflammatory response and function defensively against infection.
Collapse
Affiliation(s)
- Hidehiro Sawa
- Department of Gastroenterological Surgery, Kobe University Graduate School of Medical Sciences, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Li HG, Zhou ZG, Li Y, Zheng XL, Lei S, Zhu L, Wang Y. Alterations of Toll-like receptor 4 expression on peripheral blood monocytes during the early stage of human acute pancreatitis. Dig Dis Sci 2007; 52:1973-8. [PMID: 17415654 DOI: 10.1007/s10620-006-9211-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2005] [Accepted: 12/30/2005] [Indexed: 02/08/2023]
Abstract
We sought to study Toll-like receptor 4 (TLR4) expression on peripheral blood mononuclear cells (PBMCs) during the early stage of human acute pancreatitis (AP). Thirty consecutive patients with acute pancreatitis admitted within 24 hr of onset of abdominal pain were enrolled prospectively in this study. Blood samples were taken by venipuncture at admission and on the third and seventh days after admission. PBMCs were isolated, and TLR4 and CD14 expression on PBMCs was detected by flow cytometer. Serum tumor necrosis factor (TNF)-alpha, interleukin, and lipase were detected simultaneously. Relations among these parameters were analysis. In mild AP, TLR4 expression increased on the first day of admission and then continued to decline for several days. On the seventh day, TLR4 expression was almost normal compared with that of the normal control. The alteration of serum TNF-alpha was coincidence with TLR4. We conclude that mononuclear-macrophages might be ignited through TLR4 (the gatekeeper of the innate immune system) and lead to production of TNF-alpha.
Collapse
Affiliation(s)
- Hong-Guang Li
- Institute of Digestive Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Gao HK, Zhou ZG, Li Y, Chen YQ. Toll-like receptor 4 Asp299Gly polymorphism is associated with an increased risk of pancreatic necrotic infection in acute pancreatitis: a study in the Chinese population. Pancreas 2007; 34:295-8. [PMID: 17414051 DOI: 10.1097/mpa.0b013e318032674a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To detect the frequency of Toll-like receptor (TLR) 4896A>G (Asp299Gly) polymorphism in acute pancreatitis (AP) patients and to determine the relationship between polymorphism and pancreatic necrotic infection. METHODS The allele frequency of TLR4 Asp299Gly was surveyed by mispairing polymerase chain reaction-restriction fragment length polymorphism analysis technique in AP patients with pancreatic necrosis and healthy volunteers, respectively. RESULTS All individuals with TLR4 Asp299Gly polymorphism were heterozygotes. Compared with healthy volunteers (5.6%), TLR4 896G allele frequencies was significantly higher in AP patients with pancreatic infection (20%), the incidence of gram-negative infection was significantly higher in AP patients with TLR4 Asp299Gly polymorphism (15 [44%]/34) than that in AP patients without TLR4 polymorphism (15 [18%]/81). CONCLUSIONS Toll-like receptor 4 Asp299Gly polymorphism is associated with the infection of pancreatic necrosis in AP. Patients who carried TLR4 896A>G mutation is susceptible to pancreatic gram-negative bacteria infection.
Collapse
Affiliation(s)
- Hong-Kai Gao
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | | | | | | |
Collapse
|