1
|
Huang Z, Zhang Y, Liu R, Li Y, Rafique M, Midgley AC, Wan Y, Yan H, Si J, Wang T, Chen C, Wang P, Shafiq M, Li J, Zhao L, Kong D, Wang K. Cobalt loaded electrospun poly(ε-caprolactone) grafts promote antibacterial activity and vascular regeneration in a diabetic rat model. Biomaterials 2022; 291:121901. [DOI: 10.1016/j.biomaterials.2022.121901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
2
|
Abstract
Cells respond to stress by activating a variety of defense signaling pathways, including cell survival and cell death pathways. Although cell survival signaling helps the cell to recover from acute insults, cell death or senescence pathways induced by chronic insults can lead to unresolved pathologies. Arterial hypertension results from chronic physiological maladaptation against various stressors represented by abnormal circulating or local neurohormonal factors, mechanical stress, intracellular accumulation of toxic molecules, and dysfunctional organelles. Hypertension and aging share common mechanisms that mediate or prolong chronic cell stress, such as endoplasmic reticulum stress and accumulation of protein aggregates, oxidative stress, metabolic mitochondrial stress, DNA damage, stress-induced senescence, and proinflammatory processes. This review discusses common adaptive signaling mechanisms against these stresses including unfolded protein responses, antioxidant response element signaling, autophagy, mitophagy, and mitochondrial fission/fusion, STING (signaling effector stimulator of interferon genes)-mediated responses, and activation of pattern recognition receptors. The main molecular mechanisms by which the vasculature copes with hypertensive and aging stressors are presented and recent advancements in stress-adaptive signaling mechanisms as well as potential therapeutic targets are discussed.
Collapse
Affiliation(s)
- Stephanie M. Cicalese
- These authors contributed equally and are considered co-first authors
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Josiane Fernandes da Silva
- These authors contributed equally and are considered co-first authors
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernanda Priviero
- These authors contributed equally and are considered co-first authors
- Cardiovascular Translational Research Center and Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| | - R. Clinton Webb
- Cardiovascular Translational Research Center and Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
3
|
Research Progress of Mechanisms and Drug Therapy For Atherosclerosis on Toll-Like Receptor Pathway. J Cardiovasc Pharmacol 2019; 74:379-388. [PMID: 31730559 DOI: 10.1097/fjc.0000000000000738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent reports have established atherosclerosis (AS) as a major factor in the pathogenetic process of cardiovascular diseases such as ischemic stroke and coronary heart disease. Although the possible pathogenesis of AS remains to be elucidated, a large number of investigations strongly suggest that the inhibition of toll-like receptors (TLRs) alleviates the severity of AS to some extent by suppressing vascular inflammation and the formation of atherosclerotic plaques. As pattern recognition receptors, TLRs occupy a vital position in innate immunity, mediating various signaling pathways in infective and sterile inflammation. This review summarizes the available data on the research progress of AS and the latest antiatherosclerotic drugs associated with TLR pathway.
Collapse
|
4
|
Tesfai A, MacCallum N, Kirkby NS, Gashaw H, Gray N, Want E, Quinlan GJ, Mumby S, Leiper JM, Paul-Clark M, Ahmetaj-Shala B, Mitchell JA. Metabolomic profiling of amines in sepsis predicts changes in NOS canonical pathways. PLoS One 2017; 12:e0183025. [PMID: 28813479 PMCID: PMC5557592 DOI: 10.1371/journal.pone.0183025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/30/2017] [Indexed: 01/10/2023] Open
Abstract
RATIONALE Nitric oxide synthase (NOS) is a biomarker/target in sepsis. NOS activity is driven by amino acids, which cycle to regulate the substrate L-arginine in parallel with cycles which regulate the endogenous inhibitors ADMA and L-NMMA. The relationship between amines and the consequence of plasma changes on iNOS activity in early sepsis is not known. OBJECTIVE Our objective was to apply a metabolomics approach to determine the influence of sepsis on a full array of amines and what consequence these changes may have on predicted iNOS activity. METHODS AND MEASUREMENTS 34 amino acids were measured using ultra purification mass spectrometry in the plasma of septic patients (n = 38) taken at the time of diagnosis and 24-72 hours post diagnosis and of healthy volunteers (n = 21). L-arginine and methylarginines were measured using liquid-chromatography mass spectrometry and ELISA. A top down approach was also taken to examine the most changed metabolic pathways by Ingenuity Pathway Analysis. The iNOS supporting capacity of plasma was determined using a mouse macrophage cell-based bioassay. MAIN RESULTS Of all the amines measured 22, including L-arginine and ADMA, displayed significant differences in samples from patients with sepsis. The functional consequence of increased ADMA and decreased L-arginine in context of all cumulative metabolic changes in plasma resulted in reduced iNOS supporting activity associated with sepsis. CONCLUSIONS In early sepsis profound changes in amine levels were defined by dominant changes in the iNOS canonical pathway resulting in functionally meaningful changes in the ability of plasma to regulate iNOS activity ex vivo.
Collapse
Affiliation(s)
- Abel Tesfai
- Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Niall MacCallum
- Critical Care, University College London Hospital, London, United Kingdom; formerly critical care, National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Nicholas S. Kirkby
- Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Hime Gashaw
- Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nicola Gray
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Elizabeth Want
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Gregory J. Quinlan
- Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sharon Mumby
- Respiratory, Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - James M. Leiper
- MRC Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Mark Paul-Clark
- Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Blerina Ahmetaj-Shala
- Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jane A. Mitchell
- Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Bomfim GF, Rodrigues FL, Carneiro FS. Are the innate and adaptive immune systems setting hypertension on fire? Pharmacol Res 2017; 117:377-393. [PMID: 28093357 DOI: 10.1016/j.phrs.2017.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/06/2016] [Accepted: 01/09/2017] [Indexed: 02/08/2023]
Abstract
Hypertension is the most common chronic cardiovascular disease and is associated with several pathological states, being an important cause of morbidity and mortality around the world. Low-grade inflammation plays a key role in hypertension and the innate and adaptive immune systems seem to contribute to hypertension development and maintenance. Hypertension is associated with vascular inflammation, increased vascular cytokines levels and infiltration of immune cells in the vasculature, kidneys and heart. However, the mechanisms that trigger inflammation and immune system activation in hypertension are completely unknown. Cells from the innate immune system express pattern recognition receptors (PRR), which detect conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) that induce innate effector mechanisms to produce endogenous signals, such as inflammatory cytokines and chemokines, to alert the host about danger. Additionally, antigen-presenting cells (APC) act as sentinels that are activated by PAMPs and DAMPs to sense the presence of the antigen/neoantigen, which ensues the adaptive immune system activation. In this context, different lymphocyte types are activated and contribute to inflammation and end-organ damage in hypertension. This review will focus on experimental and clinical evidence demonstrating the contribution of the innate and adaptive immune systems to the development of hypertension.
Collapse
Affiliation(s)
- Gisele F Bomfim
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - Fernanda Luciano Rodrigues
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
6
|
Harrington LS, Belcher E, Moreno L, Carrier MJ, Mitchell JA. Homeostatic Role of Toll-like Receptor 4 in the Endothelium and Heart. J Cardiovasc Pharmacol Ther 2016; 12:322-6. [DOI: 10.1177/1074248407306217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Toll-like receptor 4 (TLR4) is a pattern recognition receptor for lipopolysaccharide from Gram negative bacteria and thus is integral to the innate immune response in mammals. In addition, TLR4 is associated with atherosclerosis in murine models. The current study shows that blood vessels from TLR4-/- mice have an intact endothelial layer and comparable expression of nitric oxide synthase 3 protein. However, endothelium-dependent dilation in response to acetylcholine in vessels from TLR4-/- mice is greatly reduced. By contrast, endothelium-independent smooth muscle dilation in response to sodium nitroprusside in vessels from TLR4-/- mice remains intact. Furthermore, this study shows that hearts from TLR4-/- mice display signs of left ventricular dilation. In contrast to results in vessels from TLR4-/- mice, endothelium-dependent responses to acetylcholine in vessels from TLR2-/- mice remain intact. These observations illustrate a novel role for TLR4 in the homeostatic control of a functional endothelium and, thereby, cardiovascular health.
Collapse
Affiliation(s)
- Louise S. Harrington
- Cardiac, Vascular, and Inflammation Research, William Harvey Institute, Queen Mary's University of London, Charterhouse Square, London, EC1M 6BQ,
| | - Elizabeth Belcher
- Cardiothoracic Pharmacology, Unit of Critical Care Medicine, National Heart and Lung Institute, Imperial College, Dovehouse Street, London, SW3 6LY
| | - Laura Moreno
- Cardiothoracic Pharmacology, Unit of Critical Care Medicine, National Heart and Lung Institute, Imperial College, Dovehouse Street, London, SW3 6LY
| | - Martin J. Carrier
- Cardiac, Vascular, and Inflammation Research, William Harvey Institute, Queen Mary's University of London, Charterhouse Square, London, EC1M 6BQ
| | - Jane A. Mitchell
- Cardiothoracic Pharmacology, Unit of Critical Care Medicine, National Heart and Lung Institute, Imperial College, Dovehouse Street, London, SW3 6LY,
| |
Collapse
|
7
|
Wang Y, Song E, Bai B, Vanhoutte PM. Toll-like receptors mediating vascular malfunction: Lessons from receptor subtypes. Pharmacol Ther 2015; 158:91-100. [PMID: 26702901 DOI: 10.1016/j.pharmthera.2015.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toll-like receptors (TLR) are a subfamily of pattern recognition receptors (PRR) implicated in a variety of vascular abnormalities. However, the pathophysiological role and the interplay between different TLR-mediated innate and adaptive immune responses during the development of vascular diseases remain largely unspecified. TLR are widely distributed in both immune and nonimmune cells in the blood vessel wall. The expressions and locations of TLR are dynamically regulated in response to distinct molecular patterns derived from pathogens or damaged host cells. As a result, the outcome of TLR signaling is agonist- and cell type-dependent. A better understanding of discrete TLR signaling pathways in the vasculature will provide unprecedented opportunities for the discovery of novel therapies in many inflammatory vascular diseases. The present brief review discusses the role of individual TLR in controlling cellular functions of the vascular system, by focusing on the inflammatory responses within the blood vessel wall which contribute to the development of hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| | - Erfei Song
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Bo Bai
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Hamann L, Koch A, Sur S, Hoefer N, Glaeser C, Schulz S, Gross M, Franke A, Nöthlings U, Zacharowski K, Schumann RR. Association of a common TLR-6 polymorphism with coronary artery disease - implications for healthy ageing? IMMUNITY & AGEING 2013; 10:43. [PMID: 24498948 PMCID: PMC4028875 DOI: 10.1186/1742-4933-10-43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/23/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The pro-inflammatory status of the elderly triggers most of the age-related diseases such as cancer and atherosclerosis. Atherosclerosis, the leading cause world wide of morbidity and death, is an inflammatory disease influenced by life-style and genetic host factors. Stimuli such as oxLDL or microbial ligands have been proposed to trigger inflammation leading to atherosclerosis. It has recently been shown that oxLDL activates immune cells via the Toll-like receptor (TLR) 4/6 complex. Several common single nucleotide polymorphisms (SNPs) of the TLR system have been associated with atherosclerosis. To investigate the role of TLR-6 we analyzed the association of the TLR-6 SNP Pro249Ser with atherogenesis. RESULTS Genotyping of two independent groups with CAD, as well as of healthy controls revealed a significant association of the homozygous genotype with a reduced risk for atherosclerosis (odds ratio: 0.69, 95% CI 0.51-0.95, P = 0.02). In addition, we found a trend towards an association with the risk of restenosis after transluminal coronary angioplasty (odds ratio: 0.53, 95% CI 0.24-1.16, P = 0.12). In addition, first evidence is presented that the frequency of this protective genotype increases in a healthy population with age. Taken together, our results define a role for TLR-6 and its genetic variations in modulating the inflammatory response leading to atherosclerosis. CONCLUSIONS These results may lead to a better risk stratification, and potentially to an improved prophylactic treatment of high-risk populations. Furthermore, the protective effect of this polymorphism may lead to an increase of this genotype in the healthy elderly and may therefore be a novel genetic marker for the well-being during aging.
Collapse
Affiliation(s)
- Lutz Hamann
- Institute for Microbiology and Hygiene, Charité University Medical Center, Hindenburgdamm 27, 12003 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
McCarthy CG, Goulopoulou S, Wenceslau CF, Spitler K, Matsumoto T, Webb RC. Toll-like receptors and damage-associated molecular patterns: novel links between inflammation and hypertension. Am J Physiol Heart Circ Physiol 2013; 306:H184-96. [PMID: 24163075 DOI: 10.1152/ajpheart.00328.2013] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low-grade systemic inflammation is a common manifestation of hypertension; however, the exact mechanisms that initiate this pathophysiological response, thereby contributing to further increases in blood pressure, are not well understood. Aberrant vascular inflammation and reactivity via activation of the innate immune system may be the first step in the pathogenesis of hypertension. One of the functions of the innate immune system is to recognize and respond to danger. Danger signals can arise from not only pathogenic stimuli but also endogenous molecules released following cell injury and/or death [damage-associated molecular patterns (DAMPs)]. In the short-term, activation of the innate immune system is beneficial in the vasculature by providing cytoprotective mechanisms and facilitating tissue repair following injury or infection. However, sustained or excessive immune system activation, such as in autoimmune diseases, may be deleterious and can lead to maladaptive, irreversible changes to vascular structure and function. An initial source of DAMPs that enter the circulation to activate the innate immune system could arise from modest elevations in peripheral vascular resistance. These stimuli could subsequently lead to ischemic- or pressure-induced events aggravating further cell injury and/or death, providing more DAMPs for innate immune system activation. This review will address and critically evaluate the current literature on the role of the innate immune system in hypertension pathogenesis. The role of Toll-like receptor activation on somatic cells of the vasculature in response to the release of DAMPs and the consequences of this activation on inflammation, vasoreactivity, and vascular remodeling will be specifically discussed.
Collapse
Affiliation(s)
- Cameron G McCarthy
- Department of Physiology, Georgia Regents University, Augusta, Georgia; and
| | | | | | | | | | | |
Collapse
|
10
|
Moreno L, Gatheral T. Therapeutic targeting of NOD1 receptors. Br J Pharmacol 2013; 170:475-85. [PMID: 23848281 PMCID: PMC3791987 DOI: 10.1111/bph.12300] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/30/2013] [Accepted: 07/04/2013] [Indexed: 12/11/2022] Open
Abstract
The nucleotide-binding oligomerization domain 1 (NOD1) protein is an intracellular receptor for breakdown products of peptidoglycan (PGN), an essential bacterial cell wall component. NOD1 responds to γ-D-glutamyl-meso-diaminopimelic acid, which is an epitope unique to PGN structures from all Gram-negative bacteria and certain Gram-positive bacteria. Upon ligand recognition, NOD1 undergoes conformational changes and self-oligomerization mediated by the nucleotide-binding NACHT domains, followed by the recruitment and activation of the serine threonine kinase receptor-interacting protein 2 leading to the activation of NF-κB and MAPK pathways and induction of inflammatory genes. Much of our knowledge is derived from seminal studies using mice deficient in NOD1 and confirming an essential role for NOD1 in the host immune response against gastrointestinal and respiratory pathogens. In addition, recent studies have revealed a role for intracellular NOD1 receptors in the regulation of vascular inflammation and metabolism. This review will discuss our current understanding of intracellular NOD1 receptors in host immunity and chronic inflammatory disorders with a focus on cardiovascular diseases. Although therapeutic advances may have to wait until the complex interplay with pathogens, danger signals, other pattern recognition receptors and overlapping metabolic pathways is further unravelled, the steadily growing body of knowledge suggest that NOD1 antagonism might represent attractive candidate to reduce excessive inflammation associated to intestinal, cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- L Moreno
- Ciber de Enfermedades Respiratorias (CIBERES), Bunyola, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | | |
Collapse
|
11
|
Bleiblo F, Michael P, Brabant D, Ramana CV, Tai T, Saleh M, Parrillo JE, Kumar A, Kumar A. Bacterial RNA induces myocyte cellular dysfunction through the activation of PKR. J Thorac Dis 2012; 4:114-25. [PMID: 22833816 DOI: 10.3978/j.issn.2072-1439.2012.01.07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/19/2012] [Indexed: 12/25/2022]
Abstract
Severe sepsis and the ensuing septic shock are serious life threatening conditions. These diseases are triggered by the host's over exuberant systemic response to the infecting pathogen. Several surveillance mechanisms have evolved to discriminate self from foreign RNA and accordingly trigger effective cellular responses to target the pathogenic threats. The RNA-dependent protein kinase (PKR) is a key component of the cytoplasmic RNA sensors involved in the recognition of viral double-stranded RNA (dsRNA). Here, we identify bacterial RNA as a distinct pathogenic pattern recognized by PKR. Our results indicate that natural RNA derived from bacteria directly binds to and activates PKR. We further show that bacterial RNA induces human cardiac myocyte apoptosis and identify the requirement for PKR in mediating this response. In addition to bacterial immunity, the results presented here may also have implications in cardiac pathophysiology.
Collapse
|
12
|
Gatheral T, Reed DM, Moreno L, Gough PJ, Votta BJ, Sehon CA, Rickard DJ, Bertin J, Lim E, Nicholson AG, Mitchell JA. A key role for the endothelium in NOD1 mediated vascular inflammation: comparison to TLR4 responses. PLoS One 2012; 7:e42386. [PMID: 22870324 PMCID: PMC3411636 DOI: 10.1371/journal.pone.0042386] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/04/2012] [Indexed: 12/22/2022] Open
Abstract
Understanding the mechanisms by which pathogens induce vascular inflammation and dysfunction may reveal novel therapeutic targets in sepsis and related conditions. The intracellular receptor NOD1 recognises peptidoglycan which features in the cell wall of gram negative and some gram positive bacteria. NOD1 engagement generates an inflammatory response via activation of NFκB and MAPK pathways. We have previously shown that stimulation of NOD1 directly activates blood vessels and causes experimental shock in vivo. In this study we have used an ex vivo vessel-organ culture model to characterise the relative contribution of the endothelium in the response of blood vessels to NOD1 agonists. In addition we present the novel finding that NOD1 directly activates human blood vessels. Using human cultured cells we confirm that endothelial cells respond more avidly to NOD1 agonists than vascular smooth muscle cells. Accordingly we have sought to pharmacologically differentiate NOD1 and TLR4 mediated signalling pathways in human endothelial cells, focussing on TAK1, NFκB and p38 MAPK. In addition we profile novel inhibitors of RIP2 and NOD1 itself, which specifically inhibit NOD1 ligand induced inflammatory signalling in the vasculature. This paper is the first to demonstrate activation of whole human artery by NOD1 stimulation and the relative importance of the endothelium in the sensing of NOD1 ligands by vessels. This data supports the potential utility of NOD1 and RIP2 as therapeutic targets in human disease where vascular inflammation is a clinical feature, such as in sepsis and septic shock.
Collapse
Affiliation(s)
- Timothy Gatheral
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Daniel M. Reed
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Laura Moreno
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, United Kingdom
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Peter J. Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, Philadelphia, Pennsylvania, United States of America
| | - Bart J. Votta
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, Philadelphia, Pennsylvania, United States of America
| | - Clark A. Sehon
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, Philadelphia, Pennsylvania, United States of America
| | - David J. Rickard
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, Philadelphia, Pennsylvania, United States of America
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, Philadelphia, Pennsylvania, United States of America
| | - Eric Lim
- Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Andrew G. Nicholson
- Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Jane A. Mitchell
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, United Kingdom
- Institute of Cardiovascular Medicine and Science (ICMS), London, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Paul-Clark MJ, George PM, Gatheral T, Parzych K, Wright WR, Crawford D, Bailey LK, Reed DM, Mitchell JA. Pharmacology and therapeutic potential of pattern recognition receptors. Pharmacol Ther 2012; 135:200-15. [PMID: 22627269 DOI: 10.1016/j.pharmthera.2012.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 12/30/2022]
Abstract
Pharmacologists have used pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS) for decades as a stimulus for studying mediators involved in inflammation and for the screening of anti-inflammatory compounds. However, in the view of immunologists, LPS was too non-specific for studying the mechanisms of immune signalling in infection and inflammation, as no receptors had been identified. This changed in the late 1990s with the discovery of the Toll-like receptors. These 'pattern recognition receptors' (PRRs) were able to recognise highly conserved sequences, the so called pathogen associated molecular patterns (PAMPs) present in or on pathogens. This specificity of particular PAMPs and their newly defined receptors provided a common ground between pharmacologists and immunologists for the study of inflammation. PRRs also recognise endogenous agonists, the so called danger-associated molecular patterns (DAMPs), which can result in sterile inflammation. The signalling pathways and ligands of many PRRs have now been characterised and there is no doubt that this rich vein of research will aid the discovery of new therapeutics for infectious conditions and chronic inflammatory disease.
Collapse
Affiliation(s)
- M J Paul-Clark
- Department of Cardiothoracic Pharmacology, Pharmacology and Toxicology, National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse Street, London SW3 6LY, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lewis D, Chan D, Pinheiro D, Armitage‐Chan E, Garden O. The immunopathology of sepsis: pathogen recognition, systemic inflammation, the compensatory anti-inflammatory response, and regulatory T cells. J Vet Intern Med 2012; 26:457-82. [PMID: 22428780 PMCID: PMC7166777 DOI: 10.1111/j.1939-1676.2012.00905.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 11/28/2011] [Accepted: 02/07/2012] [Indexed: 02/06/2023] Open
Abstract
Sepsis, the systemic inflammatory response to infection, represents the major cause of death in critically ill veterinary patients. Whereas important advances in our understanding of the pathophysiology of this syndrome have been made, much remains to be elucidated. There is general agreement on the key interaction between pathogen-associated molecular patterns and cells of the innate immune system, and the amplification of the host response generated by pro-inflammatory cytokines. More recently, the concept of immunoparalysis in sepsis has also been advanced, together with an increasing recognition of the interplay between regulatory T cells and the innate immune response. However, the heterogeneous nature of this syndrome and the difficulty of modeling it in vitro or in vivo has both frustrated the advancement of new therapies and emphasized the continuing importance of patient-based clinical research in this area of human and veterinary medicine.
Collapse
Affiliation(s)
- D.H. Lewis
- Department of Veterinary Clinical SciencesThe Royal Veterinary CollegeHatfield CampusHertfordshire,UK (Lewis, Chan, Garden)
- Present address:
Langford Veterinary ServicesSmall Animal HospitalLangford HouseLangfordBristol, BS40 5DUUK
| | - D.L. Chan
- Department of Veterinary Clinical SciencesThe Royal Veterinary CollegeHatfield CampusHertfordshire,UK (Lewis, Chan, Garden)
| | - D. Pinheiro
- Regulatory T Cell LaboratoryThe Royal Veterinary CollegeCamden Campus, LondonNW1 OTUUK (Pinheiro, Garden)
| | - E. Armitage‐Chan
- Davies Veterinary SpecialistsManor Farm Business ParkHertfordshireSG5 3HR, UK (Armitage‐Chan)
| | - O.A. Garden
- Department of Veterinary Clinical SciencesThe Royal Veterinary CollegeHatfield CampusHertfordshire,UK (Lewis, Chan, Garden)
- Regulatory T Cell LaboratoryThe Royal Veterinary CollegeCamden Campus, LondonNW1 OTUUK (Pinheiro, Garden)
| |
Collapse
|
15
|
Harrington LS, Lundberg MH, Waight M, Rozario A, Mitchell JA. Reduced endothelial dependent vasodilation in vessels from TLR4(-/-) mice is associated with increased superoxide generation. Biochem Biophys Res Commun 2011; 408:511-5. [PMID: 21513697 PMCID: PMC3105224 DOI: 10.1016/j.bbrc.2011.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 01/13/2023]
Abstract
Toll like receptor (TLR)4 is a pattern recognition receptor expressed in endothelial and other cells, responsible for the sensing of endotoxin and host derived ligands. Our group has shown previously that the absence of TLR4 is associated with reduced endothelial dependent vasodilator responses and left heart hypertrophy in animal models. However, the mechanism behind reduced endothelial cell function in TLR4−/− mice is not known. We have used en face confocal imaging of mesenteric arteries from mice deficient in the TLR4 receptor stained with dihydroethidium (DHE) to measure superoxide production. Using the isometric wire myograph, mesenteric artery vasodilator responses to acetylcholine and MnCl2 (a superoxide dismutase mimetic) were measured. Mesenteric arteries from TLR4−/− mice had a reduced endothelial dependent relaxant response and increased superoxide levels when stimulated with acetylcholine. Increased levels of superoxide, as detected by DHE staining, were seen in vessels from TLR4−/− mice, which were reduced to control levels in the presence of MnCl2. Our observations suggest that loss of TLR4 increases superoxide generation which reduces the biological activity of endothelial derived nitric oxide and thereby explains the endothelial dysfunction and associated cardiovascular phenotype in TLR4−/− mice. These data implicate a novel cardio-protective role for TLR4 in vascular homeostasis.
Collapse
|
16
|
Toll-like receptor signaling pathways and the evidence linking toll-like receptor signaling to cardiac ischemia/reperfusion injury. Shock 2011; 34:548-57. [PMID: 20458266 DOI: 10.1097/shk.0b013e3181e686f5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Toll-like receptors (TLRs) play a key role in innate immune defenses. After activation by foreign pathogens or host-derived molecules, TLRs signal via overlapping or distinct signaling cascades and eventually induce numerous genes involved in a variety of cellular responses. A growing body of evidence suggests that TLR signaling also plays an important role in cardiac ischemia/reperfusion injury. We review our current understanding of the TLR signaling pathways and their roles in the pathophysiology of cardiac ischemia/reperfusion injury, as well as discuss several mechanisms for TLR activation and regulation.
Collapse
|
17
|
Moreno L, McMaster SK, Gatheral T, Bailey LK, Harrington LS, Cartwright N, Armstrong PCJ, Warner TD, Paul-Clark M, Mitchell JA. Nucleotide oligomerization domain 1 is a dominant pathway for NOS2 induction in vascular smooth muscle cells: comparison with Toll-like receptor 4 responses in macrophages. Br J Pharmacol 2010; 160:1997-2007. [PMID: 20649597 PMCID: PMC2913099 DOI: 10.1111/j.1476-5381.2010.00814.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background and purpose: Gram-negative bacteria contain ligands for Toll-like receptor (TLR) 4 and nucleotide oligomerization domain (NOD) 1 receptors. Lipopolysaccharide (LPS) activates TLR4, while peptidoglycan products activate NOD1. Activation of NOD1 by the specific agonist FK565 results in a profound vascular dysfunction and experimental shock in vivo. Experimental approach: Here, we have analysed a number of pharmacological inhibitors to characterize the role of key signalling pathways in the induction of NOS2 following TLR4 or NOD1 activation. Key results: Vascular smooth muscle (VSM) cells expressed NOD1 mRNA and protein, and, after challenge with Escherichia coli or FK565, NOS2 protein and activity were induced. Macrophages had negligible levels of NOD1 and were unaffected by FK565, but responded to E. coli and LPS by releasing increased NO and expression of NOS2 protein. Classic pharmacological inhibitors for NF-κB (SC-514) and mitogen-activated protein kinase (SB203580, PD98059) signalling pathways inhibited responses in both cell types regardless of agonist. While TLR4-mediated responses in macrophages were specifically inhibited by the pan-caspase inhibitor z-VAD-fmk and the PKC inhibitor Gö6976, NOD1-mediated responses in VSM cells were inhibited by the Rip2 inhibitor PP2. Conclusions and implications: Our findings suggest a selective role for NOD1 in VSM cells, and highlight NOD1 as a potential novel therapeutic target for the treatment of vascular inflammation.
Collapse
Affiliation(s)
- L Moreno
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Buchholz BM, Billiar TR, Bauer AJ. Dominant role of the MyD88-dependent signaling pathway in mediating early endotoxin-induced murine ileus. Am J Physiol Gastrointest Liver Physiol 2010; 299:G531-8. [PMID: 20508155 PMCID: PMC2928536 DOI: 10.1152/ajpgi.00060.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
TLR4 ligation by pathogen-associated molecular patterns, such as Gram-negative bacteria-derived LPS, triggers a nonhematopoietic cell-mediated ileus during early endotoxemia. Our objective was to investigate the quantitative contributions of the two downstream signaling pathways of TLR4, namely the adapter proteins myeloid differentiation primary response gene 88 (MyD88) and Toll-IL-1-resistance (TIR) domain-containing adaptor-inducing IFN-beta (TRIF). Six hours after intraperitoneal injection of highly purified LPS (UP-LPS, 5 mg/kg), in vivo gastrointestinal transit and intestinal muscularis gene transcripts of inflammatory mediators chemokine (C-X-C motif) ligand 10, synonymous IP-10 (CXCL10), granulomonocyte colony stimulating factor (GM-CSF, synonymous CSF-2), IL-1beta, IL-6, IL-10, and inducible NO synthase (iNOS) were assessed in mice with transgenic loss-of-function for MyD88 or TRIF. LPS-induced MyD88 and TRIF mRNA upregulation was quantified within the intestinal muscularis of TLR4-competent and TLR4-mutant mice, and MyD88 mRNA levels were additionally measured in TLR4 bone marrow chimeras. MyD88 deficiency completely protected mice from early endotoxin-induced ileus, while TRIF deficiency partially ameliorated ileus severity. LPS induction of the primary downstream signaling element MyD88 was TLR4 dependent and was derived in equal amounts from both the hematopoietic and the nonhematopoietic cells. Conversely, no induction of TRIF mRNA was detectable. Significant gene induction of all inflammatory mediators was dependent on intracellular signal transduction by MyD88, while the TRIF MyD88-independent pathway predominantly regulated the molecular levels of CXCL10. In summary, MyD88 and TRIF are nonredundant signaling pathways in early endotoxin-induced rodent ileus, but MyD88 is the essential adaptor molecule for transduction of early TLR4-induced ileus and inflammatory signaling. The dependency of ileus on individual adaptor protein pathways is also reflected in the manifestation of specific molecular inflammatory events within the intestinal muscularis externa.
Collapse
Affiliation(s)
- Bettina M. Buchholz
- 1Department of Medicine/Gastroenterology, University of Pittsburgh, Pittsburgh, Pennsylvania; ,2Department of Surgery, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany; and
| | - Timothy R. Billiar
- 3Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony J. Bauer
- 1Department of Medicine/Gastroenterology, University of Pittsburgh, Pittsburgh, Pennsylvania;
| |
Collapse
|
19
|
M1 PROTEIN FROM STREPTOCOCCUS PYOGENES INDUCES NITRIC OXIDE-MEDIATED VASCULAR HYPORESPONSIVENESS TO PHENYLEPHRINE. Shock 2010; 34:98-104. [DOI: 10.1097/shk.0b013e3181cdc50f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Genome-wide analysis of BEAS-2B cells exposed to trivalent arsenicals and dimethylthioarsinic acid. Toxicology 2010; 268:31-9. [DOI: 10.1016/j.tox.2009.11.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/30/2009] [Accepted: 11/20/2009] [Indexed: 01/22/2023]
|
21
|
Local exposure of bone components to injured soft tissue induces Toll-like receptor 4-dependent systemic inflammation with acute lung injury. Shock 2009; 30:686-91. [PMID: 18461022 DOI: 10.1097/shk.0b013e31816f257e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Remote and systemic inflammatory responses after long bone fractures have been well described, but the mechanisms underlying these changes remain unexplained. We hypothesized that bone components locally exposed to injured soft tissue are capable of inducing a systemic inflammatory response associated with acute lung injury, and that this inflammatory cascade requires Toll-like receptor 4 (TLR-4) signaling. Accordingly, male C3H/HeOuJ (TLR-4-competent) and C3H/HeJ (TLR-4-mutant) mice were injected with various bone components (bone marrow cells, bone marrow supernatant, and bone suspension, respectively) in bilaterally injured thigh muscles and euthanized after 6 h. Serum TNF-alpha, IL-6, and IL-10 levels, and pulmonary myeloperoxidase activity was measured using specific enzyme-linked immunosorbent assay kits. Pulmonary permeability changes were assessed with bronchoalveolar lavage. Local exposure of bone components to injured soft tissue induced systemic inflammation and acute lung injury in TLR-4-competent, but not in TLR-4-mutant, animals. These findings suggest that bone components contribute to systemic inflammation and acute lung injury after long bone fractures via TLR-4 signaling and support the notion of a central role for TLR-4 in sensing tissue damage.
Collapse
|
22
|
Differential expression of toll-like receptor genes: sepsis compared with sterile inflammation 1 day before sepsis diagnosis. Shock 2009; 31:238-44. [PMID: 18665047 DOI: 10.1097/shk.0b013e3181834991] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Toll-like receptors (TLRs) are critical components of innate immunity. This study was designed to evaluate differential expression of genes for TLR and associated signal transduction molecules in critically ill patients developing sepsis compared with those with sterile inflammation. Uninfected critically ill patients with systemic inflammatory response syndrome were prospectively followed daily for development of sepsis. They were divided into two groups and compared in a case-control manner: (a) preseptic patients (n = 45) who subsequently developed sepsis, and (b) uninfected systemic inflammatory response syndrome patients (n = 45) who remained uninfected. Whole blood RNA was collected (PAXGene tube) at study entry and 1, 2, and 3 days before clinical sepsis diagnosis (or time-matched uninfected control) and analyzed via Affymetrix Hg_U133 Plus 2.0 microarrays. Genes were considered differentially expressed if they met univariate significance controlled for multiple comparisons at P < 0.005. Differentially expressed probes were uploaded into the Database for Annotation, Visualization and Integrated Discovery. The TLR pathway (Kyoto Encyclopedia of Genes and Genomes-KEGG) significance was determined via Expression Analysis Systematic Explorer (EASE) scoring. A total of 2,974 Affymetrix probes representing 2,190 unique genes were differentially expressed 1 day before sepsis diagnosis. Thirty-six probes representing 25 genes were annotated to the TLR pathway (KEGG) via the Database for Annotation, Visualization and Integrated Discovery with an EASE score at P < 0.0004. Notable TLR genes demonstrating increased expression include TLR-4 (median, 1.43-fold change), TLR-5 (2.08-fold change), and MAPK14 (1.90-fold change). An additional 11 unique genes were manually annotated into the TLR pathway based on known relevance such as TLR-8 (1.54-fold change). The total 36 genes contained 28 showing increased expression and 8 showing decreased expression. Differential gene expression was noted for TLR receptors (eight genes), TLR intracellular signal transduction cascade molecules (27 genes), and TLR-related effector molecules (one gene). The TLR and downstream signaling genes are differentially expressed in critically ill patients developing sepsis compared with those with sterile inflammation. These expression differences occur before phenotypic-based diagnosis of clinical sepsis.
Collapse
|
23
|
Jonkam CC, Bansal K, Traber DL, Hamahata A, Maybauer MO, Maybauer DM, Cox RA, Lange M, Connelly RL, Traber LD, Djukom CD, Salsbury JR, Herndon DN, Enkhbaatar P. Pulmonary vascular permeability changes in an ovine model of methicillin-resistant Staphylococcus aureus sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R19. [PMID: 19222851 PMCID: PMC2688137 DOI: 10.1186/cc7720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/03/2009] [Accepted: 02/17/2009] [Indexed: 02/06/2023]
Abstract
Introduction Endothelial dysfunction is a hallmark of sepsis, associated with lung transvascular fluid flux and pulmonary dysfunction in septic patients. We tested the hypothesis that methicillin-resistant Staphylococcus aureus (MRSA) sepsis following smoke inhalation increases pulmonary transvascular fluid flux via excessive nitric oxide (NO) production. Methods Ewes were chronically instrumented, and randomised into either a control or MRSA sepsis (MRSA and smoke inhalation) group. Results Pulmonary function remained stable in the control group, whereas the MRSA sepsis group developed impaired gas exchange and significantly increased lung lymph flow, permeability index and bloodless wet-to-dry weight-ratio (W/D ratio). The plasma nitrate/nitrite (NOx) levels, lung inducible nitric oxide synthases (iNOS) and endothelial nitric oxide synthases (eNOS), vascular endothelial growth factor (VEGF) protein expressions and poly-(ADP)-ribose (PAR) were significantly increased by MRSA challenge. Conclusions These results provide evidence that excessive NO production may mediate pulmonary vascular hyperpermeability in MRSA sepsis via up regulation of reactive radicals and VEGF.
Collapse
Affiliation(s)
- Collette C Jonkam
- Department of Anesthesiology, The University of Texas Medical Branch and Shriners Hospital for Children, Galveston, TX 77555-1102, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Paul-Clark MJ, Sorrentino R, Bailey LK, Sriskandan S, Mitchell JA. Gram-positive and Gram-negative bacteria synergize with oxidants to release CXCL8 from innate immune cells. Mol Med 2008; 14:238-46. [PMID: 18231574 DOI: 10.2119/2007-00098.paul-clark] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 01/17/2008] [Indexed: 01/30/2023] Open
Abstract
We have recently demonstrated that oxidants can activate monocytes via an action on Toll-like receptor (TLR) 2; however, it is unclear what functional consequence this has on immune surveillance for Gram-negative and -positive bacteria. Gram-negative and -positive bacteria and their related pathogen-associated molecular patterns (PAMPs) are sensed by TLR4 and TLR2, respectively. In the current study, we used a human monocyte cell line to show that oxidants prime cells to subsequent challenge with Gram-negative or -positive bacteria as well as PAMPs specific for TLR4 (LPS), TLR2/1 (Pam(3)CSK4), TLR2/6 (FSL-1), Nod1 (FK565), and Nod2 (MDP Lys 18). Similarly, activation of TLR4 with LPS primed for subsequent activation of cells by agonists of the TLR2/6 or TLR2/1 complex. However, no synergy was noted when cells were costimulated with Pam(3)CSK4 and FSL-1. We then tested blood (and isolated monocytes) derived from healthy smokers, which is oxidant primed, making it more sensitive to bacterial or PAMP stimulation when compared with blood of nonsmokers. Thus an oxidant stimulation, possibly via an action on TLR2 or associated transduction pathways, provides a signal that initiates inflammatory responses and sensitizes cells to pathogenic insults.
Collapse
Affiliation(s)
- Mark J Paul-Clark
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, United Kingdom.
| | | | | | | | | |
Collapse
|
25
|
Abstract
Sepsis, the systemic inflammatory response to infection, is considered the major cause of death among critically ill patients in the developed world. While there is a general view that this reflects contributions from both the pathogen and the host with respect to an inappropriate inflammatory response, there is a lack of agreement as to the key immune mechanisms. This has been reflected in the diverse range of immunotherapies tested in clinical trials, often with rather marginal effects. The case has been made for a pathogenic role of excessive immunity, the so-called 'cytokine storm', and for a role of too little immunity through immune paralysis. Apoptosis is implicated as a key mechanism in both this immune paralysis and the multi-organ failure that is a feature of severe sepsis. A number of polymorphisms have been implicated in susceptibility to sepsis, including cytokine genes, HLA class II and caspase-12. In this review we focus in particular on the role of group A streptococci in severe sepsis. Here the effect of bacterial superantigens appears to be a correlate of inflammatory activation, although the precise evolutionary role of the superantigens remains unclear.
Collapse
Affiliation(s)
- S Sriskandan
- Department of Infectious Diseases and Immunity, Imperial College, London, UK
| | | |
Collapse
|
26
|
Role of pattern-recognition receptors in cardiovascular health and disease. Biochem Soc Trans 2008; 35:1449-52. [PMID: 18031243 DOI: 10.1042/bst0351449] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A role for PRRs (pattern-recognition receptors) in immune cell function is now well established. In macrophages and other immune cells, activation of TLRs (Toll-like receptors) and cytosolic NLRs [NOD (nucleotide oligomerization domain) proteins containing a leucine-rich repeat] results in the induction of genes and release of imunoregulator hormones including cytokines and NO (nitric oxide). In addition to immune cells, structural cells of the cardiovascular system including endothelial cells, vascular smooth muscle and cardiac myocytes express functional PRRs and sense PAMPs (pathogen-associated molecular patterns). Furthermore, bacteria and PAMPs activate the coagulation system and platelets. TLRs are now implicated in a range of cardiovascular diseases and syndromes including atherosclerosis and sepsis. Our group is working on the hypotheses that differences exist in how tissues of the cardiovascular system, including vessels, endothelium, heart and blood, sense pathogens compared with immune cells (principally macrophages) and that identifying such differences will reveal new therapeutic targets for the treatment of cardiovascular disease. We have identified examples of similarities and differences in how cardiovascular tissues and macrophages sense PAMPs. These findings will be discussed together with our interpretation of how this information may lead to new treatments.
Collapse
|
27
|
Patel TA, Belcher E, Warner TD, Harding SE, Mitchell JA. Identification and characterization of a dysfunctional cardiac myocyte phenotype: role of bacteria, Toll-like receptors, and endothelin. Shock 2008; 28:434-40. [PMID: 17558348 DOI: 10.1097/shk.0b013e31804a55a7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cardiac myocyte dysfunction is clearly identified as underlying the acute heart failure associated with bacterial infection, as well as the chronic syndrome following cardiac damage, but the mechanisms leading to dysfunction in each case are not fully established. It is thought that local hormones such as endothelin 1 (ET-1) can increase the risk of heart failure in acute or chronic conditions. In the current study, we characterize myocytes as populations and identify a novel phenotype of the ventricular cardiac myocyte that does not contract appropriately on electrical stimulation. The noncontractile cardiac myocytes were viable and had normal calcium transients. The proportion of noncontractile cardiac myocytes was increased by bacteria (gram-positive Staphylococcus aureus or gram-negative Escherichia coli). Using selective ligands or myocytes from genetically modified mice, we established that the effects of S. aureus were mediated by Toll-like receptor 2/6 and of E. coli by Toll-like receptor 4. The transition to the noncontractile phenotype was strongly inhibited by ETA antagonism but unaffected by inhibition of NOS, suggesting that ET-1 and not NO mediates this phenomenon. These results are the first to describe the characteristics of this noncontractile phenotype and the mechanisms of its induction by bacteria. Description of the myocyte population, instead of effects only on individual cells, will be more relevant to the prediction of the depression of cardiac function.
Collapse
Affiliation(s)
- Trupti A Patel
- Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Cartwright N, Murch O, McMaster SK, Paul-Clark MJ, van Heel DA, Ryffel B, Quesniaux VFJ, Evans TW, Thiemermann C, Mitchell JA. Selective NOD1 agonists cause shock and organ injury/dysfunction in vivo. Am J Respir Crit Care Med 2007; 175:595-603. [PMID: 17234906 DOI: 10.1164/rccm.200608-1103oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE NLRs (nucleotide oligomerisation domain [NOD] proteins containing a leucine-rich repeat) are cytosolic pattern recognition receptors. NOD1 senses diaminopimelic acid-containing peptidoglycan present in gram-negative bacteria, whereas NOD2 senses the muramyl dipeptide (MDP) present in most organisms. Bacteria are the most common cause of septic shock, which is characterized clinically by hypotension resistant to vasopressor agents. In animal models, gram-negative septic shock is mimicked by lipopolysaccharide (LPS), which signals through Toll-like receptor 4 (TLR4) and its adaptor MyD88. The role of NLRs in the pathophysiology of septic shock is not known. OBJECTIVES To compare the effects of selective NOD1 agonists with LPS in vivo. METHODS Vascular smooth muscle cells or whole aortas from wild-type or genetically modified mice were stimulated in vitro with agonists of NOD1 (FK565) or NOD2 (MDP). Vasoconstriction was measured using wire myography. Nitric oxide (NO) formation was measured using Griess reaction and NO synthase-II protein by Western blotting. In vivo, blood pressure, heart rate, and urine output were measured in sham-, LPS-, or FK565-treated animals. Biomarkers of end-organ injury, coagulation activation, NO, and cytokines were measured in plasma. MAIN RESULTS FK565, but not MDP, induced NO synthase-II protein/activity in vascular smooth muscle and vascular hyporeactivity to pressor agents. FK565 had no effect on vessels from NOD1(-/-) mice, but was active in vessels from TLR4(-/-), TLR2(-/-), or MyD88(-/-) mice. FK565 induced hypotension, increased heart rate, and caused multiple (renal, liver) injury and dysfunction in vivo. CONCLUSIONS Activation of NOD1 induces shock and multiple organ injury/dysfunction.
Collapse
Affiliation(s)
- Neil Cartwright
- Department of Critical Care, National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Clemens MG. WHAT'S NEW IN SHOCK, JANUARY 2007? Shock 2007; 27:1-3. [PMID: 17172972 DOI: 10.1097/shk.0b013e31802e2887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mark G Clemens
- University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|